(54) Title: ALUMINUM POUCH FILM FOR SECONDARY BATTERY, PACKAGING MATERIAL INCLUDING SAME, SECONDARY BATTERY INCLUDING SAME, AND METHOD FOR MANUFACTURING ALUMINUM POUCH FILM FOR SECONDARY BATTERY

(54) 발명의 명칭: 이차전지용 알루미늄 파우치 필름, 이를 포함하는 포장재, 이를 포함하는 이차전지 및 이차전지용 알루미늄 파우치 필름의 제조방법

(57) Abstract: The present invention relates to an aluminum pouch film for a secondary battery, the aluminum pouch film comprising: an aluminum layer; an outer layer formed on a first surface of the aluminum layer; a first adhesion layer adhering the aluminum layer to the outer layer; an inner layer formed on a second surface of the aluminum layer, wherein the inner layer comprises a cross-linked polymer layer; and a second adhesion layer adhering the aluminum layer to the inner layer.

(57) 요약: 본 발명은 알루미늄층, 상기 알루미늄층의 제 1 표면에 형성되는 외층, 상기 알루미늄층과 상기 외층을 접착시키는 제 1 접착층, 상기 알루미늄층의 제 2 표면에 형성되는, 가교합된 고분자층을 포함하는 내층, 및 상기 알루미늄층과 상기 내층을 접착시키는 제 2 접착층을 포함하는 이차전지용 알루미늄 파우치 필름에 관한 것이다.
명세서
발명의 명칭: 이차전지용 알루미늄 파우치 필름, 이를 포함하는 포장재, 이를 포함하는 이차전지 및 이차전지용 알루미늄 파우치 필름의 제조방법

기술분야

[1] 본 발명은 이차전지용 알루미늄 파우치 필름 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 종래의 이차전지에 사용되는 외장재에 비하여 성형성, 절연성 및 내전해력성이 향상되게 개선된 이차전지용 알루미늄 파우치 필름 및 이의 제조방법에 관한 것이다.
배경기술

[2] 이차전지는 보통 리튬 이차전지를 지칭하는 것으로, 고분자 폴리머 전해질을 갖고 리튬이온의 이동으로 전류를 발생하는 전지를 말하며, 이러한 이차전지를 포장하는 외장재로서 이차전지용 파우치가 사용된다. 이러한 이차전지용 파우치는 상기 전극 조립체와 후속 공정에 의하여 내부로 유입된 전해액으로 이루어지는 전지 셀을 보호하고, 전지 셀의 전기 화학적 성질에 대한 보완 및 방열성을 제고하기 위하여 알루미늄 박막이 개제된 형태로 구성되며, 상기 전지 셀을 외부의 충격으로부터 보호하기 위하여 상기 알루미늄 박막은 폴리에틸렌 테레프탈레이트(Poly ethylene terephthalate, PET)수지, 폴리에틸렌 나프탈레이트(Poly ethylene naphthalate, PEN), 나일론(Nylon)수지 또는 액정보분자수지(Liquid Crystal Polymer, LCP) 등의 기능성 고분자 필름이 외층을 형성한다.

[3] 파우치는 외주면 부분에서 상부 파우치와 하부 파우치가 일음작 등에 의하여 접합되며, 상부 파우치의 하면과 하부 파우치의 상면 사이에는 상호 간의 접착을 위하여 폴리에틸렌(poly ethylene, PE), 무연신 폴리프로필렌(casted polypropylene, cPP) 또는 폴리프로필렌(poly propylene, PP) 등의 폴리올레핀 또는 이들의 공중합체에 의한 접착층이 형성된다.

[6] 또한, 파우치를 설명하는 경우에는 외부에서 열이 가해지게 되는데, 이러한 열에 의하여도 미세한 틈들이 발생하거나 파우치가 내열을 입어 내부
접착층에 크랙이 발생하여 상기 알루미늄층이 전해액 등에 노출될 수 있다.

상기 압착뿐만 아니라 낙하, 충격, 압력 또는 압착 등에 의해서도 많은 박막 형태로 구성되는 접착층은 손상을 입게 될 수 있으며, 상기 접착층의 손상된 부위를 통하여 알루미늄층이 전해액 등에 노출되기 드란다.

이렇게 전해액에 노출된 알루미늄층은 전지 내부로 침투 또는 확산된 전해액과 산소 또는 수분과 화학 반응을 일으키게 되어 부식될 수 있으며, 이를 통해 부식성 가스가 발생하여 전지 내부를 펭창시키는 스웨링(swelling) 현상이 발생하게 되는 문제점에 항고 있다.

보다 상세하게는, LiPF6가 물 및 산소와 반응하여 부식성 가스인 플루오르화수소산(HF)이 생성될 수 있다. 이러한 플루오르화수소산은 알루미늄과 반응하여 급격한 발열반응을 일으킬 수도 있으며, 2차 반응으로 알루미늄 표면으로 흡착되어 조직 내부로 침투하게 되면 조직의 취성이 증가하여 미세 충격에 의한 파우치 필름의 크랙이 발생하여 전해액의 누액으로 인해 리튬과 대기이 반응하여 발화가 발생할 수 있다.

따라서, 상기와 같이 부식성 플루오르화수소산이 생성되더라도 알루미늄과의 접촉을 방지하기 위하여, 다양한 알루미늄 표면개질 기술이 연구되고 있다. 알루미늄 표면개질 기술로는 한국공개 10-2006-0127031에서와 같이 알루미늄 포일을 유지하는 저온 열처리를 하거나, 기타 화성처리, 콜릴 코팅, 프라이머 처리, 코로나, 플라즈마 등의 처리 등을 들 수 있다.

