

(86) Date de dépôt PCT/PCT Filing Date: 2017/06/08
(87) Date publication PCT/PCT Publication Date: 2017/12/14
(45) Date de délivrance/Issue Date: 2024/05/28
(85) Entrée phase nationale/National Entry: 2018/12/06
(86) N° demande PCT/PCT Application No.: US 2017/036463
(87) N° publication PCT/PCT Publication No.: 2017/214346
(30) Priorité/Priority: 2016/06/08 (US62/347,218)

(51) Cl.Int./Int.Cl. A61K 31/365 (2006.01),
A61K 36/19 (2006.01)
(72) Inventeur/Inventor:
HANCKE, JUAN O., CL
(73) Propriétaire/Owner:
INNOBIOSCIENCE, LLC, US
(74) Agent: BENOIT & COTE INC.

(54) Titre : TRAITEMENT PAR ANDROGRAPHOLIDE DE FORMES PROGRESSIVES DE LA SCLEROSE EN PLAQUES
(54) Title: ANDROGRAPHOLIDE TREATS PROGRESSIVE FORMS OF MULTIPLE SCLEROSIS

(57) Abrégé/Abstract:

Andrographolide 240 mg / day orally is the first treatment shown to significantly benefit progressive forms of Multiple Sclerosis in human patients.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2017/214346 A1

(43) International Publication Date
14 December 2017 (14.12.2017)

(51) International Patent Classification:
A61K 31/365 (2006.01) *A61K 36/19* (2006.01)

(74) Common Representative: PHARMACEUTICAL PATENT ATTORNEYS, LLC; 55 Madison Avenue, 4th Floor, Morristown, NJ 07960-7397 (US).

(21) International Application Number:
PCT/US2017/036463

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
08 June 2017 (08.06.2017)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:
English

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(26) Publication Language:
English

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data:
62/347,218 08 June 2016 (08.06.2016) US

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant: INNOBIOSCIENCES, LLC [US/US]; 1303 Riverview Circle, Nw, Bradenton, FL 34209 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for US only): PHARMACEUTICAL PATENT ATTORNEYS, LLC [US/US]; 55 Madison Avenue, 4th Floor, Morristown, NJ 07960-7397 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(72) Inventor: HANCKE, Juan, O.; Instituto De Farmacologia, Facultad De Ciencias Veterinarias, Universidad Austral De Chile, Valdivia (CL).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(54) Title: ANDROGRAPHOLIDE TREATS PROGRESSIVE FORMS OF MULTIPLE SCLEROSIS

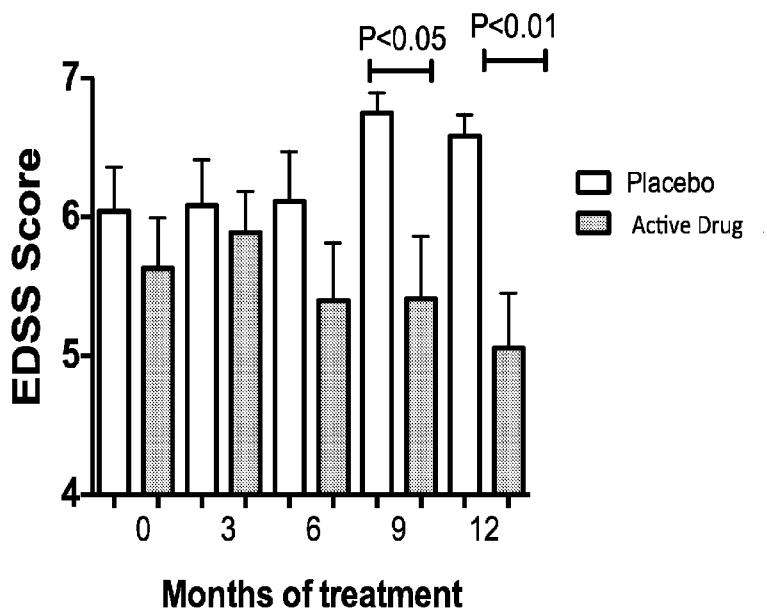


FIGURE 6

(57) Abstract: Andrographolide 240 mg / day orally is the first treatment shown to significantly benefit progressive forms of Multiple Sclerosis in human patients.

WO 2017/214346 A1

Declarations under Rule 4.17:

- *as to the identity of the inventor (Rule 4.17(i))*
- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*
- *of inventorship (Rule 4.17(iv))*

Published:

- *with international search report (Art. 21(3))*

1 TITLE

2 *Andrographolide Treats Progressive Forms of Multiple Sclerosis*

3 RELATED APPLICATIONS

4 This application claims priority from United States Provisional patent application
5 Serial No. 62/347218 (filed 08 June 2016)

6 .

7 GOVERNMENT INTEREST

8 None.

9 PARTIES TO A JOINT RESEARCH AGREEMENT

10 Certain of this research has been conducted at Pontificia Universidad Catolica de
11 Chile, pursuant to an agreement between Pontificia Universidad Catolica de Chile and the
12 Applicant/ Assignee.

13 SEQUENCE LISTING

14 None.

15 PRIOR DISCLOSURES BY A JOINT INVENTOR

16 A joint inventor is co-author of Bertoglio, J.C. *et al.*, *Andrographis paniculata*
17 *Decreases Fatigue In Patients With Relapsing-Remitting Multiple Sclerosis*, 16:77 BMC
18 Neurology (23 May 2016).

19 BACKGROUND

20 Multiple Sclerosis (MS) is a chronic neuron-inflammatory demyelinating disorder of
21 the Central Nervous System (CNS) that predominantly affects young adults in their 20s or
22 40s and is one of the most common causes of non-traumatic disability among young and
23 middle-aged people. MS-related health care costs are estimated to be more than \$10 billion
24 annually in the United States, and \$15 billion worldwide.

25 As of 2008, between 2 and 2.5 million people are affected globally with rates varying
26 widely in different regions of the world and among different populations. MS affects more
27 than 350,000 people in the United States and 2.5 million worldwide. In the United States,
28 prevalence estimates are approximately 90 per 100,000 population.

29 MS symptoms can start anywhere between 10 and 80 years of age, but they usually
30 begin between 20 and 40 years, with a mean age of 32 years. Women outnumber men by a
31 ratio of 2-3 to 1, although in Primary Progressive MS (PPMS) the ratio is closer to equal.

32 The name *multiple sclerosis* refers to scars (sclerae—better known as plaques or
33 lesions) in particular in the white matter of the brain and spinal cord. The aetiology of MS is

1 unknown. It is believed to be an autoimmune disease, in which the body's immune system
2 attacks its own tissues. In MS, this process destroys myelin, the fatty substance that coats and
3 protects nerve fibres in the brain and spinal cord. When myelin is damaged, the messages that
4 travel along that nerve may be slowed or blocked. MS is characterized by areas of
5 demyelinated plaques disseminated throughout the CNS with a predilection for optic nerves,
6 spinal cord, periventricular white matter (WM), corpus callosum, and cortical and sub-
7 cortical grey matter (GM).

8 Later in the disease course, gradual progression of disability is observed. The overt
9 progression of disability (secondary progressive MS) occurs when on-going irreversible
10 tissue injury exceeds a critical threshold beyond which the nervous system can no longer
11 compensate. At this point, the disease becomes essentially a degenerative process, with
12 neurologic deterioration independent of on-going inflammation.

13 Multiple sclerosis is also known as "disseminated sclerosis" or "encephalomyelitis
14 disseminate". It is an inflammatory disease in which the insulating covers of nerve cells in
15 the brain and spinal cord are damaged. This damage disrupts the ability of parts of the
16 nervous system to communicate, resulting in a wide range of signs and symptoms, including
17 physical, mental, and sometimes psychiatric problems.

18 While the cause is not clear, the underlying mechanism is thought to be either
19 destruction by the immune system or failure of the myelin-producing cells. Proposed causes
20 for this include genetics and environmental factors such as infections. MS is usually
21 diagnosed based on the presenting signs and symptoms and the results of supporting medical
22 tests.

23 MS can be classified by the comparative severity of symptoms over time. Where new
24 symptoms occur in isolated attacks, this is termed the "relapsing-remitting" form of MS.
25 Relapsing Remitting (RRMS) is the most common form of the disease (85% of patients),
26 wherein symptoms appear for several days to weeks, after which they usually resolve
27 spontaneously.

28 Where new symptoms build up or become more severe over time, this is termed a
29 "progressive" form of MS. Between attacks, symptoms may disappear completely; however,
30 permanent neurological problems often occur, especially as the disease advances. Patients
31 with progressive forms of MS have a markedly worse clinical outlook than do patients with a
32 relapsing-remitting form. The present invention relates to pharmaceutical compositions for
33 treating progressive forms of MS, and more particularly to treating Secondary Progressive

1 (SP) and Primary Progressive (PP) forms of MS.

2 There is no known cure for multiple sclerosis. Treatments attempt to improve function
3 after an attack and prevent new attacks. Medications used to treat MS while modestly
4 effective can have adverse effects and be poorly tolerated. Many people pursue alternative
5 treatments, despite a lack of evidence of efficacy. The long-term outcome is difficult to
6 predict. Life expectancy is 5 to 10 years lower than that of an unaffected population. Above-
7 average outcomes are more often seen in women, those who develop the disease early in life,
8 and those who initially experienced few attacks. In the following paragraphs, an analysis is
9 made of the 8 drugs that have been evaluated so far, in clinical trials for various prior art
10 treatments for MS.

