woO 2007/034232 A2 |00 0 000 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij'

International Bureau

(43) International Publication Date
29 March 2007 (29.03.2007)

(10) International Publication Number

WO 2007/034232 A2

(51) International Patent Classification:
GOGF 9/38 (2006.01)

(21) International Application Number:
PCT/GB2006/003603

(22) International Filing Date:
26 September 2006 (26.09.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
0519597.9 26 September 2005 (26.09.2005) GB
(71) Applicant (for all designated States except US): IMAG-
INATION TECHNOLOGIES LIMITED [GB/GB],
Home Park Estate, Kings Langley, Hertfordshire WD4

8LZ (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): HOWSON, John

(74)

(81)

(34)

[GB/GB]; 2 Pilgrim Close, Park Street, St.
Hertfordshire ALT TID (GB).

Agent: ROBSON, Aidan, J.; Reddie & Grose, 16
Theobalds Road, London WC1X 8PL (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Albans,

[Continued on next page]

(54) Title: SCALABLE MULTI-THREADED MEDIA PROCESSING ARCHITECTURE

Scheduling
Phase 1

Resource State

Task Queue

Task Queue

Threads

Scheduling

Phase 2 Data

Instance
Distribution

Key:

Active
Threads

Scheduling
Phase 3

160

D$0 = Data Source 0
DS1 = Data Source 1
DS2 = Data Source 2
DSN = Dala Source N

(57) Abstract: A method and apparatus are
provided for processing multiple streams of
data on a plurality of execution threads. Data
is selected from a plurality of data sources
(1001). An address in the data storage
means (1036) is allocated for the data thus
selected. The selected data is then loaded
into the allocated address. Following this an
execution task comprising the selected data
source, the data address and an execution
address is constructed and the data task is
queued with previously constructed tasks. A
determination is made as to which processing
resources are required for each task and tasks
are selected for execution in dependence
on this. Tasks selected for execution are
distributed across a plurality of processing
threads (170). The allocation of data storage
in the data storage means includes the steps
of selecting data from one of the data sources
and supplying a code execution address
to a programmable data sequencer (1004).
The code from the code execution address
is executed to cause data to be written to
the data storage means. Furthermore, a tile
based computer graphic rendering system
may comprise a plurality of mulit-threaded
processor cores. Each processor core is
allocated to different sectors of the tile.

WO 2007/034232 A2 |0 000000 0 0000 00 0 O

Declaration under Rule 4.17: For two-letter codes and other abbreviations, refer to the "Guid-

— as to applicant’s entitlement to apply for and be granted a ance Notes on Codes and Abbreviations” appearing at the begin-
patent (Rule 4.17(ii)) ning of each regular issue of the PCT Gagzette.

Published:

— without international search report and to be republished
upon receipt of that report

WO 2007/034232 PCT/GB2006/003603

Scalable Multi-threaded Media Processing Architecture

This invention relates to a system capable of processing multi-media data such
video and 3-dimensional computer graphics and in particular to methods of
processing multiple parallel streams of such data within a scalable multi-threaded

environment.

Background of Invention

International patent application number W097/38372 (the contents of which
are incorporated herein by reference) describes a system for processing multiple real
time data sources through a multi-threaded media processing core. The processing
core handles a number of execution threads of instructions. A determination is made
as to which thread has the highest priority for execution and execution is formed on
that thread in accordance with this.

International patent application number W002/06716 entitled to control a
priority lead structure on a multi-threaded processor (the contents of which are
incorporated herein by reference) elaborates further on the arbitration schemes which
are possible between different executing threads. It provides a method apparatus for
controlling execution rates for instruction threads. The rate at which instructions are
to be executed is stored and requests are issued to cause instruction to execute in
response to the stored rate. The stored rate is reduced in response to execution of
instructions and increased in the absence of instructions for execution. Furthermore,
instruction rate is controlled by storing the average rate at which each thread
should execute instructions. A value representing the number of instructions available
not yet issued is monitored and decreased in response to instruction execution. Also,
a ranking order can be assigned to a plurality of instruction threads using a plurality of
metrics relating to the threads.

In a further development, a technique known as ‘Enhanced interleaved multi-
threading’ works by maintaining a superset of execution threads from which a subset
is maintained as active. The number of active threads is determined by the latency of
the execution unit to which they are issuing instructions. Threads are then swapped

between the active subset and the superset based on resource dependencies, i.e., if an

WO 2007/034232 PCT/GB2006/003603

active thread is waiting for the data to be returned from memory it will be swapped

for a currently inactive one that is ready to proceed.

Summary of the Invention

Preferred embodiments of the present invention provide a system which
enables a multi-threaded processing pipeline to be used to processes multiple input
data streams that represent bulk non real time data sources in a manner that maximises
latency absorption and utilisation of pipeline processing resource by using a multi-
phased approach to scheduling.

This is performed by using a three phase scheduling system which
differentiates the management of data storage within the processing pipeline from the
allocation of processing threads within the same pipeline and the scheduling of
instructions based on execution resource conflicts.