그러나, 최근 이차전지의 용량이 점차 대용량화되고 있는 추세이기 때문에, 알루미늄의 표면 개질만으로 상기와 같은 문제점을 해결하는 것에는 한계가 있어, 내열성, 내화학성, 내구성이 뛰어난 이차전지용 알루미늄 파우치 필름에 대한 필요성이 지속적으로 대두되고 있다.

발명의 상세한 설명

기술적 과제

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서,

본 발명의 목적은 전지가 외부로부터 물리적, 화학적 충격 또는 스프레스에 노출되더라도 파우치 내부의 접착층의 크랙 발생이 억제되며, 성형성, 접연성 및 내전해액성이 우수한 이차전지용 알루미늄 파우치 필름 및 이의 제조방법을 제공하는 데 있다.

과정 해결 수단

본 발명은 알루미늄층; 상기 알루미늄층의 제1 표면에 형성되는 외층; 상기 알루미늄층과 상기 외층을 접착시키는 제1 접착층; 상기 알루미늄층의 제2 표면에 형성되는, 가교화된 고분자층을 포함하는 내층; 및 상기 알루미늄층과 상기 내층을 접착시키는 제2 접착층을 포함하는 이차전지용 알루미늄 파우치 필름을 제공한다.

또한 본 발명은 이차전지용 알루미늄 파우치 필름을 포함하는 포장재를
제공한다.

[16] 또한 본 발명은 어느 한 항의 이차전지용 알루미늄 파우치 필름을 포함하는 이차전지를 제공한다.

[17] 또한 본 발명은 a) 알루미늄 층을 준비하는 단계; b) 상기 알루미늄층의 제1 표면에 외층을 형성시키는 단계; c) 가교된 고분자층을 포함하는 내층을 준비하는 단계; 및 d) 상기 알루미늄층의 제2 표면에 상기 가교된 고분자층을 포함하는 내층을 접착하는 단계를 포함하는 이차전지용 알루미늄 파우치 필름의 제조방법을 제공한다.

[18] 또한 본 발명은 a) 알루미늄 층을 준비하는 단계; b) 상기 알루미늄층의 제1 표면에 외층을 형성시키는 단계; c1) 가교체와 혼합된 고분자 및 가교체와 혼합되지 않은 고분자를 준비하는 단계; c2) 상기 2종의 고분자를 멀티 다이 아말시험으로 압출하여 내층을 형성하는 단계; d) 상기 알루미늄층의 제2 표면에 상기 내층을 접착하여 필름을 형성하는 단계; 및 e) 상기 d) 단계에서 형성된 필름에 에너지를 조사하는 단계를 포함하는 것을 특징으로 하는 이차전지용 알루미늄 파우치 필름의 제조방법을 제공한다.

발명의 효과

[19] 본 발명에 따른 이차전지용 알루미늄 파우치 필름은 성형성, 접연성 및 내전해역성이 원동히 개선되어, 물리적, 화학적 촉매에 노출되거나 스트레스에 의하더라도 파우치 내부의 접착층의 크랙 발생이 억제할 수 있고, 알루미늄층이 전해액과 화학 반응을 일으키는 것을 방지할 수 있기 때문에, 전지 내부에 가스가 발생하여 전지 내부를 폐장시키거나 높은 온도에 의해 폭발하는 위험을 줄일 수 있다.

도면의 간단한 설명

[20] 도 1은 이차전지용 알루미늄 파우치 필름의 구조를 나타낸 것이다.

[21] 도 2는 본 발명의 실시에 1 및 비교에 1의 내열성을 평가하여 나타낸 그래프이다.

발명의 실시를 위한 최선의 형태

[22] 본 발명의 이차전지용 알루미늄 파우치 필름은 도 1에서와 같이 알루미늄층(3), 상기 알루미늄층의 제1 표면에 형성되는 외층(1), 상기 알루미늄층과 상기 외층을 접착시키는 제1 접착층(2), 상기 알루미늄층의 제2 표면에 형성되는, 가교화된 고분자층을 포함하는 내층(5) 및 상기 알루미늄층과 상기 내층을 접착시키는 제2 접착층(4)으로 구성되어 있다.

[23] 이하 본 발명의 이차전지용 알루미늄 파우치 필름의 각 구성에 대하여 상세하게 설명한다.

[24] 알루미늄층

[25] 본 발명의 이차전지용 알루미늄 파우치 필름에 있어서, 상기 알루미늄층은
바람직하게는 연질의 알루미늄 박을 사용할 수 있으며, 더욱 바람직하게는 내필름층 및 내막 성형시 연성을 더 부어시키기 위해서, 철을 포함하는 알루미늄 박을 사용할 수가 있다. 상기 철을 포함하는 알루미늄 박에 있어서, 절의 함유량은 전체 알루미늄 박 100 전량%에 대하여, 바람직하게는 0.1 내지 9.0 전량%를 포함할 수 있고, 더욱 바람직하게는 0.5 내지 2.0전량%를 포함할 수 있다. 상기 전체 알루미늄 박 100 전량%에 대한 절의 함유량이 0.1 전량% 미만으로 포함하면 알루미늄층의 연성이 떨어지게 되고, 9.0 전량%를 초과하여 포함하게 되면 성형성이 떨어지는 문제점이 생긴다.

상기 알루미늄층의 두께는 내필름층, 가공성, 산소 및 수분 차단 특성 등을 고려하여 10 내지 100μm의 것이 바람직하며, 30 내지 50μm의 것이 더욱 바람직하다. 상기 범위를 만족하지 않는 경우, 10μm 미만인 경우 쉽게 떨어지고 내전해성 및 절연성이 떨어지게 되고, 100μm를 초과하면 성형성이 안 좋아지는 문제점이 있다.