11 After tissue damage accumulates over many years, 50% of RRMS patients typically
12 evolve to show Secondary Progressive MS (SPMS), in which pre-existing neurologic deficits
13 gradually worsen over time and stop responding to standard MS therapies. So far, there are
14 no immunomodulatory treatment available to stop or reverse this form of MS.

15 Primary Progressive (PPMS) affects about 15% of MS patients; these patients have
16 gradually worsening manifestations from the onset without clinical relapses, patients with
17 PPMS tend to be older, have fewer abnormalities on brain MRI, and generally do not respond
18 to standard MS therapies. About 15% of patients have PPMS from the onset. So far, there are
19 no immunomodulatory treatment available to stop or reverse this form of MS.

20 Progressive Relapsing (PRMS) entails gradual neurologic worsening from the onset
21 with subsequent superimposed relapses. PPMS is suspected to represent SPMS, in which the
22 initial relapses were unrecognized, forgotten, or clinically silent.

23 Interferon beta 1a, Interferon beta 1b and glatiramer acetate have failed to
24 demonstrate efficacy in slowing down the disability progression. Therapies such as
25 mitoxantrone, methotrexate, azathioprine and cyclophosphamide have poor methodological
26 clinical studies where both RRMS patients are evaluated together with SP and PPMS
27 patients, and do not show a reduction in the progression of disability. Finally, there is no
28 evidence with natalizumab, fingolimod and teriflunomide; however, unpublished data would
29 indicate no effect on the progressive forms. Therefore, current available drugs, including the
30 disease modifying drugs used for RRMS, cannot reverse, halt or even slow down the
31 progressive disability in the SP& PPMS forms.

32 Interferon beta-1a (IFNB-1a) has been tested for efficacy in Secondary progressive
33 MS (SPMS). This testing included two clinical trials. The IMPACT study included a total of

1 436 subjects with Secondary progressive MS with relapses that were randomized to receive
2 IFNB-1a weekly (intramuscular) or placebo for two years. The IMPACT data showed a
3 significant benefit in the group of IFNB-1a in terms of MSFC decrease (40.4%, p=0.033),
4 fewer relapses (33%, p= 0.008), better outcome in eight of eleven MS Quality of Life scales
5 and less MRI activity (p<0.001).

6 The SPECTRIMS study included a total of 618 patients with Secondary progressive
7 MS with relapses who received IFNB-1a (three times weekly) or placebo for 3 years. The
8 data showed that IFNB-1a did not significantly affect disability progression (p=0.146),
9 although significant treatment benefit was observed on relapse rate (reduced from 0.71 to
10 0.50 per year, p<0.001) and on MRI outcomes.

11 Interferon beta-1b (IFNB-1b) has also been tested for efficacy in Secondary
12 progressive MS in two clinical trials. In the EUSPMS: a total of 718 patients with Secondary
13 progressive MS were randomized to IFNB-1b or placebo with treatment duration of up to
14 three years. The EUSPMS data showed that the time to confirmed 1.0 point progression on
15 the Expanded Disability Status Scale (EDSS) was delayed (p=0.007) and the progression of
16 2.0 EDSS point was 27% lower.

17 The NASPMS study included 939 subjects with Secondary progressive MS *with*
18 *relapses* that were randomized to either placebo or IFNB-1b. The NASPMS data showed no
19 treatment benefit on time to confirmed progression of disability, though relapse and MRI-
20 related outcomes showed significant benefit. A combined analysis of both the EUSPMS and
21 NASPMS trials shows that the patients with more pronounced disability progression and
22 continuing relapse activity could be more likely to benefit from treatment.

23 For Primary progressive MS (PPMS), a Cochrane systematic review included two
24 randomized controlled trials (entailing a total of 123 patients), and compared interferon
25 treatment versus placebo in patients with PPSM. This review did not show differences
26 regarding the proportion of patients with progression of the disease (RR 0.89, 95%CI 0.55
27 to1.43), and it was associated with a greater frequency of treatment-related adverse events
28 (RR 1.90, 95% CI 1.45-2.48). One of the trials showed a lower number of active MRI lesions
29 at two years in interferon arm (difference -1.3, 95% CI -2.15 to-0.45, P = 0.003).

30 Glatiramer Acetate was tested in a controlled clinical trial (Wolinsky 2007) wherein a
31 total of 943 patients with PPMS were randomized. The data showed there was a non-
32 significant delay in time to sustained accumulated disability (hazard ratio, 0.87 [95%
33 confidence interval, 0.71-1.07]; p=0.1753).

1 In Cochrane systematic review, data for 1049 patients with
2 Primary progressive MS contributed to the meta-analysis. No benefit was shown in SPMS
3 and PPMS patients. No major toxicity was found. The most common systemic adverse event
4 was a transient and self-limiting patterned reaction of flushing, chest tightness, sweating,
5 palpitations, and anxiety. Local injection-site reactions were observed in up to a half of
6 patients treated with glatiramer acetate, thus making a blind assessment of outcomes
7 questionable.

Mitoxantrone was evaluated describing a controlled clinical trial of 194 patients with worsening RRMS or SPMS with relapses. Patients were assigned placebo or mitoxantrone; 188 patients completed the protocol and were able to be assessed at 24 months. At 24 months, the mitoxantrone group experienced benefits compared with the placebo group on different clinical measures (difference 0.3 [95% CI 0.17-0.44]; $p<0.001$), reducing progression of disability and clinical exacerbations.

Similarly, the Cochrane systematic review, provides a meta-analysis of four clinical trials involving a total of 270 patients with RRMS, PRMS and SPMS with relapses. Meta-analysis showed that mitoxantrone reduced the progression of disability at 2 years follow-up (proportion of patients with 6-months confirmed progression of disability: Odds Ratios 0.3, p=0.05). These results, however, are based on heterogeneous trials in terms of drug dosage and inclusion criteria.

20 Cyclophosphamide was meta-evaluated in a Cochrane systematic
21 review. The meta-analysis included four RCTs comparing Cyclophosphamide to placebo or
22 no treatment, entailing a total of 152 participants. The meta-analysis showed that
23 cyclophosphamide did not prevent the long-term (12, 18, 24 months) clinical disability
24 progression as defined as evolution to a next step of EDSS score. However, the mean change
25 in disability (final disability subtracted from the baseline) significantly favoured the treated
26 group at 12 (effect size - 0.21, 95% confidence interval - 0.25 to -0.17) and 18 months (-
27 0.19, 95% confidence interval - 0.24 to - 0.14) but favoured the control group at 24 months
28 (0.14, CI 0.07 to 0.21).

29 Methotrexate was studied in a trial with 60 progressive MS patients only. The results
30 show there was a non-significant reduction in sustained EDSS progression
31 and number of relapses in favour of methotrexate therapy. There were no data on relapse rate
32 and no difference in time to first relapse. Minor side effects were reported in both
33 methotrexate (87.1%) and placebo groups (89.7%), but there were no major side effects.

Rituximab was studied in 439 PPMS patients, randomized to intravenous rituximab or placebo. The data showed differences in time to confirmed disease progression between rituximab and placebo did not reach significance (96-week rates: 38.5% placebo, 30.2% rituximab; $p=0.14$). From baseline to week 96, rituximab patients had less ($p<0.001$) increase in T2 lesion volume; brain volume change was similar ($p=0.62$) to placebo. Adverse events were comparable between groups.

The Azathioprine Cochrane systematic review included 698 randomized patients with all clinical forms of MS. The pooled data showed azathioprine reduced the number of patients who had relapses during the first year of treatment (relative risk reduction [RRR] =20%; 95% CI = 5% to 33%), at two years (RRR =23%; 95% CI = 12% to 33%) and three years (RRR =18%; 95% CI = 7% to 27%) follow-up. These results were consistent in sensitivity analysis. There was no heterogeneity among the studies. Data from only three small trials with a total of 87 patients were available to calculate the number of patients who progressed during the first two to three years. There was a statistically significant benefit (RRR = 42%; 95% CI = 7% to 64%) of azathioprine therapy at three years' follow-up; this result was robust after sensitivity analyses.

17 The prior art thus teaches many potential therapies for MS. The art, however, also
18 teaches that certain forms of MS remain resistant to any currently-known therapy.

19 Andrographolide (the claimed compound) and certain analogous compounds are
20 taught by Juan Luis HANCKE et al., United States Letters Patent No. 8080495. That patent
21 also teaches autoimmune diseases including “rheumatoid diseases, psoriasis, systemic
22 dermatomyocytis, multiple sclerosis [and] lupus erythematosus.” *See* 1:29-39. Regarding
23 multiple sclerosis, the patent says, “Using the mixture of andrographolides described in
24 Example 9, normalization in the symptoms of the disease occurs following 3 months of
25 treatment of the composition of the present invention. In addition, the composition does not
26 interfere with other treatments.” *See* 18:10-15. The patent unfortunately does not expressly
27 say what form of multiple sclerosis was there studied. Mention of “other treatments,”
28 however, means that the form of MS there studied must have been the only one which in fact
29 has “other treatments,” *i.e.*, relapsing-remitting form MS. This patent thus fails to expressly
30 nor implicitly teach use of andrographolide to treat any progressive form of MS.

31 Further, the art teaches that every other treatment for relapsing-remitting MS is
32 ineffective for progressive forms of MS. *See supra*. Thus, this prior art patent failed to
33 provide the skilled artisan a reasonable expectation of success in using the claimed

1 compounds for any progressive form of MS.