In accordance with an embodiment of a first aspect of the invention there is
provided a method for processing multiple streams of data on a plurality of execution
threads comprising the steps of selecting data from at least one of a plurality of data
sources in dependence on the availability of storage in a data storage means,
allocating an address in the data storage means for the data thus selected, loading
selected data at the data address thus allocated, constructing an execution task
comprising the selected data source, the data address, and an execution address,
queuing the task with other previously constructed tasks, determining which
processing resources are required for each task, selecting tasks for execution in
dependence on the processing resources available, distributing tasks selected for
execution across a plurality of processing threads, determining whether any of the
threads will stall because of data dependencies, repeatedly selecting a subset of
threads to be active that will not stall due to said data dependencies, and, executing
active thraeds.

Preferably an embodiment includes a means for scheduling tasks based on
available resource.

Preferably an embodiment includes a means for avoiding prolonged blocking
in a data source.
Preferably an embodiment includes a method for loading data into a unified

storage area by way of a programmable data sequencer.

WO 2007/034232 PCT/GB2006/003603

Preferably an embodiment may be modified such that the programmable data
sequencer is provided on a data processing thread.

Preferably an embodiment provides a method for ensuring data is processed in
the correct order.

Preferably the method may be embodied in a tile based rendering system.

Preferably the programmable data sequencer is used for texture coordinate
iteration and texture fetches through the system.

Preferably embodiments of the invention are scalable by the different multi
processors cores (wherein each multi processor core is matched to a different sector of
a tile, the tile size may be adjusted based on the number of attached pipelines, the
vertex data is distributed evenly across the pipelines using a pre-scheduling block, and
a vent processor is distributed evenly across the pipelines also by a pre-scheduling
block).

In accordance with an embodiment of a further aspect of the invention there is
provided, a method for allocating data storage in a multithreaded data processing
system comprising the steps of selecting data from one of a plurality of data sources
in dependence on the availability of data storage, supplying a code execution address
to a programmable data sequencer, executing code from the code execution address to

cause data to be written to the data storage means.

Brief Description of the Drawings

Preferred embodiments of the invention will now be described in detail by way of

example with reference to the accompanying drawings in which:

Figure 1 - illustrates the proposed scheduling phases of an embodiment of the
invention discussed above;

Figure2 - illustrates the Improved Multi-Media Processing Architecture
embodying the invention;

Figure 3 - detailed diagram of architecture of Figure 2;

Figure 4 - illustrates thread States within Thread Manager of Figure 3;

Figure 5 - illustrates a typical Tile Based Rendering System;

Figure 6 — illustrates a typical HSR unit within a tile based rendering system

which may use an embodiment of the invention;

WO 2007/034232 PCT/GB2006/003603

Figure 7 ~ illustrates a tile based rendering system implemented using an
embodiment of the invention;
Figure 8 - illustrates tile sector to Pixel Data Master (PDM) mapping;

Figure 9 — illustrates a system scaled to two pipelines; .

Detailed Description of Preferred Embodiment

Figure 1 illustrates the scheduling phases with the system. The first phase
starts with data source selection at 110 of an input from available sources 100 on the
basis of there being sufficient resource available in the Processor Storage Resource
140. Allocation of the Processor Storage Resource is then performed at 120 yielding a
Data Address within the storage. This address is then used at 130 to load data required
for the servicing of the selected source. A task is then constructed at 150 which is
composed of (but not limited to) the originating data source ID, an execution address
supplied by the data source 100 and the data address. The generated task is then
inserted into a task queue 160.

The second scheduling phase involves each task within the queue generated by
the first phase being distributed across one or more processing threads within a multi-
threaded processing pipeline based on the availability of processing resource within
that pipeline. The processing resources required to execute any given task are used to
dictate which task within the task queue may be run at 162, specifically the required
number of processing threads and temporary storage required to execute those
threads. The selected task is then distributed across execution threads 170 at 164.

The third and final execution phase determines which threads may be run at
175 without incurring a stall due to resources that are not cutrently available e.g. data
returned by an external memory read or branch condition that is not currently valid.
This is done in a manner that combines the simple resource checking described in
patent WO 907/38372 and the technique of “Enchanced interleaved multi-threading”.
This results in a maintained set of active threads 180, the number of which is tied to
the execution latency of “Execute” 190 (typically an ALU). It should be noted that the
third phase executes threads to completion at which point both the threads and any

allocated memory resource are returned to the system.

WO 2007/034232 PCT/GB2006/003603

Figure 2 illustrates the proposed processing architecture to implement figure 1
at a high level. The data sources 810 will from now on be referred as “Data Masters”
on the basis that they are responsible for instigating all processing within the system.
A Coarse Grain Scheduler (CGS) 820 coupled to the data masters undertakes the
activities described above within scheduling phase one. The CGS passes tasks to a
Multi-Threaded Media Processor (MTMP) 830 which implements scheduling phases
two and three described above. Processed data is “emitted” from the MTMP to the
data processing pipelines 840. This system differs to that described in International
patent no. W097/38372 by the addition of the CGS and the internal differences within
the MTMP associated with the 3 phased scheduling scheme.

Figure 3 illustrates the details of the basic system in greater detail. The data
masters 1001 issue data service requests to a Data Master Selection unit (DMS) 1006
in the CGS 1000 . These data requests are in the form of a count of data instances plus
the size of an individual data instance. A data instance is defined as a unique quanta
of data that may be processed without reference to any other data within the incoming
data stream, and as such may be processed in parallel with all other data instances
supplied by this or any other data master.