[27]

[28]

의론

[30]

본 발명의 이차전지용 알루미늄 과우치 필름에 있어서, 상기 외층은 하드웨어와 직접 맞닿는 부위에 해당하기 때문에, 절연성을 갖는 수지인 것이 바람직하다. 따라서, 외층으로 사용되는 수지로서는 폴리에틸렌테프탈레이트, 폴리부틸렌테프탈레이트, 폴리에틸렌니플라탈레이트, 폴리부틸렌프탈레이트, 폴리아세테트, 폴리아세테트로, 폴리아세테트로, 폴리아미드로, 또는 나일론필름을 사용하는 것이 바람직하며, 특히 나일론 필름을 사용하는 것이 바람직하다. 상기 내일론 필름의 경우 과열강도, 내전화성, 가스차단성 등이 뛰어나며 아나 빌婘성, 내성성이 excellent하고 기계적 강도가 우수하여 포장용 필름으로 주로 사용되고 있다. 상기 내일론 필름은 구체적인 예로서는 폴리아미드수지, 즉 나일론6, 나일론6, 나일론6과 나일론66과의 공중합체, 나일론610, 폴리메타릴산렌 아미파이드(MXD6)등을 들 수가 있다.

[31]

상기 외층을 적층하는 경우, 적층된 외층의 두께는 10 내지 30μm 이상인 것이 바람직하며, 12 내지 25μm의 것이 더욱 바람직하다. 상기 범위를 만족하지 않는 경우, 10μm 미만이면 물리적 특성이 떨어져 쉽게 떨어지게 되고, 30μm를 초과하면 성형성이 떨어지게 되는 문제점이 있다.

[32]

상기 외층을 적층하는 경우, 특별한 제한은 없으나 바람직하게는 드라이 라미네이션법, 압출라미네이션법을 사용하여 라미네이트 하여 외층을 적층할 수 있다.

[33]

제1접착층

[34]

본 발명의 이차전지용 알루미늄 과우치 필름에 있어서, 상기 제1 접착층으로서는 폴리올 성분을 주성분으로 하여, 이소시아나이트화합물 또는
그 유도체를 경화제 성분으로 더 포함 하는 폴리우레탄계 접착제를 사용할 수 있다.

상기 제1 접착층은 외층과의 접착성 및 성형후 두께 등을 고려하여 2 내지 10μm의 것이 바람직하고, 3 내지 5μm의 것이 보다 바람직하다. 상기 범위를 만족하지 않는 경우 2μm 미만인 경우에는 접착성이 떨어지며, 10μm를 초과하는 경우에는 크랙이 발생하는 등의 문제점이 발생할 수 있다.

내층

본 발명의 이차전지용 알루미늄 파우치 필름에 있어서, 상기 내층으로서는 폴리에틸렌(poly ethylene, PE) 또는 폴리프로필렌(poly propylene, PP) 등의 폴리올레핀 또는 이들의 공중합체를 사용할 수 있다. 상기 고분자층에 PE 또는 PP 등의 폴리올레핀 또는 이들의 공중합체를 사용하는 경우, 양호한 허트시일성, 방수성, 내열성 등의 이차전지용 포장재로서 요구되는 물성을 갖는 뿐만 아니라 라미네이션 등의 가공성이 좋기 때문에 바람직하다.

상기 내층의 고분자층의 두께는 성형성, 전연성 및 내전해액성 등을 고려하여 20 내지 60μm의 것이 바람직하고, 30 내지 50μm의 것이 보다 바람직하다. 상기 범위를 만족하지 않는 경우 성형성, 전연성 및 내전해액성이 떨어지게 되는 문제점이 발생할 수 있다.

상기 내층은 가교화된 고분자층을 포함한다. 상기 가교화된 고분자층은 바람직하게는 내층의 중심부에 위치하고, 가교화된 고분자층의 양측에는 가교화되지 않은 고분자층이 위치하도록 할 수 있다. 상기 가교화된 고분자층이 포함되는 경우, 내연성, 내전해액성 등의 물성이 향상되는 장점이 있다. 상기 내층의 전체두께에 대하여 상기 가교화된 고분자층의 두께는 1/3 내지 1/2의 두께비를 갖는 것이 바람직하다. 가교화된 고분자층의 두께비가 상기 범위보다 작은 경우에는 내연성, 내전해액성이 부족해지고, 상기 범위보다 큰 경우에는 성형성이 떨어지는 문제점이 생긴다.

상기 내층에 가교화된 고분자층을 포함시키기 위하여, 가교제가 혼합된 고분자 및 가교제와 혼합되지 않은 고분자를 블리 다이 압출시스템으로 압출한 후 압출된 내층에 에너지를 조사하여 만들 수 있다. 상기 가교제가 혼합된 고분자에 있어서, 가교제는 특별한 제한은 없으나, 바람직하게는 폴리사이드계가 가교제를 사용할 수 있다. 또한, 상기 가교제는 혼합된 고분자 총중량을 기준으로 1 내지 3 중량% 포함되는 것이 바람직하다. 상기 범위를 만족하지 않는 경우, 가교제의 함량이 1 중량% 미만이면 가교화가 잘 일어나지 않고, 3 중량%를 초과하면 가교제 첨가량의 증가에 따른 효과가 없어진다.

상기 에너지의 조사는 γ-ray, ε-beam 또는 UV 범 등을 조사하는 방법을 통하여 할 수 있다.

제2 접착층
본 발명의 이차전지용 알루미늄 파우치 필름에 있어서, 상기 제2 접착층으로는 폴리우레탄, 산염성 폴리올레핀 수지 또는 에폭시 등을 사용할 수 있다. 상기 제2 접착제의 구체적인 예로는 탈레익 안하이드라이드 폴리프로필렌(MAHPP) 등을 사용할 수 있다.

