A chair adjustment device is disposed on a bottom of a chair seat. The chair adjustment device has a control rod and a handle device. The control rod has two protruded blocks. The handle device has a shaft, a ball-shaped head connected to the shaft, a through aperture, an inner groove, an inner recess, and an end hole communicating with the through aperture. A cover plugs on the end hole of the handle device. The control rod is inserted in the handle device.
FIG. 2
PRIOR ART
CHAIR ADJUSTMENT DEVICE

BACKGROUND OF THE INVENTION

[0001] The present invention relates to a chair adjustment device. More particularly, the present invention relates to a chair adjustment device which is operated easily.

[0002] Referring to FIGS. 1 and 2, a conventional chair adjustment device is disposed on a chair seat 2. The conventional chair adjustment device has a control rod 1 disposed on a bottom of the chair seat 2, and a handle 11 connected to the control rod 1. However, the conventional chair adjustment device cannot be used in various types of chairs.

SUMMARY OF THE INVENTION

[0003] An object of the present invention is to provide a chair adjustment device which is operated easily.

[0004] Another object of the present invention is to provide a chair adjustment device which has a control rod to be adjusted easily.

[0005] Accordingly, a chair adjustment device comprises a control rod and a handle device. The handle device has a hollow shaft and an aperture. The control rod is inserted in the hollow shaft. The handle device is moved along the control rod.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a schematic view illustrating a chair adjustment device of the prior art disposed on a chair seat;

[0007] FIG. 2 is a schematic view illustrating an operation of a chair adjustment device of the prior art;

[0008] FIG. 3 is a schematic view illustrating a chair adjustment device of a first preferred embodiment disposed on a chair seat;

[0009] FIG. 4 is a schematic view illustrating a control rod detached from a handle device of a first preferred embodiment;

[0010] FIG. 5 is a sectional assembly view of a control rod and a handle device of a first preferred embodiment;

[0011] FIG. 6 is a schematic view illustrating an operation of a chair adjustment device of a first preferred embodiment;

[0012] FIG. 7 is a schematic view illustrating a control rod detached from a handle device of a second preferred embodiment;

[0013] FIG. 8 is a sectional assembly view of a control rod and a handle device of a second preferred embodiment;

[0014] FIG. 9 is a schematic view illustrating a control rod detached from a handle device of a third preferred embodiment;

[0015] FIG. 10 is a sectional assembly view of a control rod and a handle device of a third preferred embodiment;

[0016] FIG. 11 is a schematic view illustrating a control rod detached from a handle device of a fourth preferred embodiment; and

[0017] FIG. 12 is a sectional assembly view of a control rod and a handle device of a fourth preferred embodiment.

DETAILED DESCRIPTION OF THE INVENTION

[0018] Referring to FIGS. 3 to 6, a first chair adjustment device comprises a control rod 1 and a handle device 3.

[0019] The control rod 1 has two protruded blocks 12.

[0020] The handle device 3 has a hollow shaft 31, a ball-shaped head 313 connected to the hollow shaft 31, a round through aperture 314, an inner groove 315, an inner recess 316, and an end hole 311 communicating with the through aperture 314.

[0021] The inner groove 315 and the inner recess 316 of the handle device 3 receive the protruded blocks 12.

[0022] A cover 32 plugs on the end hole 311 of the handle device 3.

[0023] The control rod 1 is inserted in the handle device 3. The handle device 3 can be moved along the control rod 1.

[0024] The chair adjustment device is disposed on a bottom of a chair seat 2 to adjust a height of the chair seat 2.

[0025] Referring to FIGS. 7 and 8, a second chair adjustment device comprises a control rod 1a and a handle device 3a.

[0026] The control rod 1a has a periphery recess 13a and two blocking ends 13a.

[0027] The handle device 3a has a blind aperture 317a and a threaded hole 310a communicating with the blind aperture 317a.

[0028] The control rod 1a is inserted in the handle device 3a. A bolt 4a passes through the threaded hole 310a of the handle device 3a to fasten the control rod 1a and the handle device 3a together.

[0029] Referring to FIGS. 9 and 10, a third chair adjustment device comprises a rectangular control rod 1b and a handle device 3b.

[0030] The control rod 1b has a periphery groove 14b and two blocking ends 14b.

[0031] The handle device 3b has a rectangular blind aperture 317b and a threaded hole 310b communicating with the blind aperture 317b.

[0032] The control rod 1b is inserted in the handle device 3b. A bolt 4b passes through the threaded hole 310b of the handle device 3b to fasten the control rod 1b and the handle device 3b together.

[0033] Referring to FIGS. 11 and 12, a fourth chair adjustment device comprises a control rod 1c and a handle device 3c.
The control rod 1c has two protruded blocks 12c.

The handle device 3c has an aperture 314c, an end groove 316c, and an annular slot 318c.

A U-shaped elastic element 5c is inserted in the annular slot 318c of the handle device 3c.

The control rod 1c is inserted in the handle device 3c. The handle device 3c can be moved along the control rod 1c.

The present invention is not limited to the above embodiments but various modifications thereof may be made. Furthermore, various changes in form and detail may be made without departing from the scope of the present invention.

I claim:
1. A chair adjustment device comprises:
 a control rod and a handle device,
 the handle device having a hollow shaft and an aperture,
 the control rod inserted in the hollow shaft, and
 the handle device being moved along the control rod.
2. The chair adjustment device as claimed in claim 1, wherein the aperture is in a round shape.
3. The chair adjustment device as claimed in claim 1, wherein the aperture is in a rectangular shape.
4. The chair adjustment device as claimed in claim 1, wherein the handle device has an annular slot and a U-shaped elastic element is inserted in the annular slot of the handle device.