The DMS cycles through the data masters looking for one that may be
serviced within the resources that are currently indicated as free by a Resource
Manager 1002 as described in scheduling phase 1 above. When selecting a data
master the DMS also takes into account a minimum data instance count (Referred to
as the Data Master Minimum Service Count) that is indicated by the data masters.
There must be sufficient resource available to service a multiple of the minimum data
instance count stipulated. Once a data master has been selected the DMS allocates the
required resources updating the Resource manager as appropriate before passing the
selected data master’s request onto a Programmable Data Sequencer (PDS) 1004. It
should be noted that the resource allocation is in the form of input and output data
storage within the MTMP’s shared data store 1036.

Input buffer storage is allocated on a per service request basis, however output
buffer storage needs additional management in certain circumstances. Specifically
certain data types require output buffering to be persistent across multiple service
requests (e.g. pixel data), in these cases the output buffering is managed in terms of
“macro” tasks. A macro task being defined as a group of tasks over which output

buffering must be persistent. To handle this the DMS/resource manager allocates

5

WO 2007/034232 PCT/GB2006/003603

output buffer storage only on the first task for a data master where there is no output
buffer storage currently allocated. This allocation then remains persistent until the
data master signals that the macro task is complete, where it may be freed.

It will be noted that it is possible for a data master that requires a large amount
of resource for its minimum serviceable quanta to be blocked from processing. This is
prevented by the DMS maintaining a timeout counter for each data master. This
timeout counter is incremented each time it has a service request rejected, when this
counter reaches a pre-determined value the data master concerned will be serviced
irrespective of currently available resources i.e. the DMS will be prevented from
processing until sufficient resources are available. In addition a software control is
made available to control and disable/enable the servicing of each data master. This
software control can be used to manipulate the amount of processing time available to
each data master.

The PDS is a fully programmable processor that is supplied with a code
execution address by a data master selected by the DMS. The indicated code is
executed once for each data instance that is being serviced from the data master. The
code may use data supplied by the data master to generate data directly into the shared
data store 1036 or to fetch data from memory via a DMA unit 1008 into the shared
data store 1036. It should be noted that the PDS could be implemented as a thread
within the MTMP. However this would then take processing resource from other
activities.

Once all data instances from a selected data master have been serviced by the
PDS a task is issued to the MTMP’s task queue 1022. The execution address for the
task is preferably supplied directly from the code executed within the PDS. Thus the
PDS operation is equivalent to the “Data Load” step 130 from figure 1.

The task queue is scanned by a Task Control Unit (TCU) 1024 for tasks that
can be issued to a Thread Manager 1026, this is any task that,

e has no outstanding execution dependencies,

e whose temporary storage allocation and number of execution threads
for the specified minimum number of data instances (same number as
Data Master Minimum Service Count) OR

e whose age has reached or exceeded the maximum allowable

WO 2007/034232 PCT/GB2006/003603

Execution dependencies are used to block the execution of a task while there
is some external or internal activity that must complete before the task can be allowed
to proceed. Examples of such dependencies are (but not limited to) an “external”
dependency or a “sequential” dependency.

An external dependency is a condition which is sourced from a piece of
hardware external to the MTMP which blocks the task’s execution until the condition
is released. For example a task may require one of the processing pipelines 1040 to
complete before proceeding.

A sequential dependency is applied where a task may update an output buffer
register that is also updated on a task that preceded its arrival in the queue. When the
task manager sees a task with a sequential dependency set it will allow all tasks from
the same data master in the queue that were supplied before it to complete before
allowing it to proceed. It should be noted that only tasks from the same data master
are blocked in these circumstances, this is why the data master/source ID is included
within the task data. In a further modification to this mechanism each task could carry
a mask of output registers that are modified, the sequential dependency then being

| applied selectively only where those masks overlap.

In order to prevent a task with large resource requirements from being blocked
for long periods of time each task in the queue has an “Age” counter which is
incremented each time a task is rejected for processing by the TCU. When the age
counter reaches a defined limit a task that has no outstanding execution dependencies
will be selected for processing irrespective of available thread and temporary storage
availability.

Once a task has been selected for service its data instances are distributed to
threads as they and the required temporary register resources become available as
shown schematically in the scheduling phase 2 in figure 1. Temporary register storage
is also allocated from the shared data store 1036 with the store being pre divided in a
fixed manner between input, output and temporary storage areas which are then
managed independently. It should be noted that input and temporary storage be
combined into a single partition and both allocated in phase 1 of the scheduling,
however this has the disadvantage of reserving temporary storage for longer than

necessary.

WO 2007/034232 PCT/GB2006/003603

The Thread Manager 1026 performs the actions required to implement
scheduling phase 3 as shown in figure 1. The thread manager maintains a number of
simultaneous execution threads of which a subset are active at any given time.
Execution of code for the active threads is by round robin e.g. if there are two active
threads within the system, instruction fetches are issued for thread 0, threat 1, thread
0, thread 1 etc. As ALU pipelines do not typically produce a result in the same clock
cycle as issuing an operation down the pipeline instructions referencing the result of a
previous instruction would typically stall. However as instructions are interleaved as
described above from threads operating on unrelated data instances the time between
potentially dependent register accesses for code running within any given execution
thread is increased buy the number of active thread, as such the number of active
threads is chosen such that it equals the latency of the ALU pipeline.