상기 제2 접착층은 내층과의 접착성 및 성형 후 두께 등을 고려하여 2 내지 30 \(\mu\)m 이내일 것이 바람직하고, 3 내지 15 \(\mu\)m 이내일 것이 보다 바람직하다. 상기 범위를 만족하지 않는 경우 2\(\mu\)m 미만인 경우에는 접착성이 떨어지며, 30\(\mu\)m를 초과하는 경우에는 크랙이 발생하는 등의 문제점이 발생할 수 있다.

상기 제2 접착층에 내층과 알루미늄층을 접촉하는 경우, 특별한 제한은 없으나 바람직하게는 드라이 라미네이션법, 압출라미네이션법을 사용하여 라미네이트 하여 접착할 수 있다.

또한 본 발명은 a) 알루미늄층을 준비하는 단계; b) 상기 알루미늄층의 제1 표면에 외층을 형성시키는 단계; c) 가교된 고분자층을 포함하는 내층을 준비하는 단계; 및 d) 상기 알루미늄층의 제2 표면에 상기 가교된 고분자층을 포함하는 내층을 접착하는 단계를 포함하여 제조할 수 있다.

또한 본 발명은 상기 이차전지용 알루미늄 파우치 필름을 포함하는 포장제를 제공할 수 있다.

또한 본 발명은 상기 이차전지용 알루미늄 파우치 필름을 포함하는 이차전지를 제공할 수 있다.

또한 본 발명은 상기 이차전지용 알루미늄 파우치 필름의 제조방법을 제공한다. 상기 이차전지용 알루미늄 파우치 필름의 제조방법은 a) 알루미늄층을 준비하는 단계; b) 상기 알루미늄층의 제1 표면에 외층을 형성시키는 단계; c) 가교된 고분자층을 포함하는 내층을 준비하는 단계; 및 d) 상기 알루미늄층의 제2 표면에 상기 가교된 고분자층을 포함하는 내층을 접착하는 단계를 포함하는데, 이하, 상기 제조방법에 대하여 상세하게 설명한다.

a) 알루미늄층을 준비하는 단계

상기 알루미늄층에 사용되는 알루미늄 박으로는, 미처리 알루미늄 박을 사용할 수도 있지만, 내전기분해성 및 내전해액성 등을 부여하는 점에서 탈지 처리를 실시한 알루미늄 박을 사용하는 것이 보다 바람직하다. 탈지 처리 방법으로 웨트 타입과 드라이 타입의 처리방법을 들 수 있다.

웨트 타입의 탈지 처리의 예로는 산탈지나 알칼리탈지 등을 들 수 있다. 산탈지에 사용하는 산으로서는, 에를 들어 황산, 소산, 인산, 불산 등의 무기산을 들 수 있는데, 상기 산은 1중 단독으로 사용할 수도 있고, 2중 이상을 병용할 수도 있다. 또한, 알루미늄 박의 액정효과를 향상시키기 위해서, 필요한 경우 각종
금속염을 배합할 수도 있다. 알칼리탈지에 사용되는 알칼리로서는, 예를 들면 수산화나트륨 등의 강 알칼리를 들 수 있으며, 여기에 약 알칼리계나 계면활성제를 함께 배합할 것을 사용할 수도 있다.

드라이 야입의 탈지 처리의 예로는 알루미늄을 고온에서 소둔처리하는 공정으로, 탈지 처리를 행하는 방법을 들 수 있다.

(b) 상기 알루미늄층의 제1 표면에 외층을 형성시키는 단계

본 발명의 이차전지용 알루미늄 파우치 필름의 알루미늄층의 제1 표면에 외층을 형성시키는 단계에 있어서, 상기 (a) 단계에서 준비된 알루미늄층에 제1 접착층을 도포한다. 이 때 도포되는 제1 접착층의 두께는 외층과의 접착성 및 상호도 두께 등을 고려하여 2 내지 10 \(\mu\text{m} \)이가 바람직하고, 3 내지 5 \(\mu\text{m} \)이가 보다 바람직하다. 상기 범위를 만족하지 않는 경우 2 \(\mu\text{m} \) 미만인 경우에는 접착성이 떨어지며, 10 \(\mu\text{m} \)를 초과하는 경우에는 크랙이 발생하는 등의 문제점이 발생할 수 있다.

이렇게 도포된 제1 접착층 위에 외층을 적층한 후 드라이 라미네이션법 또는 압출라미네이션법을 사용하여 라미네이터하여 외층을 형성한다. 상기 외층은 하드웨어의 적합 맞닿는 부분에 해당하기 때문에, 설립성을 갖는 수지인 것이 바람직하다. 따라서, 외층으로 사용되는 수지는로서는 폴리에틸렌테프타필레이트, 폴리부 털렌테프타필레이트, 폴리에틸렌나프탈렌테프타필레이트, 폴리부 털렌나프탈렌테프타필레이트, 공중합 폴리에스테르, 폴리카보네이트 등의 폴리에스테르 수지를 사용하거나 또는 나일론필름을 사용하는 것이 바람직하며, 특히 나일론 필름을 사용하는 것이 바람직하다. 상기 나일론 필름의 경우 포장강도, 내린호성, 가수차단성 등이 뛰어난 반면 아니라 내열성, 내한성 및 기계적 강도가 우수하여 포장용 필름으로 주로 사용되고 있다. 상기 나일론 필름의 구체적인 예로서는 폴리아미드수지, 즉 나일론6, 나일론6,6, 나일론6과 나일론66과의 공중합체, 나일론610, 폴리에 털렌테프타필레이트, 아미파이드(MXD6) 등을 들 수가 있다.

