
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0305023 A1

Gainey, JR. et al.

US 2013 O305O23A1

(43) Pub. Date: Nov. 14, 2013

(54)

(71)

(72)

(21)

(22)

(63)

104 1 2

112 OS(GUEST) OS(GUEST)

EXECUTION OF A PERFORMIFRAME
MANAGEMENT FUNCTION INSTRUCTION

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Charles W. Gainey, JR., Poughkeepsie,
NY (US); Dan F. Greiner, San Jose, CA
(US); Lisa Cranton Heller, Rhinebeck,
NY (US); Damian L. Osisek, Vestal, NY
(US); Gustav E. Sittmann, III, Webster
Groves, MO (US)

Appl. No.: 13/941,887

Filed: Jul. 15, 2013

Related U.S. Application Data
Continuation of application No. 13/554,056, filed on
Jul. 20, 2012, now Pat. No. 8,495,326, Continuation of

102

VIRTUAL VIRTUAL
MACHINE MACHINE

application No. 13/292,160, filedon Nov. 9, 2011, now
Pat. No. 8.239,649, Continuation of application No.
12/036,725, filed on Feb. 25, 2008, now Pat. No. 8,086,
811.

Publication Classification

(51) Int. Cl.
G06F 9/30 (2006.01)

(52) U.S. Cl.
CPC G06F 9/30.145 (2013.01)
USPC .. 712/220

(57) ABSTRACT

Optimizations are provided for frame management opera
tions, including a clear operation and/or a set storage key
operation, requested by pageable guests. The operations are
performed, absent host intervention, on frames not resident in
host memory. The operations may be specified in an instruc
tion issued by the pageable guests.

100

VIRTUAL VIRTUAL
MACHINE MACHINE

3 N

OS(GUEST) OS(GUEST)

HOST (HYPERVISOR) 108

CENTRAL
PROCESSOR(S) 106

INPUT / OUPUT
SUBSYSTEM 110

Patent Application Publication Nov. 14, 2013 Sheet 1 of 19 US 2013/0305023 A1

VIRTUAL VIRTUAL VIRTUAL VIRTUAL
MACHINE MACHINE MACHINE MACHINE 104 1 2 3 N

112 OS(GUEST) OS(GUEST) OS(GUEST) OS(GUEST)

CENTRAL
PROCESSOR(S) 106

INPUT / OUPUT
SUBSYSTEM 110

FIG. 1

Patent Application Publication Nov. 14, 2013 Sheet 2 of 19 US 2013/0305023 A1

EMULATED (VIRTUAL)
HOST COMPUTER 202

MEMORY 208

COMPUTER
MEMORY
(HOST)

VM VM VM

sia HOST
204

-

EMULATED (VIRTUAL)
PROCESSOR (CPU) 212

206 EMULATION
ROUTINES

EMULATION
PROCESSOR

FIG. 2

Patent Application Publication Nov. 14, 2013 Sheet 3 of 19 US 2013/0305023 A1

300
FRAME DESCRIPTOR

NEXT FRAME DESCRIPTOR ADDRESS 302

PAGE FRAME REAL ADDRESS OR PTE COPY 304

PAGE TABLE ENTRY ADDRESS 306

FIG. 3

400
REGION-FIRST-TABLE ENTRY (TT=11) 402

REGION-SECOND-TABLE ORIGIN

O 406 408 410 412

REGION-SECONDTABLE ORIGIN (CONTINUED) PTFTTTL 414
52 54 32 56 58596O 62 63

FIG. 4A

430
REGION-SECOND-TABLE ENTRY (TT=10) 432

REGION-THIRD-TABLE ORIGIN

O 436 438 440 442

REGION-THIRD-TABLE ORIGIN (CONTINUED) PTFTTL 444
32 52 54 56 585960 62 63

FIG. 4B

460
REGION-THIRD-TABLE ENTRY (TT-01) 462

SEGMENTTABLE ORIGIN

466 468 470 472

SEGMENT TABLE ORIGIN (CONTINUED) PTFTTTL 474
32 52 54 56 58596O 62 63

F.G. 4C

O

Patent Application Publication Nov. 14, 2013 Sheet 4 of 19 US 2013/0305023 A1

SEGMENT-TABLE ENTRY (TT=00, FC=O) 500 502

PAGE-TABLE ORIGIN

O 506 508 510 512

PAGE-TABLE ORIGIN (CONTINUED)

32 53.5455 58596O 62 63
514

FORMATO OF A SEGMENT TABLE ENTRY

FIG. 5A

SEGMENT-TABLE ENTRY (TT=00, FC=1) 550 552

SEGMENT-FRAMEABSOLUTE ADDRESS

O 556 se 560 552564566 570 3
SEGMENT-FRAME

ABSOLUTE ADDRESS
F C

CTT
(CONTINUED) CIO

32 44 4748 5253545,556 585960 6263
568 572

FORMAT 1 OF A SEGMENT TABLE ENTRY

FIG. 5B

Patent Application Publication Nov. 14, 2013 Sheet 5 of 19 US 2013/0305023 A1

602 600

PAGE-FRAME REAL ADDRESS

C
PAGE-FRAME REAL ADDRESS (CONTINUED) ote

32 525354 5556 63

FORMAT OF A PAGE TABLE ENTRY

F.G. 6

700

704 708 712 716 724 728 732

AccFPPCLIHRHCGrecstatuszPcPcoFPLPCRussTATus PIN count

720

FIG. 7

800
T 804

PFMF RR (RRE

O 16 24 28 31

FORMAT OF PFMFINSTRUCTION

FIG. 8A

Patent Application Publication Nov. 14, 2013 Sheet 7 of 19 US 2013/0305023 A1

OBTAININGA FRAME MANAGEMENT
INSTRUCTION IDENTIFYINGA FIRST 900
AND SECOND GENERAL REGISTER

OBTAINING FROM THE FIRST
GENERAL REGISTER CLEAR FRAME 902

INFORMATION COMPRISINGA
FRAME SIZE FIELD

DETERMINE WHETHER THE FRAME SIZE IS 904
TO ALARGE BLOCK OF DATAN MEMORY

OR TO A SMALL BLOCK OF DATA IN MEMORY

OBTAINING FROM THE SECOND GENERAL
REGISTERAN OPERAND ADDRESS TO A

FIRST INITIAL, BLOCK OF DATA IN MEMORY

906

RESPONSIVE TO THE INITIAL BLOCK OF DATA
BEING ASMALL BLOCK OF DATAWITHINA 908

LARGE BLOCK, CLEARING ALL THE BYTES OF
DATA IN THE SMALL BLOCK TOZERO

RESPONSIVE TO THE INITIAL BLOCK OF DATA BEINGA
LARGE BLOCK, CLEARING ALL THE SMALL BLOCKS OF
DATABY CLEARING ALL BYTES IN THE SMALL BLOCK 910
TOZERO, FOR ALL SMALL BLOCKS WITHIN THE LARGE
BLOCK STARTING WITH THE INITIAL SMALL BLOCK

FIG. 9A

Patent Application Publication Nov. 14, 2013 Sheet 8 of 19 US 2013/0305023 A1

OBTAININGA FRAME MANAGEMENT
NSTRUCTION IDENTIFYING A FIRST
AND SECOND GENERAL REGISTER

950

OBTAINING FROM THE SECOND
GENERAL REGISTER THE ADDRESS
OF AN INITIAL FIRST BLOCK OF DATA

WITH A LARGE BLOCK OF DATA

952

OBTAINING FROM THE FIRST GENERAL
REGISTERAKEY FELD COMPRISINGA

FIRST ACCESS PROTECTION BITS

954

FOR ALL THE STORAGE KEYS ASSOCATED
WITHEACH BLOCK OF DATAWITHIN THE

LARGE BLOCK STARTING FROM THE INITIAL
FIRSTBLOCK OF DATA, SETTING THE BLOCKS

ASSOCIATED STORAGE KEY WITH THE
CONTENTS OF THE OBTANEDKEY FIELD

956

FIG. 9B

Patent Application Publication Nov. 14, 2013 Sheet 9 of 19 US 2013/0305023 A1

CLEARFUNCTION

1002

PAGE CLEARAS
2 F NATIVE

RESIDENT INSTRUCTION

1012 MARK PAGE
LOGICALLY ZERO

PULL FRAME
OFF CLEARED
AVAILABLE LIST

ATTACH FRAME
TO HOST PAGE

LEAVE PAGE 1008
NON-RESIDENT

1014

PUT GUEST ABSOLUTE
ADDRESS OF PAGE
ONTO BACKING
RECLAIM LOG

F.G. 10

Patent Application Publication Nov. 14, 2013 Sheet 10 of 19 US 2013/0305023 A1

1100 1102
GUEST

INZARCH
MODE 8, GUESTEDAT NO GUESSETION

INSTALLED

YES

1104
SE O 1106

ENABLED FOR NO INSTRUCTION
INTERPSYPECU9) INTERCEPTION TO HOST

YES

1108 1110

GUEST PSW YES GUEST PRIVILEGED
SECSEgy OPERATION EXCEPTION

NO

1112 1114
RESERVED

BITS NONZERO OR
FRAME SIZE CODE NOTA

BINARY OOOOR
OO1 7

YES GUEST SPECIFICATION
EXCEPTION

NO 1116

OBTAIN GUESTABSOLUTE ADDRESS

SET INTERVAL COMPLETION INDICATOR INSTATE DESCRIPTION
AND PERFORM CHECKPOINT SYNCHRONIZATION OPERATION

1118

FOREACH 4KBYTE BLOCK OF GUEST STORAGE

PERFORMHOST DYNAMIC ADDRESS TRANSLATION
TO LOCATE LEAF HOST DAT TABLE ENTRY

1122

FIG. 11A

Patent Application Publication Nov. 14, 2013 Sheet 11 of 19 US 2013/0305023 A1

YES

1126 PERFORMCLEAR FRAME
AND/OR SET-KEY FUNCTIONS

1128 LOCATEPGSTE
1131

1130
NO PERFORMCHECKPOINT

SYNCHRONIZATION AND TURN
OFFINTERVAL COMPLETION

YES

1132 VALIDITY ATTEMPT TO OBTAIN On Aero) 1133 PAGE CONTROL LOCK INTERCEPTION

VALID
ADDRESS

1134
NO

1138 YES PERFORMCHECKPOINT
SYNCHRONIZATION ANDTURN
OFFINTERVAL COMPLETION

1135
1140

NVALID
BIT OFF

INSTRUCTION 1136
NO (B) INTERCEPTION

YES

PERFORM CLEAR-FRAME AND/OR
11421 SEf KEYFUNCTIONS FREGUESED

(C) F.G. 11B

Patent Application Publication Nov. 14, 2013 Sheet 12 of 19 US 2013/0305023 A1

(B)
1144

CLEAR-FRAME
FUNCTION

REOUESTED 2

NO

YES

1146
USAGE NO

INDSIOB 1150
1148 YES NO

PERFORM HOST PAGE MANAGEMENT
ASSIST (HPMA) RESOLVE OPERATION

YES

APPEND GUESTABSOLUTE 1152
ADDRESS TO CBRL

SET Z. BIT 1153

1154 SETKEY NO
FUNCTION

RECUESTED

YES

SET ACCESS CONTROLAND FETCH PROTECTION IN PGSTE 1156

1158 SET GUEST-REFERENCE AND GUEST CHANGE FIELDS IN PGSTE

(C) FIG. 11C

Patent Application Publication

CLEAR
NO OR SET

RELEASE PCL RELEASEPCL
(z)

Nov. 14, 2013 Sheet 13 of 19

RECUESTED 2

SET BLOCK USAGE STATE

US 2013/0305023 A1

1160

1162

1164

1166

YES

INCREMENT OPERAND ADDRESS 1168

-1170 -1172
ADDRESS

FRAME?

BEYOND END
OF 1 M-BYTE

ASYNCHRONOUS
INTERRUPT
PENDING

YES

NULLIFY UNIT OF OPERATION

FIG. 1 1D

Patent Application Publication Nov. 14, 2013 Sheet 14 of 19 US 2013/0305023 A1

PERFORM CHECKPOINT 118O
SYNCHRONIZATION OPERATION

TURN OFF INTERVAL 1182
COMPLETION INDICATOR

FIG. 11E

Patent Application Publication

HOST DATERROR PROCESSING

1200
HOST ASCE-TYPE,

REGION-TRANSLATION OR
SEGMENT-TRANSLATION

EXCEPTION ?

YES

1204 LARGE GUEST
FRAME MAPPED BY

SMALL HOST
PAGES

NO

12O6
GUEST

ATTEMPTING TO
ALTER CONTENTS OR
KEY OF PROTECTED

PAGE

YES

NO 1208

1210
OTHER ACCESSNYES
EXCEPTION ?

NO

FIG. 12

Nov. 14, 2013 Sheet 15 of 19

1201

PERFORMCHECKPOINT
SYNCHRONIZATIONAND
TURN OFF INTERVAL

COMPLETION INDICATOR

INSTRUCTION
INTERCEPTION

TO HOST

12O2

1207

PERFORMCHECKPOINT
SYNCHRONIZATIONAND
TURN OFF INTERVAL

COMPLETION INDICATOR

PROTECTION
EXCEPTION

1211

PERFORMCHECKPOINT
SYNCHRONIZATIONAND
TURN OFFINTERVAL

COMPLETION INDICATOR

1212 ACCESS
EXCEPTION

US 2013/0305023 A1

Patent Application Publication Nov. 14, 2013 Sheet 16 of 19 US 2013/0305023 A1

PERFORMHPMA RESOLVE

EXAMINEANCHOR

1302

1300

ANCHOR
ZERO 2

1304

RELEASE PCL PERFORM
CHECKPOINTSYNCHRONIZATION,

TURNOFFINTERVAL
COMPLETION INDICATOR

FUNCTION

SUPPRESS INSTRUCTION
EXECUTION

REQUESTED
INSTRUCTION

1314 INTERCEPTION

SET FRAMEACCESS-CONTROL
8, FETCH PROTECTION

FROM OPERAND

CLEAR FRAME REFERENCE
& CHANGE BITS

SET GUEST-REFERENCE
AND GUEST-CHANGE BITS

FROM OPERAND

1310 NO Y
EXTRACT FRAME ADDRESS

1312 SETKEY

1308

SET FRAME STORAGE
KEY FROM PGSTE

CLEAR FRAME REFERENCE
AND CHANGE BITS

1322 1318

FIG. 13A

Patent Application Publication Nov. 14, 2013 Sheet 17 of 19 US 2013/0305023 A1

DEQUEUE FIRST FRAME DESCRIPTOR 1324

1326

1328

1330

1332

ADD FRAME DESCRIPTOR 1334

FIG. 13B

Patent Application Publication

1400
CBRL
ORIGIN
ZERO

1408

CBRL ORIGN
DESIGNATES INVALID

ADDRESS

1416

1418 NO

STORE GUESTABSOLUTE
BLOCKADDRESS INTO CBRL

INCREMENT NEO

1420

YES

FIG.