Figure 4 illustrates the four possible states of a thread and the activities that
cause a transition between those states. Threads start in a ‘free’ state at 1200 until the
TCU 1024 (figure 3) issues data instances to run on them as previously described
causing a transition to the ‘Ready’ state 1210. Threads remain in a ready state until
the thread manager places a currently active thread into an inactive or free state,
causing a ready thread to transition to ‘Active’ at 1220. Threads remain active until
such point as they encounter a dependency that would result in a stall if they where to
continue execution. When a thread hits such a dependency the thread manager moves
its state to “Inactive’ at 1230. It should be noted that if no other threads are in a
‘Ready’ state at this point the thread manager will signal the Instruction Fetch and
Decode unit (IFD) 1028 of Figure 3 to insert no-ops into the instruction stream being
fed to an ALU 1034 between the IFD and the SDS. A thread remains in an ‘Inactive’
state until all dependencies that caused its deactivation have been satisfied at which
point the thread transitions back to a ‘Ready’ state at 1210. In order to avoid active
threads from blocking execution of any ‘Ready’ threads for prolonged periods of time
the thread manager will change an active thread back to a ready state if a thread
exceeds a pre-defined active time limit. At the point an instruction is encountered that
is marked as ‘Last’ (i.e., the last instruction) the thread manager will revert the state of
the thread back to ‘Free’ at 1200. Execution of an instruction marked as “last” also
results in any allocated temporary or input storage being freed, although not output
storage. The possible dependencies that result in the de-activation of a thread are,

e (Code cache miss

WO 2007/034232 PCT/GB2006/003603

o Branch dependent on a condition code that is currently invalid
e Data from an external memory read not yet returned
e Attempt to aquire a semaphore that is currently owned by another thread

e Waiting synchronisation

In order to minimise latency for selection of active threads the thread manager
updates the status of inactive threads to ‘ready’ as soon as any outstanding’

dependencies complete.

The thread manager issues instruction fetches for active threads to the
Instruction Fetch and Decode unit (IFD) 1028 which issues fetches to the instruction
cache 1030. If an issued fetch causes a cache miss the IFD informs the thread
manager of this, which will deactivate the thread as described above, until such time
as the Instruction cache retrieves the required cache line. Fetched instructions are
decoded and any branch or control instruction executed within the IFD. Any control
or branch instruction that references a control resource (such as a condition code) that
is not currently valid will result in the IFD informing the thread manager that the
thread should be deactivated until such point as the control resource becomes valid.
All other instructions are passed to the ALU 1034 for execution. It will be noted that
the ALU operates directly on the data contained within the shared data store.

Prior to completion most threads will signal an emit to the Processing
Pipelines 1040 which will read required data from the output buffers allocated within
the shared data store 1036. When this process is complete the processing pipeline
signals that the output buffer resource has been freed.

In a preferred embodiment of the invention the system is adapted for use
within a tile base rendering system.

Tile based rendering systems are known. These break down an image to be
rendered into a plurality of rectangular blocks or tiles. The way in which this is done
and the subsequent texturing and shading performed is shown schematically in figure
5. A primitive/command fetch unit 1501 fetches a stream of commands and primitive
data from memory and passes it to a geometry processing unit 1502 which transforms
it into screen space using a well known method. The data is then supplied to a tiling

unit 1503, which inserts the screen space geometry into lists for a set of defined

WO 2007/034232 PCT/GB2006/003603

rectangular regions, or tiles, 1504, Each list contains primitives that exist wholly or
partially in a sub-region of a screen (i.e. a tile). A list exists for every tile on the
screen, although it should be borne in mind that some lists may have no data in them.

The tiled data lists are fetch by a tile parameter fetch unit 1505 which feeds
them tile by tile to a hidden surface removal unit (HHSR) 1506 and from there to a
texturing and shading unit (TSU) 1508. The HSR unit processes each primitive in the
tile and passes only data for visible pixels to the TSU as described below.

The texturing and shading unit takes the data from the HSR unit and uses it to
fetch textures and apply shading to each pixel within a visible object using techniques
that are well known.

The TSU then feeds the textured and shaded data to the alpha test unit 1509,
fogging unit 1510 and alpha blending unit 1511 which perform alpha test, fogging and
alpha blending respectively in a well known manner. Alpha blending is performed to
an on chip tile buffer 1512 thereby eliminating external memory bandwidth associated
with this operation. On completion of each tile the Pixel processing unit 1514
performs any backend processes such as packing or anti-alias filtering before writing
the resulting data out to external memory used to store the rendered scene 1516.

Figure 6 describes the HSR unit of a typical tile based rendering device in
more detail. Specifically the rasteriser 1602 tests the depths of incoming primitive
pixels against the on chip tile buffer 1608, if a pixel location is found to be visible a
“tag” uniquely identifying that object is written to the tag buffer 1604. The contents of
the tag buffer need to be passed to the texturing and shading unit any time a pixel
requires overwriting with a pixel from an object that is transparent. When this occurs
the current contents of the tag buffer are passed to the Sorter 1606, which sorts and
passes the contents of the tag buffer to the texturing and shading unit based on object
tags such that the texturing and shading unit sees all the pixels associated with each
visible object within the tile in one go. This process is referred to as pass “spawning”.

