Title: HEAT EXCHANGERS PLATE AND PLATE HEAT EXCHANGER

Abstract: The invention refers to a heat exchanger plate (3), and a plate heat exchanger comprising a number of such heat exchanger plates. Each heat exchanger plate comprises a heat transfer area (15), an edge area (16), which extends around and outside the heat transfer area, and a number of portholes (18), which extend through the heat exchanger plate and are located inside and in the proximity of the edge area. The porthole is defined by a porthole edge and has a centre. The porthole edge has a first edge portion (19'), which faces the edge area, and a second edge portion (19''), which faces the heat transfer area. The first edge portion has a corrugation seen from the centre of the porthole. The second edge portion has a substantially plane shape seen from the centre of the porthole.
Heat exchanger plate and plate heat exchanger

THE BACKGROUND OF THE INVENTION AND PRIOR ART

The present invention refers to a heat exchanger plate according to the preamble of claim 1. The invention also refers to a plate heat exchanger according to the preamble of claim 10.

The invention refers to heat exchanger applications for relatively viscous media, which may contain particles, fibres or other difficult components. The invention may advantageously be used in for instance the following application fields: Destilleries, sugar mills, paper industry, textile industry, food industry, pharmaceutical industry etc. In large plate heat exchangers intended for relatively viscous media within said application fields, the size or the flow area of the portholes are of determining significance for avoiding large pressure drops.

Relatively large inlet ports may be obtained in that the porthole edge is located close to the gasket groove. In the area between the gasket groove and the porthole edge, there is a corrugation which forms a wall towards the gasket groove and which ensures that the gasket is held in place in the gasket groove. If the size of the porthole is maximised, this corrugation will extend to the porthole edge so that this obtains a corrugated or wave-like shape seen from the centre of the porthole.

In the applications mentioned above, it is at the same time important to prevent the media, which may contain particles, fibres etc, from getting attached to the porthole edge. If the porthole edge is corrugated, the risk that particles or fibres will get attached increases.

If the porthole edge, in order to avoid this risk, is given an even shape, the problem of a decreasing flow area is instead arising
since this even area has to extend inwards and towards the centre of the porthole from the above defined corrugation.

GB-A-2107845 discloses a heat exchanger plate for a plate heat exchanger. The heat exchanger plate comprises a heat transfer area, and edge area, which extends around and outside the heat transfer area, and a number of portholes, which extend through the heat exchanger plate and are located inside and in the proximity of the edge area. The portholes are defined by a porthole edge and have a centre. The porthole edge has a first edge portion, which faces the area, and a second edge portion, which faces the heat transfer area.

SUMMARY OF THE INVENTION

The object of the invention is to remedy or reduce the problems mentioned above. More specifically, the object is to provide a porthole having a as large flow area as possible and at the same time reducing the risk that particles or fibres of the media get attached to the porthole edge.

This object is achieved by the heat exchange plate initially defined, which is characterized in that the first edge portion has a corrugation seen from the centre of the porthole and that the second edge portion has a substationally plane shape seen from the centre of the porthole.

Thanks to this plane shape along the second edge portion, the risk that particles and fibres will get attached in the porthole is minimised and thanks to the corrugated first edge portion a sufficiently high strength along the outer edge of the heat exchanger plate is at the same time achieved. By providing the upper/outer edge of the porthole, i.e. the part of the porthole which faces outwardly towards the outer edge of the heat exchanger plate, with a corrugated shape and the lower/inner edge of the porthole, i.e. the part of the porthole which faces inwardly towards to the heat transfer area of the heat exchanger
plate, with an even or plane edge, it is possible to make the porthole significantly larger and to reduce the risk that particles, fibres and the like will get attached to the porthole edge.

According to an embodiment of the invention, the corrugation forms a wave-like shape of the first edge portion. The wave-like shape may advantageously extend along the whole first edge portion. The second edge portion may advantageously have a plane or substantially plane shape along the whole second edge portion.

