OVERALL SYSTEM AND METHOD FOR DETECTING REGIONS OF INTEREST

A method of determining target heart ablation regions is provided which includes detecting electro-cardiogram (ECG) signals each indicating an electrical activity of a heart over time and determining, for each of the ECG signals, local activation times (LATs) each indicating a time of electrical activation for an area the heart. The method also includes generating, based on the LATs, electrical activity mapping information for displaying one or more maps representing the electrical activity of the heart and alternatively, or in addition to the electrical activity mapping information, generating spatio-temporal mapping information for one or more maps representing a spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia, such as atrial fibrillation (AF). The method further includes determining a region of interest (ROI) of the heart by identifying the ROI as a region exhibiting conditions indicative of cardiac arrhythmia based on the mapping information.
FIG. 2
300

ACQUIRE IC ECG SIGNAL

302

IC ECG

303

PRE-PROCESSING

IC ECG

304

DETECT LAT(s)

306

QUALITY

LAT(s)

308

COMPLEXITY

LATQ

CPLX

310

DO LATQ AND CPLX INDICATE REPOSITIONING OF CATHETER?

312

Y

313

N

REPOSITION CATHETER

IC ECG

A

LAT(s)

FIG. 3A
OVERALL SYSTEM AND METHOD FOR DETECTING REGIONS OF INTEREST

CROSS REFERENCE TO RELATED APPLICATION(S)

[0001] This application claims the benefit of U.S. Provisional Application No. 62/728,676 filed on Jan. 14, 2016, which is incorporated by reference as if fully set forth. This application incorporates by reference as if fully set forth Attorney Docket Nos. JNJ-B105643USNP titled “Region of Interest Focal Source Detection Using Comparisons of R-S Wave Magnitudes and LAIs of RS Complexes,” JNJ-B105643USNP1 titled “Region of Interest Rotational Activity Pattern Detection,” JNJ-B105643USNP2 titled “Identification of Fractionated Signals,” JNJ-B105643USNP4 titled “Non-Overlapping Loop-Type Or Spline-Type Catheter To Determine Activation Source Direction And Activation Source Type,” and JNJ-B105643USNP5 titled “Region of Interest Focal Source Detection,” all filed on the same date as the present application.

FIELD OF INVENTION

[0002] The present invention relates to systems and methods for determining regions of interest to be ablated for treatment of cardiac arrhythmia, such as atrial fibrillation, and, more particularly, to systems and methods for determining atrial fibrillation regions of interest to be ablated using maps representing detected electrical activity of the heart and maps representing spatio-temporal manifestations of the conditions indicative of the electrical activity of the heart.

BACKGROUND

[0003] Cardiac arrhythmia includes different types of abnormal or irregular heart rhythms, such as, for example, atrial fibrillation (AF), which is characterized by rapid and irregular beating. Under normal heart conditions, a heartbeat is produced by electrical pulses (i.e., signals) which originate in the upper chambers (i.e., atria) of the heart and pass through the atria through the atrioventricular (AV) node to a pair of lower chambers (i.e., ventricles) of the heart. As the signals pass through the atria, the atria contract and pump blood from the atria into the ventricles. As the signals pass through the AV node to the ventricles, the ventricles are caused to contract, pumping out blood from the heart to the body. During conditions of AF, however, the signals in the atria become chaotic and cause the heart to beat irregularly.

[0004] AF can negatively affect the physical, psychological and emotional quality of a person’s life. AF can progressively increase in severity and frequency and, if left untreated, may lead to chronic fatigue, congestive heart failure or stroke. One type of AF treatment includes prescribed medications, such as rhythm control medications and medications used to manage the increased risk of stroke. These medications must be taken daily and indefinitely. Another type of AF treatment includes cardioversion, which attempts to restore a normal heart rhythm by providing electric shocks to the heart through electrodes placed on the chest. In some persistent types of AF, cardioversion is either ineffective or cannot be attempted.

[0005] Recent approaches for treating AF include minimally invasive ablation procedures (e.g., catheter ablation) in which the heart tissue is ablated to terminate electrical pathways and block faulty electrical impulses that can cause heart rhythm disorders.