상기 외층을 적층하는 경우, 특별한 제한은 없으나 바람직하게는 드라이 라미네이션법, 압출라미네이션법을 사용하여 라미네이터하여 외층을 적층할 수 있다.

c) 가교된 고분자층을 포함하는 내층을 준비하는 단계

본 발명의 이차전지용 알루미늄 파우치 필름의 가교된 고분자층을 포함하는 내층을 준비하는 단계에 있어서, 먼저 가교제와 혼합된 고분자 및 가교제와 혼합되지 않은 고분자를 준비한다(c1) 단계). 본 발명에서 사용되는 고분자는 폴리에틸렌(poly ethylene, PE) 또는 폴리프로필렌(poly propylene, PP) 등의 폴리올레핀 또는 이들의 공중합체를 사용할 수 있다. 상기 고분자층의 PE 또는 PP 등의 폴리올레핀 또는 이들의 공중합체를 사용하는 경우, 양호한 헤티시일성,
방습성, 내열성 등의 이차전지용 포장재료로서 요구되는 물성을 갖을 뿐만 아니라 라미네이션 등의 가공성이 좋기 때문에 바람직하다. 또한 가교체는 특별한 제한은 없으나, 바람직하게는 폐목사이드게 가교체를 사용할 수 있다. 또한, 상기 가교체는 혼합된 고분자 총량을 기준으로 1 내지 3 중량% 포함되는 것이 바람직하다. 상기 범위를 만족하지 않는 경우, 가교체의 함량이 1 중량% 미만이면 가교화가 잘 일어나지 않고, 3 중량%를 초과하면 가교체 침가량의 증가에 따른 효과가 없어진다.

[69] 그 후, 상기 가교체와 혼합된 고분자 및 가교체와 혼합되지 않은 고분자가 준비된 후, 상기 2종의 고분자를 멀티 다이 암출시스템으로 암출하여 내층을 형성한다(c2 단계). 이 때, 멀티 다이 암출시스템을 이용하여 고분자 및 가교체와 혼합된 고분자를 각각 고분자만을 포함하는 다이와 가교체와 혼합된 고분자를 포함하는 다이로 나누어 암출시킨다. 이 때, 각각의 다이에서 사출되는 박은 조절하여, 고분자층 중심부에 가교체와 혼합된 고분자가 위치하도록 적층하여 내층을 형성할 수 있다. 상기 내층의 전체두께에 대하여 상기 가교화된 고분자층의 두께는 1/3 내지 1/2의 두께비를 갖는 것이 바람직하다. 가교화된 고분자층의 두께비가 상기 범위보다 작은 경우에는 내열성, 내전해약성이 부족해지고, 상기 범위보다 큰 경우에는 성형성이 떨어지는 문제점이 생긴다.

[70] 그리고, 상기 c2 단계에서 형성된 내층에 에너지를 조사한다(c3 단계).

[71] 상기 c2 단계의 암출에 의하여, 가교체와 혼합된 고분자가 고분자층의 중심부에 위치하도록 내층을 형성한 후, γ-ray, e-beam 또는 UV 빔 등의 에너지를 조사할 하게 되면, 가교체가 고분자와 가교화 반응하여, 내층 내에 가교화된 부분을 생성할 수 있다.

[72] 또한 상기 에너지를 조사하는 c3 단계는 하기의 가교화된 내층을 접착하는 d) 단계 이후에 수행할 수 있다. 이 경우, 알루미늄 파우치 필름을 파우치 형태로 성형한 이후에, 에너지를 조사하기 때문에 알루미늄 파우치 필름의 성형성을 더욱 향상시킬 수 있다는 장점이 있다.

[73]

[74] d) 알루미늄층의 제2 표면에 내층을 접착하는 단계

[75] 본 발명의 이차전지용 알루미늄 파우치 필름의 알루미늄층의 제2 표면에 상기 고분자층의 일부가 가교화된 내층을 접착하는 단계에 있어서, 상기 알루미늄층과 내층을 접착하는 제2 접착층으로는 플리옥릴산, 산변성 플리옥릴산 수지 또는 에폭시 등을 사용할 수 있으며, 구체적인 예로는 말레이 안하이드라이드 플리옥릴포필렌(MAHPP) 등을 사용할 수 있다.

[76] 상기 제2 접착층은 내층과의 접착성 및 성형후 두께 등을 고려하여 2 내지 30 μm의 것이 바람직하고, 3 내지 15 μm의 것이 보다 바람직하다. 상기 범위를 만족하지 않는 경우 2μm 미만인 경우에는 접착성이 떨어지며, 30μm를 초과하는 경우에는 크랙이 발생하는 등의 문제점이 발생할 수 있다.

[77] 상기 내층을 알루미늄층에 적층하는 경우, 특별한 제한은 없으나 바람직하게는
드라이 라미네이션법, 압출라미네이션법을 사용하여 라미네이트하여 내층을 적층할 수 있다.

발명의 실시를 위한 형태

이하, 실험에 및 시험을 들어 본 발명을 보다 구체적으로 설명하지만, 이들은 본 발명을 예시하기 위한 것이며, 이들에 의하여 본 발명의 범위가 한정되는 것은 아니다.

실험에 1 및 비교에 1: 이차전지용 알루미늄 파우치 필름의 제작

본 발명의 이차전지용 알루미늄 파우치 필름에 대해서, 실험에 의해 더욱 구체적으로 설명한다.

[실험에 1]
먼적이 30 cm×20cm이고, 40μm의 두께를 갖는 알루미늄 박(동일알루미늄사 제품)을 5% 황산 용액에 절치하여 산탈지를 후, 다시 5% 수산화 나트륨 용액에 절치하여 표면을 활성화 처리 하였다. 이 후, 4μm 두께의 폴리우레탄 접착제 수지(하이카사 제품)를 도포한 후, 25μm 두께의 나일론 6(효성사 제품)을 브라이 라미네이팅 처리하여 암류미늄층 상에 나일론을 적층시켰다.