According to a further embodiment of the invention, said portholes are surrounded by a hole edge area adjoining the porthole edge and having a first area portion, which adjoins the first edge portion, and a second area portion, which adjoins the second edge portion, wherein the first area portion is corrugated through said corrugation. Advantageously, the second area portion may have a substantially plane extension in the proximity of the second edge portion and a corrugation which is located between the plane extension and the heat transfer area.

According to a further embodiment of the invention, said porthole is surrounded by a gasket groove which is designed for receiving a gasket and which is located outside the hole edge area seen from the centre of the porthole. By means of such gaskets it is possible to control which plate interspaces are to communicate with the port formed by the portholes. Advantageously, the gasket groove may be delimited to the porthole by the wall portions formed by the corrugation of the first area portion and the corrugation of the second area portion. Furthermore, the gasket groove may have a first distance to the porthole edge along the first edge portion and a second distance to the porthole edge along the second edge portion, wherein the first distance is shorter than the second distance. The shape and the extension of the gasket groove may thus be adapted in such a way that the shape and the size of the porthole is optimized.
According to a further embodiment of the invention, said corrugation comprises ridges and valleys which are provided in an alternating order and which extend in a direction towards the centre of the porthole.

The object is also achieved by the plate heat exchanger initially defined, which is characterized in that the first edge portion has a corrugation seen from the centre of the porthole and that the second edge portion has a substationally plane shape seen from the centre of the porthole.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is now to be explained more closely through a description of various embodiments and with reference to the drawings attached hereto.

Fig. 1 discloses schematically a side view of a plate heat exchanger.
Fig. 2 discloses schematically a plan view of the plate heat exchanger in fig. 1.
Fig. 3 discloses schematically a heat exchanger plate of the plate heat exchanger in fig. 1.
Fig. 4 discloses the heat exchanger plate in fig. 3 with gaskets provided.
Fig. 5 discloses schematically a porthole of the heat exchanger plate in fig. 3.
Fig. 6 discloses schematically a partly sectional perspective view of a port channel of the plate heat exchanger along the line VI-VI in fig. 5.
Fig. 7 discloses schematically a partly sectional perspective view of a port channel of the plate heat exchanger along the line VII-VII in fig. 5.
Fig. 8 discloses a view from the port channel towards a second edge portion of the heat exchanger plates.
Fig. 9 discloses a view from the port channel towards a first edge portion of the heat exchanger plates.

DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS OF THE INVENTION

Figs. 1 and 2 disclose a plate heat exchanger 1 comprising a plate package 2 having heat exchanger plates 3 which are provided beside each other. The plate package 2 is provided between two end plates 4 and 5 which may form a frame plate and a pressure plate, respectively. The end plates 4 and 5 are pressed against the plate package 2 and against each other by means of tie bolts 6 which extend through the end plates 4 and 5. The tie bolts 6 comprise threads and the plate package 2 may thus be compressed by screwing nuts 7 on the tie bolts 6 in a manner known per se. In the embodiment disclosed, four tie bolts 6 are indicated. It is to be noted that the number of tie bolts 6 may vary and be different in different applications.

The plate heat exchanger 1 comprises according to the embodiments described also a first inlet port 8 and a first outlet port 9 for a first medium, and a second inlet port 10 and a second outlet port 11 for a second medium. The inlet and outlet ports 8-11 extend in the embodiments disclosed through one of the end plates 4 and the plate package 2. The ports 8-11 may be arranged in many different ways and also through the second end plate 5.

Each heat exchanger plate 3 is manufactured in a compression-moulded metal sheet, for instance stainless steel, titanium or any other material which is suitable for the intended application. Each heat exchanger plate 3 comprises a heat transfer area 15 and an edge area 16, which extends around and outside the heat transfer area 15. The heat transfer area 15 is in the embodiment disclosed substantially centrally located on the heat exchanger plate 3, and in a known manner provided with a corrugation 17 of ridges and valleys. The corrugation 17 is
obtained through compression-moulding of the metall sheet. In the embodiment disclosed, the corrugation 17 has merely been indicated schematically as extending obliquely over the heat transfer area 15. It is to be noted that the corrugation 17 also may comprise significantly more complicated extensions of the ridges and valleys, for instance along the fishbone pattern known per se. Also heat exchanger plates 3 having a substantially plane heat transfer area may be used within the scope of this invention.