SUMMARY

[0006] A method of determining target heart ablation regions is provided which includes detecting, via a plurality of sensors, electro-cardiogram (ECG) signals. Each ECG signal is detected via one of the plurality of sensors and indicates electrical activity of a heart over time. The method also includes determining, for each of the plurality of ECG signals, a plurality of local activation times (LATs) occurring over time. Each LAT indicates a time of electrical activation for an area the heart. The method further includes generating, based on the determined plurality of LATs of each of the plurality of ECG signals, mapping information for one or more maps representing the electrical activity of the heart and determining a region of interest (ROI) of the heart by identifying the ROI as a region of the heart exhibiting conditions indicative of cardiac arrhythmia based on the generated mapping information for the one or more maps representing the electrical activity of the heart.

[0007] A system for determining target heart ablation regions is provided which includes a plurality of sensors each configured to detect one of a plurality of electro-cardiogram (ECG) signals each indicating electrical activity of a heart over time. The system also includes a processing device which includes one or more processors configured to determine, for each of the plurality of ECG signals, a plurality of local activation times (LATs) occurring over time. Each LAT indicates a time of electrical activation for an area the heart. The one or more processors are further configured to generate, based on the determined plurality of LATs of each of the plurality of ECG signals, mapping information for one or more maps representing the electrical activity of the heart and determine a region of interest (ROI) of the heart by identifying the ROI as a region of the heart exhibiting conditions indicative of cardiac arrhythmia based on the generated mapping information for the one or more maps representing the electrical activity of the heart.

[0008] A non-transitory computer readable medium is provided which includes instructions for causing a computer to execute a method of determining target heart ablation regions. The instructions include detecting, via a plurality of sensors, electro-cardiogram (ECG) signals. Each ECG signal is detected via one of the plurality of sensors and indicates electrical activity of the heart over time. The instructions also include determining, for each of the plurality of ECG signals, a plurality of local activation times (LATs) occurring over time. Each LAT indicates a time of electrical activation for an area the heart. The instructions further include generating, based on the determined plurality of LATs of each of the plurality of ECG signals, mapping information for one or more maps representing the electrical activity of the heart and determining a region of interest (ROI) of the heart by identifying the ROI as a region of the heart exhibiting conditions indicative of cardiac arrhythmia based on the generated mapping information for the one or more maps representing the electrical activity of the heart.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] A more detailed understanding can be had from the following description, given by way of example in conjunction with the accompanying drawings wherein:
For example, as shown in FIG. 1, an irregular heart rhythm characterized as AF 102 is classified as critical 104 or non-critical 106. Examples of non-critical AF 106 include paroxysmal (i.e., intermittent) irregular heart rhythm episodes in which the heartbeat often normalizes as quickly as within a few seconds or after a few hours, and persistent irregular heart rhythm episodes in which a normal heartbeat may be restored by rhythm medical therapy or a procedure (e.g., cardioversion). Examples of critical AF 104 include longstanding persistent irregular heart rhythm episodes that continue for longer periods of time (e.g., more than a year) in which the heart is in a constant state of AF and the condition is considered permanent.

Drivers 108 and perpetuators 110 may be represented (e.g., mapped) according to their spatio-temporal manifestation. As shown in FIG. 1, drivers 108 and perpetuators 110 are classified by exemplary spatio-temporal manifestation types, including focal sources (foci) 112 and localized rotational activation (LRA) sources or rotational activation patterns (RAPs) sources 114. A focal source is a type of driver originating at a small area of the atria which spreads centrifugally from a single point. A RAP source is an irregular region of the heart where the electrical pulses rotate at least 360 degrees about a center area.

FIG. 1 also shows different types of perpetuators 110, including one type which exhibits organized conduction delay 116 and another which exhibits disorganized conduction delay 118. Another type of perpetuator 110 shown in FIG. 1 includes atrial flutter (AFL) 120, characterized by organized conduction delay 116 as well as localized irregular activation (LIA) 122, linear gaps 124 and pivots 126 (i.e., electrical pulses that rotate less than 360 degrees about a center area), characterized by disorganized conduction delay 118. Also, the RAP source 114 is shown as both a driver 108 and a perpetuator 110. Drivers 108 and perpetuators 110 are, for example, separately mapped to facilitate identification of driver types and/or perpetuator types and provide efficient and accurate determination of potential ablation ROIs.

