Abstract: A gas turbine engine has a turbine driving a gear reduction. The gear reduction drives a fan drive shaft assembly to, in turn, drive a fan rotor at a reduced speed relative to the turbine. A generator generates current upon rotation of the fan drive assembly. The generator supplies electric current to an electric motor driven pump. The electric motor driven pump delivers lubricant to components within the gear reduction.
AUXILIARY OIL PUMP FOR GAS TURBINE ENGINE GEAR REDUCTION

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to United States Provisional Application No. 61/898,506, filed November 1, 2013.

BACKGROUND OF THE INVENTION

[0002] This application relates to a gas turbine engine having a gear reduction between a fan drive turbine and a fan and an electric auxiliary oil pump to supply oil during windmilling conditions.

[0003] Gas turbine engines are known and, typically, include a fan delivering air into a compressor. The air is compressed and delivered into a combustor where it is mixed with fuel and ignited. Products of this combustion pass downstream over turbine rotors driving them to rotate.

[0004] In one known type of gas turbine engine, a low pressure turbine drove both a low pressure compressor rotor and the fan rotor at a single speed. More recently, it has been proposed to provide a gear reduction such that the fan rotor can rotate at slower speeds than the low pressure compressor rotor.

[0005] The gear reduction requires lubrication, especially, at bearings. Thus, a pump is provided that adequately lubricates the bearings when the gas turbine engine is being driven.

[0006] However, gas turbine engines may sometimes be shut down when an associated aircraft is in the air. When this occurs, air is driven across the fan rotor and can cause the fan rotor to rotate. This is called "windmilling." When windmilling occurs, the gear reduction is rotated and lubricant is required at the bearings and other surfaces.

[0007] Thus, it has been proposed to include an auxiliary oil pump, wherein an idler gear which rotates with a portion of the shaft, drives a mechanical gear driven oil pump. However, windmilling can occur in either direction of rotation and the proposed system only operates with one direction of windmilling rotation.
SUMMARY OF THE INVENTION

[0008] In a featured embodiment, a gas turbine engine has a turbine driving a gear reduction. The gear reduction drives a fan drive shaft assembly to, in turn, drive a fan rotor at a reduced speed relative to the turbine. A generator generates current upon rotation of the fan drive assembly. The generator supplies electric current to an electric motor driven pump. The electric motor driven pump delivers lubricant to components within the gear reduction.

[0009] In another embodiment according to the previous embodiment, the components in the gear reduction include a journal bearing for supporting gears within the gear reduction.

[0010] In another embodiment according to any of the previous embodiments, the fan drive assembly includes a shell driven to rotate with a ring gear in the gear reduction. The shell has an inner surface, and a chamber is defined between the shell inner surface and the gear reduction. The generator is positioned within the chamber.

[0011] In another embodiment according to any of the previous embodiments, the generator includes a generator rotor provided to rotate with the fan drive assembly and a stator mounted on stationary structure, such that rotation of the fan drive assembly relative to the stator generates current to power the electric motor driven pump.

[0012] In another embodiment according to any of the previous embodiments, the fan drive assembly includes a fan drive shaft that is driven by the shell.

[0013] In another embodiment according to any of the previous embodiments, the generator rotor is mounted on the fan drive shaft.

[0014] In another embodiment according to any of the previous embodiments, the fan rotor may be driven to rotate under windmilling conditions in either direction of rotation. The generator generates current in both of the directions when the fan rotor is driven during windmilling conditions.

[0015] In another embodiment according to any of the previous embodiments, the generator generates current during normal powered operation of the gas turbine engine.

[0016] In another embodiment according to any of the previous embodiments, the generator rotor is mounted on the shell.

[0017] In another embodiment according to any of the previous embodiments, the generator generates current during normal powered operation of the gas turbine engine.
[0018] In another embodiment according to any of the previous embodiments, the fan drive assembly includes a shell driven to rotate with a ring gear in the gear reduction. The shell has an inner surface, and a chamber defined between the inner surface and the gear reduction. The generator alternator is positioned within the chamber.