2 Published PCT Application WO2013/096423 teaches the claimed compounds
3 synergistically improve the efficacy of interferon in treating Multiple Sclerosis. *See* page 2 at
4 Summary, page 8 at 7th paragraph. The art, however, teaches that interferons are not effective
5 at all to treat progressive forms of MS. *See supra*. Thus, the skilled artisan would have read
6 WO '423 to teach combining interferon with the claimed compounds to treat the relapsing-
7 remitting form of MS, rather than a progressive form of MS. Similarly, the artisan would
8 have read WO '423 to teach that interferon is an indispensable part of MS therapy.

9

10 BRIEF SUMMARY

11 We have tested andrographolide in a controlled, randomized, double-blinded human
12 clinical trial of andrographolide 140mg orally administered twice per day (*i.e.*, 280 mg per
13 day) in patients with progressive forms of Multiple Sclerosis. The principle objective of that
14 study was to determine efficacy, safety and tolerability of andrographolide in retarding the
15 progression of brain atrophy. Secondary end-points included: delay in the disability capacity
16 progression through the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis
17 Functional Composite (MSFC) at 24 months compared to the baseline; delay in cognitive
18 impairment by means of Paced Auditory Serial Addition Test (PASAT), Symbol Digit
19 Modalities Test (SDMT) and depression (Beck) at 24 months compared to the baseline;
20 quality of life Multiple Sclerosis Impact Scale (MSIS 29) and fatigue (Krupp) through
21 parameters reported by the patients at 24 months compared to the baseline; Tolerability of
22 andrographolide measured by Magnetic Resonance (MR) at 24 months compared to baseline;
23 Number and volume of new lesions or larger size in T2 by MR at 24 months compared to the
24 baseline; Number of new hyperintense lesions in T1 or (gadolinium captive) by MR at 24
25 months compared to baseline; Delay in the retinal thinning measured by Optical Coherence
26 Tomography (OCT) and visual field at 24 months compared to the baseline; and Safety of
27 andrographolide at 24 months through the record of adverse effects in symptom diary and
28 programmed interviews. The details of the study are described more completely in United
29 States Provisional patent application Serial No. 62/347218 (filed 08 June 2016)

30

31

32 BRIEF DESCRIPTION OF THE DRAWINGS

33 Figure 1 shows *in vitro* results. (A) Lymph node cell suspensions obtained from

1 C57BL/6 and BALB/c mice were co-cultured with increasing concentrations of IB-MS for 72
2 h. After this time, supernatants were harvested and analyzed for IL-2 release by ELISA assay
3 (circles) and T cell proliferation (squares) was determined by Cell Titer assay. (B) Mice
4 treated with vehicle (solid circles) or andrographolide (empty circles) were MOG-immunized
5 one week later and clinical score determined daily. These data indicate that IB-MS treatment
6 interferes with T cell activation and prevents EAE .

7 Figure 2 shows the comparative effect between IB-MS and IFN- β -treatment on three
8 groups of MOG-immunized C57BL/6J mice (150 ug MOG-peptide; 500 ug MT; 200 ng PT)
9 were treated every second day with PBS (black triangles), IFN- β (purple squares) or 4 mg/kg
10 IB (blue circles) at the beginning of chronic phase (day 15 post-immunization) until day 30
11 post-immunization. These data indicate that IB-MS has a therapeutic effect in EAE.

12 Figure 3 shows inflammatory infiltrate and demyelination is reduced in spinal cord of
13 AG-treated mice. MOG-immunized C57BL/6J mice (150 ug MOG-peptide; 500 ug MT; 200
14 ng PT) were treated daily with 4 mg/kg andrographolide. Animals were treated at the
15 beginning of chronic phase (day 15 post-immunization) until day 20 post-immunization. As
16 controls MOG-immunized C57BL/6J mice were injected with vehicle (PBS) daily. At day 21
17 p.i. mice were sacrificed. MOG-immunized mice treated with either PBS (A-C) or AG (B-D)
18 were perfusssed and 4 % p-formaldehyde fixed. Toracic spinal cords sections were dissected
19 and analyzed for inflammatory infiltrate by hematoxylin-eosin staining (H&E) and for
20 demyelination with luxol fast blue staining (LFB). Insets show higher magnification (20X).

21 Figure 4 illustrates the process flowchart for our 12-month pilot clinical study.

22 Figure 5 lists certain secondary outcomes and provides the study timeline.

23 Figure 6 presents the effect of *IB-MS* on Expanded Disability Status Scale (EDSS) in
24 patients with progressive MS.

25 Figure 7 presents the effect of *IB-MS* on the Nine Hole Pin Test (9HPT) (L=left
26 handed; R=right handed) in patients with progressive MS.

27 Figure 8 presents effect of *IB-MS* on a 25-Feet Walk Test (25FWT) in patients with
28 progressive MS.

29 Figure 9 presents a schematic diagram of possible mechanisms of action at the
30 cellular level of our invention (AP = andrographolide).

31 Figure 10 shows the effect of andrographolide (A) on 9-HPT in human patients. The
32 numbers (x axis) on the figure are measurements 6: corresponds to 2 year treatment. There
33 are still many patients that need to complete the 2 year treatment. The data therefore show a

1 lot of variance. Despite that, we can see that the treated patients are more skilled and more
2 quickly complete the task of upper extremity function. The 9-HPT is a brief, standardized,
3 quantitative test of upper extremity function. It is the second component of the MSFC to be
4 administered at each visit. Both the dominant and non-dominant hands are tested twice. The
5 patient is seated at a table with a small, shallow container holding nine pegs and a wood or
6 plastic block containing nine empty holes. On a start command when a stopwatch is started,
7 the patient picks up the nine pegs one at a time as quickly as possible, puts them in the nine
8 holes, and, once they are in the holes, removes them again as quickly as possible one at a
9 time, replacing them into the shallow container. The total time to complete the task is
10 recorded. Two consecutive trials with the dominant hand are immediately followed by two
11 consecutive trials with the non-dominant hand.

12 Figure 11 shows MSIS 29 scale results for human patients. In control group (b) one
13 can see that the patients after 2 years as compared to day 0, the percentage goes from 95 to
14 75, meaning a physical & psychological deterioration. In the treatment group (a), the
15 percentage goes from 80 to 90. Preliminarily, it shows that the treatment patients maintain or
16 slightly improve their scores.

17

18

19 DETAILED DESCRIPTION

20 The details of our clinical study are described in United States Provisional patent
21 application Serial No. 62/347218 (filed 08 June 2016). While
22 that study was designed as a 24-month study, interim results after only 12 months of
23 treatment show statistically-significant efficacy. Our interim results show that in the
24 treatment of Secondary Progressive (SP) and Primary Progressive (PP) forms of Multiple
25 Sclerosis (MS), remyelination, and neurogenesis are stimulated by oral administration of
26 andrographolide-class compounds.

27 There are 3 components of the Multiple Sclerosis Functional Composite (MSFC)
28 disease activity index: function of the legs, function of the arms and cognitive function. The
29 corresponding tests are a 25 feet (7.6 m) walk; test of 9 holes and pin and the Paced Auditory
30 Serial Addition test 3 (PASAT3). Multiple attempts will be made of each test in each visit.
31 The MSFC score and the scores of the 3 sub-scales and the change from the basal values will
32 be recorded in each visit

33 One measure of progressive MS disease severity is the Expanded Disability Status

1 Scale (EDSS). EDSS is a scale to determine the neurological disability in MS and is used to
2 confirm progression of the disease. It consists of a system of two parts. The first part
3 measures eight functional systems (FS). The second part measures disability on a scale of 1
4 to 10, zero being no disability and 10 being death due to MS.

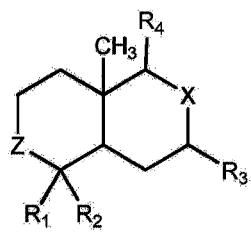
5 Literature shows that in non-treated MS patients, the evaluated disability by EDSS
6 increases one point in the 15% of the subjects after 2 years of follow up

7 The size of the sample in order to evaluate a reduction in 50% of this parameter is expected in
8 the intervened group, 7.5% of the subjects increases one point in the disability scale. In order
9 to find differences with a level of significance of 0.05 and a potency of 0.80, it will be
10 necessary to evaluate 28 subjects per group. Considering also that one intervened subjects
11 for each control and a 20% percentage of drop off, the total number of subjects to evaluate is
12 68. To find differences with a level of significance of 0.05 and a potency of 0.80 it is
13 necessary to evaluate 28 subjects per group. Considering also one intervened subject for each
14 control and a 20% “drop off”, the total number to evaluate is 68.

15 Our results for 12 months of treatment are provided in Figure 6. Figure 6 shows that
16 treatment provides an improvement *viz* placebo which becomes statistically-significant by
17 nine months and more significant by twelve months of treatment.

18 The Nine Hole Pin Test (9HPT) is a component of the MS Functional Composite
19 (MSFC) score. 9HPT is a timed test measuring the time (seconds) required to insert each of
20 nine pins into nine holes in a plank. The test is done on each of the right and left arms. The
21 test measures eye-hand coordination and fine muscle control. Our results for twelve months
22 of treatment are provided in Figure 7. Results for the right hand test (9HPT-R) show
23 treatment provides an improvement (reduction) in time required to complete the test, which
24 improvement becomes statistically significant by twelve months of treatment. The data for
25 the left hand test (9HPT-L) confirm this improvement, yet curiously shows the improvement
26 becomes statistically significant almost immediately and grows in significance over twelve
27 months. Note that in comparing the left and right hand data, the vertical (time) scale for the
28 left hand test is compressed. This is because the left hand is generally non-dominant, thus
29 requiring systematically longer times to completion.