또한, 폴리프로필렌(호남석유화학사 제품) 및 폐목사이드계 가교제(사바가이기사 제품)이 중량 기준으로 98:2로 혼합된 고분자와 폴리프로필렌(호남석유화학사 제품)만의 고분자를 멀티 다이 압출하여, 2개의 다이에서는 폴리프로필렌만의 고분자층이 각각 10μm의 두께로 압출되고, 다른 1개의 다이에서는 폴리프로필렌과 폐목사이드계 가교제가 혼합된 고분자가 15μm의 두께로 압출된 후, 상기 2개의 폴리프로필렌만의 고분자층의 사이에 폴리프로필렌 및 가교제가 혼합된 고분자가 위치하도록 적층하여 내층을 형성하였다. 상기 내층에 UV빔을 조사하여 가교화시켰다.

상기 나일론이 적층된 알루미늄층의 타측면에 10μm 두께의 발레익 안하이드라이드 폴리프로필렌(하이카사 제품)을 도포한 후, 상기 가교화된 내층을 드라이 라미네이팅 처리하여 적층시켜 알루미늄 파우치 필름을 제조하였다.

[비교에 1]

상기 적층된 고분자층에 UV빔을 조사하는 것을 제외하고는 실험에 1과 동일한 방법으로 비교에 1을 제조하였다.

내전적백성 평가

실험에 1 및 비교에 1에 따른 이차전지용 알루미늄 파우치 필름을 각각 2cm×4cm로절단한 시편을 시험용기에 LiPF6 전해액(리텐사 제품)과 함께 넣고 밀봉한 후 85℃로 가열하여 필름을 24시간 경과 후까지 매 4시간마다 필름을
제취하여 절연실 갑박를 육안으로 관찰하여 내전해액성을 평가하여 하기 표 1에 나타내었다.

<table>
<thead>
<tr>
<th></th>
<th>4시간</th>
<th>8시간</th>
<th>12시간</th>
<th>16시간</th>
<th>20시간</th>
<th>24시간</th>
</tr>
</thead>
<tbody>
<tr>
<td>비교예 1</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>실험예 1</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

○: 박리 미발생
△: 부분 박리 발생
×: 박리 발생

절연성 평가

실시예 1 및 비교예 1에 따른 이차진지용 알루미늄 과우지 필름을 각각 3cm×5cm×0.62cm(가로×세로×두께)로 성형하여 양극, 분리막 및 음극의 전극 조립체와 LiPFO3 전해액(리튬염 제품)을 충전한 후 밀봉하여 85°C에서 24시간 보관한 후, 전극과 상부면의 알루미늄층을 인위적으로 노출시켜 전기적으로 절연(1 MΩ 이상)이 되는지 측정하여 하기 표 2에 나타내었다.

<table>
<thead>
<tr>
<th></th>
<th>절연성 평가</th>
</tr>
</thead>
<tbody>
<tr>
<td>비교예 1</td>
<td>≤1MΩ</td>
</tr>
<tr>
<td>실험예 1</td>
<td>≥1MΩ</td>
</tr>
</tbody>
</table>

내열성 평가

과우지 필름의 내열성을 평가하기 위하여 실시예 1 및 비교예 1의 내충 필름을 열중량법(thermal gravimetric analysis)을 이용하여 상온에서 약 500°C까지 일정 온도(20°C/분당)를 증가시키며 필름의 무게변화를 측정하여 표 2에 나타내었다.

측정 결과, 내충에 사용된 폴리올레핀 필름의 온도에 의한 무게감소 영향은 초기 무게 대비 10% 무게감소 온도를 기준으로 하여 평가하였을 경우 비교예 1의 경우 약 300°C에서 10% 변화하였고, 실시예 1의 경우 약 376°C에서 10% 변화하여, 약 25%정도의 내열성이 증가하는 결과를 얻을 수 있었다.
청구범위

[청구항 1] 알루미늄층,
상기 알루미늄층의 제1 표면에 형성되는 외층;
상기 알루미늄층과 상기 외층을 접착시키는 제1 접착층;
상기 알루미늄층의 제2 표면에 형성되는, 가교화된 고분자층을
포함하는 내층; 및
상기 알루미늄층과 상기 내층을 접착시키는 제2 접착층을
포함하는 이차전지용 알루미늄 파우치 필름.

[청구항 2] 제1항에 있어서, 상기 가교화된 고분자층은 내층의 중심부에
위치하는 것을 특징으로 하는 이차전지용 알루미늄 파우치 필름.

[청구항 3] 제2항에 있어서, 내층의 전체 두께에 대하여 상기 가교화된
고분자층의 두께는 1/3 내지 1/2의 두께비를 갖는 것을 특징으로
하는 이차전지용 알루미늄 파우치 필름.

[청구항 4] 제1항에 있어서, 상기 외층은 폴리에틸렌테레프탈레이트,
폴리무 siti 렌테레프탈레이트, 폴리에틸렌나프탈레이트,
폴리무 siti 렌나프탈레이트, 공중합 폴리에스테르, 폴리카보네이트
및 나일론 필름으로 이루어진 군에서 선택되는 것을 특징으로
하는 이차전지용 알루미늄 파우치 필름.

[청구항 5] 제 1 항에 있어서, 상기 내층은 폴리올레핀 또는 폴리올레핀의
공중합체로부터 형성된 것을 특징으로 하는 이차전지용 알루미늄
파우치 필름.

[청구항 6] 제 5 항에 있어서, 상기 폴리올레핀은 폴리에틸렌(poly ethylene,
P E) 또는 폴리프로필렌(poly propylene, PP)인 것을 특징으로 하는
이차전지용 알루미늄 파우치 필름.