Nov. 14, 2013 Sheet 18 of 19

14

RELEASE PCL
PERFORMCHECKPOINT
SYNCHRONIZATION, 1402
TURN OFFINTERVAL

COMPLETON

SUPPRESS 1404
INSTRUCTION

INSTRUCTION 1406
INTERCEPTION

RELEASEPCL
PERFORMCHECKPOINT
SYNCHRONIZATION,
TURN OFF INTERVAL

COMPLETON

SUPPRESS 1412
INSTRUCTION

VALIDITY 1414
INTERCEPTION

1410

US 2013/0305023 A1

Patent Application Publication Nov. 14, 2013 Sheet 19 of 19 US 2013/0305023 A1

COMPUTER
PROGRAM
PRODUCT

1500

COMPUTER
USABLE

N MEDIUM
1502

US 2013/0305O23 A1

EXECUTION OF A PERFORMIFRAME
MANAGEMENT FUNCTION INSTRUCTION

0001. This application is a continuation of U.S. Ser. No.
13/554,056, entitled “EXECUTION OF A PERFORM
FRAME MANAGEMENT FUNCTION INSTRUCTION,
filed Jul. 20, 2012, which is a continuation of U.S. Ser. No.
13/292,160, entitled “CLEARING GUEST FRAMES
ABSENT PAGING-IN TO HOST MAINSTORAGE” filed
Nov. 9, 2011 (U.S. Pat. No. 8.239,649, issued Aug. 7, 2012),
which is a continuation of U.S. Ser. No. 12/036,725, entitled
“OPTIMIZATIONS OF A PERFORM FRAME MANAGE
MENT FUNCTION ISSUED BY PAGEABLE GUESTS
filed Feb. 25, 2008 (U.S. Pat. No. 8,086,811, issued Dec. 27,
2011), each of which is hereby incorporated herein by refer
ence in its entirety.

BACKGROUND

0002 This invention relates, in general, to computing
environments that Support pageable guests, and in particular,
to facilitating processing of frame management operations
within Such environments.
0003 Improving processing efficiency of computing envi
ronments continues to be an important goal. One area in
which improvements have been made, but further enhance
ments are needed, is in the area of Supporting pageable guests.
0004 An operating system frequently performs certain
main storage (memory) management actions in Support of its
applications and to ensure security and data integrity. These
actions include clearing frames in real memory and setting
associated storage protection keys before the frames are
assigned to an application or reassigned from one application
to another. When this operating system runs as a pageable
guest, that is, in a virtual machine whose memory is paged by
a hypervisor or host, these guest memory management opera
tions may incur inefficiencies.
0005 For example, if the host has paged out the contents
of a guest frame being reassigned, the clearing operation by
the guest operating system would result in a host page fault,
causing a context Switch to the host. The host would then read
the guest frame contents from host auxiliary storage, and
switch context back to the guest, which would then clear the
frame, immediately overlaying the contents which the host
just read in.
0006 Similarly, if the guest operating system clears a
frame which an application has released and places it into an
available pool to be used later, the resultant host page fault
and handling will cause that guest frame to be made host
resident, consuming host real memory at a time when no
productive use will be made of that memory. The operation of
setting the storage key on the guest frame commonly occurs at
the same time as clearing in these cases, and its handling
entails manipulation of the same hostinterlock and data struc
tures as the clearing operation. Thus, treating frame manage
ment operations like clearing and key setting the same as
ordinary instructions leads to additional overhead for context
Switching between guest and host and for executing the host
page fault handler, wasted paging I/O bandwidth; less effi
cient use of host memory; and repeated serialization and
access to host translation and control structures.

BRIEF SUMMARY

0007 Thus, a need exists for a capability that reduces
context Switching and facilitates processing in an environ

Nov. 14, 2013

ment that Supports pageable guests. In one example, a need
exists for a capability that provides optimizations for frame
management functions requested by pageable guests. For
instance, a need exists for a capability that provides optimi
Zations for a memory clearing function (e.g., setting frame
contents to Zeros) issued by pageable guests. In a further
example, a need exists for a capability that provides optimi
Zations for a set key function issued by pageable guests. In
one particular example, a need exists for a capability that
provides optimizations when executing a Perform Frame
Management Function instruction issued by a pageable guest,
which could entail clearing guest frame contents and/or set
ting the associated storage key or keys.
0008. The shortcomings of the prior art are overcome and
additional advantages are provided through the provision of a
computer system. The computer system includes a memory;
and a processor in communications with the memory,
wherein the computer system is configured to perform a
method. The method including, for instance, obtaining a per
form frame management function (PFMF) machine instruc
tion, the PFMF machine instruction comprising an opcode
field, a first field and a second field; executing, by a pageable
guest, the obtained PFMF machine instruction, the executing
including: performing an operation on a guest frame desig
nated by the second field, said guest frame being non-resident
in host memory, the operation being specified in a location
indicated by the first field and comprising a clear operation,
and wherein the performing is absent host intervention and is
based on a usage indicator specified in the location.
0009 Methods and computer program products relating to
one or more aspects of the present invention are also
described and may be claimed herein.
0010 Additional features and advantages are realized
through the techniques of the present invention. Other
embodiments and aspects of the invention are described in
detail herein and are considered a part of the claimed inven
tion.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0011. One or more aspects of the present invention are
particularly pointed out and distinctly claimed as examples in
the claims at the conclusion of the specification. The forego
ing and other objects, features, and advantages of the inven
tion are apparent from the following detailed description
taken in conjunction with the accompanying drawings in
which:
0012 FIG. 1 depicts one embodiment of a computing
environment to incorporate and use one or more aspects of the
present invention;
0013 FIG.2 depicts one embodiment of an emulated com
puting environment to incorporate and use one or more
aspects of the present invention;
0014 FIG. 3 depicts one example of a frame descriptor
used in accordance with an aspect of the present invention;
0015 FIGS. 4A-4C depict examples of region table
entries used in accordance with an aspect of the present inven
tion;
(0016 FIGS. 5A-5B depict examples of segment table
entries used in accordance with an aspect of the present inven
tion;
0017 FIG. 6 depicts one example of a page table entry
used in accordance with an aspect of the present invention;

US 2013/0305O23 A1

0018 FIG. 7 depicts one example of a page status table
entry used in accordance with an aspect of the present inven
tion;
0019 FIG. 8A depicts one example of a format of a Per
form Frame Management Function (PFMF) instruction, in
accordance with an aspect of the present invention;
0020 FIG. 8B depicts one example of fields of registers
specified in the instruction of FIG. 8A, in accordance with an
aspect of the present invention;
0021 FIGS. 9A-9B depict one embodiment of the logic
associated with the Perform Frame Management Function
instruction, in accordance with an aspect of the present inven
tion;
0022 FIG. 10 depicts one embodiment of the logic to clear
a frame for a pageable guest, in accordance with an aspect of
the present invention;
0023 FIGS. 11A-11E depict one embodiment of the logic
associated with performing the Perform Frame Management
Function instruction and optimizations associated therewith,
in accordance with an aspect of the present invention;
0024 FIG. 12 depicts one example of various error pro
cessing associated with dynamic address translation, in
accordance with an aspect of the present invention;
0025 FIGS. 13 A-13B depict one embodiment of the logic
associated with performing a resolve function, in accordance
with an aspect of the present invention;
0026 FIG. 14 depicts one embodiment of the logic asso
ciated with appending to a backing reclaim log, in accordance
with an aspect of the present invention; and
0027 FIG. 15 depicts one embodiment of a computer
program product incorporating one or more aspects of the
present invention.

DETAILED DESCRIPTION

0028. In accordance with an aspect of the present inven
tion, optimizations are provided for frame management func
tions issued by pageable guests. For example, a capability is
provided that enables a frame clearing function in a pageable
guest environment to be optimized. As another example, a
capability is provided that enables a set key function issued by
pageable guests to be optimized. As one particular example,
optimizations are provided for a Perform Frame Management
Function (PFMF) issued by pageable guests.
0029. One embodiment of a computing environment to
incorporate and use one or more aspects of the present inven
tion is described with reference to FIG. 1. Computing envi
ronment 100 is based, for instance, on the Z/Architecture(R)
offered by International Business Machines Corporation,
Armonk, N.Y. The Z/Architecture(R) is described in an IBM
publication entitled, “Z/Architecture(R) Principles of Opera
tion.” IBM(R) Publication No. SA22-7832-05, April, 2007,
which is hereby incorporated herein by reference in its
entirety. In one example, a computing environment based on
the Z/Architecture(R) includes an eServer zSeries(R), offered by
International Business Machines Corporation, Armonk, N.Y.
IBM(R), Z/Architecture(R) and zSeries(R) are registered trade
marks of International Business Machines Corporation,
Armonk, N.Y., USA. Other names used herein may be regis
tered trademarks, trademarks, or product names of Interna
tional Business Machines Corporation or other companies.
0030. As one example, computing environment 100
includes a central processor complex (CPC) 102 providing
virtual machine support. CPC 102 includes, for instance, one
or more virtual machines 104, one or more central processors

Nov. 14, 2013

106, at least one host 108 (e.g., a control program, Such as a
hypervisor), and an input/output Subsystem 110, each of
which is described below. In this example, the virtual
machines and host are included in memory.
0031. The virtual machine support of the CPC provides
the ability to operate large numbers of virtual machines, each
capable of hosting a guest operating system 112. Such as
Linux. Each virtual machine 104 is capable of functioning as
a separate system. That is, each virtual machine can be inde
pendently reset, host a guest operating system, and operate
with different programs. An operating system or application
program running in a virtual machine appears to have access
to a full and complete system, but in reality, only a portion of
it is available.
0032. In this particular example, the model of virtual
machines is a V=V model, in which the absolute or real
memory of a virtual machine is backed by host virtual
memory, instead of real or absolute memory. Each virtual
machine has a virtual linear memory space. The physical
resources are owned by host 108, and the shared physical
resources are dispatched by the host to the guest operating
systems, as needed, to meet their processing demands. This
V=V virtual machine (i.e., pageable guest) model assumes
that the interactions between the guest operating systems and
the physical shared machine resources are controlled by the
host, since the large number of guests typically precludes the
host from simply partitioning and assigning the hardware
resources to the configured guests. One or more aspects of a
V=V model are further described in an IBM(R) publication
entitled “Z/VM: Running Guest Operating Systems.” IBM(R)
Publication No. SC24-5997-02, October 2001, which is
hereby incorporated herein by reference in its entirety.
0033 Central processors 106 are physical processor
resources that are assignable to a virtual machine. For
instance, virtual machine 104 includes one or more logical
processors, each of which represents all or a share of a physi
cal processor resource 106 that may be dynamically allocated
to the virtual machine. Virtual machines 104 are managed by
host 108. As examples, the host may be implemented in
microcode running on processors 106 or be part of a host
operating system executing on the machine. In one example,
host 108 is a VM hypervisor, such as z/VMR), offered by
International Business Machines Corporation, Armonk, N.Y.
One embodiment of z/VMR) is described in an IBM(R) publi
cation entitled “Z/VM: General Information Manual. IBM
Publication No. GC24-5991-04, October 2001, which is
hereby incorporated herein by reference in its entirety.
0034. Input/output subsystem 110 directs the flow of
information between devices and main storage. It is coupled
to the central processing complex, in that it can be part of the
central processing complex or separate therefrom. The I/O
Subsystem relieves the central processors of the task of com
municating directly with the I/O devices coupled to the CPC
and permits data processing to proceed concurrently with I/O
processing.
0035. In one embodiment, the host (e.g., ZNMR) and pro
cessor (e.g., System Z) hardware/firmware interact with each
other in a controlled cooperative manner in order to process
V=V guest operating system operations without requiring
transfer of control from/to the guest operating system and the
host. Guest operations can be executed directly without host
intervention via a facility that allows instructions to be inter
pretively executed for a pageable storage mode guest. This
facility provides an instruction, Start Interpretive Execution

US 2013/0305O23 A1

(SIE), which the host can issue, designating a control block
called a state description which holds guest (virtual machine)
state and controls. The instruction places the machine into an
interpretive-execution mode in which guest instructions and
interruptions are processed directly, until a condition requir
ing host attention arises. When Such a condition occurs, inter
pretive execution is ended, and either a host interruption is
presented, or the SIE instruction completes storing details of
the condition encountered; this latter action is called inter
ception. One example of interpretive execution is described in
System/370 Extended Architecture/Interpretive Execution,
IBM Publication No. SA22-7095-01, September 1985, which
is hereby incorporated herein by reference in its entirety.
0036) Another example of a computing environment to
incorporate one or more aspects of the present invention is
depicted in FIG. 2. In this example, an emulated host com
puter system 200 is provided that emulates a host computer
202 of a host architecture. In emulated host computer system
200, a host processor (CPU) 204 is an emulated host proces
Sor (or virtual host processor) and is realized through an
emulation processor 206 having a different native instruction
set architecture than used by the processors of host computer
202. Emulated host computer system 200 has memory 208
accessible to emulation processor 206. In the example
embodiment, memory 208 is partitioned into a host computer
memory 210 portion and an emulation routines 212 portion.
Host computer memory 210 is available to programs of emu
lated host computer 202 according to host computerarchitec
ture, and may include both a host or hypervisor 214 and one
or more virtual machines 216 running guest operating sys
tems 218, analogous to the like-named elements in FIG. 1.
0037 Emulation processor 206 executes native instruc
tions of an architected instruction set of an architecture other
than that of the emulated processor 204. The native instruc
tions are obtained, for example, from emulation routines
memory 212. Emulation processor 206 may access a host
instruction for execution from a program in host computer
memory 210 by employing one or more instruction(s)
obtained in a sequence & access/decode routine which may
decode the host instruction(s) accessed to determine a native
instruction execution routine for emulating the function of the
host instruction accessed. One Such host instruction may be,
for example, a Start Interpretive Execution (SIE) instruction,
by which the host seeks to execute a guest program in a virtual
machine. The emulation routines 212 may include Support for
this instruction, and for executing a sequence of guest instruc
tions in a virtual machine 216 in accordance with the defini
tion of this SIE instruction.

0038. Other facilities that are defined for host computer
system 202 architecture may be emulated by architected
facilities routines, including Such facilities as general purpose
registers, control registers, dynamic address translation, and
I/O Subsystem Support and processor cache for example. The
emulation routines may also take advantage of functions
available in emulation processor 206 (such as general regis
ters and dynamic translation of virtual addresses) to improve
performance of the emulation routines. Special hardware and
offload engines may also be provided to assist processor 206
in emulating the function of host computer 202.
0039. In providing the optimizations described herein, ref
erence is made to various facilities and data structures (e.g.,
tables, lists). Examples of these facilities and data structures
are described below to facilitate an understanding of one or
more aspects of the present invention.

Nov. 14, 2013

0040. One facility that is referenced is dynamic address
translation (DAT) and enhanced dynamic address translation
(EDat). Dynamic address translation is the process of trans
lating a virtual address during a storage reference into the
corresponding real address or absolute address. The virtual
address may be a primary virtual address, a secondary virtual
address, an Access Register specified virtual address, or a
home virtual address. These addresses are translated by
means of a primary, a secondary, an AR specified, or a home
address space control element, respectively. After selection of
the appropriate address space control element, the translation
process is the same for all of the four types of virtual address.
DAT may use from five to two levels of tables (region first
table, region second table, region third table, segment table,
and page table) as transformation parameters. Enhanced DAT
may use from five to one levels of table, by omitting the page
table for some or all translations. The designation (origin and
length) of the highest level table for a specific address space
is called an address space control element, and it is found for
use by DAT in a control register or as specified by an access
register. Alternatively, the address space control element for
an address space may be a real space designation, which
indicates that DAT is to translate the virtual address simply by
treating it as a real address and without using any tables.
0041. DAT uses, at different times, the address space con
trol elements in different control registers or specified by the
access registers. The choice is determined by the program
specified translation mode specified in the current PSW (Pro
gram Status Word). Four translation modes are available:
primary space mode, secondary space mode, access register
mode, and home space mode. Different address spaces are
addressable depending on the translation mode.
0042. The result of enhanced DAT upon a virtual address
may be either a real or an absolute address. If it is a real
address, a prefixing operation is then performed to obtain the
corresponding absolute address, which can be used to refer
ence memory. Prefixing provides the ability to assign the
range of real addresses 0-8191 (as an example) to a different
area in absolute storage for each CPU, thus permitting more
than one CPU sharing main storage to operate concurrently
with a minimum of interference, especially in the processing
of interruptions. Prefixing causes real addresses in the range
0-8191 to correspond one-for-one to the area of 8K byte
absolute addresses (the prefix area) identified by the value in
bit positions 0-50 of the prefix register for the CPU, and the
area of real addresses identified by that value in the prefix
register to correspond one-for-one to absolute addresses
0-8191. The remaining real addresses are the same as the
corresponding absolute addresses. This transformation
allows each CPU to access all of main storage, including the
first 8K bytes and the locations designated by the prefix
registers of other CPUs.
0043. Dynamic address translation, prefixing, and
enhanced DAT are described in more detail in U.S. Publica
tion No. 2009/0187724A1, entitled, “Dynamic Address
Translation with Frame Management.” Greiner et al., (IBM
Docket No.: POU920070313US1), published Jul 23, 2009,
which is hereby incorporated herein by reference in its
entirety.
0044 Another facility referenced is a Host Page Manage
ment Assist (HPMA) facility that includes various functions
that can be invoked during the interpretation of a pageable
storage mode guest. One function that is invoked is a resolve
host page function used to dynamically resolve a host page

US 2013/0305O23 A1

invalid condition. One example of HPMA is described in U.S.
Publication No. 2005/0268071A1, entitled “Facilitating
Management of Storage of a Pageable Mode Virtual Environ
ment Absent Intervention of a Host of the Environment,
Blandy et al., published Dec. 1, 2005, which is hereby incor
porated herein by reference in its entirety.
0045. A yet further facility referenced is a Collaborative
Memory Management (CMM) facility that provides a vehicle
for communicating granular page state information between a
pageable guest and its host. It includes a backing reclaim log
(CBRL) used to hold a list of frames backing unused pages.
One example of CMM is described in U.S. Patent Application
Publication No. US 2007/0016904A1, entitled, “Facilitating
Processing Within Computing Environment Supporting
Pageable Guests.” Adlung et al., published Jan. 18, 2007,
which is hereby incorporated herein by reference in its
entirety.
0046 Reference is also made to various structures, which
are described below.

Frame Descriptor

0047 A frame descriptor describes a host page frame; that
is, an area of real memory (frame) capable of holding a
portion of virtual memory (page). It is allocated, deallocated,
and initialized by the host and may be updated by HostPage
Management Assist functions (as described, for instance in
U.S. Publication No. 2005/0268071A1, entitled “Facilitating
Management of Storage of a Pageable Mode Virtual Environ
ment Absent Intervention of a Host of the Environment.”
Blandy et al., published Dec. 1, 2005, which is hereby incor
porated herein by reference in its entirety).
0048. In one example, a frame descriptor 300 (FIG. 3) is,
for instance, a 32-byte block residing in host home space
virtual storage on a 32 byte boundary, and includes the fol
lowing fields, as examples:

0049 (a) Next Frame Descriptor Address 302: In one
example, the contents of this field, with five zeros
appended on the right, specify the host home space
virtual address of the next frame descriptor on the list. A
value of Zero indicates that the frame descriptor is the
last on the list.

0050. This field is initialized by the host and may be
changed by the host or by HostPage Management Assist
functions.

0051 (b) Page Frame Real Address or PTE Copy 304:
When the frame descriptor is in the available frame
descriptor list (AFDL), the contents of this field, with
twelve Zeros appended on the right, specify the host real
address of the first byte (byte 0) of a host frame that is
available for allocation to provide host storage.

0052. When the frame descriptor is in a processed frame
descriptor list (PFDL), this field includes a copy of the
page table entry (PTE) designated by the page table
entry address field, as it appeared before the host page
was resolved.

0053. This field is initialized by the host and may be
changed by the host or by HostPage Management Assist
functions.

0054 (c) Page Table Entry Address 306: When the
frame descriptor is on the processed frame descriptor
list, the contents of this field, with three Zeros appended
on the right, specify the host real or host absolute address
of the page table entry for the host virtual page.

Nov. 14, 2013

0055. This field is initialized by the host and may be
changed by the host or by HostPage Management Assist
functions.

0056 Multiple frame descriptors may be linked to one
another to form a list, such as an available frame descriptor
list (AFDL) or a processed frame descriptor list (PFDL). A
frame descriptor exists in one of the two lists. A separate pair
of these lists is provided for each CPU. The origins of the
AFDL and PFDL for a CPU are designated by means offields
in the prefix area of the CPU.
0057 The available frame descriptor list (AFDL) is a list
of frame descriptors that describes host frames the host has
cleared and has made available for allocation to host pages.
The AFDL is designated by an AFDL origin (AFDLO) at a
specified host real address.
0058. The contents of the AFDLO, with five zeros
appended on the right, specify the host home space virtual
address of the first frame descriptor on the AFDL. A value of
Zero indicates that the list is empty.
0059. The AFDLO is initialized by the host and may be
changed by the host or Host Page Management Assist func
tions. The AFDLO is changed, in one embodiment, by means
of a non-interlocked update operation.
0060. The processed frame descriptor list (PFDL) is a list
of frame descriptors that describes host frames that have been
used to resolve host page invalid conditions during guest
interpretation. The host frames that are described by the
PFDL have been assigned to host pages that provide storage
for a guest. The PFDL is designated by a PFDL origin
(PFDLO) at a specified host real address. The contents of the
PFDLO, with five Zeros appended on the right, specify the
host home space virtual address of the first frame descriptor
on the PFDL. A value of Zero indicates that the list is empty.
0061. The PFDLO is initialized by the host and may be
changed by the host or a Host Page Management Assist func
tion. The PFDLO is changed, in one embodiment, by means
of a doubleword concurrent interlocked update operation that
maintains the integrity of the list.

Region Table Entries
0062. The term “region table entry’ indicates a region first
table entry, a region second table entry, or a region third table
entry. The level (first, second, or third) of the table containing
an entry is identified by the table type (TT) bits in the entry.
Examples of the formats of entries fetched from the region
first table, region second table, and region third table are
depicted in FIGS. 4A-4C. In particular, FIG. 4A depicts one
embodiment of the format of a Region First Table entry 400;
FIG. 4B depicts one embodiment of the format of a Region
Second Table entry 430; and FIG. 4C depicts one embodi
ment of the format of a Region Third Table entry 460.
0063 As examples, the fields in the three levels of region
table entries are allocated as follows:
0064 Region Second Table Origin 402, Region Third
Table Origin 432, and Segment Table Origin 462: A region
first table entry includes a region second table origin. A region
second table entry includes a region third table origin. A
region third table entry includes a segment table origin. The
following description applies to each of the three origins. In
one example, bits 0-51 of the entry, with 12 Zeros appended
on the right, form a 64-bit address that designates the begin
ning of the next lower level table.
0065 DAT Protection Bit (P) 406, 436, 466: When
enhanced DAT applies, bit 54 is treated as being OR'ed with

US 2013/0305O23 A1

the DAT protection bit in each subsequent region table entry,
segment table entry, and, when applicable, page table entry
used in the translation. Thus, when the bit is one, DAT pro
tection applies to the entire region or regions specified by the
region table entry. When the enhanced DAT facility is not
installed, or when the facility is installed but the enhanced
DAT enablement control is zero, bit 54 of the region table
entry is ignored.
0066 Region Second Table Offset 408, Region Third
Table Offset 438, and Segment Table Offset (TF) 468: A
region first table entry includes a region second table offset. A
region second table entry includes a region third table offset.
A region third table entry includes a segment table offset. The
following description applies to each of the three offsets. Bits
56 and 57 of the entry specify the length of a portion of the
next lower level table that is missing at the beginning of the
table; that is, the bits specify the location of the first entry
actually existing in the next lower level table. The bits specify
the length of the missing portion in units of 4,096 bytes, thus
making the length of the missing portion variable in multiples
of 512 entries. The length of the missing portion, in units of
4,096 bytes, is equal to the TF value. The contents of the offset
field, in conjunction with the length field, bits 62 and 63, are
used to establish whether the portion of the virtual address
(RSX, RTX, or SX) to be translated by means of the next
lower level table designates an entry that actually exists in the
table.

0067 Region Invalid Bit (I) 410, 440, 470: A region is a
contiguous range of, for example, 2 gigabytes of Virtual
addresses. Bit 58 in a region first table entry or region second
table entry controls whether the set of regions associated with
the entry is available. Bit 58 in a region third table entry
controls whether the single region associated with the entry is
available. When bit 58 is zero, address translation proceeds by
using the region table entry. When the bit is one, the entry
cannot be used for translation.

0068 Table Type Bits (TT) 412,442,472: Bits 60 and 61
of the region first table entry, region second table entry, and
region third table entry identify the level of the table contain
ing the entry, as follows: Bits 60 and 61 identify the correct
table level, considering the type of table designation that is the
address space control element being used in the translation
and the number of table levels that have so far been used;
otherwise, a translation specification exception is recognized.
As an example, the following table shows the table type bits:

Bits 60 and 61 Region-Table Level

11 First
10 Second
O1 Third

Table Type bits for region table Entries

0069. Region Second Table Length 414, Region Third
Table Length 444, and Segment Table Length 474 (TL): A
region first table entry includes a region second table length.
A region second table entry includes a region third table
length. A region third table entry includes a segment table
length. The following description applies to each of the three
lengths. Bits 62 and 63 of the entry specify the length of the
next lower level table in units of 4,096 bytes, thus making the
length of the table variable in multiples of 512 entries. The
length of the next lower level table, in units of 4,096 bytes, is

Nov. 14, 2013

one more than the TL value. The contents of the length field,
in conjunction with the offset field, bits 56 and 57, are used to
establish whether the portion of the virtual address (RSX,
RTX, or SX) to be translated by means of the next lower level
table designates an entry that actually exists in the table.
0070 All other bit positions of the region table entry are
reserved for possible future extensions and should contain
Zeros; otherwise, the program may not operate compatibly in
the future. When enhanced DAT applies, the reserved bit
positions of the region table entry should contain Zeros even
if the table entry is invalid.

Segment Table Entries
0071. When enhanced DAT does not apply, or when
enhanced DAT applies and the STE format control, bit 53 of
the segment table entry is zero, the entry fetched from the
segment table has the format (e.g., Format 0) as depicted in
FIG. 5A. When enhanced DAT applies and the STE format
control is one, the entry fetched from the segment table has,
for example, the format (e.g., Format 1) as depicted in FIG.
SB.
0072. As one example, a Format 0 segment table entry 500
(FIG. 5A) includes the following fields:
(0073 Page Table Origin 502: When enhanced DAT does
not apply, or when enhanced DAT applies but the STE format
control, bit 53 of the segment table entry, is zero, bits 0-52,
with 11 zeros appended on the right, form a 64-bit address that
designates the beginning of a page table. It is unpredictable
whether the address is real or absolute.
(0074 STE Format Control (FC) 506: When enhanced
DAT applies, bit 53 is the format control for the segment table
entry, as follows:

0075) When the FC bit is zero, bits 0-52 of the entry
form the page table origin, and bit 55 is reserved.

0076. When the FC bit is one, bits 0-43 of the entry form
the segment frame absolute address, bit 47 is the ACCF
validity control, bits 48-51 are the access control bits, bit
52 is the fetch protection bit, and bit 55 is the change
recording override. When enhanced DAT does not apply,
bit 53 is ignored.

(0077 DAT Protection Bit (P) 508: Bit 54, when one, indi
cates that DAT protection applies to the entire segment.

0078. When enhanced DAT does not apply, bit 54 is
treated as being OR'ed with the DAT protection bit in the
page table entry used in the translation.

0079. When enhanced DAT applies, the DAT protection
bit in any and all region table entries used in the trans
lation are treated as being OR'ed with the DAT protec
tion bit in the segment table entry; when the STE format
control is zero, the DAT protection bit in the STE is
further treated as being OR'ed with the DAT protection
bit in the page table entry.

0080 Segment Invalid Bit (I) 510: Bit 58 controls whether
the segment associated with the segment table entry is avail
able.

0081. When the bit is zero, address translation proceeds
by using the segment table entry.

0082. When the bit is one, the segment table entry can
not be used for translation.

I0083 Common Segment Bit (C) 512: Bit 59 controls the
use of the translation lookaside buffer (TLB) copies of the
segment table entry. When enhanced DAT does not apply or
when enhanced DAT applies but the format control is zero, bit

US 2013/0305O23 A1

59 also controls the use of the TLB copies of the page table
designated by the segment table entry.

I0084. A Zero identifies a private segment; in this case,
the segment table entry and any page table it designates
may be used only in association with the segment table
origin that designates the segment table in which the
segment table entry resides.

I0085 A one identifies a common segment; in this case,
the segment table entry and any page table it designates
may continue to be used for translating addresses corre
sponding to the segment index, even though a different
segment table is specified.

I0086) However, TLB copies of the segment table entry and
any page table for a common segment are not usable if the
private space control, bit 55, is one in the address space
control element used in the translation or if that address space
control element is a real space designation. The common
segment bit is to be zero if the segment table entry is fetched
from Storage during a translation when the private space
control is one in the address space control element being used;
otherwise, a translation specification exception is recognized.
I0087 Table Type Bits (TT) 514: Bits 60 and 61 of the
segment table entry are 00 binary to identify the level of the
table containing the entry. The meanings of possible values of
bits 60 and 61 in a region table entry or segment table entry are
as follows:

Bits 60 and 61 Table Level

11 Region-first
10 Region-second
O1 Region-third
OO Segment

Table Type Bits 60, 61

I0088 Bits 60 and 61 are to identify the correct table level,
considering the type of table designation that is the address
space control element being used in the translation and the
number of table levels that have so far been used; otherwise,
a translation specification exception is recognized.
0089 All other bit positions of the segment table entry are
reserved for possible future extensions and should contain
Zeros; otherwise, the program may not operate compatibly in
the future. When enhanced DAT applies, the reserved bit
positions of the segment table entry should contain Zeros even
if the table entry is invalid.
0090. As one example, a Format 1 segment table entry 550
(FIG. 5B) includes the following fields:
0091 Segment Frame Absolute Address (SFAA) 552:
When enhanced DAT applies and the STE format control is
one, bits 0-43 of the entry, with 20 Zeros appended on the
right, form the 64-bit absolute address of the segment.
0092 ACCF Validity Control (AV) 556: When enhanced
DAT applies and the STE format control is one, bit 47 is the
access control bits and fetch protection bit (ACCF) validity
control. When the AV control is zero, bits 48-52 of the seg
ment table entry are ignored. When the AV control is one, bits
48-52 are used as described below.

0093. Access Control Bits (ACC) 558: When enhanced
DAT applies, the STE format control is one, and the AV
control is one, bits 48-51 of the segment table entry include
the access control bits that may be used for any key controlled
access checking that applies to the address.

Nov. 14, 2013

(0094 Fetch Protection Bit (F) 560: When enhanced DAT
applies, the STE format control is one, and the AV control is
one, bit 52 of the segment table entry includes the fetch
protection bit that may be used for any key controlled access
checking that applies to the address.
(0095 STE Format Control (FC) 562: When enhanced
DAT applies, bit 53 is the format control for the segment table
entry, as follows:

0096. When the FC bit is zero, bits 0-52 of the entry
form the page table origin, and bit 55 is reserved.

0097. When the FC bit is one, bits 0-43 of the entry form
the segment frame absolute address, bit 47 is the ACCF
validity control, bits 48-51 are the access control bits, bit
52 is the fetch protection bit, and bit 55 is the change
recording override. When enhanced DAT does not apply,
bit 53 is ignored.

(0098 DAT Protection Bit (P) 564: Bit 54, when one, indi
cates that DAT protection applies to the entire segment.

0099. When enhanced DAT does not apply, bit 54 is
treated as being OR'ed with the DAT protection bit in the
page table entry used in the translation.

0100. When enhanced DAT applies, the DAT protection
bit in any and all region table entries used in the trans
lation are treated as being OR'ed with the DAT protec
tion bit in the segment table entry; when the STE format
control is zero, the DAT protection bit in the STE is
further treated as being OR'ed with the DAT protection
bit in the page table entry.

01.01 Change Recording Override (CO) 566: When
enhanced DAT applies, and the STE format control is one, bit
55 of the segment table entry is the change recording override
for the segment. When enhanced DAT does not apply, or
when enhanced DAT applies but the STE format control is
Zero, bit 55 of the segment table entry is ignored.
0102 Segment Invalid Bit (I)568: Bit 58 controls whether
the segment associated with the segment table entry is avail
able.

0.103 When the bit is zero, address translation proceeds
by using the segment table entry.

0104. When the bit is one, the segment table entry can
not be used for translation.

0105 Common Segment Bit (C) 570: Bit 59 controls the
use of the translation lookaside buffer (TLB) copies of the
segment table entry. When enhanced DAT does not apply or
when enhanced DAT applies but the format control is zero, bit
59 also controls the use of the TLB copies of the page table
designated by the segment table entry.

0.106) A zero identifies a private segment; in this case,
the segment table entry and any page table it designates
may be used only in association with the segment table
origin that designates the segment table in which the
segment table entry resides.

0.107 A one identifies a common segment; in this case,
the segment table entry and any page table it designates
may continue to be used for translating addresses corre
sponding to the segment index, even though a different
segment table is specified.

0108. However, TLB copies of the segment table entry and
any page table for a common segment are not usable if the
private space control, bit 55, is one in the address space
control element used in the translation or if that address space
control element is a real space designation. The common
segment bit is to be zero if the segment table entry is fetched
from Storage during a translation when the private space

US 2013/0305O23 A1

control is one in the address space control element being used;
otherwise, a translation specification exception is recognized.
0109 Table Type Bits (TT) 572: Bits 60 and 61 of the
segment table entry are 00 binary to identify the level of the
table containing the entry. The meanings of possible values of
bits 60 and 61 in a region table entry or segment table entry are
as follows:

Bits 60 and 61 Table Level

11 Region-first
10 Region-second
O1 Region-third
OO Segment

Table Type Bits 60, 61

0110 Bits 60 and 61 are to identify the correct table level,
considering the type of table designation that is the address
space control element being used in the translation and the
number of table levels that have so far been used; otherwise,
a translation specification exception is recognized.
0111 All other bit positions of the segment table entry are
reserved for possible future extensions and should contain
Zeros; otherwise, the program may not operate compatibly in
the future. When enhanced DAT applies, the reserved bit
positions of the segment table entry should contain Zeros even
if the table entry is invalid.

Page Table Entries

0112 The state information for guest blocks (e.g., an area
(e.g., 4 K-Bytes) in absolute memory that has associated
therewith a single storage key and CMM state) is maintained,
for instance, in host page tables (PTs) and page status tables
(PGSTs) that describe a guest’s memory. These tables
include, for instance, one or more page table entries (PTEs)
and one or more page status table entries (PGSTEs), respec
tively, which are described in further detail below.
0113. One example of a page table entry 600 is described
with reference to FIG. 6. In one embodiment, the fields in the
page table entry are allocated as follows:
0114 Page Frame Real Address (PFRA) 602: Bits 0-51
provide the leftmost bits of a real (in this case host real)
storage address. When these bits are concatenated with the
12-bit byte index field of the virtual address on the right, a
64-bit real address is obtained.

0115 Page Invalid Bit (I) 604: Bit 53 controls whether the
page associated with the page table entry is available. When
the bit is Zero, address translation proceeds by using the page
table entry. Further, with regard to collaborative memory
management (CMM) between host and guest, the host state is
r (resident; i.e., the guest block is present in a host frame).
When the bit is one, the page table entry is not used for
translation, and the CMM host state is p (preserved; i.e., the
guest block is not present in a host frame, but has been
preserved by the host in some auxiliary storage) or Z (logi
cally Zero; i.e., the guest block is not present in a host frame
and the contents of the guest block are known to be Zeros), as
determined by PGSTE.Z.
0116 DAT Protection Bit(P) 606: Bit 54 controls whether
store accesses can be made in the page. This protection
mechanism is in addition to the key controlled protection and
low address protection mechanisms. The bit has no effect on

Nov. 14, 2013

fetch accesses. If the bit is zero, stores are permitted to the
page, Subject to the following additional constraints:

0.117 The DAT protection bit being Zero in the segment
table entry used in the translation.

0118 When enhanced DAT applies, the DAT protection
bit being Zero in all region table entries used in the
translation.

0119. If the DAT protection bit is one, stores are disal
lowed. When no higher priority exception conditions exist, an
attempt to store when the DAT protection bit is one causes a
protection exception to be recognized. The DAT protection
bit in the segment table entry is treated as being OR'ed with
bit 54 when determining whether DAT protection applies to
the page. When enhanced DAT applies, the DAT protection
bit in any region table entries used in translation are also
treated as being OR'ed with bit 54 when determining whether
DAT protection applies.
0.120. Other protection mechanisms, such as key-con
trolled protection, low-address protection, and access-list
controlled protection, may apply independently of DAT pro
tection and may also prohibit accesses.
I0121 Change Recording Override (CO) 608: When
enhanced DAT does not apply, bit 55 of the page table entry is
to contain Zero; otherwise, a translation specification excep
tion is recognized as part of the execution of an instruction
using that entry for address translation. When enhanced DAT
applies and the STE format control is Zero, bit 55 of the page
table entry is the change recording override for the page.
0122. In addition to the above, in one example, bit position
52 of the entry is to contain Zero; otherwise, a translation
specification exception is recognized as part of the execution
of an instruction using that entry for address translation. Bit
positions 56-63 are not assigned and are ignored.
I0123. One example of a page status table entry is described
with reference to FIG. 7. A page status table entry 700
includes, for instance, the following:

0.124 (a) Acc 702: Access control key:
(0.125 (b) FP704: Fetch protection indicator;
(0.126 (c) Page Control Interlock (PCL) 706: This is the

interlock control for serializing updates to a page table
entry (PTE) and corresponding PGSTE, except for the
PGSTE status area and PGSTE bits that are marked as
reserved.

(O127 (d) HR 708: Host reference backup indicator;
0.128 (e) HC 710: Host change backup indicator;
0129 (f) GR 712: Guest reference backup indicator;
0.130 (g) GC 714: Guest change backup indicator;
0131 (h) Status 716: Intended for host program use.
0.132 (i) Page Content Logically Zero Indicator (Z)
718: This bit is meaningful when the corresponding PTE
page invalid (PTE.I) bit is one.
0.133 When Z is one, the content of the page that is
described by this PGSTE and corresponding PTE is
considered to be Zero. Any prior content of the page
does not have to be preserved and may be replaced by
a page of Zeros.

I0134. When Z is zero, the content of the page
described by the PGSTE and corresponding PTE is
not considered to be Zero. The content of the page is
preserved by the host.

0.135 When the Z bit is one and the corresponding
PTE.I bit is one, the CMM host state is Z (logically
Zero). This means that the page content may be

US 2013/0305O23 A1

replaced by the host or by a function of the Host Page
Management Assist facility.

I0136. When the Zbit is one, the corresponding PTE.I
bit is one, and the page content is replaced, the page
should be replaced by associating it with a frame that
has been set to Zeros.

0.137 When the Zbit is Zero and the PTE invalid bit
is one, the CMM host state is p (preserved).

I0138 () Page Class (PC) 720: When Zero, the page
described by the PGSTE and corresponding PTE is a
class 0 page and the delta pinned page count array (DP
PCA) for class 0 pages is used for counting pinning and
unpinning operations for the page. When one, the page
described by the PGSTE and corresponding PTE is a
class 1 page and the DPPCA for class 1 pages is used for
counting pinning and unpinning operations for the page.

I0139 (k) Pin Count Overflow (PCO) 722: When one,
the pin count field is in an overflow state. In this case, the
total pin count is kept by the host in another data struc
ture not accessed by the machine. When Zero, the pin
count field is not in an overflow state.

0140 (1) Frame Descriptor On Processed Frame
Descriptor List (FPL)724: When one, a frame descriptor
for the page described by the PGSTE and corresponding
PTE is in a processed frame descriptor list. The frame
descriptor identifies the host frame that was used by a
HPMA resolve host page function for the page.

0141 (m) Page Content Replacement Requested (PCR)
726: When one, page content replacement was requested
when the HPMA resolve host page function was invoked
for the page represented by the PGSTE and correspond
ing PTE.

0142 (n) Usage State (US) 728: For collaborative
memory management between host and guest, this field
indicates whether the guest state is S (stable; i.e., the
contents of a stable block remain equal to what was set
by the guest); U (unused; i.e., the contents of an unused
block are not meaningful to the guest); V (volatile; i.e.,
the contents of a volatile block are meaningful to the
guest, but the host may at any time discard the contents
of the block and reclaim the backing frame); or P (poten
tially volatile; i.e., the contents of a potentially volatile
block are meaningful to the guest, but based upon guest
change history, the host either may discard or should
preserve the contents of the block).

0.143 (o) Status 730: Intended for host program use.
0144 (p) Pin Count 732: An unsigned binary integer
count used to indicate whether the content of the host
virtual page represented by the PGSTE and correspond
ing PTE is pinned in the real host frame specified by the
page frame real address field of the PTE. When the value
of this field is greater than Zero or the page count over
flow (PCO) bit is one, the corresponding page is consid
ered to be pinned. When the value of this field is zero and
the PCO bit is Zero, the corresponding page is not con
sidered to be pinned.
0145 At the time a page is pinned by either the host
or the CPU, this field should be incremented by 1. At
the time a page is unpinned by either the host or the
CPU, this field should be decremented by 1.

0146 When the value of the pin count field is greater
than Zero or the PCO bit is one, the corresponding
PTE.I (page invalid) bit is to be zero. Otherwise,
unpredictable results may occur.

Nov. 14, 2013

0147 While a page is pinned, the host program
should not change the contents of the PTE page frame
real address (PFRA) field, the setting of the PTE page
invalid (I) bit, or the setting of the page protection (P)
bit in the PTE or segment table entry (STE). Other
wise unpredictable results may occur.

0.148. Further details regarding page table entries and page
tables, as well as segment table entries, are provided in an
IBM(R) publication entitled, “Z/Architecture Principles of
Operation.” IBM(R) Publication No. SA22-7832-05, April
2007, which is hereby incorporated herein by reference in its
entirety. Moreover, further details regarding the PGSTE are
described in U.S. Publication No. 2005/0268071A1, entitled
“Facilitating Management of Storage of a Pageable Mode
Virtual Environment Absent Intervention of a Host of the
Environment. Blandy et al., published Dec. 1, 2005; and in
U.S. Patent Application Publication No. US 2007/0016904
A1, entitled, “Facilitating Processing Within Computing
Environment Supporting Pageable Guests. Adlung et al.,
published Jan. 18, 2007, each of which is hereby incorporated
herein by reference in its entirety.
0149. In one embodiment, there is one page status table
per page table, the page status table is the same size as the
page table, a page status table entry is the same size as a page
table entry, and the page status table is located at a fixed
displacement (in host real memory) from the page table.
Thus, there is a one-to-one correspondence between each
page table entry and page status table entry. Given the hosts
virtual address of a page, both the machine and the host can
easily locate the page status table entry that corresponds to a
page table entry for a guest block.

Perform Frame Management Function (PFMF)

0150. In accordance with an aspect of the present inven
tion, optimizations are provided for one or more aspects of a
Perform Frame Management Function. Thus, prior to
describing the optimizations, one example of the PFMF
instruction and processing associated therewith are
described. This is to facilitate an understanding of one or
more aspects of the present invention.
0151. As one example, a format of a Perform Frame Man
agement Function is described with reference to FIG. 8A. As
depicted, a PFMF instruction 800 includes an opcode 802
identifying the PFMF instruction, a first register field 804
including a first operand, and a second register field 806
indicating a second operand address.
0152 Subject to the controls in the first operand register, a
frame management function is performed for the storage
frame designated by the second operand address.
0153. One example of the contents of general register R1
804 (R1 designates a general register) are described with
reference to FIG. 8B and include, for instance:
0154 Frame Management Function Indications 810: Bit
positions 44-47 of general register R1 include the frame man
agement function indications (FMFI), as follows:

(O155 Set Key Control (SK) 812: Bit 46 controls
whether the storage key for each 4K-byte block in the
frame is set from bits 56-62 of general register R1. When
the SK control is zero, the keys are not set; when the SK
control is one, the keys are set.

0156 Clear Frame Control (CF) 814: Bit 47 controls
whether the contents of the frame are set to zeros. When

US 2013/0305O23 A1

the CF control is Zero, no clearing operation is per
formed. When the CF control is one, the frame is cleared
tO ZeroS.

0157 Usage Indication (UI) 816: Bit position 48 of gen
eral register R1 includes the usage indication (UI). When bit
48 is Zero, it indicates that the program does not anticipate
immediate usage of the frame. When bit 48 is one, it indicates
that the program anticipates usage of the frame in the near
future. The definition of immediate or near future is a program
dependent indication of likelihood of the program using the
frame in the immediate or near future. That is, it is a program
defined time. For instance, if the guest operating system is
using PFMF to provide memory requested by an application,
for instance through a GETMAIN or malloc() request, then
immediate usage is likely, so UI would be set to one. If the
application has returned the memory which the frame backs,
for instance through a FREEMAIN or free() request, and the
operating system is using PFMF to clear the frame prior to
placing it into an available pool, imminent usage is not likely,
so UI would be set to zero. Other examples are also possible.
0158 Frame Size Code (FSC) 818: Bits 49-51 of general
register R1 include the frame size code (FSC), as follows:

FSC Meaning

O 4K-byte frame
1 1M-byte frame

2-7 Reserved

Meaning of frame size codes

0159 Reference Bit Update Mask (MR)820: When the set
key control, bit 46 of general register R1, is one, bit 53 of
general register R1 controls whether updates to the reference
bit in the storage key may be bypassed.
(0160 Change Bit Update Mask (MC) 822: When the set
key control, bit 46 of general register R1, is one, bit 54 of
general register R1 controls whether updates to the change bit
in the storage key may be bypassed.
0161 In one embodiment, the handling of the MR and MC

bits is the same as the handling of the corresponding bits of
the M3 field of a Set Storage Key Extended instruction,
except that general register R1 is not updated with the con
tents of the previous key, and the condition code is not
changed.
0162 Key 824: When the set key control, bit 46 of general
register R1, is one, bits 56-62 of the register include the
storage key to be set for each 4K-byte block in the frame, with
the access protection bits 826, fetch protection bit 828, refer
ence bit 830, and change bit 832 in bit positions 56-59, 60, 61,
and 62, respectively.
0163 General register R2 806, examples of which are also
depicted in FIG. 8B, includes, for instance, the real or abso
lute address 850 of the storage frame upon which the frame
management function is to be performed. When the frame
size code designates a 4K-byte block, the second operand
address is real; when the frame size code designates a
1M-byte block the second operand address is absolute. The
handling of the address in general register R2 depends on the
addressing mode. In the 24-bit addressing mode, the contents
of bit positions 40-51 of the register, with 12 rightmost Zeros
appended, are the address, and bits 0-39 and 52-63 in the
register are ignored. In the 31-bit addressing mode, the con
tents of bit positions 33-51 of the register, with 12 rightmost

Nov. 14, 2013

Zeros appended, are the address, and bits 0-32 and 52-63 in
the register are ignored. In the 64-bit addressing mode, the
contents of bit positions 0-51 of the register, with 12 right
most zeros appended, are the address, and bits 52-63 in the
register are ignored.
0164. In processing a PFMF instruction, the following
occurs, in one example:
0.165. When the frame size code is 0, the specified frame
management functions are performed for the 4K-byte frame
specified by the second operand. General register R2 is
unmodified in this case.
0166 When the frame size code is 1, the specified frame
management functions are performed for one or more
4K-byte blocks within the 1M-byte frame, beginning with the
block specified by the second operand address, and continu
ing to the right with each Successive block up to the next
1M-byte boundary. In this case, the Perform Frame Manage
ment Function is interruptible, and processing is as follows:

0.167 When an interruption occurs (other than one that
follows termination), the second operand addressingen
eral register R2 is updated by the number of 4K-byte
blocks processed, so the instruction, when re-executed,
resumes at the point of interruption.

0.168. When the instruction completes without interrup
tion, the second operand address in general register R2 is
updated to the next 1M-byte boundary.

(0169. When the frame size code is 1 in the 24-bit or 31-bit
addressing modes, the leftmost bits which are not part of the
address in bit positions 32-63 of general register R2 are set to
Zeros; bits 0-31 of the register are unchanged.
(0170 When the clear frame control is one, references to
main storage within the second operand are not necessarily
single access references and are not necessarily performed in
a left-to-right direction as observed by other CPUs and by
channel programs. The clear operation is not subject to key
controlled protection.
0171 When the storage key control is one, the operation
for each 4K-byte block is similar to that described in relation
to the SSKE except that when the keys for multiple blocks are
set, the condition code and the contents of general register R1
are unchanged.
0172 A serialization and checkpoint synchronization
function is performed before the operation begins and again
after the operation is completed, except that when the seven
bits of the storage keys to be set are the same as bits 56-62 of
general register R1, or when the MR and MC bits allow the
storage keys to remain unchanged, it is unpredictable whether
the serialization and checkpoint synchronization operations
are performed after the operation completes. It is unpredict
able whether the clear frame or the set key operation is per
formed first when both of the respective controls are one.
Provided that there is no other access to the storage by other
CPUs or a channel subsystem, the final results of the instruc
tion reflect the specified key value including the specified R
and C values when MR and MC are zero.

Special Conditions
0173 A specification exception is recognized and the
operation is Suppressed for any of the following conditions:

(0174 Bits 32-45, 52,55, or 63 of general register R1 are
not Zero.

0.175. The frame size code specifies a reserved value.
0176 Condition Code: The code remains unchanged.

US 2013/0305.023 A1

Perform Frame Management Function (PFMF) Clear
Frame

(0177. One embodiment of the logic of the Perform Frame
Management Function in which the indicated frames are
cleared is described with reference to FIG.9A.
(0178 Generally, this embodiment involves, at 900,
obtaining a machine instruction defined for the machine
architecture. The instruction includes an opcode for a frame
management instruction. The machine instruction has a first
field identifying a first general register and a second field
identifying a second general register. At 902, clear frame
information having a frame size field is obtained from the first
general register. At 904, a determination is made whether the
frame size field indicates that a storage frame is one of a small
block of data in memory or a large block of data in memory.
Then, at 906, a second operand address of the storage frame
upon which the machine instruction is to be performed is
obtained from the second general register. The second oper
and address being either a real address of the small block of
data in memory or an absolute address of the large block of
data in memory. At 908, if the indicated storage frame is a
small block of data, then the small block of data is cleared by
setting the bytes of the small block of data to zero. At 910, if
the indicated storage frame is a large block of data, an operand
address of an initial first block of data of the large block of
data is obtained from the second general register. The large
block of data having a first plurality of first blocks of data. A
second plurality of the first plurality of first blocks of data is
cleared by setting the bytes of the second plurality of the first
plurality of first blocks of data to zero.
(0179 The embodiment further involving obtaining a
block size indicator from a field of the machine instruction.
Based on the block size indicator, a determination is made
whether the addressed operand is either the large block of data
or the small block of data. The small block of data being a
same size as the first block of data. For the large block of data,
an address of a next block of data is saved in the second
general register. The next block of data being a block of data
following the first plurality offirst blocks of data. For the large
block of data, the address of the next block of data being
determined by any one of a) encountering a boundary of the
large block of data or b) responding to a program interruption
event.

0180. In another embodiment, clear frame information is
obtained from the first general register. The clear frame infor
mation having a frame size field indicating whether a storage
frame is one of a small block of data in memory or a large
block of data in memory. If the indicated storage frame is a
Small block of data, clearing the small block of data. The
clearing operation setting the bytes of the small block of data
to Zero. If the indicated storage frame is a large block of data,
obtaining from a second general register an operand address
of an initial first block of data of the large block of data. The
large block of data having a first plurality of first blocks of
data. If the indicated storage frame is a large block of data,
clearing a second plurality of the first plurality of first blocks
of data, wherein the clearing sets the bytes of the second
plurality of first blocks of data to zero.
0181. In another embodiment, a block size indicator is
obtained from a field of the machine instruction. Based on the
block size indicator, determining the addressed operand is
either the large block of data or the small block of data,
wherein the small block of data is the same size as the first
block of data. For the large block of data, saving an address of

Nov. 14, 2013

a next block of data in the second general register, the next
block of data being a block of data following the first plurality
of first blocks of data. For the large block of data, the address
of the next block of data being determined by either encoun
tering a boundary of the large block of data or responding to
a program interruption event.

Perform Frame Management Function (PFMF) Storage
Keys

0182 One embodiment of the logic of the Perform Frame
Management Function in which the associated storage keys
are set according to the instruction is described with reference
to FIG.9B.
0183 Generally, this embodiment involves, at 950, first
obtaining a machine instruction defined for the machine
architecture, which includes an opcode for a frame manage
ment instruction. The machine instruction has a first field
identifying a first general register and a second field identi
fying a second general register. At, 952, obtaining from the
second general register the address of an initial first block of
data within a large block of data in main storage or memory.
At 954, frame management information is obtained from the
first general register. The frame management information
includes a key field. The key field having first access protec
tion bits. At 956, for a large block of data, a second operand
address of an initial first block of data of the large block of
data is obtained from the second general register. The large
block of data having a first plurality of first blocks of data.
Each of the first plurality of first blocks having a correspond
ing storage key of a first plurality of storage keys. Each
storage key having storage access protection bits. Then, for
the large block of data, the access protection bits of the key
field are set into the storage access protection bits of each
storage key of a second plurality of the storage keys.
0184 For the small block of data, an operand address of
the small block of data is obtained from the second general
register. The small block of data having a corresponding
storage key. The storage key having storage access protection
bits. For the small block of data, the access protection bits of
the key field are set into the storage access protection bits of
the storage key.
0185. In another embodiment, a frame management field
is obtained from the first general register. The field has a key
field with a plurality of access-protection bits and a block size
indication. If the block size indication indicates a large block,
a second operand address of a first block of data within a large
block of data is obtained from a second general register The
large block of data having a plurality of blocks of data,
wherein each of the plurality of blocks of data is associated
with a corresponding storage key with a plurality of storage
key access-protection bits. If the block size indication indi
cates a large block, the storage key access-protection bits of
each corresponding storage key of each of the plurality of
small blocks of data are set with the access-protection bits of
the key field.
0186 Alternatively, if the block size indication indicates a
Small block, obtaining from the second general register an
operand address of the small block of data. The small block of
data having a corresponding storage key having storage
access-protection bits. If the block size indication indicates a
small block, the access-protection bits of the key field are set
into the storage access-protection bits of the storage key.
0187. In another embodiment, the block size indication is
obtained from any field of the machine instruction, or a field

US 2013/0305O23 A1

of the first general register. Based on the block size indication,
determining whether the addressed operand is one of the large
block of data or the small block of data. The small block of
data being a same size as the first block of data. The operand
address being one of an absolute address of the large block of
data or the real address of the small block of data. The real
address further being subject to prefixing to determine the
absolute address. Further, for the large block of data, saving
an address of a next block of data in the second general
register, the next block of data being a block of data following
the first plurality of first blocks of data. Additionally, for the
large block of data, determining the address of the next block
of data by any one of encountering a boundary of the large
block of data or responding to a program interruption event.
0188 In yet another embodiment, the frame management
field further having a reference control field and a change
control field. The key field further having a fetch-protection
bit, a change bit and a reference bit. The storage key further
having a storage fetch-protection bit, a storage reference bit
and a storage change bit. For the large block of data, if the
reference control field and the change control field are not
enabled, setting the fetch-protection bit, the reference bit and
the change bit of the key field into corresponding storage
fetch-protection bits, storage reference bits and storage
change bits of each storage key of the second plurality of the
storage keys. If either the reference control field or the change
control field are enabled and either the access-protection bits
of the key field are not equal to the storage access-protection
bits of the storage key or the protection bit is not equal to the
storage protection bit, setting the fetch-protection bit, the
reference bit and the change bit of the key field into the
corresponding storage fetch-protection bits, storage refer
ence bits and storage change bits of each storage key of the
second plurality of the storage keys. If the reference control
field and the change control field are enabled, the access
protection bits of the key field being equal to the storage
access-protection bits of the storage key, and the fetch-pro
tection bit being equal to the storage fetch-protection bit, not
changing the storage fetch-protection bits, storage reference
bits and storage change bits of each storage key of the second
plurality of the storage keys.

PFMF Optimizations for Pageable Guests
0189 In accordance with an aspect of the present inven

tion, the guest memory that is the target of a PFMF instruction
may or may not be backed by host memory. If the guest
memory is backed by host memory, then the instruction per
forms as above. However, if the guest memory is not backed
by host memory, then certain optimizations can be performed
absent host intervention. For example, if the PFMF instruc
tion is to perform a clear operation (e.g., logically set a guest
frame to Zero or Zero the frame), the operation is performed
without bringing in the prior host page contents from auxil
iary storage to host memory. There is no reason to bring in the
contents just to overlay the contents with zeros. Furthermore,
the copy of the host page on auxiliary storage is no longer
needed and may be discarded. Further, if the PFMF instruc
tion is to perform a set key operation, then that operation is
optimized to use the key stored in a host control block (i.e., the
PGSTE). That is, there is a field in the PGSTE to hold the
storage key value when the frame is not backed in host
memory.
0190. An overview of the optimizations realized when a
clear operation is being performed is described with reference

Nov. 14, 2013

to FIG. 10. In one example, the clear operation is specified in
a PFMF instruction. However, in another embodiment, this is
not so. The clear operation is specified by itself or in another
instruction, etc. In the example herein, the guest frame is a
host page and the page is 4K-bytes. However, in other
examples, the guest frame may be other than a host page
and/or the host page may be other than 4K-bytes. For
example, the guest frame may be a large frame backed by
multiple Small host pages, or the guest frame may be a small
frame backed by a portion of a large (for example, 1M-byte)
host page. FIG. 10 illustrates a clear operation as it applies to
a single host page. If multiple host pages are involved, then
the process of FIG. 10 is effectively repeated for each host
page. FIG. 11, to be described later, illustrates this case in
detail.

0191 Referring to FIG. 10, initially, a determination is
made as to whether the host page containing the guest frame
that is the target of the clear operation is resident in host
memory, INQUIRY 1000. If it is resident (e.g., if invalid bit
604 is off in host PTE 600), then the page is cleared, as if it
was a native instruction performing the clear operation, STEP
1002. However, if the page is not resident (i.e., the guest
frame is not backed by host memory (e.g., the invalid bit is
on)), then a further determination is made as to the intended
usage of the page, INQUIRY 1004. If a usage intention (UI)
indicator is set to, for instance, Zero indicating that the pro
gram is not intending to use this guest frame in the immediate
future, then a host frame is not committed at this time.
Instead, the following actions are taken absent host interven
tion: the host page is marked logically Zero by, for example,
setting the Z indicator in the page status table entry corre
sponding to this page, STEP 1006; the host page containing
this guest frame is left non-resident, STEP 1008; and the
guest absolute address (as an example) of the page is placed
onto a backing reclaim log, so that the host knows that it can
reclaim the backing auxiliary storage which holds the prior
contents, STEP 1010.
(0192 Returning to INQUIRY 1004, if the usage indicator
is, for instance, set to one indicating that the guest frame is
about to be referenced (again, as defined by the program),
then the host page mapping the guest frame is made resident
without host intervention through, for instance, an HPMA
resolve operation. For example, a host frame is pulled off of a
list of cleared available frames, STEP1012, and is attached to
the host page, STEP 1014. The list of cleared available frames
includes one or more pre-cleared host frames. By attaching
the cleared host frame to the host page, the guest frame
mapped in that host page is backed (made host resident) by
host memory already cleared. Further details on HPMA
resolve are described below with reference to FIG. 13.

0193 Further details regarding processing a PFMF
instruction (or one or more operations of the PFMF instruc
tion) in a pageable guest environment, such that the perfor
mance of the operations is optimized, are described with
reference to FIGS. 11A-11E. In particular, FIGS. 11A-11E
depict one embodiment of the logic to process a Perform
Frame Management Function by a pageable guest, in accor
dance with one or more aspects of the present invention.
Although this logic describes aspects of executing the PFMF
instruction by a pageable guest, one or more aspects of the
present invention are equally applicable to the clear frame
and/or set key operations of the instruction separate and apart
from the PFMF instruction. Further, for one or more aspects
of the present invention, it is not necessary to perform both the

US 2013/0305O23 A1

clearframe and set key functions. Aspects of the invention can
apply to just one or the other or both.
0194 Referring to FIG. 11a, initially various housekeep
ing details are handled, in this embodiment. In other embodi
ments, however, one or more of these details can be ignored or
eliminated. A determination is made as to whether the guest is
in the Z/Architecture(R) mode and whether the enhanced
Dynamic Address Translation (DAT) facility (EDAT) is
installed, INQUIRY 1100. If either the guest is not in Z/Ar
chitecture(R) mode or if EDAT is not installed, then a guest
operation exception is presented, STEP 1102. In this
example, PFMF is available under the enhanced DAT facility
of Z/Architecture(R). However, this may be different for other
embodiments. One example of EDAT is described in U.S.
Publication No. 2009/0187724A1, entitled, “Dynamic
Address Translation with Frame Management.” Greineret al.,
(IBM Docket No.: POU920070313US1), published Jul 23,
2009, which is hereby incorporated herein by reference in its
entirety.
(0195 Should EDAT be installed under the Z/Architec
ture(R), then a further determination is made as to whether the
host has enabled interpretive execution of PFMF for this
guest, INQUIRY 1104. As one example, this is indicated by a
bit in a control block, known as a state description, that is
created by the host to represent the state of a virtual machine
and is used by the firmware in interpretive execution.
0196. If the host has not enabled interpretive execution,
then an instruction interception is presented to the host, STEP
1106. This allows the host to trap the instruction, if desired,
for debugging and special-case simulation.
0.197 However, if interpretive execution is enabled, then a
check is made to see if the guest program status word (PSW)
specifies problem state, INQUIRY 1108. If so, then a guest
privileged operation exception is presented, STEP 1110. In
this embodiment, PFMF is a privileged instruction for use by
operating systems, not application programs. This may be
different, however, in other embodiments.
(0198 Should the PSW not specify problem state, then a
determination is made as to whether the reserved bits are
non-Zero in general register R1 (i.e., the general register
whose number appears as the R1 operand in the instruction),
or if the frame size code (FSC) in R1 has a value other than
binary 000 or 001, INQUIRY 1112. If the reserved bits are
non-Zero or the frame size code has a value other than binary
000 or 001, then a guest specification exception is presented,
STEP 1114.

0199. Otherwise, the guest absolute address is obtained,
STEP 1116. In one example, to obtain the guest absolute
address, the frame size code in register R1 is examined. If
FSC is binary 000, then the operand is a 4K-byte guest frame
specified by the guest real address in R2. Guest prefixing is
applied to derive the target guest absolute address. If FSC is
binary 001, then the operand is a 1M-byte frame specified by
the guest absolute address in R2. This address is used as is.
0200. Thereafter, an interval completion indicator in the
state description is set and a checkpoint synchronization
operation is performed, STEP1118. This is done so that if a
machine failure occurs during Subsequent processing, the
host can recognize that host data structures may have been
corrupted.
0201 For each 4K-byte block of guest storage designated
by the operand, i.e., for a single 4K-byte frame if FSC is
binary 000 or for each of the 4K-byte blocks beginning with

Nov. 14, 2013

the operand address and continuing to the next 1M-byte
boundary if FSC is binary 001, the following steps are per
formed, STEP 1120:

0202 The guest absolute address of the frame is treated
as a host virtual address, and host dynamic address trans
lation is performed on that address to locate the leafhost
DAT-table entry (either a valid format-1 segment table
entry designating a large host frame or a page table entry
indicating a small frame size), STEP 1122. Examples of
DAT are described in “Z/Architecture Principles of
Operation.” IBM(R) Publication No. SA22-7832-05,
April, 2007; and U.S. Publication No. 2009/
0187724A1, entitled, “Dynamic Address Translation
with Frame Management.” Greiner et al., (IBM Docket
No.: POU920070313US1), published Jul 23, 2009,
each of which is hereby incorporated herein by reference
in its entirety.

0203 Various error processing associated with DAT is
described with reference to FIG. 12. For instance, if a
host ASCE-type, region translation or segment transla
tion exception condition is encountered preventing the
leaf host DAT table entry for the translation from being
located, INQUIRY 1200, then checkpoint synchroniza
tion is performed and an interval completion indicator is
turned off, STEP 1201. This indicates to the host that
updates to the host data structures are complete, and the
structures are in a consistent state should a machine
failure occur. Additionally, the remainder of instruction
execution is suppressed and an instruction interception
is presented to the host, STEP 1202. This allows the host
to resolve the fault condition and at the same time, opti
mize the handling of PFMF for the case where there is no
prior backing content and no host page table or page
status table is available.

0204 Otherwise, in one embodiment, if FSC is binary
001, specifying a large (e.g., 1 MB) guest frame, and
storage is mapped by Small host pages (format control
(FC) in host segment table entry is zero), INQUIRY
1204, then checkpoint synchronization is performed and
an interval completion indicator is turned off. STEP
1201. Further, an instruction interception is presented to
the host, STEP 1202. This allows the host to optimize
handling by discarding any prior Small-frame backing
and backing with a large host frame, if desired. In other
embodiments, this test may be omitted or made condi
tional on, for example, a control bit in the state descrip
tion.

0205 If the case tested at INQUIRY 1204 does not
apply (or if, in another embodiment, the test is
bypassed), a determination is next made as to whether
host DAT protection is indicated in any of the host RTEs,
STE or PTE used in the translation, and either the clear
frame (CF) or the set key (SK) operation is requested in
the R1 operand, INQUIRY 1206. For the PFMF instruc
tion, DAT protection is recognized even if the leaf host
table entry is invalid, to prevent handling which would
alter the content of the host page or storage key in the
non-host-resident case. If DAT protection is indicated,
then checkpoint synchronization is performed and an
interval completion indicator is turned off. STEP 1207.
Additionally, a protection exception is presented, STEP
1208.

0206. Otherwise, if any other access exception is
encountered, such as an invalid host address, INQUIRY

US 2013/0305O23 A1

1210, then checkpoint synchronization is performed and
an interval completion indicator is turned off. STEP
1211. Additionally, this access exception is presented, as
usual, STEP1212.

0207 Returning to FIG. 11A, subsequent to performing
host dynamic address translation to locate the leafhost
DAT table entry, a determination is made as to whether
the host ASCE was a real-space designation (RSD), for
which there are notable entries, or whether the leafentry
is a format-1 STE, INQUIRY 1124. In either of these
cases, the guest frame is resident in host memory, so
optimizations are not needed. A clear frame and/or set
key function, as requested in the CF and SK indicators of
the R1 operand, is/are performed directly into the des
ignated 4K-byte block within the host memory contain
ing the guest frame, STEP 1126. In the case of a host
RSD, this is the 4K-byte block at the host real address
matching the guest absolute address. In the case of a
format-1 STE, this is the large frame designated by the
segment frame absolute address field of this STE. Pro
cessing then continues by advancing to the next 4K-byte
block, if any, STEP 1166 (FIG. 11D), described below.

0208. On the other hand, if the host ASCE is not an RSD
and the leaf entry is not a format-1 STE, INQUIRY
1124, then the leaf entry is a PTE and processing con
tinues, as described below.

0209. The PGSTE associated with the host PTE is
located, STEP 1128, for example, by adding a fixed
offset to the PTE address to obtain the PGSTE address.
Next, a determination is made as to whether the PGSTE
is at an invalid address, INQUIRY 1130. If so, then a
checkpoint-synchronization operation is performed and
the interval completion indicator is turned off. STEP
1131. Further, instruction execution is terminated and a
validity interception is presented to the host, STEP
1132. This signifies an error in the host data structures.

0210. If the PGSTE address is valid, INQUIRY 1130,
an attempt is made to obtain the page control lock (PCL)
in the host PGSTE corresponding to the host PTE, STEP
1133. In one example, this attempt is made by changing
the PCL bit from Zero to one using an interlocked
update. If this operation fails because the PCL bit is
already one, INQUIRY 1134, then a checkpoint syn
chronization operation is performed and the interval
completion indicator is turned off, STEP 1135. More
over, the remainder of the instruction is Suppressed and
an instruction interception is presented to the host, STEP
1136.

0211 Should the PCL be obtained successfully,
INQUIRY 1134, then the host PTE is fetched and exam
ined, STEP 1138. If the invalid bit in the PTE is off,
signifying that the page is resident in host storage,
INQUIRY 1140, then a clear frame and/or set key func
tion, as requested in the CF and SK indicators of the R1
operand, is/are performed directly into the designated
host Small (4K-byte) frame designated by the page
frame real address field of this PTE, STEP 1142. Pro
cessing then proceeds to INQUIRY 1160 (FIG. 11D), as
described below.

0212. Returning to INQUIRY 1140, if the invalid bit is
on, and a clear frame function is requested (i.e., the CF
indicator is on), INQUIRY 1144 (FIG. 11C), then pro
cessing of the clear frame operation proceeds according
to one of the following scenarios:

Nov. 14, 2013

0213 (1) If the usage indicator in the R1 operand is
on (e.g., set to 1) specifying that the guest has indi
cated that it intends to make use of the frame contents
in the near future, INQUIRY 1146, then a Host Page
Management Assist (HPMA) resolve operation is per
formed to make the host page resident with Zero con
tents, STEP 1148.
0214. One example of the HPMA operation is
described in U.S. Publication No. 2005/0268071
A1, entitled “Facilitating Management of Storage
of a Pageable Mode Virtual Environment Absent
Intervention of a Host of the Environment,” Blandy
et al., published Dec. 1, 2005, which is hereby
incorporated herein by reference in its entirety.
Moreover, one example of HPMA resolve process
ing, in accordance with an aspect of the present
invention, is described further below with refer
ence to FIGS. 13 A-13B.

0215. As described with reference to FIGS. 13 A
13B, if HPMA resolve processing fails, then pro
cessing of the guest PFMF instruction stops at this
point, with an instruction interception or validity
interception presented to the host. Otherwise, pro
cessing continues at INQUIRY 1160 (FIG. 11D),
described below.

0216 (2) If the usage indicator in the R1 operand is
off (e.g., set to 0), INQUIRY 1146, and the logically
zero (Z) bit in the PGSTE is off, INQUIRY 1150, then
the guest absolute (i.e., host virtual) address of this
4K-byte block is appended to the CMM (Collabora
tive Memory Management) backing reclaim log
(CBRL) designated by the state description, STEP
1152. One example of the CBRL and associated pro
cessing is described in U.S. Patent Application Pub
lication No. US 2007/0016904 A1, entitled, “Facili
tating Processing Within Computing Environment
Supporting Pageable Guests. Adlung et al., pub
lished Jan. 18, 2007, which is hereby incorporated
herein by reference in its entirety. Moreover, one
example of appending to the CBRL, in accordance
with an aspect of the present invention, is described
further below with reference to FIG. 14.
0217. As described with reference to FIG. 14, if
appending to the CBRL fails, then processing of the
guest PFMF instruction stops at this point, with an
instruction interception or validity interception
presented to the host. Otherwise, the Zbit, which
causes Subsequent host or firmware actions to treat
the host page contents as Zeros and allows HPMA
resolve to provide a host frame of Zeros when the
guest later references this storage, is set, STEP
1153, and processing continues at INQUIRY 1154,
as described below.

0218 (3) If the usage indicator is off, INQUIRY
1146, and the Z bit is already on, INQUIRY 1150,
then no action is needed to clear the contents. The
page is already marked as logically Zero. Processing
continues at INQUIRY 1154, as described below.

0219. If the invalid bit is on, INQUIRY 1140 (FIG.11B)
and the set key function is requested (i.e., the SK bit is
on), INQUIRY 1154 (FIG.11C), then the access control
and fetch protection (ACC.F) values 826, 828 from the
R1 operand are placed into the ACC and FP fields 702,
704, respectively, of the PGSTE, STEP 1156, and guest

US 2013/0305O23 A1

reference and guest change fields 712,714 in the PGSTE
are set based on the Rand C values 830,832 specified in
the R1 operand, STEP 1158. This records the requested
key value with the host page, so that it can be interro
gated in the PGSTE, while the host page is not host
resident, and set into the host frame when the page is
later made resident.

0220. If either the clear frame or the set key function
was requested, INQUIRY 1160 (FIG. 11D), then the
CMM block usage state in the PGSTE is set to stable
(e.g., binary 00), STEP 1162. This is the appropriate
setting for a guest frame being put into use. Handling
this here takes advantage of the PCL already being held
and avoids a separate instruction (e.g., ESSA instruc
tion) by the guest.

0221. Thereafter, or if neither clear nor set was
requested, the PCL is released, STEP 1164, by, for
instance, setting the PCL bit in the PGSTE to zero, and
processing for this 4K-byte block is complete.

0222 Next, a determination is made as to whether a
large (e.g., 1M-byte) guest frame size was specified
(e.g., FSC=001), INQUIRY 1166. If so, then 4Kisadded
to the operand address in R2, STEP 1168, and a deter
mination is made as to whether this addition resulted in
an address beyond the end of the guest frame specified as
the operand, INQUIRY 1170. That is, if the addition
results in a carry into the next megabyte address, then the
loop to process each 4K-byte block in the 1M-byte guest
frame, which began at STEP1120, is exited. If the end of
the guest frame has not yet been reached, then a deter
mination is next made as to whether an asynchronous
interruption is pending, INQUIRY 1172. If an asynchro
nous interruption is pending, the unit of operation is
nullified, STEP 1174. For instance, the instruction
address in the guest PSW is backed up to point to this
PFMF instruction. Thereafter, the loop is exited. This
allows the interruption to be taken, after which the
PFMF instruction can be re-executed and will resume
with the next 4K-byte block to be processed.

0223) If there is no asynchronous interruption pending,
INQUIRY 1172, then processing returns to STEP 1120
and the logic is repeated with the next 4K-byte block.

0224. After exiting the loop, a checkpoint synchronization
operation is performed, STEP1180 (FIG.11E), and the inter
Val completion indicator in the state description is turned off.
STEP1182. This indicates to the host that updates to the host
data structures are complete, and they are in a consistent state
should a machine failure occur. Processing of the guest PFMF
instruction is now complete.
0225. In the above description, reference is made to
HPMA resolve processing. Further details regarding one
embodiment of this processing are described with reference
to FIGS. 13 A-13B. In this embodiment, HPMA resolve is
used to assign host frames to host pages. Initially, the anchor
of the available frame descriptor list (e.g., at location 210 hex
in the host prefix area) is examined, STEP1300. If the anchor
is zero indicating that the list is empty, INQUIRY 1302, then
the PCL is released, a checkpoint synchronization operation
is performed, and the interval completion indicator is turned
off. STEP 1304. In one example, the PCL is released by
setting the PCL bit in the PGSTE to zero. Additionally, the
remainder of the instruction processing is suppressed, STEP
1306, and an instruction interception is presented to the host,

14
Nov. 14, 2013

STEP 1308. This allows the host to complete the execution of
the guest PFMF, as well as to replenish the available frame list
for future use.
0226 Returning to INQUIRY 1302, if the anchor is not
Zero, the host frame address is extracted from the frame
descriptor at the front of the list (i.e., the one to which the
anchor points), STEP 1310. This is an address of a frame
available for use whose contents the host has already cleared
tO ZeroS.

0227. If the set key function is requested (i.e., the SK
indicator is on), INQUIRY 1312, then the access control and
fetch protection field in the storage key of this host frame is set
based on the key value specified in the R1 operand, STEP
1314. Further, the reference and change indicators in the
storage key are set to Zeros, STEP 1316, and the guest refer
ence and guest change indicators in the PGSTE are set to the
corresponding values specified in the R1 operand, STEP
1318.
0228. Returning to INQUIRY 1312, if the set key function

is not requested, the storage key of the frame is set to the value
already present in the access control and fetch protection
(ACC.FP) fields of the PGSTE, STEP1320, and the reference
and change bits in the storage key are set to zeros, STEP1322.
This ensures that the guest view of the storage key will have
the same value when the block is host resident that it had
before the block was made resident.
0229. In addition to setting the change bits (STEP1318 or
1322), the first frame descriptor is dequeued from the avail
able frame descriptor list by copying its forwardpointer to the
anchor, STEP 1324 (FIG. 13B).
0230. Moreover, the assignment of the host frame to the
host page is recorded by, for instance, copying the current
PTE contents into the PTE copy field of the frame descriptor
and storing the PTE address into the PTE address field of the
frame descriptor, STEP 1326. This allows the host to update
its data structures at a later point and to locate information
describing backing storage for the host page that can be
reclaimed.
0231. The page content replacement indicator is set in the
PGSTE to indicate that this is a resolve operation with content
replacement, STEP 1328. This allows the host to keep statis
tics on Such operations. Further, the page on processed list
indicator is set in the PGSTE to indicate that the frame
assigned to this page may be found on the processed frame
descriptor list, STEP 1330.
0232. The PTE is updated to remove the page invalid con
dition, STEP 1332. In one example, this is accomplished by
storing revised contents including a page frame real address
equal to the extracted frame address, an invalid bit with a
value of Zero, and remaining fields, including the DAT pro
tection bit, copied unchanged from the old PTE contents.
0233. The frame descriptor is added to the front of the
processed frame descriptor list, anchored at, for example,
location 210 hex in the host prefix area, STEP 1334. This is
accomplished by, for instance, storing the prior contents of
this anchor into the forward pointer in the frame descriptor,
and then performing an interlocked update to replace the prior
anchor contents with the address of the frame descriptor. If
the interlocked update fails because the anchor contents have
changed during this step, then the step is repeated until it
Succeeds. This concludes the processing associated with the
HPMA resolve operation.
0234 Reference is also made in the above description to
processing associated with appending to the CMM backing

US 2013/0305O23 A1

reclaim log (CBRL). One embodiment of the logic associated
with this processing is described with reference to FIG. 14.
Initially, a determination is made as to whether the CBRL
origin in the state description is Zero, INQUIRY 1400. If the
CBRL origin is zero signifying that there is no CBRL, then
the PCL is released, a checkpoint synchronization operation
is performed, and the interval completion indicator is turned
off, STEP 1402. Further, the remainder of the PFMF instruc
tion execution is suppressed, STEP 1404, and an instruction
interception is presented to the host, STEP 1406. This allows
the host to allocate memory for a CBRL or to handle the
PFMF in simulation.
0235 If the CBRL origin is not zero, but it designates an
invalid address, INQUIRY 1408, the PCL is released, a
checkpoint synchronization operation is performed, and the
interval completion indicator is turned off. STEP 1410. More
over, the remainder of the instruction execution is Suppressed,
STEP 1412, and a validity interception is presented to the
host, STEP 1414. This signifies an error in the host data
Structures.

0236 Should the CBRL origin designate a valid address, a
determination is made as to whether the CBRL next entry
offset (NEO) is a given value (e.g., hex FF8), signifying that
the CBRL is full, INQUIRY 1416. If so, the PCL is released,
a checkpoint synchronization operation is performed, and the
interval completion indicator is turned off. STEP 1402. Addi
tionally, the remainder of instruction execution is Suppressed,
STEP 1404, and an instruction interception is presented to the
host, STEP 1406. This allows the host to process the CBRL
and handle the PFMF in simulation.
0237 Otherwise, if the CBRL is not full, the guest abso
lute block address is stored into the CBRL at the location
specified by the NEO, STEP 1418. Further, the NEO is incre
mented by the length of the address stored, for instance, eight
bytes, STEP 1420. This adds the address to the log. The host
can Subsequently process the log in order to release backing
storage resources including the prior page contents, which are
no longer needed because the PFMF clear frame operation
rendered the contents logically Zero. This concludes one
example of the CBRL processing.
0238. Described in detail above are optimizations pro
vided for a clear and/or set operation when issued by a page
able guest. As one example, optimizations are provided for
operations (e.g., clear frame and/or set key) of a Perform
Frame Management Function.
0239. One or more aspects of the present invention can be
included in an article of manufacture (e.g., one or more com
puter program products) having, for instance, computer
usable media. The media has therein, for instance, computer
readable program code means or logic (e.g., instructions,
code, commands, etc.) to provide and facilitate the capabili
ties of the present invention. The article of manufacture can be
included as a part of a computer system or sold separately.
0240. One example of an article of manufacture or a com
puter program product incorporating one or more aspects of
the present invention is described with reference to FIG. 15. A
computer program product 1500 includes, for instance, one or
more computerusable media 1502 to store computer readable
program code means or logic 1504 thereon to provide and
facilitate one or more aspects of the present invention. The
medium can be an electronic, magnetic, optical, electromag
netic, infrared, or semiconductor system (or apparatus or
device) or a propagation medium. Examples of a computer
readable medium include a semiconductor or Solid State

Nov. 14, 2013

memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), a read-only memory (ROM),
a rigid magnetic disk and an optical disk. Examples of optical
disks include compact disk-read only memory (CD-ROM),
compact disk-read/write (CD-R/W) and DVD.
0241. A sequence of program instructions or a logical
assembly of one or more interrelated modules defined by one
or more computer readable program code means or logic
direct the performance of one or more aspects of the present
invention.
0242 Advantageously, various optimizations are pro
vided, in accordance with one or more aspects of the present
invention. For example, a guest request to clear a 4K-byte
frame which is not host-resident may be satisfied without a
transition to the host, either by binding the host page mapping
the guest frame to a cleared host frame from a list previously
supplied by the host (HPMA), or by marking the host page
logically Zero and appending its address to a CMM-backing
reclaim log (CMM). Which of these actions is taken depends
on a usage-intent indicator specified by the guest. Similarly,
setting of the guest key is optimized for a guest frame that is
not host resident by placing the key value directly into the host
PGSTE.
0243 Moreover, the following advantages are provided, in
accordance with one or more aspects of the present invention:

0244 Host page faults and page reads of old guest
memory contents which are about to be cleared are
avoided.

0245. If the guest memory to be cleared is not host
resident, but is expected to be referenced soon (per the
UI bit), the guest memory addresses are bound to pre
cleared host memory frames from an available list Sup
plied in advance by the host, thus avoiding the overhead
of clearing in-line and avoiding a context Switch to and
from the host program.

0246. If the guest memory to be cleared is not host
resident and is not expected to be referenced soon, the
host page containing the guest memory is left invalid
(i.e., non-resident) and is marked logically Zero. This
avoids context Switches and clearing at the time of the
PFMF. In this case, the host page is also added to a
backing-reclaim log, that is, a list of host pages whose
auxiliary backing storage can be reclaimed. This allows
the host to reuse the backing resources more timely.

0247. Following the logically Zero operation above, the
host page is in a state wherein a Subsequent reference to
the guest frame can also be resolved without context
switches, using the pre-cleared available list described
above.

0248 If PFMF requests setting of the storage key for a
guest memory mapped by a host page which is and
remains not host-resident (i.e., if the page was not resi
dent, and either no clearing was requested, or UI was
Zero), the key value is placed into the host page-status
table entry for the page, as is done when Set Storage Key
Extended (SSKE) is performed on a host-non-resident
page. This allows the proper key value to be retained
without requiring a physical storage key, which is only
available to a resident page.

0249. If set key is performed in the same operation as a
clear frame, host serialization can be obtained once
instead of twice.

(0250 A PFMF operation which requests either frame
clearing or key setting also changes the collaborative

US 2013/0305O23 A1

memory-management state of the guest frame to stable.
This is the desired effect when a guest memory is being
redeployed, and eliminates the need for the guest to issue
separate ESSA instruction(s).

0251. In one embodiment, the above enhancements
operate on host page metadata which is available for 4
KB host pages. When the guest invokes PFMF specify
ing a 1 MB frame, the operation is instead intercepted to
the host, which can then re-back the guest frame with a
host 1 MB frame if desired. In this case, the host need not
page in and copy the old frame contents, but can simply
clear a new 1 MB host frame (or use one from a pre
cleared list). Alternatively, in another embodiment, pro
cessing of a guest 1 MB frame mapped by host 4 KB
pages is performed on the individual pages, avoiding the
interception for example, for a host that does not employ
1 MB host frames.

0252) If a higher-level invalid host table entry (a region
or segment-table entry) prevents access to the host page
table and page status table, PFMF is again intercepted to
the host, rather than presenting an ordinary region- or
segment-translation exception. This allows the host to
use the page size specified on PFMF as a hint, and to
allocate host backing memory of the same size if
desired, or to delay allocation of backing memory if the
usage intent is not indicated.

0253) In a further embodiment, metadata at the host seg
ment level (e.g., for 1 MB units of host memory) is provided.
In this case, PFMF interpretive execution could take advan
tage of these to avoid interception when guest frame size and
host page size coincide.

Commercial Implementation

0254. Although the Z/Architecture R by IBM(R) is men
tioned herein, one or more aspects of the present invention are
equally applicable to other machine architectures and/or
computing environments employing pageable entities or
similar constructs.

0255 Commercial implementations of the PFMF instruc
tion, facilities, and other formats, instructions, and attributes
disclosed herein can be implemented either inhardware or by
programmers, such as operating system programmers, writ
ing in, for example, assembly language. Such programming
instructions may be stored on a storage medium intended to
be executed natively in a computing environment, Such as the
Z/Architecture R IBM(R) Server, or alternatively in machines
executing other architectures. The instructions can be emu
lated in existing and in future IBM(R) servers and on other
machines or mainframes. They can be executed in machines
where generally execution is in an emulation mode.
0256 In emulation mode, the specific instruction being
emulated is decoded, and a Subroutine is built to implement
the individual instruction, as in a Subroutine or driver, or some
other technique is used for providing a driver for the specific
hardware, as is within the skill of those in the art after under
standing the description hereof. Various Software and hard
ware emulation techniques are described in numerous United
States patents including: U.S. Pat. Nos. 5,551,013, 5,574,873,
5,790,825, 6,009,261, 6,308,255, and 6,463,582, each of
which is hereby incorporated herein by reference in its
entirety. Many other teachings further illustrate a variety of
ways to achieve emulation of an instruction format archi
tected for a target machine.

16
Nov. 14, 2013

Other Variations And Architectures

0257 While various examples and embodiments are
described herein, these are only examples, and many varia
tions are included within the scope of the present invention.
For example, the computing environment described herein is
only one example. Many other environments, including other
types of communications environments, may include one or
more aspects of the present invention. For instance, different
types of processors, guests and/or hosts may be employed.
Moreover, other types of architectures can employ one or
more aspects of the present invention.
0258 Aspects of the invention are beneficial to many
types of environments, including environments that have a
plurality of Zones, and non-partitioned environments. Fur
ther, there may be no central processor complexes, but yet,
multiple processors coupled together. Various aspects hereof
are applicable to single processor environments.
0259 Further, in the examples of the data structures and
flows provided herein, the creation and/or use of different
fields may include many variations, such as a different num
ber of bits; bits in a different order; more, less or different bits
than described herein; more, less or different fields; fields in
a differing order; different sizes of fields; etc. Again, these
fields were only provided as an example, and many variations
may be included. Further, indicators and/or controls
described herein may be of many different forms. For
instance, they may be represented in a manner other than by
bits. Additionally, although the term address is used herein,
any designation may be used.
0260. As used herein, the term “page' is used to refer to a
fixed-size or predefined-size area of virtual storage (i.e., Vir
tual memory). As one example, a host page is an area of host
virtual storage. The size of the page can vary, although in the
examples provided herein, a page is 4K bytes. Further, a
“frame' is used to refer to a fixed-size or predefined size area
of real or absolute storage (i.e., memory). As examples, a host
frame is an area of host real or absolute storage, and a guest
frame is an area of guest real or absolute storage. In the case
of a pageable guest, this guest real or absolute storage is
mapped by host virtual storage. As is common, pages of host
virtual storage are backed by frames of host real or absolute
storage, as needed. The size of the frame can vary, although in
the examples provided herein, a frame is 4K-bytes or
1M-bytes. However, in other embodiments, there may be
different sizes of pages, frames, segments, regions, blocks of
storage, etc. Moreover, in other architectures, the terms
'page' and “segment may be used interchangeably or the
term "page' may be used to apply to multiple size units of
virtual storage. The term “obtaining. Such as obtaining an
instruction, includes, but is not limited to, fetching, having,
receiving, being provided, creating, forming, issuing, etc. An
instruction can reference other registers or can reference other
than registers. Such as operands, fields, locations, etc. Many
other alternatives to the above are possible. Further, although
terms, such as lists, tables, etc. are used herein, any types of
data structures may be used. For instance, a table can include
other data structures as well. Again, those mentioned herein
are just examples.
0261) Further, a data processing system suitable for stor
ing and/or executing program code is usable that includes at
least one processor coupled directly or indirectly to memory
elements through a system bus. The memory elements
include, for instance, local memory employed during actual
execution of the program code, bulk storage, and cache

US 2013/0305O23 A1

memory which provide temporary storage of at least some
program code in order to reduce the number of times code
must be retrieved from bulk storage during execution.
0262 Input/Output or I/O devices (including, but not lim
ited to, keyboards, displays, pointing devices, DASD, tape,
CDs, DVDs, thumb drives and other memory media, etc.) can
be coupled to the system either directly or through interven
ing I/O controllers. Network adapters may also be coupled to
the system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net
works. Modems, cable modems, and Ethernet cards are just a
few of the available types of network adapters.
0263. The capabilities of one or more aspects of the
present invention can be implemented in Software, firmware,
hardware, or some combination thereof. At least one program
storage device readable by a machine embodying at least one
program of instructions executable by the machine to perform
the capabilities of the present invention can be provided.
0264. The flow diagrams depicted herein are just
examples. There may be many variations to these diagrams or
the steps (or operations) described therein without departing
from the spirit of the invention. For instance, the steps may be
performed in a differing order, or steps may be added, deleted,
or modified. All of these variations are considered a part of the
claimed invention.
0265 Although embodiments have been depicted and
described in detail herein, it will be apparent to those skilled
in the relevant art that various modifications, additions, Sub
stitutions and the like can be made without departing from the
spirit of the invention and these are therefore considered to be
within the scope of the invention as defined in the following
claims.
What is claimed is:
1. A computer system for executing an instruction, the

computer system comprising:
a memory; and
a processor in communications with the memory, wherein

the computer system is configured to perform a method,
said method comprising:
obtaining a perform frame management function
(PFMF) machine instruction, the PFMF machine
instruction comprising an opcode field, a first field
and a second field;

executing, by a pageable guest, the obtained PFMF
machine instruction, the executing comprising:
performing an operation on a guest frame designated

by the second field, said guest frame being non
resident in host memory, the operation being speci
fied in a location indicated by the first field and
comprising a clear operation, and wherein the per
forming is absent host intervention and is based on
a usage indicator specified in the location.

2. The computer system of claim 1, wherein the usage
indicator specifies that a program has indicated that it is likely
to use the guest frame within a near future, and wherein the
clear operation includes:

obtaining a host frame from a list of cleared available
frames; and

attaching the obtained host frame to the guest frame to be
cleared.

3. The computer system of claim 2, wherein the operation
further comprises a set storage key operation, and the per

Nov. 14, 2013

forming comprises including a value of a key in a control
block used by a host managing the pageable guest.

4. The computer system of claim 1, wherein the usage
indicator specifies that a program has indicated that it is not
likely to use the guest frame within a near future, and wherein
the clear operation includes:

marking one or more host pages that back the guest frame
as logically Zero; and

including at least one address of at least one host page of
the one or more host pages in a backing reclaim log.

5. The computer system of claim 4, wherein the operation
further comprises a set storage key operation, and the per
forming comprises including a value of a key in a control
block used by a host managing the pageable guest.

6. The computer system of claim 1, wherein the method
further comprises:

interpreting the PFMF machine instruction to identify a
predetermined software routine for emulating the opera
tion of the PFMF instruction; and

wherein the executing the PFMF machine instruction com
prises executing the predetermined software routine to
perform the steps of the method for executing the PFMF
instruction.

7. A method of executing an instruction, the method com
prising:

obtaining a perform frame management function (PFMF)
machine instruction, the PFMF machine instruction
comprising an opcode field, a first field and a second
field;

executing, by a pageable guest, the obtained PFMF
machine instruction, the executing comprising:
performing an operation on a guest frame designated by

the second field, said guest frame being non-resident
in host memory, the operation being specified in a
location indicated by the first field and comprising a
clear operation, and wherein the performing is absent
host intervention and is based on a usage indicator
specified in the location.

8. The method of claim 7, wherein the usage indicator
specifies that a program has indicated that it is likely to use the
guest frame within a near future, and wherein the clear opera
tion includes:

obtaining a host frame from a list of cleared available
frames; and

attaching the obtained host frame to the guest frame to be
cleared.

9. The method of claim 8, wherein the operation further
comprises a set storage key operation, and the performing
comprises including a value of a key in a control block used
by a host managing the pageable guest.

10. The method of claim 7, wherein the usage indicator
specifies that a program has indicated that it is not likely to use
the guest frame within a near future, and wherein the clear
operation includes:

marking one or more host pages that back the guest frame
as logically Zero; and

including at least one address of at least one host page of
the one or more host pages in a backing reclaim log.

11. The method of claim 10, wherein the operation further
comprises a set storage key operation, and the performing
comprises including a value of a key in a control block used
by a host managing the pageable guest.

US 2013/0305O23 A1 Nov. 14, 2013
18

12. The method of claim 7 further comprising:
interpreting the PFMF machine instruction to identify a

predetermined software routine for emulating the opera
tion of the PFMF instruction; and

wherein the executing the PFMF machine instruction com
prises executing the predetermined software routine to
perform the steps of the method for executing the PFMF
instruction.