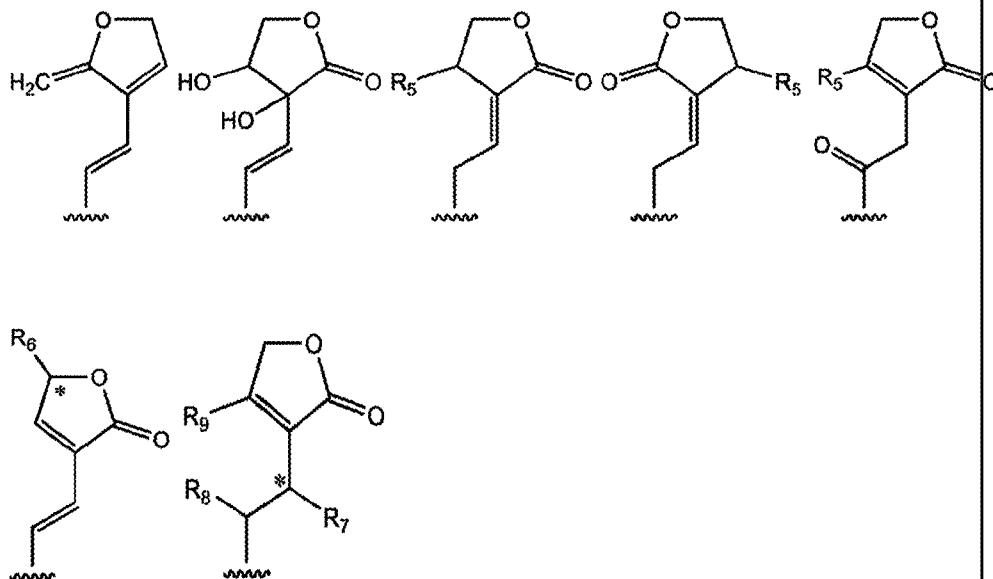
30 Another measure of coordination is the 25-Feet Walk Test (25FWT). The 25FWT
31 measures the time (seconds) required to walk a distance of 7.6 meters (25 feet). Literature
32 shows that in non-treated MS patients, disability evaluated by time (seconds) (time a patient
33 takes to cover a distance of 25 feet), increases one point in 45% of the subjects


1 . Sample size was calculated to evaluate a reduction in 50% in this parameter (that is, it
 2 is expected that in the intervened group a 22.5% of the subjects increases one point in the
 3 disability scale). In order to find a difference in the level of significance of 0.05 and a
 4 potency of 0.80 it is necessary to evaluate 68 subjects per group. Considering also one
 5 intervened subject for each control and a 20 % of drop off, the total number of subjects to
 6 evaluate is 68. In order to find a difference with a level of significance of 0.05 and a potency
 7 of 0.43, it is necessary to evaluate 28 subjects per group. Considering also one intervened
 8 subjects for each control and a 20% drop off, the total subjects to evaluate is 68.

9 Our preliminary data in Figure 8 show that treatment provides an improvement
 10 (reduction) in time required to complete the test viz placebo, which improvement becomes
 11 statistically significant immediately on commencement of treatment and persists for twelve
 12 months of treatment.

13 Thus, an object of the present invention is to provide pharmaceutical compositions for
 14 treating Secondary Progressive (SP) and Primary Progressive (PP) forms of Multiple
 15 Sclerosis (MS), comprising oral administration of andrographolide and/or analogues
 16 thereof, optionally including one or more pharmaceutically-acceptable excipients and/or
 17 carriers.

18 Another object of the present invention is, therefore, to provide a method of treating a
 19 subject suffering from SPMS and PPMS and/or another demyelinating disease, the method
 20 consisting of administering the pharmaceutical compositions of the invention to the subject in
 21 an effective amount and for a time sufficient to produce remyelination and neurogenesis.


22 The present invention provides pharmaceutical compositions for treating SPMS and
 23 PPMS forms and/or other demyelinating diseases, comprising a compound of Formula (I):

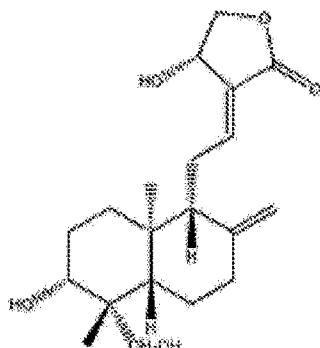
28 wherein

29 R1 is selected from the group consisting of hydrogen, alkyl or hydroxyl,

1 R_2 is selected from the group consisting of hydroxyalkyl or alkyl-O- L_1 , wherein L_1 is
 2 a carbohydrate moiety,
 3 R_3 is selected from the group consisting of hydrogen or hydroxyl,
 4 X is selected from the group consisting of $C(=CH_2)$, $CH(OH)$, or a 2,2-
 5 dimethyloxirane;
 6 Z is selected from the group consisting of CH_2 , $CH(OH)$ or $C(=O)$, and
 7 R_4 is selected from the group consisting of an optionally substituted L_2 -alkyl or L_2 -
 8 alkenyl, wherein L_2 is an optionally substituted 3-furanyl or 3-fur-3-enyl moiety,
 9 or a pharmaceutically acceptable salt, ester, ether or prodrug thereof, and one or more
 10 pharmaceutically acceptable excipients and/or carriers.
 11 In one embodiment, R_1 is methyl.
 12 In another embodiment, R_2 is hydroxymethyl or CH_2 -O-Glc, wherein Glc is a
 13 glycoside-forming glucose moiety.
 14 In another embodiment, R_4 is optionally substituted 3-(3-furanyl)-propyl, 3-(3-
 15 furanyl)-prop-1-enyl, 3-(3-furanyl)-prop-2-enyl, 3-(3-fur-3-enyl)-propyl or 3-(3-fur-3-enyl)-
 16 prop-1-enyl wherein the 3-furanyl or the 3-fur-3-enyl moieties are further optionally
 17 substituted.
 18 In one embodiment, R_1 , R_2 , R_3 , X and Z are those described above, and R_4 is selected
 19 from the group consisting of:

1 |
2 wherein:

3 R₅ is selected from the group consisting of hydrogen or hydroxyl,
4 R₆ and R₇ are independently selected from the group consisting of hydrogen,
5 hydroxyl, or alkyloxy, or R₆ and R₇ are simultaneously replaced by a single direct bond
6 between the carbon atoms denoted by *, thus forming a dimer of two monomer molecules of
7 formula (I), and R₈ and R₉ are independently selected from the group consisting of hydrogen,
8 hydroxyl or alkyloxy.


9 In one embodiment, R₆, R₇, R₈ or R₉ can be independently methoxy,

In preferred embodiments, the compounds of Formula (I) are selected from the group consisting in andrographolide, neoandrographolide, 14-deoxyandrographolide, 14-deoxy-11,12-didehydroandrographolide, andrographiside, andrograpanin, 14-deoxy-11-oxo-andrographolide, 14-deoxy-11-hydroxy-andrographolide, 14-deoxy-12-hydroxy-andrographolide, 3,14-dideoxyandrographolide, 3-oxo-14-deoxyandrographolide, 8,17-epoxy-14-deoxyandrographolide, 14-deoxy-17-beta-hydroxyandrographolide, 12-hydroxyandrographolide, bisandrographolide A, 3-oxo-14-deoxy-11,12-didehydroandrographolide, 7-hydroxy-14-deoxyandrographolide, 15-methoxy-3,19-dihydroxy-8(17)11,13-ent-labda-trien-16,15-olide, andropanolide, 14-deoxy-12-methoxy-andrographolide, 14-epi-andrographolide, 19-hidroxi-ent-labda-8(17),13-dien-15,16-olide, 3,13,14,19-tetrahydroxy-ent-labda-8(17),11-dien-16,15-olide, 3,19-dihydroxy-15-methoxy-ent-labda-8(17),11,13-trien-16,15-olide, and 3,19-dihydroxy-ent-labda-8(17),12-dien-16,15-olide.

23 For example, our invention entails treating a progressive form of MS by administering
24 andrographolide without accompanying interferon. Alternatively, one may combine
25 andrographolide with interferon.

26 Andrographolide (or AP) is the principal active component responsible for most of the
27 biological activities attributed to *Andrographis paniculata*, a medicinal plant traditionally
28 used in Asian countries such as China, India, Malaysia for the treatment of common cold,
29 dysentery, fever, amygdalitis, hepatic diseases

30 The traditional use and pharmacological studies of
31 *Andrographis paniculata* have been previously well documented

Andrographolide

AP is a diterpenic lactone that is present mainly in the leaves, relatively easily to extract whose molecular structure has been determined. This compound has a manifold of biological effects including cytotoxic effect intumoral cells, anti-angiogenic, anti-inflammatory and immune modulating effects. AP inhibits selectively the proliferation of different types of tumoral cells

by means of inducing apoptosis, necrosis, through the induction of apoptosis, necrosis, arrest cell cycle or cell differentiation and suppression of angionenic factors such the endothelial vascular growth factor (VEGF) and inhibitor of metaloproteinases (TIMP-1)

For this reason, AP has the potential as an agent for the treatment and HIV infection

Clinically, AP has demonstrated efficacy in Rheumatoid Arthritis some types of cancer and common cold

One of the potent effects of AP is its anti-inflammatory and immune modulatory activity. AP has the capacity to induce a significant stimulation of the protective immune response *in vivo* against infectious and oncogenic agents

Among the anti-inflammatory effect, there is a decrease in the production of oxygen reactive molecules, the inhibition of the expression of pro-inflammatory enzymes such as COX-2 and iNOS

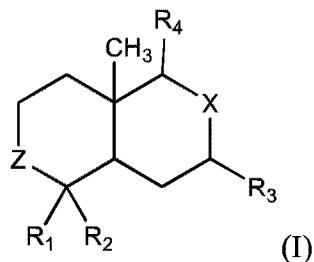
and inhibition of the activation transcriptional factor NF- κ B

In a mice model, we have previously demonstrated that AP decreases: 1) the

1 maturation of dendritic cells and its capacity to present antigens to T cells, interfering with
2 the activation of the transcription factor NF- κ B ; 2) the process
3 of activation of Jurkat cell line (lymphom of T cells) though the inhibition of the activation of
4 the transcription factor NFAT and transductions signals pathways MAPK-Erk 1/2

5 : Besides, AP could have an effect on neurodegeneration mediated by
6 inflammation, since AP reduces reactive oxygen species, TNF- α , nitric oxide and
7 prostaglandins E₂ in microglia . The anti-inflammatory and immune
8 modulatory of AP has been demonstrated in inflammatory diseases *in vivo* in different
9 models such as arthritis , lupus and asthma .