Mapping and identification of drivers 108 and perpetuators 110 can also be based on one or more additional factors which may potentially contribute to AF or parameters which may potentially characterize the AF substrate (i.e., the AF process itself) and/or the manifestation of the AF process. For example, AF parameters or AF factors used to identify potential focal sources 108 include omnidirectional activation spread of activation from a point, earliness (e.g., focal source which starts after an excitable gap), triggers such as fast firing (e.g., short cycle-length and high
dominant frequency) foci and breakthroughs (e.g., pulmonary veins (PV), free wall and transmural, endocardial and epicardial) and micro re-entry circuit which manifests as focal source and short-radius re-entry circuits which can manifest as a driver 108 depending on the specific anisotropic structure of the central obstacle.

[0021] AF parameters or AF factors used to map and identify RAP sources 114 include, for example, repetitive cycles, rotors which can manifest as a driver 108, structural or functional anisotropy (e.g., localized or distributed), and short-radius re-entry circuits which can manifest as either a driver 108 or a perpetuator 110, depending on specific anisotropic structure of the central obstacle.

[0022] AF parameters or AF factors used to map and identify perpetuators 110 include, for example, extension (increased) path length, anatomical (pathological) block lines, fibrosis, stable functional block lines (e.g., areas of prolonged refractoriness), criticality (e.g., shortest path around block line= path length) and fibrillatory conduction factors (e.g., dissociated waves, re-entry circuit factors).

[0023] FIG. 2 is a block diagram illustrating an exemplary system 200 used to define AF ROIs for ablation for use with embodiments disclosed herein. As shown in FIG. 2, the system 200 includes a catheter 202, a processing device 204 and a display device 206. Catheter 202 includes an array of catheter sensors (e.g., electrodes) each configured to detect electrical activity (electrical signals) of an area of the heart over time. When an IC ECG is performed, each electrode detects the electrical activity of an area of the heart in contact with the electrode. The system 200 also includes extra-cardiac sensors 210 (e.g., electrodes on the skin of a patient) configured to detect electrical activity of the heart via detection of electrical changes on the skin due to the electro-physiologic pattern of the heart.

[0024] The detected IC ECG signals and the detected extra-cardiac signals are processed (e.g., recorded over time, filtered, fractionated, mapped, combined, interpolated, etc.) by processing device 204 and displayed on display device 206.

[0025] Embodiments may include any number of sensors 210 used to detect ECG signals, including sensors used to detect IC ECG signals and extra-cardiac ECG signals. For simplification purposes, systems and methods described herein refer to the detection and use of IC ECG signals. It is noted, however, that embodiments may utilize IC ECG signals or extra-cardiac ECG signals or a combination of both IC ECG signals and extra-cardiac ECG signals.

[0026] Processing device 204 may include one or more processors each configured to process the ECG signals. Each processor of processing device 204 may be configured to record ECG signals over time, filter ECG signals, fractionate ECG signals into signal components (e.g., slopes, waves, complexes), map ECG signals, combine ECG signal information, map and interpolate mapping information, etc.

[0027] Display device 206 may include one or more displays each configured to display ECG signals, ECG signal information, maps of the AF process and maps representing a spatio-temporal manifestation of the AF process.

[0028] The catheter sensors 208 and the extra cardiac sensors 210 may be in wired or wireless communication with processing device 204. Display device 206 may also be in wired or wireless communication with processing device 204.

[0029] FIGS. 3A and 3B are portions of a flow diagram illustrating an exemplary method 300 of determining a potential ablation ROI. The method 300 employs a mapping taxonomy which includes, from its core moving outward, an IC ECG layer, a pre-processing layer, a LAT detection layer, a map segmentation layer, a map interpolation layer and a map interpretation layer.

[0030] FIG. 3A illustrates a portion of exemplary method 300. As shown in block 302 of FIG. 3A, the method 300 includes, as part of the IC ECG layer, acquiring an IC ECG signal which represents electrical activity of an area of the heart. The IC ECG signal acquired at block 302 is, for example, acquired from one of a number of electrodes in contact with different areas of the heart. After acquisition of the IC ECG (302), the method 300 includes, as part of the pre-processing layer, pre-processing of the acquired ECG signal, as shown in block 302 of FIG. 3A. The pre-processing may include execution of one or more algorithms, such as, for example, cancellation of ventricular far field signals, baseline correction, and noise reduction. Ventricular far field detection may include, for example, a spatial averaging method (SAM), a temporal averaging method (TAM), a system identification method (SIM) and principal component analysis (PCA).