[청구항 7] 제1항에 있어서, 상기 제1접착제중은 폴리우레탄계 접착제인 것을
특징으로 하는 이차전지용 알루미늄 파우치 필름.

[청구항 8] 제1항에 있어서, 상기 제2접착제중은 폴리우레탄, 산변성
폴리올레핀 수지 및 악축시로 이루어진 군에서 선택되는 것을
특징으로 하는 이차전지용 알루미늄 파우치 필름.

[청구항 9] 제8항에 있어서, 상기 산변성 폴리올레핀 수지는 말레이
산아미드라이드 폴리프로필렌(MAH PP)인 것을 특징으로 하는
이차전지용 알루미늄 파우치 필름.

[청구항 10] 제1항 내지 제9항 중 어느 한 항의 이차전지용 알루미늄 파우치
필름을 포함하는 포장재.

[청구항 11] 제1항 내지 제9항 중 어느 한 항의 이차전지용 알루미늄 파우치
필름을 포함하는 이차전지.

[청구항 12] a) 알루미늄층을 준비하는 단계;
b) 상기 알루미늄층의 제1 표면에 외층을 형성시키는 단계;
c) 가교된 고분자층을 포함하는 내층을 준비하는 단계; 및
d) 상기 알루미늄층의 제2 표면에 상기 가교된 고분자층을
포함하는 내층을 접착하는 단계를 포함하는 이차전지용 알루미늄
파우치 필름의 제조방법.

[청구항 13] 제 12항에 있어서, 상기 내층을 준비하는 c) 단계는 하기의 단계를
포함하는 것을 특징으로 하는 이차전지용 알루미늄 파우치 필름의
제조방법.
c1) 가교제와 혼합된 고분자 및 가교제와 혼합되지 않은 고분자를
준비하는 단계;
c2) 상기 2종의 고분자를 멀티 다이 압출시스템으로 압출하여
내층을 형성하는 단계; 및

c3) 상기 압출된 내층에 에너지를 조사하는 단계.

[청구항 14] a) 알루미늄층을 준비하는 단계;
b) 상기 알루미늄층의 제1 표면에 외층을 형성시키는 단계;
c1) 가교제와 혼합된 고분자 및 가교제와 혼합되지 않은 고분자를
준비하는 단계;
c2) 상기 2종의 고분자를 멀티 다이 압출시스템으로 압출하여
내층을 형성하는 단계;
d) 상기 알루미늄층의 제2 표면에 상기 내층을 접착하여 필름을
형성하는 단계; 및
e) 상기 d) 단계에서 형성된 필름에 에너지를 조사하는 단계를
포함하는 것을 특징으로 하는 이차전지용 알루미늄 파우치 필름의
제조방법.
Fig. 1: 图表示了不同的层，包括:
(1) 表层
(2) 第一层粘附层
(3) 铝膜层
(4) 第二层粘附层
(5) 内层

Fig. 2: 图展示了温度与重量百分比的关系，曲线表示了两个样品的重量变化，分别标记为
- 粗实线: 比较样品1
- 点划线: 实验样品1

温度范围：300°C 至 900°C
A. CLASSIFICATION OF SUBJECT MATTER

H01M 2/02(2006.01)j

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01M 2/02; H01M 10/40; H01B 17/56; H01B 3/44

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of database and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: secondary battery, aluminum, pouch, crosslinking polymer

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KR 10-2004-0023254 A (SAMSUNG SDI CO., LTD.) 18 March 2004 See pages 2,3, claims 1,4,5 and figure 3</td>
<td>1-14</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2008-004430 A (FUJIMORI KOGYO CO LTD) 10 January 2008 See abstract, paragraphs [0014],[0015],[0018], figures 2 and 3</td>
<td>1-14</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-0645607 B1 (DAINIPPON PRINTING CO., LTD.) 13 November 2006 See pages 7,9,11, figures 1a,2a,3,7b and 8a</td>
<td>1-14</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2009-0054631 A (ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE) 01 June 2009 See abstract, paragraphs [0016],[0019],[0020],[0021],[0023],[0028] and figure 1</td>
<td>1-14</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-246068 A (OSAKA GAS CO LTD) 30 August 2002 See claims 2,3, paragraphs [0015],[0016] and figure 3</td>
<td>1-14</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
02 APRIL 2013 (02.04.2013)

Date of mailing of the international search report
22 APRIL 2013 (22.04.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 189 Seonja-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2004-0023254 A</td>
<td>18.03.2004</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 2008-004430 A</td>
<td>10.01.2008</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2334724 C</td>
<td>16.09.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 100353584 C0</td>
<td>05.12.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101159320 A</td>
<td>08.04.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1314008 A0</td>
<td>19.09.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1102336 A1</td>
<td>23.05.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04440376 B2</td>
<td>15.01.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04736146 B2</td>
<td>13.05.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-006631 A</td>
<td>12.01.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-030407 A</td>
<td>06.02.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-035453 A</td>
<td>09.02.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-035454 A</td>
<td>09.02.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-055243 A</td>
<td>27.02.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-093482 A</td>
<td>06.04.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4440376 B2</td>
<td>24.03.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4736146 B2</td>
<td>27.07.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 499768 A</td>
<td>21.08.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7265334 B1</td>
<td>23.10.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 00-62354 A1</td>
<td>19.10.2000</td>
</tr>
<tr>
<td>JP 2002-246068 A</td>
<td>30.08.2002</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)
A. 발명이 속하는 기술분야(국제특허분야(IPC))

H01M 2/02(2006.01)i

B. 조사된 문헌

조사된 최소 문헌(국제특허분류를 기재)