Figure 7 describes the further embodiment of the invention as applied to tile
based rendering. For reasons of clarity the MTMP control and execution pipe 1852
encompasses the task queue 1022, task control unit 1024, thread manager 1026,
thread PC 1032, instruction fetch and decode 1028 and the ALU 1034. It should also
be noted that code 1030 and data 1010 caches have also been removed for reasons of

clarity only.

10

WO 2007/034232 PCT/GB2006/003603

In this example the MTMP replaces the function of geometry processing 1502,
texturing and shading 1508, alpha test 1509, fogging 1510 and alpha blend 1511 unit
from figure 5. In addition the accumulation buffer is replaced with output buffer space
allocated from the shared data store. This integration of functionality into a single unit
with general programmability results in an exceptionally capable system that may
either directly emulate or replace fixed function blocks or replace them with an
arbitrary piece of code supplied by an attached application.

The Data masters 1820 are now allocated specific functions as follows.

The pixel data master (PDM) 1826 incorporates the functionality of tiled parameter
fetch 1505 and hidden surface removal 1506 in figure 5. The PDM feeds pixel
processing requests to the DMS 1806 in blocks of N pixels, where in this example N
lies between 4 and 128, with 4 being the required minimum due to the well known
manner in which pixel processing pipelines must implement rate of change
calculations. Each data service request represents multiple pixels in order to minimise
the overheard within the PDS 1804 when processing pixel data. It should be noted
that the PDM also passes parameters required for triangle rasterisation to the
coordinate iterators 1810.

The vertex data master (VDM) 1822 fetches incoming primitives from
external memory and passes indices for vertices that should be fetched in each data
service request. It should be noted that the VDM also directly passes sideband
information to the tiling engine 1862 to enable it to correctly re-construct primitives
from the processed vertices.

The event data master (EDM) 1824 is fed with events from the other data
masters within the system and from the Host allowing the architecture to be used for
processing system events and general commands avoiding the need to interrupt the
host processor to service these events.

It should be noted that additional data masters can be added to the system, for
example a data master could be implemented that takes a feed from the tiled
parameter fetch unit allowing the fetched primitive data to be pre-processed before it
is passed to the HSR unit (which would in effect become another processing pipeline).
This pre-processing would allow for generation of procedural geometry such as high
order surfaces while the tiled lists are being processed allowing for a significant

reduction in consumed memory for tiled primitive lists.

11

WO 2007/034232 PCT/GB2006/003603

The processing pipelines 1860 are also now allocated specific functions with
the tiling engine 1862, the pixel processing 1864 and the texturing unit 1866 being
directly equivalent to same units in figure 5.

The approach to data processing is as described previously with a few
additional functions available. Specifically the PDS may now, for pixel data, also load
data into the shared data store by way of a set of coordinate iterators 1810 or the
texturing unit 1866.

Pixel processing bccurs whenever the PDM’s HSR unit spawns a pass which
will cause it to signal the DMS that it has data to be processed. When selected the
code executed on the PDS loads coordinate and texture data into the allocated area of
the shared data store. Data instances within the system represent a single pixel with
executed code storing the results into the allocated output buffer within the shared
data store. It should be noted that each pixel data instance does not perform an emit to
the pixel processing unit 1864 as the output buffer is not finalised until the entire tile
has been processed. In order for the tile data to be emitted the EDM 1824 is fed by a
signal from the PDM that indicates that the tile is complete. The EDM then generates
a task that is used to emit the tiled data to the pixel processing unit. It should be noted
that the EDM can be used to generate events in this manner for many other purposes,
for example a task could be emitted between passes spawned by the HSR unit
allowing processing to be performed on the contents of the tile buffer between each
pass. It should be noted that it is possible to perform any amount or type of processing
on these events, for example when emitting the completed tile additional processing
could be performed to generate levels for a mip-map (a well known technique) for the
emitted data.

Vertex processing operates in a similar manner to a generic data source as
described previously with an emit being performed to the tiling engine per processed
vertex.

In a further extension to the embodiment the architecture may also be scaled.
For pixel processing this is accomplished by laying down multiple media processing
cores with each core mapped to a different “sector” of the tile as illustrated in figure
8. It will be noted that the split occurs where visible tags are transferred from the HSR
unit’s tag buffer 2000 to the tag sorters 2010, 2011, with a tag sorter being dedicated
to each PDM 2020, 2021, this maximises the level of parallelism between the two
pipelines without the need to split the HSR unit at the front end.

12

WO 2007/034232 PCT/GB2006/003603

As these different sectors are non overlapping they can inherently be
processed in parallel across multiple pipelines. Typically as the number of pipelines
are increased the tile size is increased in proportion to the number of attached pipes
e.g. if a single pipeline is attached to an HSR unit that works on a 16x16 tile, then two
pipelines would be attached to an HSR umnit that works on a 32x16 tile and so on.
Alternatively the size of the sectors can be reduced allowing the tile size to be kept
constant, however this will result in a reduction of efficiency when processing pixel
data in each pipeline.

Generally speaking the approach of scaling the tile size to match the number
of pipelines can continue until the performance of the HSR unit is saturated i.e. it
becomes difficult to scale its performance further. At this point scaling can be
continued by laying down multiple parallel HSR units.

For vertex processing scalability can be achieved by distributing the incoming
primitive data across the available pipelines. This is typically done using either a
simple round robin mechanism or by sending blocks of vertices to the pipeline which
is the least busy. The former mechanism is preferred as it simplifies the tiling
mechanism later in the pipeline.