[0031] For each IC ECG signal acquired at block 302, one or more LATs of the corresponding pre-processed IC ECG signal is (are) detected at block 304. The LAT quality (shown as LATQ in FIG. 3A) of each signal is determined at block 306 as part of an exemplary LAT detection layer. The AF complexity (shown as CPLX in FIG. 3A) of the signal is determined at block 308.

[0032] As shown at decision point 310, the method 300 includes determining whether to reposition the catheter based on the LAT quality of the signal and the AF complexity. A typical characteristic of high quality IC EGs is little base line wander (e.g., low baseline vs. IC ECG RMS amplitude, limited ventricular far-field potentials vs. IC ECG RMS amplitude). IC ECG signals characteristics include discernable atrial complexes (e.g., confined (~50 ms) complexes separated by isoelectric segments repeating slopes, 50-200 ms interval; about 150 ms median) during AF. High quality complexes characteristic typically have considerable amplitudes and steep downward slopes (vs. upward slopes) within complexes. Characteristics of the IC ECG signals may be combined into a single measurable characteristic or parameter (e.g., having a measurable value of 0%-100%) to define LAT quality. The LAT quality may be compared to the AF complexity to determine whether to reposition the catheter.

[0033] In some embodiments, quality is defined by an ability to map AF for a level of AF complexity. Determining whether to reposition the catheter may include generating a map and determining whether the generated map can be used (e.g., is adequate) to map AF based on whether a level of coverage of a mapping electrode meets (e.g., matches) a level of AF complexity. The ability to map AF for a level of AF complexity may include meeting a map threshold level (e.g., adequate level, trustworthy level). A single parameter (i.e., mapping coverage) is used to define a level of coverage of the mapping electrode. Examples of characteristics that are combined to define the mapping coverage include: (1) contact of the mapping electrode (e.g., contact with active tissue (wall) related to covered area and LAT accuracy); (2) resolution of the electrodes (e.g., distances and electrode
sensitivity radii between electrodes, including mean, minimum and maximum and distances); and (3) quality of the IC ECG and associated annotations provided by a detection algorithm.

[0034] AF complexity may include complexity of activation during AF creating wave dissociation (block lines), fusion and wave curvature. Accordingly, a map may be determined as a map which can be used (e.g., trustworthy or adequate) to map AF when, given a certain level of AF complexity (e.g., measured along y-axis), the mapping coverage (including signal and annotation quality measured along x-axis) is sufficient to map the AF complexity. If not, the trustworthiness of the map may be compromised or inadequate.

[0035] Signals may then be analyzed using the trustworthy or adequate maps to determine whether the catheter should be repositioned. If it is determined at decision point 310 to reposition the catheter, the catheter (e.g., catheter 202) is repositioned at block 312 and a new IC ECG signal is acquired at block 302. If it is determined at decision point 310 that the catheter should be repositioned, the method 300 continues to “point A” 313 (shown in FIG. 3A and FIG. 3B).

[0036] FIG. 3A illustrates the acquiring of a single IC ECG signal for simplification purposes. In practice, however, multiple signals are acquired for each of the plurality of electrodes contacting the heart. Each IC ECG signal acquired at block 202 and the one or more LATs detected for each signal at block 204 are received at “point A” 313.

[0037] FIG. 3B illustrates exemplary methods which may be used to determine potential ablation ROIs. As shown FIG. 3B, each acquired IC ECG signal and the one or more detected LATs for each signal are used to generate maps of the AF process that includes the electro-physical conditions of the AF substrate (indicated as the AF Substrate 314 in FIG. 3B) and maps representing a spatio-temporal manifestation of the AF process (indicated as the AF Process 316 in FIG. 3B) as part of an exemplary map segmentation layer.