10 . In a EAE model, we have reported that the prophylactic
11 administration of AP prevents the development Of EAE through the inhibition of T and B
12 cells response against myelin antigens . Many clinical
13 studies have shown that AP is well tolerated and safe.


14 Considering the anti-inflammatory and immune modulatory antecedents of AP and
15 the molecular basis that underlie the inflammatory process of MS, we postulate that this
16 compound is a potential treatment for MS.

17 Given our disclosure here, the artisan can readily derive variants of it. For example,
18 Figure 9 presents a schematic diagram of possible mechanisms of action and cellular level
19 binding sites of andrographolide. The artisan may thus employ analogs of andrographolide
20 which provide a similar mechanism of action, to produce similar effects. Alternatively, the
21 artisan may vary the dosage amount to provide an equivalent therapeutic effect. While our
22 actual experiments used solid tablets, hard gelatin capsules, liquid extracts and other oral
23 dosage forms would be expected to function equivalently. We thus intend the legal coverage
24 of our patent to be defined not by our specific examples, but by the legal claims appended
25 here as approved by The Patent Office, and legally-permissible equivalents thereof.

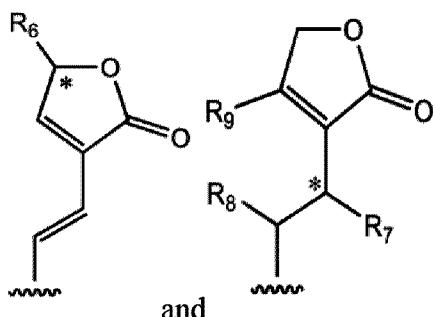
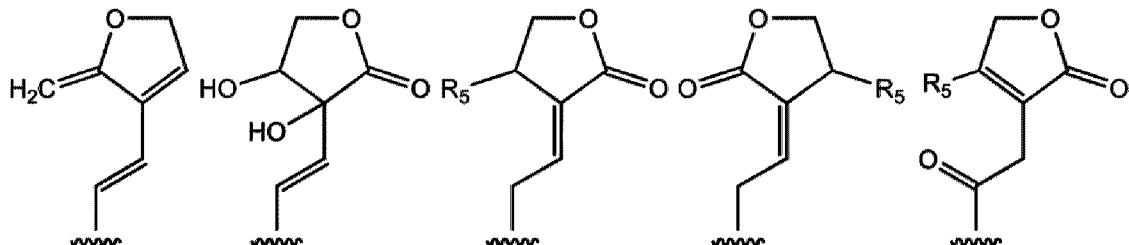
26

CLAIMS

1. An oral dosage form comprising a compound of Formula (I):

wherein

R₁ is selected from the group consisting of hydrogen, alkyl and hydroxyl,



R₂ is selected from the group consisting of hydroxyalkyl and alkyl-O-L₁, wherein L₁ is a carbohydrate moiety,

R₃ is selected from the group consisting of hydrogen and hydroxyl,

X is selected from the group consisting of C(=CH₂), CH(OH) and a 2,2-dimethyloxirane,

Z is selected from the group consisting of CH₂, CH(OH) and C(=O), and

R₄ is selected from the group consisting of:

and

wherein:

R₅ is selected from the group consisting of hydrogen and hydroxyl,

R₆ and R₇ are independently selected from the group consisting of hydrogen, hydroxyl, and

alkyloxy, or R₆ and R₇ are simultaneously replaced by a single direct bond between the carbon atoms denoted by *, thus forming a dimer of two monomer molecules of Formula (I), and

R₈ and R₉ are independently selected from the group consisting of hydrogen, hydroxyl or alkyloxy,

and a pharmaceutically acceptable salt or ester thereof;

said oral dosage form providing an amount of said compound of Formula I effective to slow the progression of a Progressive form of multiple sclerosis in a human patient diagnosed with Progressive multiple sclerosis.

2. The oral dosage form of claim 1, wherein said amount effective comprises about 240 mg of said compound per day.
3. The oral dosage form of claim 1, wherein said amount effective is effective to slow progression of said Progressive form of multiple sclerosis as measured using an assay comprising an assay selected from the group consisting of: the Expanded Disability Status Scale, the 9-Hole Pin Test, the 25-Feet Walk Test and the Multiple Sclerosis Functional Composite index.
4. The oral dosage form of claim 1, wherein said progressive form of multiple sclerosis is selected from the group consisting of: Primary Progressive Multiple Sclerosis, Secondary Progressive Multiple Sclerosis and Progressive Relapsing Multiple Sclerosis.
5. The oral dosage form of claim 1, wherein said compound of Formula (I) comprises a compound selected from the group consisting of: andrographolide, neoandrographolide, 14-deoxyandrographolide, 14-deoxy-11,12-didehydroandrographolide, andrographiside, andrograpanin, 14-deoxy-11-oxo-andrographolide, 14-deoxy-11-hydroxy-andrographolide, 14-deoxy-12-hydroxy-andrographolide, 3,14-dideoxyandrographolide, 3-oxo-14-deoxyandrographolide, 8,17-epoxy-14-deoxyandrographolide, 14-deoxy-17-beta-hydroxyandrographolide, 12-hydroxyandrographolide, bisandrographolide A, 3-oxo-14-deoxy-11,12-didehydroandrographolide, 7-hydroxy-14-deoxyandrographolide, 15-methoxy-3,19-dihydroxy-8(17)11,13-ent-labda-trien-16,15-olide, andropanolide, 14-deoxy-12-methoxy-andrographolide, 14-epi-andrographolide, 19-hydroxy-ent-labda-8(17),13-dien-15,16-olide, 3,13,14,19-tetrahydroxy-ent-labda-8(17),11-dien-16,15-olide, 3,19-dihydroxy-15-methoxy-ent-labda-8(17),11,13-trien-16,15-olide and 3,19-dihydroxy-

ent-labda-8(17),12-dien-16,15-olide.

6. Use of the oral dosage form comprising a compound of Formula (I) of Claim 1 for the treatment of a Progressive form of multiple sclerosis in a human patient comprising:
 - a. the diagnosis of a Progressive form of multiple sclerosis in said human patient, and then
 - b. the administration of the oral dosage form of Claim 1.
7. The use of claim 6, further comprising: the administration of interferon to said patient.

Figure 1A

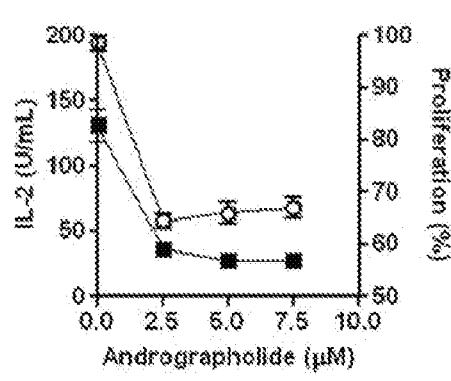


Figure 1B

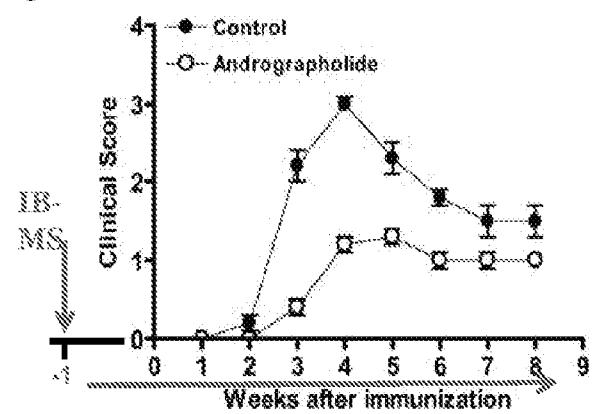
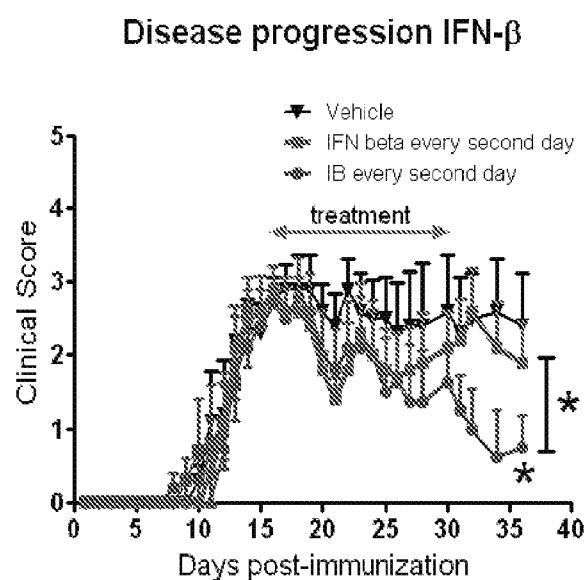