[0019] In another embodiment according to any of the previous embodiments, the generator includes a generator rotor provided to rotate with the fan drive assembly. A stator is mounted on stationary structure, such that rotation of the fan drive assembly relative to the stator generates current to power the electric motor driven pump.

[0020] In another embodiment according to any of the previous embodiments, the generator rotor is mounted on the shell.

[0021] In another embodiment according to any of the previous embodiments, the generator includes a rotor generator provided to rotate with the fan drive assembly. A stator is mounted on stationary structure, such that rotation of the fan drive assembly relative to the stator generates current to power the electric motor driven pump.

[0022] In another embodiment according to any of the previous embodiments, the fan drive assembly includes a fan drive shaft.

[0023] In another embodiment according to any of the previous embodiments, the rotor is mounted on the fan drive shaft.

[0024] In another embodiment according to any of the previous embodiments, the generator generates current during normal powered operation of the gas turbine engine.

[0025] In another embodiment according to any of the previous embodiments, the fan rotor may be driven to rotate under windmilling conditions in either direction of rotation. The generator generates current in both of the directions when the fan rotor is driven during windmilling conditions.

[0026] In another embodiment according to any of the previous embodiments, the fan rotor may be driven to rotate under windmilling conditions in either direction of rotation. The generator generates current in both of the directions when the fan rotor is driven during windmilling conditions.

[0027] In another embodiment according to any of the previous embodiments, the generator includes a generator rotor provided to rotate with the fan drive assembly and a stator mounted on stationary structure, such that rotation of the fan drive assembly relative to the stator generates current to power the electric motor driven pump.
[0028] These and other features may be best understood from the following drawings and specification.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] Figure 1 schematically shows a gas turbine engine.
[0030] Figure 2 shows a first auxiliary oil pump embodiment.
[0031] Figure 3 shows an alternate embodiment.

DETAILED DESCRIPTION

[0032] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path B in a bypass duct defined within a nacelle 15, while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with two-spool turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.

[0033] The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.

[0034] The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a first (or low) pressure compressor 44 and a first (or low) pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a second (or high) pressure compressor 52 and a second (or high) pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between
the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of
the engine static structure 36 is arranged generally between the high pressure turbine 54 and
the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in
the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via
bearing systems 38 about the engine central longitudinal axis A which is collinear with their
longitudinal axes.

[0035] The core airflow is compressed by the low pressure compressor 44 then
the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then
expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine
frame 57 includes airfoils 59 which are in the core airflow path C. The turbines 46, 54
rotationally drive the respective low speed spool 30 and high speed spool 32 in response to
the expansion. It will be appreciated that each of the positions of the fan section 22,
compressor section 24, combustor section 26, turbine section 28, and fan drive gear system
48 may be varied. For example, gear system 48 may be located aft of combustor section 26
or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the
location of gear system 48.

[0036] The engine 20 in one example is a high-bypass geared aircraft engine. In a
further example, the engine 20 bypass ratio is greater than about six (6), with an example
embodiment being greater than about ten (10), the geared architecture 48 is an epicyclic gear
train, such as a planetary gear system or other gear system, with a gear reduction ratio of
greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than
about five. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten
(10:1), the fan diameter is significantly larger than that of the low pressure compressor 44,
and the low pressure turbine 46 has a pressure ratio that is greater than about five 5:1. Low
pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine
46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust
nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear
system or other gear system, with a gear reduction ratio of greater than about 2.3:1. It should
be understood, however, that the above parameters are only exemplary of one embodiment of
a geared architecture engine and that the present invention is applicable to other gas turbine
engines including direct drive turbofans.
A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition - typically cruise at about 0.8 Mach and about 35,000 feet. The flight condition of 0.8 Mach and 35,000 ft, with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ("TSFC")" - is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. "Low fan pressure ratio" is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane ("FEGV") system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of ((Tram °R) / (518.7 °R))^{0.5}. The "Low corrected fan tip speed" as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second.