[0038] For example, with regard to the AF Substrate 314 shown in FIG. 3B, the one or more detected LATs are used to independently determine one or more factors or parameters which may contribute to AF. The left side of FIG. 3B illustrates methods which characterize the AF substrate by collecting information over a predefined window of time while assessing a mean interval (e.g., cycle) based on a difference of subsequent LATs 318, first activated (earliness) 324, and morphological aspects of the IC ECG including R-S ratio 320 and fractionation 322 (e.g., fractionated electrograms). For example, the detected LATs are used to independently determine cycle information (e.g., cycle lengths) at block 318 and earliness information (e.g., earliest activation times, early drivers which start an excitable gap) at block 324. Each IC ECG signal is also used to independently determine R-S complex information (e.g., ratio of R wave to S wave) at block 320 and fractionation information by fractionation (e.g., slope information, information indicating an incidence of source behavior presented as the earliest activation from one of a plurality of electrodes, such as showing a percentage that the associated electrode was activated earlier than neighbouring electrodes) of the IC ECG signals at block 322 and CV Block information (e.g., information indicating slowed or blocked conduction (i.e., progression) of electrical impulses through the heart, such as the conduction time (CT) for the electrical pulse to travel a distance in the heart, the path length (i.e., the distance) and the CV of the electrical pulse) at block 326.

[0039] As shown, a driver map 328 is generated from the cycle information 318, the earliness information 324 and the R-S complex information 320. A perpetuator map 330 is generated from the CV Block information 326 and the fractionation information 322. As shown, the information used to generate the driver map 328 and the information used to generate the perpetuator map 330 are combined (e.g., a single map, overlaid maps or adjacent maps in one display area) to generate a combined driver/perpetuator map 334. The combined driver/perpetuator map 334 may then be used (e.g., interpolated as part of an exemplary map interpolation layer) to determine one or more ablation ROIs 350.

[0040] With regard to the AF Process 316 shown in FIG. 3B, the one or more detected LATs are used to independently generate activation/wave maps 336, CV maps 338 (e.g., maps generated from the CT, the path length and/or the CV of the electrical pulse) and block maps 344 (e.g., maps generated from information indicating a block in the conduction of the signal).

[0041] Activation/wave maps may, for example, include a map representing an incidence of source behavior presenting the earliest activation of one of a plurality of electrodes restricted by the same wave, such as indicating a percentage of activation waves detected by a corresponding electrode activated earlier than neighboring electrodes though restricted by neighbors activated by the same wave. Activation Wave maps may, for example, also include a map representing the incidence of electrode positions associated with a fibrillation wave start.

[0042] Each IC ECG signal is used to independently generate voltage maps 342 and fractionation maps 340. The information used to generate maps 336-344 is combined to provide combined maps or video 346. In some embodiments, the information used to generate the activation/wave maps 336 and Voltage maps 342 is combined to generate a combined activation/wave/voltage map or video and the information used to generate the CV maps 338, the block maps 344 and the fraction maps 340 are combined to generate a combined CV/block/fraction map or video. The combined maps/video 346 are analyzed (e.g., interpreted by medical personnel as part of an exemplary map interpretation layer) at block 348 to determine ROIs to be ablated at block 350. The combined maps/video 346 represent a spatio-temporal manifestation of the AF process which can be easily visualized and interpreted, facilitating an efficient and accurate process for determination of ROIs for ablation. Determined ROIs may be represented (e.g., displayed), for example, by color, by 3-D contour on a 4-D map, by icons (e.g., dynamically changing icons), etc.

[0043] In some embodiments, both the combined driver/perpetuator map 334 and the combined maps/video 346 are used to determine ROIs for ablation at block 350. In some embodiments either the combined driver/perpetuator map 334 or the combined maps/video 346 are used to determine ROIs for ablation at block 350. For example, the combined driver/perpetuator map 334 can be used to determine ROIs for ablation at block 350 without using (e.g., viewing, analyzing) the combined maps/video 346.

[0044] In some embodiments, the quality map 332 is also used in combination with the combined driver/perpetuator map 334 and/or the combined maps/video 346 to determine ROIs for ablation at block 350. The quality map 332 is used
to determine the trustworthiness of the generated maps (e.g., driver map 328, perpetrator map 330 and driver/perpetrator map 334) related to AF substrate 314 and the generated maps (e.g., activation/wave maps 336, CV maps 338, fraction maps 340, voltage maps 342 and block maps 344) related to the AF process 316 parameters. If the quality of the quality map is low, the generated maps are less trusted and appointing an ablation ROI (350) must be regarded with an increase level of care (e.g., by a physician) compared to when the quality map indicates high quality signals (IC ECGs) as the basis for the generated maps.