FIGURE 1

FIGURE 2

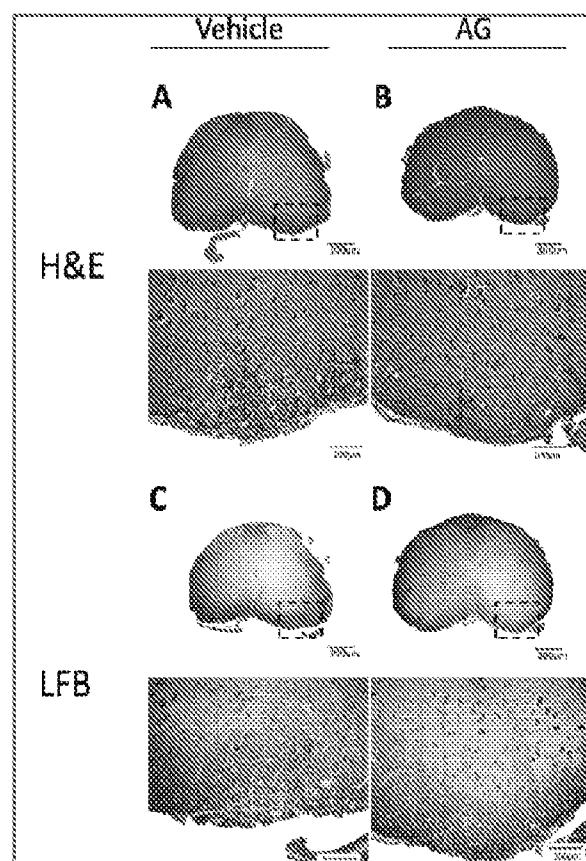


FIGURE 3

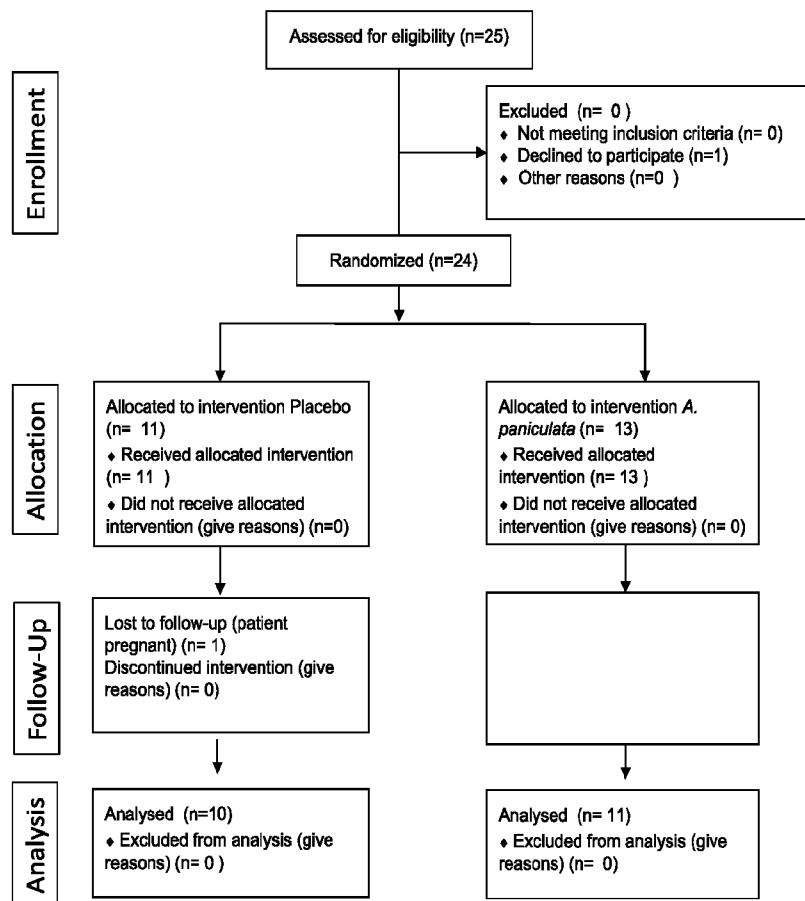
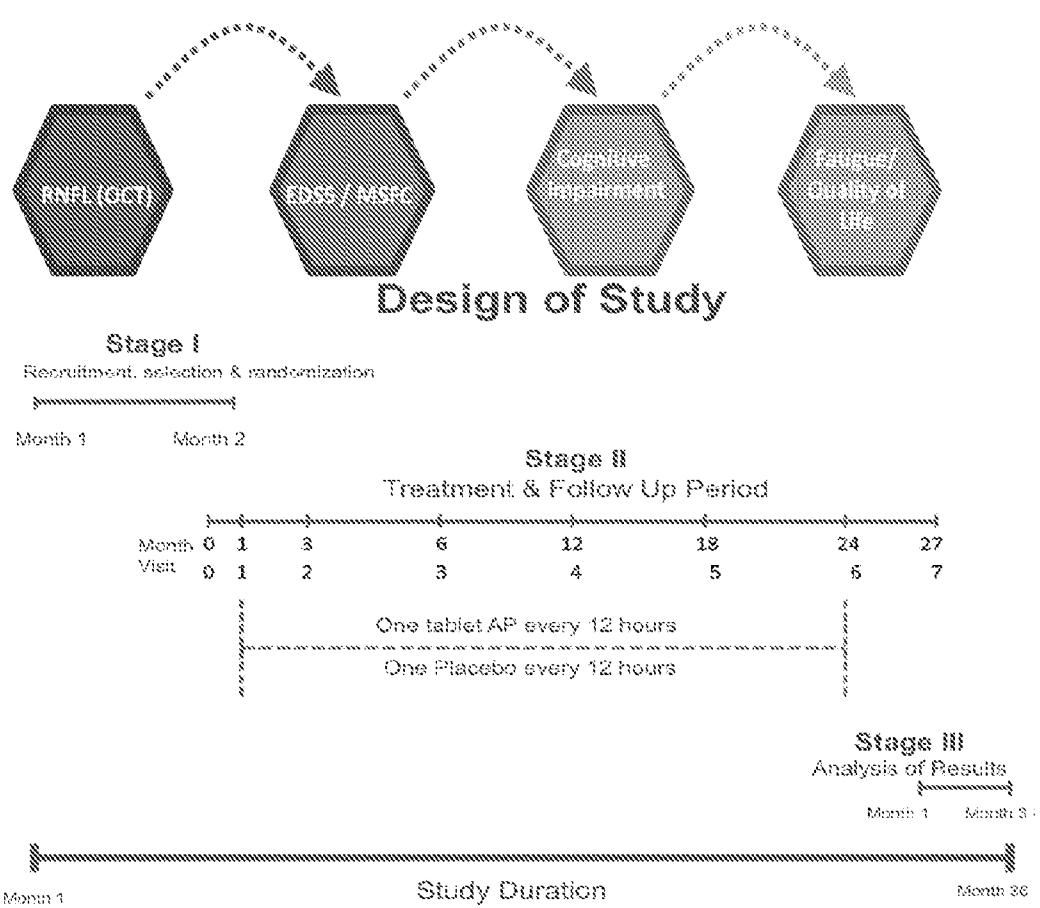