Each heat exchanger plate 3 also comprises a number of portholes 18, in the embodiment disclosed four portholes 18, which extend through the heat exchanger plate 3 and are located inside and in the proximity of the edge area 16. Each porthole 18 is defined by a porthole edge 19, see fig. 3, and has a centre. The portholes 18 are located in the proximity a respective corner of the heat exchanger plate 3 and are substantially concentric with the above mentioned inlet and outlet ports 8-11 of the plate heat exchanger 1.

The heat exchanger plates 3 are provided in such a manner in the plate package 2 that first plate interspaces 21, which communicate with the first inlet port 8 and the first outlet port 9, and second plate interspaces 22, which communicate with the second inlet port 10 and the second outlet port 11, are formed, see figs. 1 and 6. The first and second plate interspaces 21 and 22 are provided in an alternating order in the plate package 2.

Such a separation of the plate interspaces 21, 22 may be achieved by means of one or several gaskets, which extend in the gasket grooves 23 which are formed during the compression-moulding of the heat exchanger plates 3. The gasket groove 23 of each heat exchanger plate 3 extends, as can be seen in fig. 3, around the heat transfer area 15 and around each of the portholes 18. At each heat exchanger plate 3 a gasket 25 is, in the embodiments disclosed, provided before the mounting of the plate heat exchanger 1. The gasket 25
extends in a part of the gasket groove 23 in such a way that the gasket 25 encloses the heat transfer area 15 and two of the portholes 18 and also each of the two remaining portholes 18. The gasket 25 thus forms three separate areas which are delimited from each other by means of the gasket 25. It is to be noted that the gasket 25 does not necessarily need to be shaped as one single gasket but may also consist of several different gaskets.

During the mounting, every second heat exchanger plate 3 may be rotated 180°, for instance around a central normal axis or round a central longitudinal axis. Thereafter the heat exchanger plates 3 are compressed so that the desired first and second plate interspaces are obtained. In the plate package 2, the first medium may be introduced through the first inlet port 8, through the first plate interspaces 21 and out through the first outlet port 9. The second medium may be introduced through the second inlet port 10, through the second plate interspaces 22 and out through the second outlet port 11. The two media may for instance be conveyed in a counter current flow, as indicated in figs. 2 and 3, or in parallel flow in relation to each other.

The porthole edge 19 has, see figs. 3 and 5, a first edge portion 19', which faces outwardly from the heat transfer area 15 and towards the proximate area 16, and a second edge 19'', which faces inwardly towards the heat transfer area 15 and from the proximate edge area 16. The first edge portion 19' has a corrugation 29' seen from the centre of the porthole 18, see fig. 9. The second edge portion 19'' has a plane or substantially plane shape seen from the centre of the porthole 18, see fig. 8. The corrugation 29' forms a wave-like or substantially wave-like shape of the edge portion 19' seen from the centre of the porthole 18, see fig. 9 whereas the plain shape of the second edge portion 19'' forms a substantially straight line seen from the centre of the porthole 18. The corrugation 29' and the wave-like shape extend along the whole first edge portion 19'.
Each porthole 18 is surrounded by a hole edge area 13, which adjoins the port hole edge 19. The hole edge area 13 has a first area portion 30′”, which adjoins the first edge portion 19′, and a second area portion 30′”, which adjoins the second edge portion 19′”. As can be seen in fig. 5, the corrugation 29′ of the first edge portion 19′” extends outwardly from the centre of the porthole 18, and thus into the first area portion 30′. The first area portion 30′ is thus corrugated through the above mentioned corrugation 29′ of the edge portion 19′.