In some embodiments, determining ROIs for ablation at block 350 includes appointing or selecting one or more ablation sites for use in determining one or more ROIs for ablation. For example, ablation sites may be appointed or selected from driver evidence and perpetrator evidence (e.g., determined from the driver map 328, the perpetrator map 330 or the combined driver/perpetrator map 334) and ROIs may be determined based on the appointed sites.

The maps and mapping techniques disclosed herein potentially: (i) reduce AF map analysis training time; (ii) reduce time to determine ROIs for ablation; (iii) facilitate efficient interpretation of AF maps; and (iv) increase ablation success rates for ablation aimed at isolation and extinguishing of drivers, path lengthening, slowing of re-entry circuits, fibrillatory conduction and fractionated potentials.

It should be understood that many variations are possible based on the disclosure herein. Although features and elements are described above in particular combinations, each feature or element can be used alone without the other features and elements or in various combinations with or without other features and elements.

Documents incorporated by reference in the present patent application are to be considered an integral part of the application except that to the extent any terms are defined in these incorporated documents in a manner that conflicts with the definitions made explicitly or implicitly in the present specification, only the definitions in the present specification should be considered.

The methods provided include implementation in a general purpose computer, a processor, or a processor core. Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine. Such processors can be manufactured by configuring a manufacturing process using the results of processed hardware description language (HDL) instructions and other intermediary data including netlists (such instructions capable of being stored on a computer readable medium). The results of such processing can be maskworks that are then used in a semiconductor manufacturing process to manufacture a processor which implements methods described herein.

The methods or flow charts provided herein can be implemented in a computer program, software, or firmware incorporated in a non-transitory computer-readable storage medium for execution by a general purpose computer or a processor. Examples of non-transitory computer-readable storage mediums include a ROM, a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).

What is claimed is:

1. A method of determining target heart ablation regions, the method comprising:
 - detecting, via a plurality of sensors, a plurality of electrocardiogram (ECG) signals, each ECG signal being detected via one of the plurality of sensors and indicating electrical activity of a heart over time;
 - determining, for each of the plurality of ECG signals, a plurality of local activation times (LATs) occurring over time, each LAT indicating a time of electrical activation for an area the heart;
 - generating, based on the determined plurality of LATs of each of the plurality of ECG signals, mapping information for one or more maps representing the electrical activity of the heart;
 - determining a region of interest (ROI) of the heart by identifying the ROI as a region of the heart exhibiting conditions indicative of cardiac arrhythmia based on the generated mapping information for the one or more maps representing the electrical activity of the heart.

2. The method of claim 1, wherein the ROI is identified as exhibiting conditions indicative of atrial fibrillation (AF).

3. The method of claim 2, wherein the generated mapping information for the one or more maps representing the electrical activity of the heart comprises generating ROIs for AF drivers and perpetrator mapping information indicating one or more potential AF drivers of AF and perpetrator mapping information indicating one or more potential AF perpetrators.

4. The method of claim 3, wherein the driver mapping information is generated according to time intervals between the LATs, information indicating earliness of the LATs and ratios of amplitudes of R-waves of the ECG signals and amplitudes of S-waves of the ECG signals.

5. The method of claim 3, wherein the perpetrator mapping information is generated according to fractionalization of the ECG signals and conduction velocities of the ECG signals.

6. The method of claim 1, further comprising:
 - generating, based on the determined plurality of LATs for each of the plurality of ECG signals, mapping information for one or more maps representing a spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia;
 - determining the ROI of the heart based on the mapping information for the one or more maps representing the spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia; and
 - providing the mapping information for the one or more maps representing the electrical activity of the heart and the mapping information for the one or more maps representing the spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia.

7. The method of claim 6, wherein the generated mapping information for the one or more generated maps representing the spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia comprises generating:
 - activation wave mapping information, via the LATs indicating activation waves of the ECG signals;
 - conduction velocity mapping information, via the LATs, indicating conduction velocities of the ECG signals;
 - block mapping information, via the LATs, indicating areas of slowed or blocked conduction;
fractionation mapping information indicating fractionated portions of the ECG signals; and voltage information indicating voltages of the ECG signals.

8. The method of claim 1, wherein the plurality of ECG signals comprise intra-cardiac electrocardiogram (IC ECG) signals of the heart acquired via a catheter, and the method further comprises determining whether to reposition the catheter based on an LAT quality of the IC ECG signals and a complexity of the IC ECG signals.