FIGURE 4

FIGURE 5

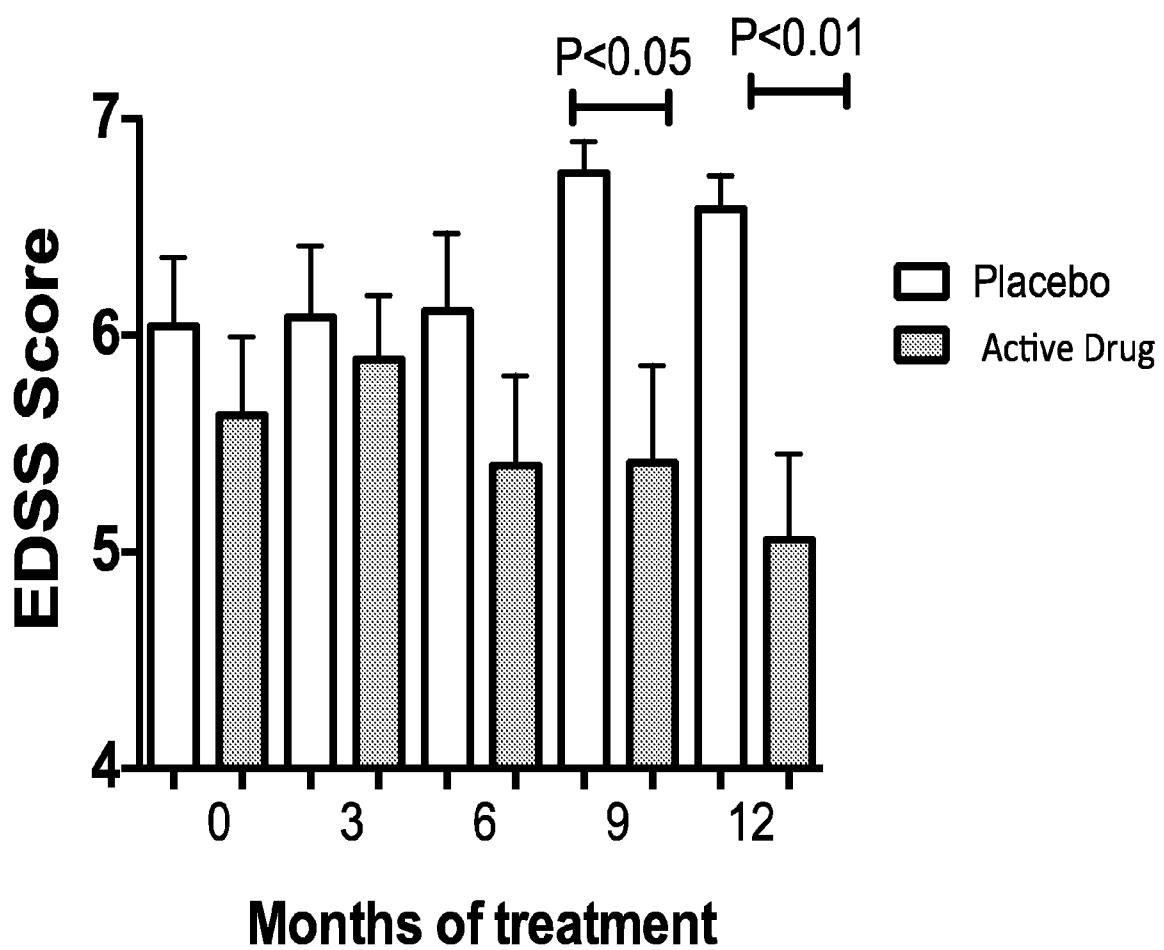


FIGURE 6

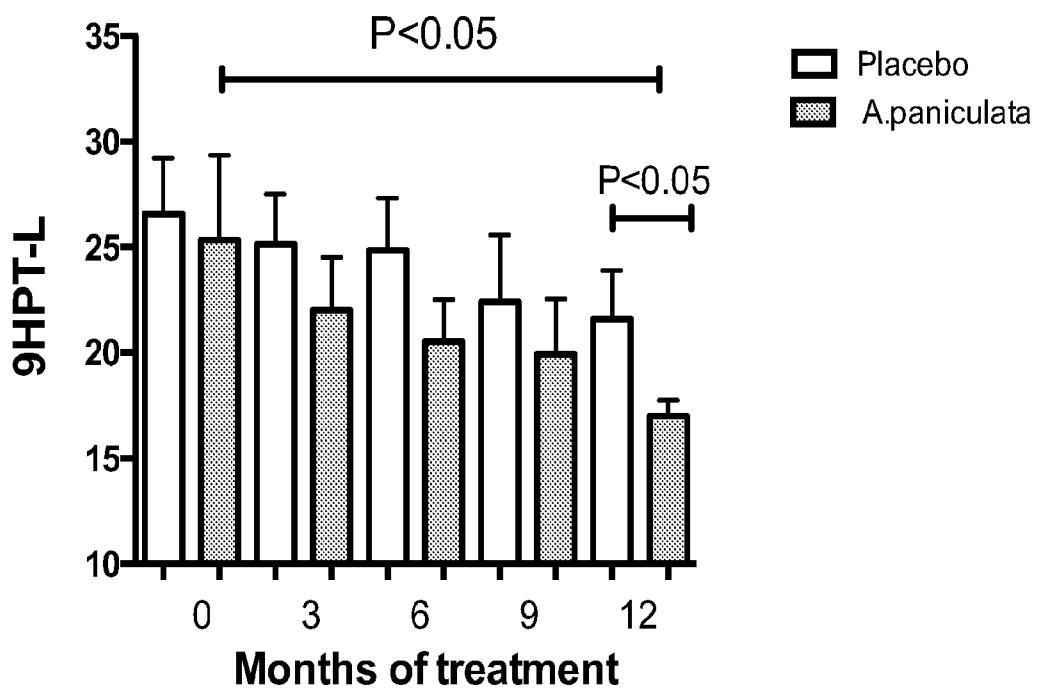
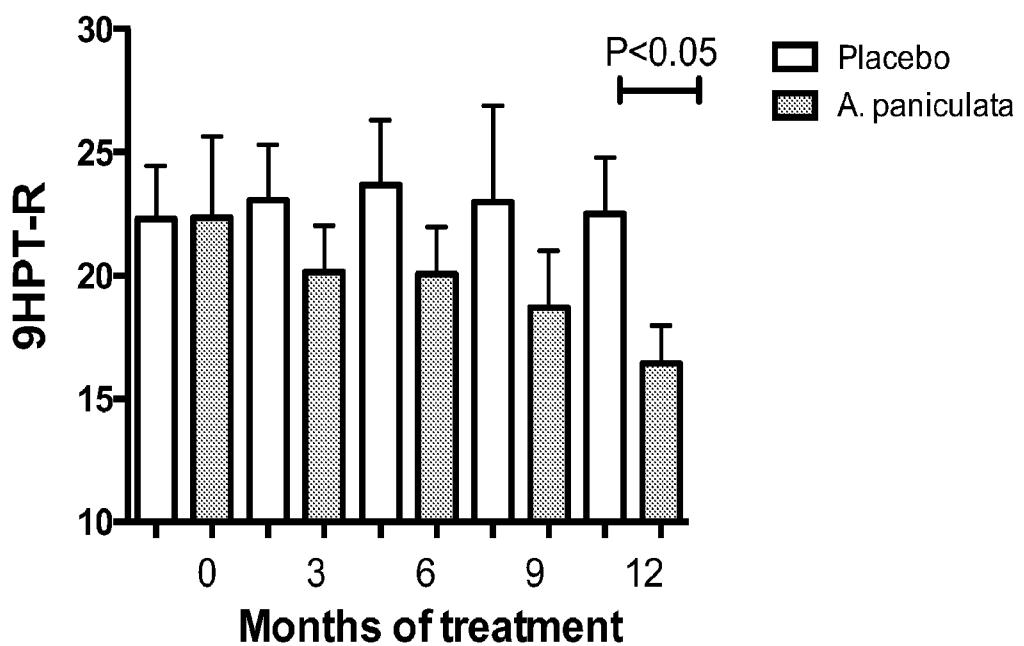