The second area portion 30′” has a substantially plane extension 31 which adjoins the second edge port 19′”. The second area portion 30′” also has a corrugation 29′” which is located between the plane extension 31 and the heat transfer area 15, and more precisely between the plane extension 31 and the gasket groove 23. Both the corrugation 29′ and the corrugation 29′” comprise ridges and valleys which are provided in an alternating order and which extend in a direction towards the centre of the porthole 18, i.e. in a radial or substantially radial direction with respect to the centre of the porthole 18.

As indicated above, two of the portholes 18 are surrounded by a part of the gasket groove 23 which is designed for receiving a part of the gasket 25. These parts of the gasket groove 23 and the gasket 25 are located outside the hole edge area 30 seen from the centre of the porthole 18. The gasket groove 23 is here limited against the porthole 18 by wall portions formed by the corrugation 29′ of the first area portion 30′ and by the corrugation 29′” of the second area portion 30′”. With respect to the two other portholes 18, which also are surrounded by the gasket groove 23 and the gasket 25, the gasket 25 extends merely to the part of the gasket groove 23 which adjoins the first area portion 30′.

The first area portion 30′, which comprises merely the corrugation 29′, is thinner than the second area portion 30′” which comprises both the plane extension 31 and the
corrugation 29". The gasket groove 23 thus has a first distance to the porthole 19 along the first edge portion 19' and a second distance to the porthole edge 19 along the second edge portion 19". The first distance is shorter than the second distance.

The part of the gasket groove 23, which receives the corresponding part of the gasket 25 and which adjoins the first area portion 30', has a distance to the edge portion 19' which is equal to or substantially equal to the first distance. This means that the gaskets 25 in the different plate interspaces 21 and 22 will be located opposite to each other along the first area portion 30', see also fig. 7.

The invention is not limited to the described embodiments but may be varied and modified within the scope of the following claims.

It is to be noted that the invention is applicable not only to plate heat exchangers having gaskets in all plate interspaces 21, 22, but also to permanently joined plate heat exchangers, for instance brazed or glued plate heat exchangers, and to plate heat exchangers having heat exchanger plates permanently joined in pairs, for instance pair of heat exchanger plates which are welded to each other.

In the embodiments described, the portholes 18 have a cylindrical or substantially circular shape. The portholes 18 may however also have any other suitable regular or irregular shape, for instance an oval shape or a polygonal shape, for instance a triangular, a square, a pentagonal etc. shape suitably with somewhat rounded corners.
Claims

1. A heat exchanger plate (3) for plate heat exchangers (1), comprising
 a heat transfer area (15),
 an edge area (16), which extends around and outside the heat transfer area (15), and
 a number of portholes (18), which extend through the heat exchanger plate and are located inside and in the proximity of the edge area (16),
 wherein said porthole (18) is defined by a porthole edge (19) and has a centre,
 wherein the porthole edge (19) has a first edge portion (19'), which faces the edge area (16), and a second edge portion (19''), which faces the heat transfer area (15), characterized in that the first edge portion (19') has a corrugation seen from the centre of the porthole (18), and that the second edge portion (19'') has a substantially plane shape seen from the centre of the porthole (18).

2. A heat exchanger plate according to claim 1, characterized in that the corrugation forms a wave-like shape of the first edge portion (19').

3. A heat exchanger plate according to claim 2, characterized in that the wave-like shape extends along the whole first edge portion (19').

4. A heat exchanger plate according to anyone of the preceding claims, characterized in that said porthole (18) is surrounded by a hole edge area (30), which adjoins the porthole edge (19) and which has a first area portion (30') which adjoins the first edge portion (19'), and a second area portion (30'') which adjoins the second edge portion (19''), wherein the first area portion (30') is corrugated through said corrugation.
5. A heat exchanger plate according to claim 4, characterized in that the second area portion (30'') has a substantially plane extension (31), which adjoins the second edge portion (19''), and a corrugation (29''), which is located between the plane extension (31) and the heat transfer area (15).

6. A heat exchanger plate according to anyone of claims 4 and 5, characterized in that said porthole (18) is surrounded by a gasket groove (23), which is designed for receiving a gasket (25) and which is located outside the hole edge area (30) seen from the centre of the porthole (18).