Figure 9 illustrates the arrangement for a two pipeline system. It should be
noted that each of Pipe 1 2250 and Pipe 2 2251 represent both CGS and MTMP

previously described separately in order to aid clarity.

The HSR unit 2200 processes incoming tiled parameter lists as previously
described. The pixel data masters 2230 and 2231 are each mapped to a different part
of the HSR unit’s tag buffer as described above. Each PDM is dedicated to a specific
media processing core 2250, 2251. It should be noted that the texturing (2260,2261)
and pixel processing (2270, 2271) pipelines are duplicated along with the media
processing core. The processed pixel data is passed from the MTMP’s to the pixel
processing units 2270, 2271 at the completion of a tile as previously described. The
pixel processing units are duplicated along with the processing units as they have a
non overlapping assignment to pixels stored in memory making them directly scalable
along with the rest of the pixel processing pipeline.

The vertex data master 2210 and the event data master 2220 each feed service
requests into the pre-scheduler 2240. The pre- scheduler maintains a service queue per

attached pipeline for each of data masters (VDM, EDM). The queues are filled in

13

WO 2007/034232 PCT/GB2006/003603

simple round robin order such that processing requests are distributed evenly across
the attached pipelines. Processed vertices are passed from the MTMP to the tiling unit
2280 which re-combines them with primitive data generated by the VDM before
applying the tiling process as previously described.

14

WO 2007/034232 PCT/GB2006/003603

CLAIMS

1. A method for processing multiple streams of data on a plurality of execution
threads comprising the steps of:
selecting data from at least one of a plurality of data sources in
dependence on the availability of stbrage in a data storage means;
allocating an address in the data storage means for the data thus
selected;
loading selected data at the data address thus allocated;
constructing an execution task comprising the selected data source,
the data address, and an execution address;
queuing the task with other previously constructed tasks;
determining which processing resources are required for each task;
selecting tasks for execution in dependence on the processing resources
available;
distributing tasks selected for execution across a plurality of processing
threads; and
determining whether any of the threads will stall because of data
dependencies;
repeatedly selecting a subset of threads to be active that will not stall due to
said data dependencies; and,
executing active threads.

2. A method according to claim 1 in which each data source comprises a
plurality of data instances each being a quanta of data that may be processed

without reference to other data in any of the data sources.

3. A method according to claim 2 in which each data source provides a minimum

data instance count to the selecting step.

4, A method according to claim 3 in which a data source is selected in

dependence on the minimum data instance count.

5. A method according to claims 2, 3 or 4 in which the selecting step selects a
plurality of data instances from a data source and provides them to the

allocation and loading steps to construct a task.

15

WO 2007/034232 PCT/GB2006/003603

10.

11.

12.

13.

14.

15.

A method according to any preceding claim in which the step of selecting
tasks for execution selects tasks in dependence on execution dependencies of

tasks.

A method according to claim 6 in which the execution dependencies include

external and internal dependencies.

A method according to claim 6 or 7 including the step of}blockir'\g tasks that
have execution dependencies.

A method according to any preceding claim in which the step of distributing
tasks comprises distributing data instances from a task to a plurality of

execution threads.

A method according to any preceding claim including the step of incrementing

an age counter for a task each time it is rejected for execution.

A method according to claim 10 including the step of executing a task when

its age counter exceeds a predetermined value.

A method according to any preceding claim for use in a tile based rendering

system.

A method according to any preceding claim in which the step of loading
selected data comprises supplying a code execution address to a
programmable data sequencer (PDS) and executing code from the code

execution address to cause data to be written to the data storage means.

A method according to claim 13 wherein the execution of the code causes data

to be written directly from the data source to the data storage means.

A method according to claim 13 or 14 wherein the execution of the code
causes data to be fetched from another data storage location and written into

the data storage means.

16

WO 2007/034232 PCT/GB2006/003603

16.

17.

18.

19.

20.

21.

22.

23.

24,

A method according to claim 13, 14 or 15 wherein the PDS comprises a thread

on a multireaded processing means.

A method according to any preceding claim including the step of allocating
input data storage in the data storage means each time a data source is

selected.

A method according to claim 2 wherein a data source includes a plurality of
data instances which share the same output buffer, and output data storage is
allocated on the first of these data instances only, until the data source signals
that the data instances sharing the same output buffer requirements have been

exhausted.

A method according to claim 12 wherein the method is executed on a plurality
of processing cores and including the step of allocating different processing

cores to different sections of a tile.

A method according to claim 19 including the step of selecting the size of tiles
in dependence on the number of processor pipelines available from the

plurality of processing cores.

A method according to claim 20 comprising the step of receiving vertex data

and distributing this across the processor pipelines available.

A method according to claim 20 or 21 comprising the step of receiving pixel

data and distributing this across the processor pipelines available.

A method according to claim 13 wherein execution of the code causes texture
coordinate or other data iterated within an iterator to be written directly to the
data storage means.

A method according to claim 13 wherein execution of the code causes texture

data to be sampled, filtered and written to the data storage means.

17

WO 2007/034232 PCT/GB2006/003603

25.

26.

27.

28.

29.