9. A system for determining target heart ablation regions, the system comprising:
a plurality of sensors configured to detect a plurality of electro-cardiogram (ECG) signals each indicating electrical activity of a heart over time, each of the plurality of sensors configured to detect one of the ECG signals; a processing device comprising one or more processors configured to:
determine, for each of the plurality of ECG signals, a plurality of local activation times (LATs) occurring over time, each LAT indicating a time of electrical activation for an area of the heart;
generate, based on the determined plurality of LATs of each of the plurality of ECG signals, mapping information for one or more maps representing the electrical activity of the heart; and determine a region of interest (ROI) of the heart by identifying the ROI as a region of the heart exhibiting conditions indicative of cardiac arrhythmia based on the generated mapping information for the one or more maps representing the electrical activity of the heart.

10. The system of claim 9, wherein the ROI is identified as exhibiting conditions indicative of atrial fibrillation (AF).

11. The system of claim 10, wherein generated mapping information for the one or more generated maps representing the electrical activity of the heart comprises generating driver mapping information indicating potential AF drivers of AF and perpetuator mapping information indicating potential AF perpetuators.

12. The system of claim 11, wherein the driver mapping information is generated according to time intervals between the LATs, information indicating earliness of the LATs and ratios of amplitudes of R-waves of the ECG signals and amplitudes of S-waves of the ECG signals.

13. The system of claim 11, wherein the perpetuator mapping information is generated according to fractionations of the ECG signals and conduction velocities of the ECG signals.

14. The system of claim 9, wherein the processing device is further configured to:
generate, based on the determined plurality of LATs for each of the plurality of ECG signals, mapping information for one or more maps representing a spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia;
determine the ROI of the heart based on the mapping information for the one or more maps representing the spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia; and provide, for display, the mapping information for the one or more maps representing the electrical activity of the heart and the mapping information for the one or more maps representing the spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia.

15. The system of claim 14, wherein the processing device is further configured to generate the mapping information for the one or more generated maps representing the spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia by generating:
activation wave mapping information, via the LATs indicating activation waves of the ECG signals;
conduction velocity mapping information, via the LATs, indicating conduction velocities of the ECG signals;
block mapping information, via the LATs, indicating areas of slowed or blocked conduction;
fractionation mapping information indicating fractionated portions of the ECG signals; and voltage information indicating voltages of the ECG signals.

16. The system of claim 9, wherein the plurality of ECG signals comprise intra-cardiac electrocardiogram (IC ECG) signals of the heart acquired via a catheter, and the processing device is further configured to determine whether to reposition the catheter based on an LAT quality of the IC ECG signals and a complexity of the IC ECG signals.

17. A non-transitory computer readable medium comprising instructions for causing a computer to execute a method of determining target heart ablation regions, the instructions comprising:
detecting, via a plurality of sensors, a plurality of electro-cardiogram (ECG) signals, each ECG signal being detected via one of the plurality of sensors and indicating electrical activity of a heart over time;
determining, for each of the plurality of ECG signals, a plurality of local activation times (LATs) occurring over time, each LAT indicating a time of electrical activation for an area of the heart;
generating, based on the determined plurality of LATs of each of the plurality of ECG signals, mapping information for one or more maps representing the electrical activity of the heart; and
determining a region of interest (ROI) of the heart by identifying the ROI as a region of the heart exhibiting conditions indicative of cardiac arrhythmia based on the generated mapping information for the one or more maps representing the electrical activity of the heart.

18. The computer readable medium of claim 17, wherein the ROI is identified as exhibiting conditions indicative of atrial fibrillation (AF).

19. The computer readable medium of claim 18, wherein the generated mapping information for the one or more maps representing the electrical activity of the heart comprises generating driver mapping information indicating one or more potential AF drivers of AF and perpetuator mapping information indicating one or more potential AF perpetuators.

20. The computer readable medium of claim 18, wherein the instructions further comprise:
generating, based on the determined plurality of LATs of each of the plurality of ECG signals, mapping information for one or more maps representing a spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia;
determining the ROI of the heart based on the mapping information for the one or more maps representing the
spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia; and
providing the mapping information for the one or more maps representing the electrical activity of the heart
and the mapping information for the one or more maps representing the spatio-temporal manifestation of the
conditions indicative of cardiac arrhythmia.

* * * * *