FIGURE 7

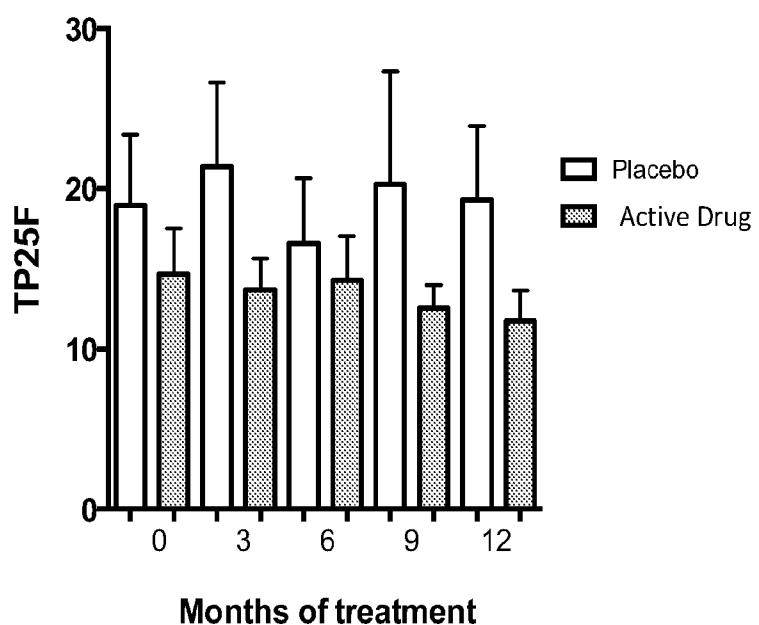


FIGURE 8

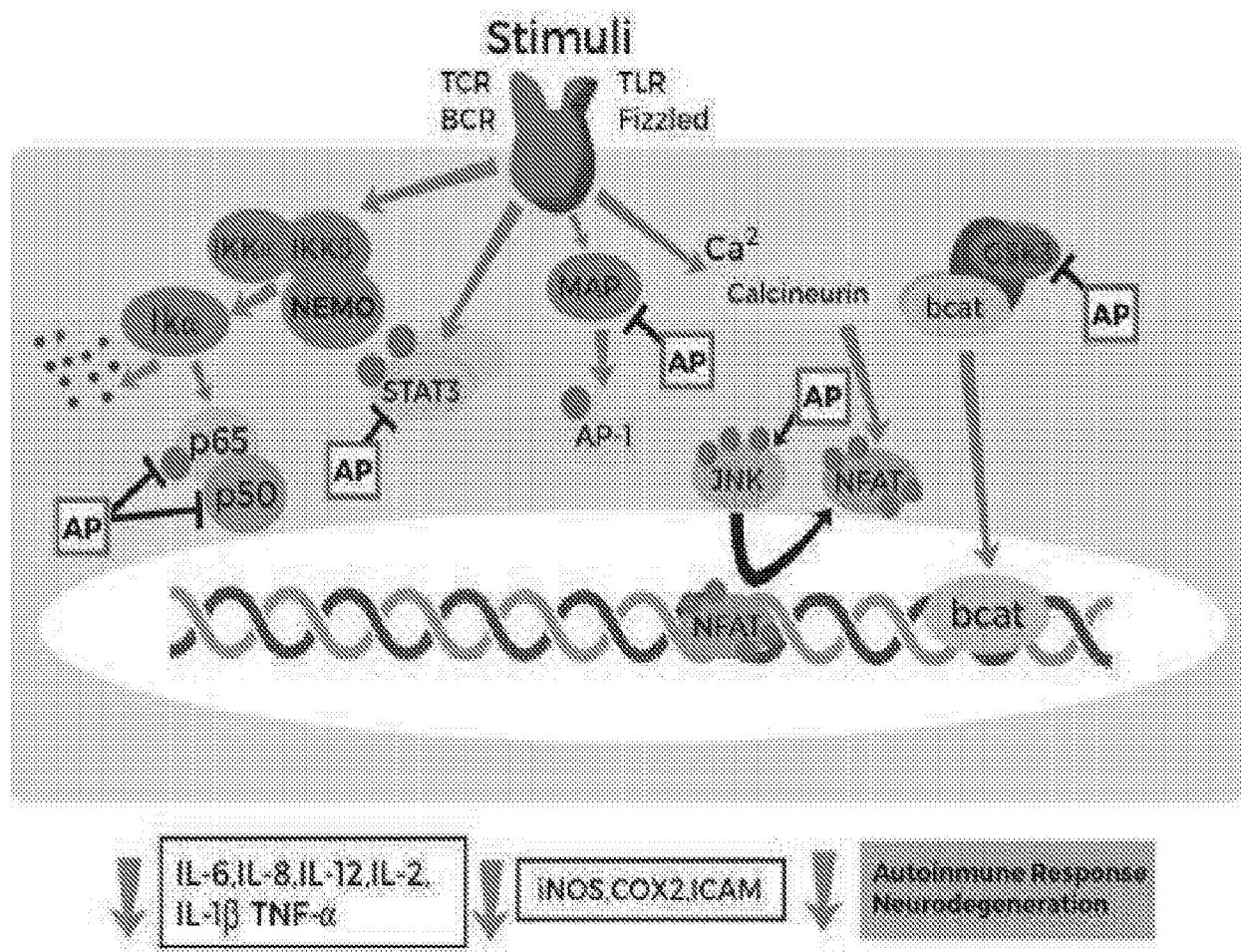


FIGURE 9

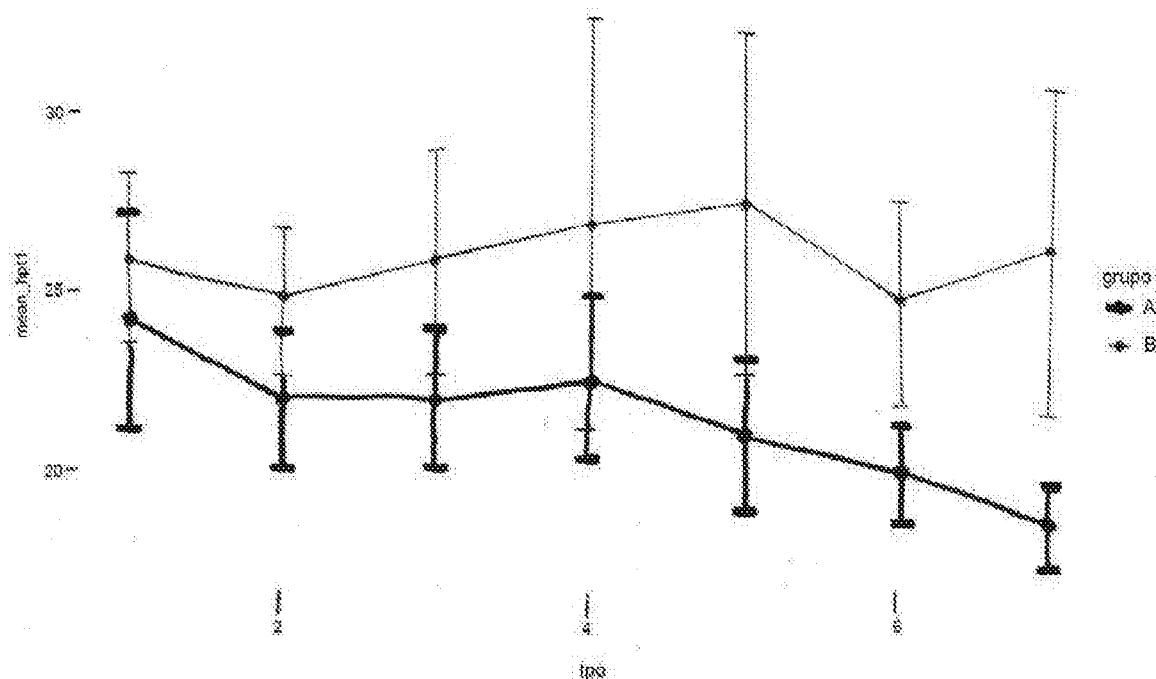


Figure 10

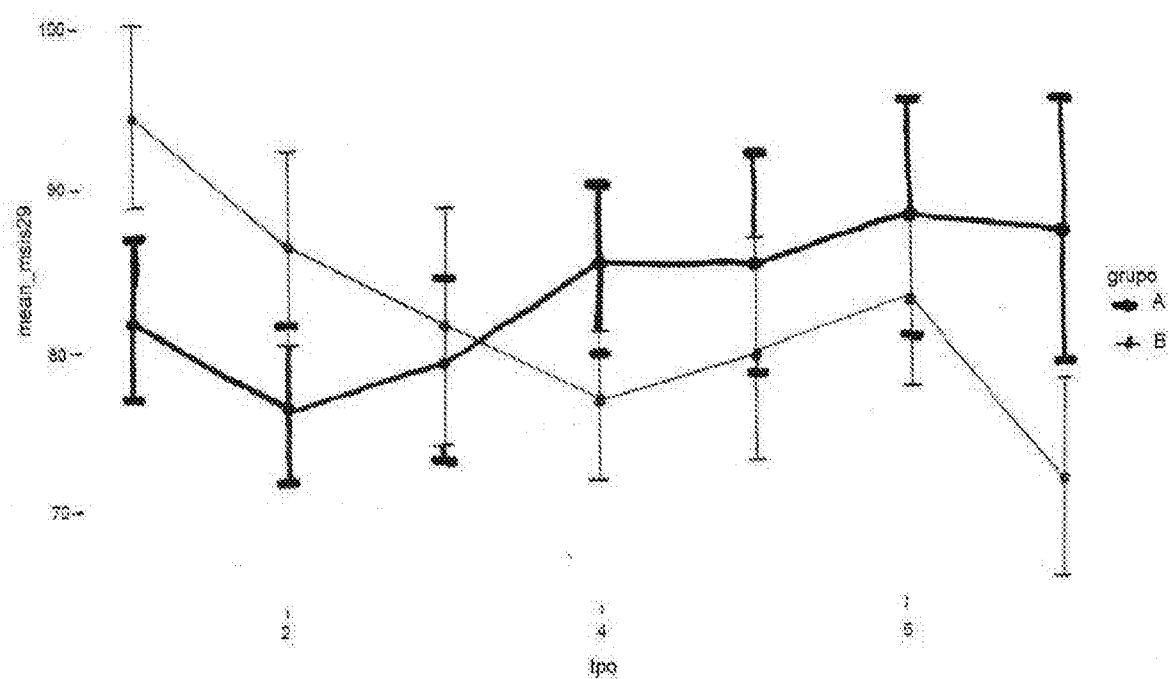
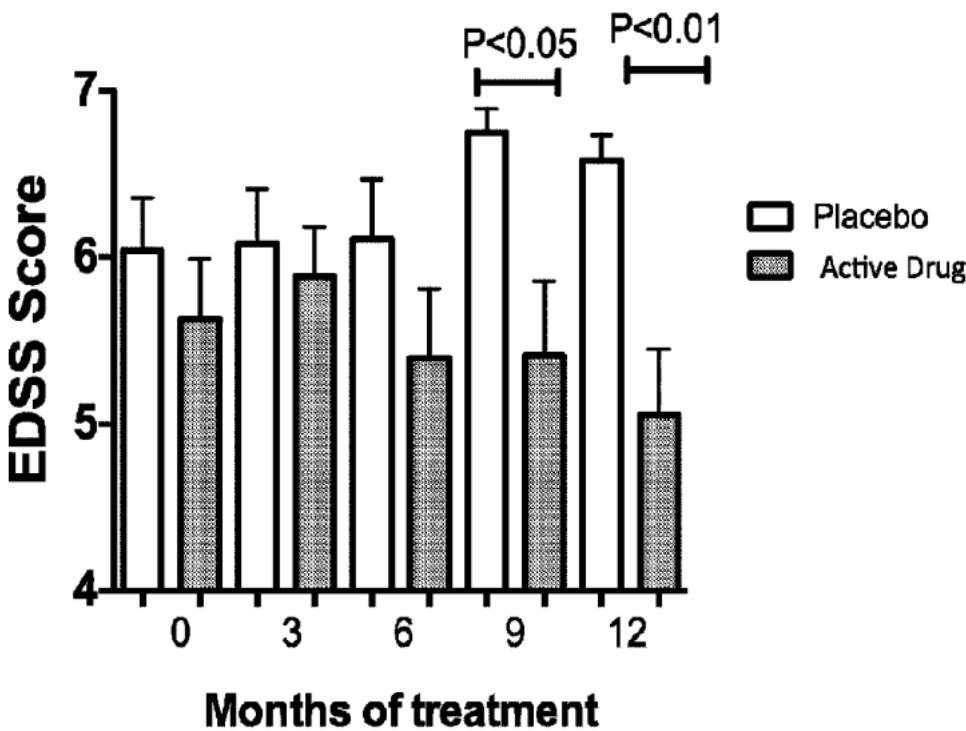



FIGURE 11