Apparatus for processing multiple streams of data comprising:

a plurality of data sources;

means for selecting a data source from the plurality of data sources in
dependence on the availability of storage in a data storage means;

means for allocating an address in the data storage means for a selected data
source;

means for loading data for the selected data source into said address within the
storage means;

means for constructing a task to be executed, the task comprising the selected
data source, an execution address and the data address;

a task queue for constructed tasks;

means for selecting tasks for execution in dependence on the availability of
processing resources;

means for distributing selected tasks across a plurality of execution threads;
means for determining whether any threads will stall due to data
dependencies;

means for repeatedly selecting a subset of active threads that will not stall due
to said data dependencies; and

means for executing active threads.
Apparatus according to claim 25 in which each data source comprises a
plurality of data instances each being a quanta of data that may be processed

without reference to other data in any of the data sources.

Apparatus according to claim 26 in which each data source provides a

minimum data instance count to the selecting means.

Apparatus according to claim 27 in which the selecting means selects a data

source in dependence on the minimum data instance count.

Apparatus according to any of claims 26, 27 or 28 in which the selecting

means selects a plurality of data instances from the data source and provides

18

WO 2007/034232 PCT/GB2006/003603

30.

31.

32.

33.

34.

35.

36.

37.

38.

these to the allocating and loading means for use by the task constructing

means.

Apparatus according to any of claims 25 to 29 in which the selecting means

selects tasks for execution in dependence on execution dependencies of tasks.

Apparatus according to claim 30 in which the execution dependencies include

external and internal dependencies.

Apparatus according to claim 30 or 31 including means for blocking tasks that

have execution dependencies.

Apparatus according to any of claims 25 to 32 in which the means for
distributing tasks comprises means for distributing data instances from a task

to a plurality of execution threads.

Apparatus according to any of claims 25 to 33 including means for

incrementing an age counter for a task each time it is rejected for execution.

Apparatus according to claim 34 in which the executing means executes a task
when its age counter exceeds a predetermined value.
Apparatus according to any of claims 25 to 35 for use in a tile based rendering

system.

Apparatus according to any of claims 25 to 36 comprising means for
supplying a code execution addressing to a programmable data sequencer
(PDS) and means for executing the code from the code execution address to
cause data to be written to the data storage means.

Apparatus according to claim 37 wherein the means for executing the code
causes data to be written directly from the data source to the data storage

means.

19

WO 2007/034232 PCT/GB2006/003603

39.

40.

41.

42.

43.

44.

45.

46.

47.

Apparatus according to claim 37 wherein the means for executing the code
causes data to be fetched from another data storage location and written into

the data storage means.

Apparatus according to claim 37 wherein execution of the code causes texture
coordinate or other data iterated within an iteration unit to be written directly

to the data storage means.

Apparatus according to claim 37 wherein execution of the code causes texture
data to be sampled, filtered and written into the data storage means by a
texturing engine.

Apparatus according to claim 37 wherein the PDS comprises a thread in a

multithreaded processor.

Apparatus according to any of claims 25 to 42 wherein the means for
allocating an address in data storage does so each time a data source is

selected.

Apparatus according to claim 37 wherein a data source includes a plurality of
data instances which share the same output buffer and the means for allocating
data storage allocates output buffer data storage in the first of these data
instances only, until the data sources signals that the data instances sharing the

same output buffer have been exhausted.

Apparatus according to claim 36 comprising a plurality of multithreaded

processor cores, each allocated to different sections of a tile.
Apparatus according to claims 45 wherein the size of tiles selected is
dependent on the number of processor pipelines available from the plurality of

Processor cores.

Apparatus according to any of claims 45 or 46 including means a prescheduler

to receive vertex data and distribute this across available processor pipelines.

20

WO 2007/034232 PCT/GB2006/003603

48.

49.

50.

51.

52.

53.

54.

55.

Apparatus according to any of claims 45, 46 or 47 wherein a pre-scheduler

receivies data and distributes this across available processor pipelines.

A method for allocating data storage in a multithreaded data processing
system comprising the steps of selecting data from one of a plurality of data
sources in dependence on the availability of data storage, supplying a code
execution address to a programmable data sequencer, executing code from the

code execution address to cause data to be written to the data storage means.

A method according to claim 49 wherein the execution of the code
causes data to be written directly from the data source to the data storage

means.

A method according to claim 49 or 50 wherein execution of the code
causes data to be fetched from another data storage location and written into

the data storage means.

A method according to claim 49, 50 or 51 wherein the programmable

data sequencer comprises a thread on the multi threaded processing system.

A method according to any of claims 49-52 wherein input data storage

in the data storage means is allocated each time a data source is selected.

A method according to any of claims 49-53 wherein a data source
includes a plurality of data instances which share the same output buffer
requirements, and output buffer data storage is allocated in the data storage
means on the first of these data instances only, until the data source signals
that the data instances sharing the same output buffer requirements have been
exhausted.

A method according to claim 49 wherein the execution of the code
causes texture coordinate or other data iterated within an iteration to be written

to the data storage means.

21

WO 2007/034232 PCT/GB2006/003603

56.

57.

58.

59.

60.

61.

62.

A method according to claim 49 wherein the execution of the code
causes texture data to be sampled, filtered and written into the data storage

means by a texting engine.

A tile based computer graphics rendering system comprising a
plurality of multithreaded processor cores, each allocated to different sectors

of atile.

A system according to claim 57 wherein the size of tiles selected is
dependent on the number of processor pipelines available from the processor

COres.