7. A heat exchanger plate according to claims 5 and 6, characterized in that the gasket groove (23) is delimited towards the porthole (18) by wall portions which are formed by the corrugation (29') of the first area portion (30') and the corrugation (29'') of the second area portion (30'').

8. A heat exchanger plate according to anyone of claims 6 and 7, characterized in that the gasket groove (23) has a first distance to the porthole edge (19) along the first edge portion (19') and a second distance to the porthole edge (19) along the second edge portion (19''), wherein the first distance is shorter than the second distance.

9. A heat exchanger plate according to anyone of the preceding claims, characterized in that said corrugation (29', 29'') comprises ridges and valleys which are provided in an alternating order and which extend in a direction towards the centre of the porthole (18).

10. A plate heat exchanger (1) comprising a number of heat exchanger plates (3) which each comprises a heat transfer area (15), an edge area (16), which extends around and outside the heat transfer area (15), and
a number of portholes (18), which extend through the heat exchanger plate and are located inside and in the proximity of the edge area (16), wherein said porthole (18) is defined by a porthole edge (19) and has a centre, wherein the porthole edge (19) has a first edge portion (19'), which faces the edge area (16), and a second edge portion (19''), which faces the heat transfer area (15), characterized in that the first edge portion (19') has a corrugation seen from the centre of the porthole (18), and that the second edge portion (19'') has a substantially plane shape seen from the centre of the porthole (18).

11. A plate heat exchanger according to claim 10, characterized in that it comprises features from anyone of claims 2 to 9.
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION No.
PCT/SE2007/050296

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: F28D, F28F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 19917761 C1 (REHBERG, PETER ET AL), 18 January 2001 (18.01.2001)</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 2550339 A (H.H. EHRMAN), 24 April 1951 (24.04.1951)</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB 2107845 A (W. SCHMIDT GMBH AND CO KG), 5 May 1983 (05.05.1983)</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB 1035170 A (SERCK RADIATORS LIMITED), 6 July 1966 (06.07.1966)</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
8 October 2007

Date of mailing of the international search report
09-10-2007

Name and mailing address of the ISA/ Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Lena Nilsson / JA A
Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (April 2007)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DATABASE WPI</td>
<td>1-11</td>
</tr>
</tbody>
</table>
| | Week 199701
Derwent Publications Ltd., London, GB;
Class Q78, AN 1997-002345
abstract
& JP 8271180 A (SEISAKUSHO KK),
18 October 1996 (1996-10-18) | |
International patent classification (IPC)

F28F 3/09 (2006.01)
F28D 9/00 (2006.01)
F28F 3/10 (2006.01)

Download your patent documents at www.prv.se
The cited patent documents can be downloaded at www.prv.se by following the links:
- In English/Searches and advisory services/Cited documents (service in English) or
- e-tjänster/anförda dokument (service in Swedish).
Use the application number as username.
The password is NFZBGCYOPH.

Paper copies can be ordered at a cost of 50 SEK per copy from PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.
<table>
<thead>
<tr>
<th>Country</th>
<th>Application Number</th>
<th>Date</th>
<th>Country</th>
<th>Application Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>19917761</td>
<td>18/01/2001</td>
<td>DE</td>
<td>19959780 A,B</td>
<td>13/06/2001</td>
</tr>
<tr>
<td>US</td>
<td>2550339 A</td>
<td>24/04/1951</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB</td>
<td>2107845 A</td>
<td>05/05/1983</td>
<td>DE</td>
<td>3141161 A,C</td>
<td>26/05/1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DK</td>
<td>456882 A</td>
<td>17/04/1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FR</td>
<td>2514880 A</td>
<td>22/04/1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SE</td>
<td>8205798 A</td>
<td>12/10/1982</td>
</tr>
<tr>
<td>GB</td>
<td>1035170 A</td>
<td>06/07/1966</td>
<td>NO</td>
<td>115396 A,B</td>
<td>30/09/1968</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>KR</td>
<td>20020075473 A</td>
<td>05/10/2002</td>
</tr>
</tbody>
</table>