<table>
<thead>
<tr>
<th>문헌번호</th>
<th>제목</th>
<th>저자 및 기업명</th>
<th>출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>H01M 2/02; H01M 10/40; H01B 17/56; H01B 3/44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

조사된 기술분야에 속하는 최소 문헌 이외의 문헌

한국특허공보관 및 한국공개실용신안공보: 조사된 최소문헌을 기재한다

일본특허공보관 및 일본공개실용신안공보: 조사된 최소문헌을 기재한다

국제특허에 이용된 전산테이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
 cKOMPASS(특허청 내부 검색시스템) & 기워드: 이차전지, 알루미늄, 파우치, 가교 고분자

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 표기항</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2004-0023254 A (삼성에스디아이 주식회사) 2004.03.18</td>
<td>페이지 2, 페이지 3, 첨부 1, 첨부 4, 첨부 5 및 도면 3 참조</td>
<td>1-14</td>
</tr>
<tr>
<td>JP 2008-004430 A (FUJIMORI KOGYO CO LTD) 2008.01.10</td>
<td>요약, 문단번호 [0014],[0015],[0018], 도면 2 및 도면 3 참조</td>
<td>1-14</td>
</tr>
<tr>
<td>KR 10-0645607 B1 (다이나피온 인사즈 가우사키가이사) 2006.11.13</td>
<td>페이지 7, 페이지 9, 페이지 11, 도면 1a, 도면 2a, 도면 3, 도면 7b 및 도면 8a 참조</td>
<td>1-14</td>
</tr>
<tr>
<td>KR 10-2009-0054631 A (한국전자통신연구원) 2009.06.01</td>
<td>요약, 문단번호 [0016],[0019],[0020],[0021],[0023],[0028] 및 도면 1 참조</td>
<td>1-14</td>
</tr>
<tr>
<td>JP 2002-246068 A (OSAKA GAS CO LTD) 2002.08.30</td>
<td>첨부 2, 첨부 3, 문단번호 [0015],[0016] 및 도면 3 참조</td>
<td>1-14</td>
</tr>
</tbody>
</table>

△ 추가 문헌이 C(계속)에 기재되어 있습니다. ❌ 대응특허에 관련 별지를 참조하십시오.

* 인용된 문헌의 별명 카테고리:
 "A" 특별히 관련이 없는 것으로 보이는 일반적인 기술문헌을 "E" 국제특허등록일로부터 5년 후 또는 국외출원일, 또는 유사한 것을 가진 국외출원일 이후에 공개된 신출원 또는 특허문헌
 "F" 국제특허등록일로부터 5년 후 또는 국외출원일, 또는 유사한 것을 가진 국외출원일 이후에 공개된 신출원 또는 특허문헌
 "L" 관련문헌에 의문을 제기하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이상(문헌을 명시)을 발견하기 위하여 인용된 문헌
 "O" 구두 개시, 상담, 전시 또는 기타 수단을 이용하여 있는 문헌
 "P" 유사문헌이 이전에 공개되었거나 국제특허등록일 이전에 공개된 문헌
 "T" 국제특허등록일 또는 유사한 후에 공개된 문헌으로, 출원과 상응하지 않으며 발명의 기초가 되는 원리나 이론을 이해하기 위해 인용된 문헌
 "X" 특별히 관련이 있는 문헌, 해당 문헌 하나만으로 총출원 발명의 신규성 또는 전보성이 없는 것으로 본다.
 "Y" 특별한 관련이 없는 문헌, 해당 문헌 하나만으로 총출원 발명의 신규성 또는 전보성이 없는 것으로 본다.
 "&" 동일한 대응특허문헌에 속하는 문헌

국제조사의 실적 완료일
2013년 04월 02일 (02.04.2013)

국제조사보고서 발송일
2013년 04월 22일 (22.04.2013)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 정순로 189, 4동 (문산동, 정부대전청사)
전화번호 82-42-472-7140

서식 PCT/ISA/210 (투 입체 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2004-0023254 A</td>
<td>2004.03.18</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>JP 2008-004430 A</td>
<td>2008.01.10</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2334724 C</td>
<td>2008.09.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 100353584 CD</td>
<td>2007.12.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101159320 A</td>
<td>2008.04.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1314008 A0</td>
<td>2001.09.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1102336 A1</td>
<td>2001.05.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 0437298 B2</td>
<td>2009.09.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04390922 B2</td>
<td>2009.10.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04440376 B2</td>
<td>2010.01.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04668370 B2</td>
<td>2011.01.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04668373 B2</td>
<td>2011.01.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04736146 B2</td>
<td>2011.05.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04831268 B2</td>
<td>2011.09.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04972816 B2</td>
<td>2012.04.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 05098333 B2</td>
<td>2012.09.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000-294204 A</td>
<td>2000.10.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000-334891 A</td>
<td>2000.12.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000-340186 A</td>
<td>2000.12.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000-340187 A</td>
<td>2000.12.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-030407 A</td>
<td>2001.02.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-035453 A</td>
<td>2001.02.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-035454 A</td>
<td>2001.02.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-055243 A</td>
<td>2001.02.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-093482 A</td>
<td>2001.04.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4372898 B2</td>
<td>2009.11.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4440376 B2</td>
<td>2010.03.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4736146 B2</td>
<td>2011.07.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 499768 A</td>
<td>2002.08.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7285334 B1</td>
<td>2007.10.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 00-62354 A1</td>
<td>2000.10.19</td>
</tr>
<tr>
<td>KR 10-2009-0054631 A</td>
<td>2009.06.01</td>
<td>US 2009-0136883 A1</td>
<td>2009.05.28</td>
</tr>
<tr>
<td>JP 2002-246068 A</td>
<td>2002.08.30</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>