A system according to claim 58 wherein a pre-scheduler receives
vertex data and distributes this vertex data across available processor

pipelines.

A system according to claim 58 or 59 wherein a pre-scheduler receives

data and distributes this data across available processor pipelines.

A method for processing multiple streams of data on a plurality of
execution threads comprising the steps of selecting data from at least one of a
plurality of data sources in dependence on the availability of storage in a data
storage means, allocating an address in the data storage means for the data
thus selected, loading selected data at the data address thus allocated,
constructing an execution task comprising the selected data source, the data
address, and an execution address, queuing the task with other previously
constructed tasks, determining which processing resources are required for
each task, selecting tasks for execution in dependence on the processing
resources available, distributing tasks selected for execution across a plurality

of processing threads.

Apparatus for processing muliiple streams of data comprising:
a plurality of data sources, means for selecting a data source from the plurality

of data sources in dependence on the availability of storage in a data storage

22

WO 2007/034232 PCT/GB2006/003603

63.

means, means for allocating an address in the data storage means for a selected
data source, means for loading data for the selected data source into said
address within the storage means, means for constructing a task to be
executed, the task comprising the selected data source, an execution address
and the data address, a task queue for constructed tasks;

means for selecting tasks for execution in dependence on the availability of
processing resources, means for distributing selected tasks across a plurality of
execution threads, means for determining whether any threads will stall due to

data dependencies.

Apparatus for allocating data storage in a multithreaded processing
system comprising means for selecting data from one of a plurality of data
sources in dependence on the availability of data storage, means for supplying
a code execution address to a programmable data sequencer, and means for
executing the code from the code execution address and causing data to be

written to the data storage.

23

WO 2007/034232 PCT/GB2006/003603
1/5
Task Queue
100 110
Data -
Task
Scheduling D::ja AT
Phase 1 Source Resource| Addr Data
M- — Exe Addr
Selection Allocation Load Data Addr
150
|W|,_, 140 DSN
Source N
Resource State Processor Storage
Resource
Task Queue
Threads
170
162 164
Scheduling
Data
Phase 2 S J:cslll(o o Instance
Distribution
Threads
170 Key:
D80 = Data Source 0
DS1 = Data Source 1
DS§2 = Data Source 2
Active DSN = Data Source N
Threads
Scheduling
Phase 3
ase Chread Execute
180 190
175

Figure

1

WO 2007/034232

810

PCT/GB2006/003603

2/5
840 U Data
-, Processing
Data sources/ Resource Stalus Pipelines
Data Masters

| | i,/ Procressing

Data Source 0 |-} L) Pips 0
| | Processing

Data Sourcel) Course Grain Multi-Threaded [Pipe 1

Scheduling
Processing Core
unit

Data Source | | Processing

N N R Pipe N

Resource

Manager

1030

structior

Data Master 1

Data Master N I

Programmabl
Data
Sequencer

Instruction

Manager

Cache Memor,

Shared Dala Store

1010

Dala
Cache

< Processing Pipe N

Gt B

Menmory

Figure 3

WO 2007/034232 PCT/GB2006/003603

3/5

Current
thread Last

Instruction

inactive

De;;zl;g;ncy Issued
Thread
Actlve
time
1230 limilt
1220
Thread has hit
dependency
Figure 4
1502 1503 1504 1510 1511
Tiled Screen
Geometry - Space . Alpha
Processing) Tiling) Geometry Fogging —» Blending
Lists 1512 1514
1
T 505 1 1509 1 1
Primitive/ Tiled . .
Command Parameter Alpha Test ACCET#;?“M —» Prozg(seslin
Fetch Fetch 9
1506
1501 J' T 1508 1516 'J'
g&c:gecr; || Texturing and Rendered
Removal Shading Scene Buffer
Figure 5
1602 1604 1606

Primitives in Sorted object
from : pixels to
parameter —| Rasteriser ¢ TAG Buffer |—¥ TAG Sorter —> \iing ana

shading unit
1608 I

fetch
Depth Buffer

Figure 6

WO 2007/034232 PCT/GB2006/003603

4/5
1800 — T
~T. ¢ o ees o 1850
" 180 : : . CUMITMIP
Y 192 Resource Status MTMP i
| Resource L s
Manager \

‘| Shared Data Store |

S1'8(104\2;1 B

1820 S

"Data Masters -
1822 .~ . |

1 VertexDM |- 1860
TPTIN [EAE Data |5 e ‘

Event DM Master “;;)Progrggll;nab!e 1808 B P

: ! i
1826 N P Selector |+ Sequencer Tiing

| Piel DM DMA Engine

P

1864

Pixel

| Coordinate [
1 Processing

lterators

Texturing |’
Unit

Figure 7
2000
2010 2020
TAG Buffer
Sector 0 —¥ TAG Sorter PDM1
TAG Buffer
Sector 1 TAG Sorter —H PDM2
201 2021

Figure 8

WO 2007/034232 PCT/GB2006/003603

5/5
2260
Texturing
2230 2250 2270
2200
™ > Pixel
PDM1 Processing
HSR Unit I 2231 Pipe 1 —_—
———) PDM2 2280
2240 Tiling
2104
VDM |—H I
Pre-
2220 Scheduler Pipe 2
™ N " Pixel
EDM Processing
2251 2271
Texturing
2261

Figure 9

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings

