发明名称

用AgO/CuO-MgO-SiO2四组分复合氧化物催化剂催化乙醇制乙烯的方法

摘要

本发明公开了一种用AgO/CuO-MgO-SiO2四组分复合氧化物催化剂催化乙醇制乙烯的方法，属于化工技术领域。本发明采用氯化铁、氧化亚铜、二氧化硅和硅酸钠等作为原料，通过控制反应条件，得到目标产物。该方法具有催化性能好、反应条件温和、产物纯度高、生产成本低等优点，具有广阔的工业应用前景。
权利要求书

1. 用AgO/CuO-MgO-SiO\textsubscript{2}四组分复合氧化物催化剂催化乙醇制丁二烯的方法，其特征在于，将制备好的四组分复合氧化物催化剂置于管式反应器中，并将混合气导人反应器中，保持一定空速和催化剂床层温度进行反应，得到1,3-丁二烯产物；所述的混合气包括氢气、乙醇和水蒸气，其体积比为1:5～10:10～20；所述的一次空速为0.01～0.2h-1，所述催化剂床层温度设定为320～450℃；

所述四组分复合氧化物催化剂成分包括Ag、Cu、Mg和Si，其中Ag与Cu的摩尔比为1:0.1～10，Ag与Mg的摩尔比为1:0.1～12，Ag与Si的摩尔比为1:0.1～15；所述催化剂中，银来源于硝酸银、铜来源于硝酸铜、镁来源于硝酸镁、硅来源于正硅酸四乙酯；

所述四组分复合氧化物催化剂的合成包括如下步骤：

(1) 按照上述催化剂组合分配比，将一定质量的硝酸铜和去离子水配置于容器中，硝酸镁和去离子水配置于另一容器中，将硝酸铜溶液逐滴滴加到含硝酸镁溶液中，并充分搅拌，再将一定量的正硅酸四乙酯逐滴滴加到上述混合溶液中；

(2) 将上述溶液置于60～90℃的水浴中搅拌至粘稠后，转移到80℃的烘箱中干燥12h，所得固体经550℃焙烧4h，冷却即得三组分氧化物载体；

(3) 所得三组分氧化物载体置于一定浓度的硝酸银溶液中，在70～100℃的油浴中搅拌至粘稠后，转移到烘箱中干燥，接着将其置于马弗炉中焙烧，再通过研磨、筛分得到AgO/CuO-MgO-SiO\textsubscript{2}四组分复合氧化物催化剂。

2. 如权利要求1所述的用AgO/CuO-MgO-SiO\textsubscript{2}四组分复合氧化物催化剂催化乙醇制丁二烯的方法，其特征在于，所述四组分复合氧化物催化剂中，Ag与Cu的摩尔比为1:0.5～4，Ag与Mg的摩尔比为1:0.4～8，Ag与Si的摩尔比为1:0.5～10。

3. 如权利要求1所述的用AgO/CuO-MgO-SiO\textsubscript{2}四组分复合氧化物催化剂催化乙醇制丁二烯的方法，其特征在于，所述四组分复合氧化物催化剂的合成步骤(3)中：所述的干燥温度为60～150℃，干燥时间为8～24h；所述的焙烧温度为300～700℃，焙烧时间为2～6h。
用AgO/CuO-MgO-SiO₂四组分复合氧化物催化剂催化乙醇制
丁二烯的方法

技术领域
[0001] 本发明属于化学化工技术领域，具体涉及一种用AgO/CuO-MgO-SiO₂四组分复合氧化物催化剂催化乙醇制丁二烯的方法。

背景技术
[0002] 丁二烯（以下简称丁二烯）作为重要的有机化工原料及合成橡胶的重要单体，广泛应用于合成树脂及许多石油化工产品的生产领域。目前，工业上丁二烯的主要生产方法是乙烯副产抽提法、该路线受石油资源的限制，近若干年随着生物乙醇技术的进步以及乙醇来源的丰富，可再生的乙醇为原料制丁二烯受到广泛关注。
[0003] 乙醇制备丁二烯的催化剂研究工作主要集中在催化剂的比较筛选。乙醇一步法过程是前苏联的Lebedev院士开发并投产的。Lebedev的一步法过程在硅胶负载氧化铜作为催化剂的作用下，反应温度在350℃左右，丁二烯的最终收率可达到25%以上。基于前述的研究，本发明提出多组分氧化物催化剂的开发和设计。

发明内容
[0004] 本发明的目的是针对现有技术的不足，提供一种用AgO/CuO-MgO-SiO₂四组分复合氧化物催化剂催化乙醇制丁二烯的方法，该AgO/CuO-MgO-SiO₂四组分复合氧化物催化剂具有良好的催化活性和选择性。
[0005] 为了实现上述目的，本发明所采用的技术方案如下。
[0006] 将制备好的四组分复合氧化物催化剂置于管式反应器中，并将混合气导入反应器中，保持一定空速和催化剂床层温度进行反应，得到1,3-丁二烯产物；所述的混合气包括氢气、乙醇和水蒸气，其体积比为1:5～10:10～20；所述的一定空速为0.01～0.2h⁻¹，所述催化剂床层温度设定为320～450℃。
[0007] 所述四组分复合氧化物催化剂成分包括Ag、Cu、Mg和Si，其中Ag与Cu的摩尔比为1:0.1～10，Ag与Mg的摩尔比为1:0.1～12，Ag与Si的摩尔比为1:0.1～15；所述催化剂中，银来源于硝酸银，铜来源于硝酸铜，镁来源于硝酸镁，硅来源于正硅酸四乙酯。
[0008] 所述四组分复合氧化物催化剂的合成包括如下步骤：
[0009] （1）按照上述催化剂组分配比，将一定质量的硝酸铜和硝酸镁和去离子水配置于容器中，硝酸银和硝酸镁配置于另一容器中，将硝酸铜溶液逐滴滴加到含硝酸镁溶液中，并充分搅拌，再将一定量的正硅酸四乙酯液逐滴滴加到上述混合溶液中；
[0010] （2）将上述溶液置于60～90℃的水浴中搅拌至黏稠后，转移到80℃的烘箱中干燥12h，所得固体经550℃焙烧4h，冷却即得三组分氧化物载体；
[0011] （3）所得三组分氧化物载体置于一定浓度的硝酸银溶液中，在70～100℃的油浴中搅拌至黏稠后，转移到烘箱中干燥，接着将其置于马弗炉中焙烧，再通过研磨、筛分得到AgO/CuO-MgO-SiO₂四组分复合氧化物催化剂。
说明书

[0012] 进一步的，所述四组分复合氧化物催化剂中，Ag 与 Cu 的摩尔比为 1:0.5～4，Ag 与 Mg 的摩尔比为 1:0.4～8，Ag 与 Si 的摩尔比为 1:0.5～10。

[0013] 进一步的，所述四组分复合氧化物催化剂的合成步骤 (3) 中所述的干燥温度为 60～150℃，干燥时间为 8～24h，所述的焙烧温度为 300～700℃，焙烧时间为 2～6h。

[0014] 与现有技术相比，本发明的有益效果是：

[0015] 本发明使用 Cu(NO₃)₂·3H₂O、Mg(NO₃)₂·6H₂O、Si(OCH₃)₄ 和 AgNO₃ 为前躯体，制备 AgO/CuO-MgO-SiO₂ 四组分复合氧化物催化剂，该催化剂具有较高的活性和选择性。使用该催化剂进行乙醇制 1,3-丁二烯，其转化率高达 60％以上，丁二烯的收率为可达到 30％以上。

具体实施方式

[0016] 下面通过实施例对本发明做进一步详细说明，但是所述实施例不构成对本发明的限制。

[0017] 实施例 1

[0018] 制备催化剂过程

[0019] 将 2.4g Cu(NO₃)₂·3H₂O 溶于 10mL 去离子水制得硝酸铜溶液，将 2.1g Mg(NO₃)₂·6H₂O 溶于 10mL 去离子水中制得硝酸镁溶液，将硝酸铜溶液逐滴滴加至硝酸镁溶液中，充分搅拌，接着将 2.1g Si(OCH₃)₄ 逐滴滴加到上述混合溶液中，将上述溶液置于 60℃水浴中搅拌至黏稠后，转移到 80℃的烘箱中干燥 12h，所得固体经 550℃焙烧 4h，冷却即得三组分氧化物载体；

[0020] 将 3.4g AgNO₃ 溶于 20mL 去离子水中，将前述得到的三组分氧化物载体置于硝酸银溶液中，在 70℃油浴中搅拌至黏稠后，转移到 60℃烘箱中干燥 24h，接着将其置于马弗炉中 300℃下焙烧 6h，再通过研磨、筛分得到四组分复合氧化物催化剂，催化剂记为 AgO/0.5CuO-0.4MgO-0.5SiO₂，密封保存。

[0021] 乙醇制丁二烯反应过程

[0022] 将 1.5mL 上述催化剂填充至内径为 8mm 的石英管式反应器中，反应气氨气、乙醇和水蒸气的混合体积比为 1:5:10，将该混合气导入反应器中，空速为 0.1h⁻¹，催化剂床层温度为 320℃进行反应，气相色谱分析 2h, 10h 后的产物反应结果如下：

<table>
<thead>
<tr>
<th></th>
<th>2h</th>
<th>10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙醇转化率/%</td>
<td>60.5</td>
<td>60.6</td>
</tr>
<tr>
<td>1,3-丁二烯收率/%</td>
<td>30.5</td>
<td>30.6</td>
</tr>
</tbody>
</table>

[0024] 实施例 2

[0026] 制备催化剂过程

[0027] 将 19.3g Cu(NO₃)₂·3H₂O 溶于 40mL 去离子水制得硝酸铜溶液，将 41.0g Mg(NO₃)₂·6H₂O 溶于 50mL 去离子水中制得硝酸镁溶液，将硝酸铜溶液逐滴滴加至硝酸镁溶液中，充分搅拌，接着将 41.7g Si(OCH₃)₄ 逐滴滴加到上述混合溶液中，将上述溶液置于 90℃水浴中搅拌至黏稠后，转移到 80℃的烘箱中干燥 12h，所得固体经 550℃焙烧 4h，冷却即得三组分氧化物载体；
【0028】将 3.4g AgNO₃溶于 40mL 去离子水中，将前述得到的三组分氧化物载体置于硝酸银溶液中，在 100°C 油浴中搅拌至黏稠后，转移到 150°C 烘箱中干燥 8h，接着将其置于马弗炉中 700°C 下烘烧 2h，再通过研磨、筛分得到四组分复合氧化物催化剂，催化剂记为 AgO/4CuO–8MgO–10SiO₂，密封保存。

【0029】乙醇制丁二烯反应过程

【0030】将 1.5mL 上述催化剂填充至内径为 8mm 的石英管式反应器中，反应气氢气、乙醇和水蒸气的混合体积比为 1：10：20，将该混合气导入反应器中，空速为 0.2h⁻¹，催化剂床层温度为 450°C 进行反应，气相色谱分析 2h、10h 后的产物反应结果如下：

<table>
<thead>
<tr>
<th></th>
<th>2h</th>
<th>10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙醇转化率 /%</td>
<td>66.2</td>
<td>66.1</td>
</tr>
<tr>
<td>1,3-丁二烯收率 /%</td>
<td>32.3</td>
<td>32.4</td>
</tr>
</tbody>
</table>

【0031】

【0032】

【0033】实施例 3

【0034】制备催化剂过程

【0035】将 9.7g Cu(NO₃)₂·3H₂O 溶于 20mL 去离子水制得硝酸铜溶液，将 20.5gMg(NO₃)₂·6H₂O 溶于 40mL 去离子水中制得硝酸镁溶液，将硝酸铜溶液逐滴滴加至硝酸镁溶液中，充分搅拌，接着将 20.8g Si(OCH₃)₄ 逐滴滴加到上述混合溶液中，将上述溶液置于 75°C 水浴中搅拌至黏稠后，转移到 80°C 的烘箱中干燥 12h，所得固体经 550°C 焙烧 4h，冷却即得三组分氧化物载体；

【0036】将 3.4g AgNO₃ 溶于 30mL 去离子水中，将前述得到的三组分氧化物载体置于硝酸银溶液中，在 80°C 油浴中搅拌至黏稠后，转移到 100°C 烘箱中干燥 20h，接着将其置于马弗炉中 600°C 下烘烧 4h，再通过研磨、筛分得到四组分复合氧化物催化剂，催化剂记为 AgO/2CuO–4MgO–5SiO₂，密封保存。

【0037】乙醇制丁二烯反应过程

【0038】将 1.5mL 上述催化剂填充至内径为 8mm 的石英管式反应器中，反应气氢气、乙醇和水蒸气的混合体积比为 1：8：15，将该混合气导入反应器中，空速为 0.15h⁻¹，催化剂床层温度为 400°C 进行反应，气相色谱分析 2h、10h 后的产物反应结果如下：

<table>
<thead>
<tr>
<th></th>
<th>2h</th>
<th>10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙醇转化率 /%</td>
<td>62.6</td>
<td>62.5</td>
</tr>
<tr>
<td>1,3-丁二烯收率 /%</td>
<td>33.4</td>
<td>33.5</td>
</tr>
</tbody>
</table>

【0039】

【0040】

【0041】实施例 4

【0042】制备催化剂过程

【0043】将 4.8g Cu(NO₃)₂·3H₂O 溶于 20mL 去离子水制得硝酸铜溶液，将 5.1gMg(NO₃)₂·6H₂O 溶于 20mL 去离子水中制得硝酸镁溶液，将硝酸铜溶液逐滴滴加至硝酸镁溶液中，充分搅拌，接着将 4.2g Si(OCH₃)₄ 逐滴滴加到上述混合溶液中，将上述溶液置于 70°C 水浴中搅拌至黏稠后，转移到 80°C 的烘箱中干燥 12h，所得固体经 550°C 焙烧 4h，冷却即得三组分氧化物载体；

【0044】将 3.4g AgNO₃ 溶于 30mL 去离子水中，将前述得到的三组分氧化物载体置于硝酸
银溶液中，在 90℃油浴中搅拌至粘稠后，转移到 140℃烘箱中干燥 10h，接着将其置于马弗炉中 500℃下烘烤 5h，再通过研磨、筛分得到四组分复合氧化物催化剂，催化剂记为 AgO/CuO-MgO-SiO，密封保存。

【0045】乙醇制丁二烯反应过程

【0046】将 1.5mL 上述催化剂填充至内径为 8mm 的石英管式反应器中，反应氮气、乙醇和水蒸气的混合体积比为 1：6：12，将该混合气导入反应器中，空速为 0.12h⁻¹，催化剂床层温度为 420℃进行反应，气相色谱分析 2h, 10h 后的产物反应结果如下：

<table>
<thead>
<tr>
<th></th>
<th>2h</th>
<th>10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙醇转化率/%</td>
<td>66.2</td>
<td>66.5</td>
</tr>
<tr>
<td>1,3-丁二烯收率/%</td>
<td>34.8</td>
<td>35.0</td>
</tr>
</tbody>
</table>

【0048】

【0049】实施例 5

【0050】制备催化剂过程

【0051】将 9.7g Cu(NO₃)₂·3H₂O 溶于 20mL 去离子水制得硝酸铜溶液，将 15.4g Mg(NO₃)₂·6H₂O 溶于 50mL 去离子水中制得硝酸镁溶液，将硝酸铜溶液逐滴滴加至硝酸镁溶液中，充分搅拌，接着将 16.7g Si(OCH₃)₄，逐滴滴加至上述混合溶液中，将上述溶液置于 85℃水浴中搅拌至粘稠后，转移到 80℃的烘箱中干燥 12h，所得固体经 550℃焙烧 4h，冷却即得三组分氧化物载体；

【0052】将 3.4g AgNO₃：溶于 40mL 去离子水中，将前述得到的三组分氧化物载体置于硝酸银溶液中，在 80℃油浴中搅拌至粘稠后，转移到 130℃烘箱中干燥 12h，接着将其置于马弗炉中 400℃下烘烤 6h，再通过研磨、筛分得到四组分复合氧化物催化剂，催化剂记为 AgO/2CuO-MgO-4SiO₂，密封保存。

【0053】乙醇制丁二烯反应过程

【0054】将 1.5mL 上述催化剂填充至内径为 8mm 的石英管式反应器中，反应氮气、乙醇和水蒸气的混合体积比为 1：6：10，将该混合气导入反应器中，空速为 0.16h⁻¹，催化剂床层温度为 360℃进行反应，气相色谱分析 2h, 10h 后的产物反应结果如下：

<table>
<thead>
<tr>
<th></th>
<th>2h</th>
<th>10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙醇转化率/%</td>
<td>65.2</td>
<td>65.1</td>
</tr>
<tr>
<td>1,3-丁二烯收率/%</td>
<td>31.1</td>
<td>31.2</td>
</tr>
</tbody>
</table>

【0056】

【0057】实施例 6

【0058】制备催化剂过程

【0059】将 14.5g Cu(NO₃)₂·3H₂O 溶于 40mL 去离子水中制得硝酸铜溶液，将 20.5g Mg(NO₃)₂·6H₂O 溶于 50mL 去离子水中制得硝酸镁溶液，将硝酸铜溶液逐滴滴加至硝酸镁溶液中，充分搅拌，接着将 12.5g Si(OCH₃)₄，逐滴滴加至上述混合溶液中，将上述溶液置于 90℃水浴中搅拌至粘稠后，转移到 80℃的烘箱中干燥 12h，所得固体经 550℃焙烧 4h，冷却即得三组分氧化物载体；

【0060】将 3.4g AgNO₃溶于 40mL 去离子水中，将前述得到的三组分氧化物载体置于硝酸银溶液中，在 60℃油浴中搅拌至粘稠后，转移到 80℃烘箱中干燥 24h，接着将其置于
马弗炉中 700℃下焙烧 2h，再通过研磨、筛分得到四组分复合氧化物催化剂，催化剂记为 AgO/3CuO-4MgO-2SiO₂，密封保存。

[0061] 乙醇制丁二烯反应过程

[0062] 将 1.5mL 上述催化剂填充至内径为 8mm 的石英管式反应器中，反应气氛为乙醇和水蒸气的混合体积比为 1:7:15，将该混合气导入反应器中，空速为 0.1h⁻¹，催化剂床层温度为 450℃进行反应，气相色谱分析 2h、10h 后的产物反应结果如下：

<table>
<thead>
<tr>
<th></th>
<th>2h</th>
<th>10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙醇转化率 /%</td>
<td>72.2</td>
<td>72.4</td>
</tr>
<tr>
<td>1,3-丁二烯收率 /%</td>
<td>41.1</td>
<td>41.2</td>
</tr>
</tbody>
</table>