Figure 2 shows a gear reduction and associated oil supply 101 which may be utilized in a gas turbine engine such as engine 20 of Figure 1. A flexible input shaft 108 is driven to rotate by the low pressure turbine 46. This input, in turn, rotates the sun gear 110, which drives the planet gears 112. The planet gears 112, in turn, rotate a ring gear 114.

An oil supply supplies oil through ports 104 to a surface 106 of journal bearings within the gear reduction.

The ring gear 114 drives a fan drive shaft assembly 138 including a shell 116 that, in turn, rotates with a fan drive shaft 118 that drives the fan rotor.

A generator includes magnets 136 which are mounted to an inner surface 138 of the shell portion 116 of the fan drive assembly. The magnets are shown schematically, but are mounted in some manner such that they rotate with the shell 116.

An electrical control 134 communicates with coils 132 which are fixed to a stationary portion of the gear reduction or any adjacent structure. During windmilling conditions, the shell 116 will rotate, and the magnets 136 will be driven adjacent the coils 132. As known, control 134 will receive electric current due to the interaction between the magnets 136 and the coils 132, and can power a pump 130.

An oil pump 130 delivers oil through a supply tube 102 and to the ports 104. Oil pump 130 is a simple known electric motor driven pump. The generator and control 134 generates electric current given either direction of rotation of the fan rotor 42. Thus, the pump 126 is powered during either direction of windmilling.
In addition, the generator is driven during normal operation of the gas turbine engine although there is a main lubricant supply also operational at that time.

There is a space 99 between an inner surface 97 of the shell 116 and the gears 110/112/114. The generator, including magnets 136 and coils 132 are positioned within the space 99.

Figure 3 shows an alternative embodiment 200 wherein the fan drive assembly utilizes the fan drive shaft 18 as the mount location for the magnets 202. The magnets 202 are shown mounted to an inner surface 203 of the fan drive shaft 118.

In addition, coils 204 are mounted on stationary structure inward of the magnets 202, and communicate with an electrical control 206 to provide electric current to an electric motor driven pump 208.

By having a rotor that rotates with the fan drive shaft assembly, and a stator positioned on stationary structure, this disclosure achieves a generator for powering an oil pump that does not require any extra components. Thus, during windmilling, in either direction, electric power is generated to power the lube pump. This will ensure the pump will always run during windmilling conditions, and adequate lubrication will be supplied.

While coils are shown on the stator, and magnets are shown on the rotor, it should be understood that the magnets could be replaced by field coils. Moreover, the stator could include magnets while the rotor includes coils. Alternators are one type of generator that may be utilized, however, any other type of electrical generator would come within the scope of this disclosure.

Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
CLAIMS

1. A gas turbine engine comprising:
 a turbine driving a gear reduction, and said gear reduction driving a fan drive shaft assembly to, in turn, drive a fan rotor at a reduced speed relative to said turbine;
 a generator to generate current upon rotation of said fan drive assembly; and
 said generator supplying electric current to an electric motor driven pump, said electric motor driven pump delivering lubricant to components within said gear reduction.

2. The gas turbine engine as set forth in claim 1, wherein said components in said gear reduction include a journal bearing for supporting gears within said gear reduction.

3. The gas turbine engine as set forth in claim 2, wherein said fan drive assembly includes a shell which is driven to rotate with a ring gear in said gear reduction, and said shell having an inner surface, and a chamber being defined between said shell inner surface and said gear reduction and said generator being positioned within said chamber.

4. The gas turbine engine as set forth in claim 3, wherein said generator includes a generator rotor provided to rotate with said fan drive assembly and a stator mounted on stationary structure, such that rotation of said fan drive assembly relative to said stator generates current to power said electric motor driven pump.

5. The gas turbine engine as set forth in claim 4, wherein said fan drive assembly includes a fan drive shaft that is driven by said shell.

6. The gas turbine engine as set forth in claim 4, wherein said generator rotor is mounted on said fan drive shaft.
7. The gas turbine engine as set forth in claim 4, wherein said fan rotor may be driven to rotate under windmilling conditions in either direction of rotation and said generator generating current in both of said directions when said fan rotor is driven during windmilling conditions.

8. The gas turbine engine as set forth in claim 7, wherein said generator generating current during normal powered operation of the gas turbine engine.

9. The gas turbine engine as set forth in claim 4, wherein said generator rotor is mounted on said shell.

10. The gas turbine engine as set forth in claim 4, wherein said generator generating current during normal powered operation of the gas turbine engine.

11. The gas turbine engine as set forth in claim 1, wherein said fan drive assembly includes a shell which is driven to rotate with a ring gear in said gear reduction, and said shell having an inner surface, and a chamber defined between said inner surface and said gear reduction and said generator alternator being positioned within said chamber.

12. The gas turbine engine as set forth in claim 11, wherein said generator includes a generator rotor provided to rotate with said fan drive assembly and a stator mounted on stationary structure, such that rotation of said fan drive assembly relative to said stator generates current to power said electric motor driven pump.

13. The gas turbine engine as set forth in claim 12, wherein said generator rotor is mounted on said shell.
14. The gas turbine engine as set forth in claim 1, wherein said generator includes a rotor generator provided to rotate with said fan drive assembly and a stator mounted on stationary structure, such that rotation of said fan drive assembly relative to said stator generates current to power said electric motor driven pump.

15. The gas turbine engine as set forth in claim 14, wherein said fan drive assembly includes a fan drive shaft.

16. The gas turbine engine as set forth in claim 15, wherein said rotor is mounted on said fan drive shaft.

17. The gas turbine engine as set forth in claim 1, wherein said generator generating current during normal powered operation of the gas turbine engine.

18. The gas turbine engine as set forth in claim 17, wherein said fan rotor may be driven to rotate under windmilling conditions in either direction of rotation and said generator generating current in both of said directions when said fan rotor is driven during windmilling conditions.

19. The gas turbine engine as set forth in claim 1, wherein said fan rotor may be driven to rotate under windmilling conditions in either direction of rotation and said generator generating current in both of said directions when said fan rotor is driven during windmilling conditions.

20. The gas turbine engine as set forth in claim 19, wherein said generator includes a generator rotor provided to rotate with said fan drive assembly and a stator mounted on stationary structure, such that rotation of said fan drive assembly relative to said stator generates current to power said electric motor driven pump.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
F02C 7/06(2006.01)i, F01D 25/20(2006.01)i, F16H 57/04(2010.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F02C 7/06; F02C 9/00; F01D 25/24; F02C 7/32; F02K 3/02; F02C 7/268; F01D 25/20; F16H 57/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: gas turbine engine, fan, generator, pump, reduction gear, lubrication, and windmilling

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2013-0098058 Al (SHERIDAN, WILLIAM G.) 25 April 2013 See paragraphs [0012]- [0017] ; and figure 2.</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 2009-0123274 Al (CHAUDHRY, ZAFFIR A.) 14 May 2009 See paragraphs [0013] , [0015] ; and figures 1,2.A.</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 5,174, 109 A (LAMPE, STEVEN W.) 29 December 1992 See column 3, lines 10-30 ; and figure 1.</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 & document member of the same patent family

Date of the actual completion of the international search
26 January 2015 (26.01.2015)

Date of mailing of the international search report
26 January 2015 (26.01.2015)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82 42 472 3473

Authorized officer
HAN, Joong Sub
Telephone No. +82-42-481-5606

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2008--0098712 Al</td>
<td>01/05/2008</td>
<td>EP 1918564 A2</td>
<td>07/05/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1918564 A3</td>
<td>30/11/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1918564 Bl</td>
<td>27/02/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 0477046 B2</td>
<td>06/07/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008-106746 A</td>
<td>08/05/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7849668 B2</td>
<td>14/12/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1873358 A2</td>
<td>02/01/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wO 2007-147229 Al</td>
<td>27/12/2007</td>
</tr>
<tr>
<td>US 2009--0123274 Al</td>
<td>14/05/2009</td>
<td>EP 2060759 A2</td>
<td>20/05/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2060759 A3</td>
<td>21/03/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8333554 B2</td>
<td>18/12/2012</td>
</tr>
<tr>
<td>US 5174109 A</td>
<td>29/12/1992</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>