US011296720B2

a2 United States Patent

Chang et al.

US 11,296,720 B2
Apr. 5, 2022

(10) Patent No.:
45) Date of Patent:

(54) DATA COMPRESSION USING REDUCED (56) References Cited
NUMBERS OF OCCURRENCES
U.S. PATENT DOCUMENTS
(71) Applicant: Innogrit Technologies Co., Ltd., 7,518,538 BL* 4/2009 Schneider HO3M 7/30
Shanghai (CN) 341/108
7,605,721 B2* 10/2009 Schneider HO3M 7/4006
. : . 341/50
(72) Inventors: Yuan-Mao Chang, HSlnChu (TW); 9,716,734 B2* 7/2017 Bhaskar HO3M 7/30
Fang-Ju Ku, Zhubei (TW) 11,115,049 B1* 9/2021 Chang .. HO3M 7/6005
2009/0140894 Al* 6/2009 Schneider HO3M 7/4006
: . : ; 341/51
(73) Assignee: Innogrit Technologies Co., Ltd., 2014/0279776 AL* 9/2014 Brown GOGF 157867
Shanghai (CN) 706/20
2016/0371215 Al* 12/2016 Brown GOGF 13/4027
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 0 days.
Asymmetric numeral systems, Jarek Duda, arXiv:0902.0271v5 [cs.
) IT], May 21, 2009.
(21) Appl. No.: 17/000,666 Asymmetric numeral systems: entropy coding combining speed of
Huffman coding with compression rate of arithmetic coding, Jarek
(22) Filed: Aug. 24, 2020 Duda, arXiv:1311 2540v2 [cs.IT], Jan. 6, 2014.
* cited b i
(65) Prior Publication Data clied by examiier
Primary Examiner — Jean B Jeanglaude
US 2022/0060196 Al Feb. 24, 2022 (74) Attorney, Agent, or Firm — IPRO, PLLC; Xiaomin
Huang
(51) Int. CL (57) ABSTRACT
HO3M 7/00 (2006.01) Systems, apparatus and methods are provided for compress-
HO3M 7730 (2006.01) ing data. A method may include receiving an input data
HO4L 69/04 (2022.01) block to be compressed, determining numbers of occur-
(52) US. CL rences for distinct symbols in the input data block, gener-
CPC HO3M 7/6058 (2013.01); HO4L 69/04 ating reduced numbers of occurrences for the distinct sym-
(2013.01) bols based on the numbers of occurrences for the distinct
(58) Field of Classification Search symbols and encoding the input data block using the reduced
CPC ... HO3M 7/6058: HO3M 7/00: HO4L 69/04 numbers of occurrences as probability distribution of the
USPC. oo 341/50, 51 distinet symbols in the input data block.
See application file for complete search history. 20 Claims, 5 Drawing Sheets
00
306 308
ol e
Calculator Iy and bs
for Jv and bs Bufiers
-y
302 304 310 312
L o ¥ e k. e
, . R Input Encoder Qutput
et Toput Inderface e ® s VO e
Buifes Eugine Buiffer

US 11,296,720 B2

Sheet 1 of 5

Apr. 5, 2022

U.S. Patent

154

VIV JHAOONE LOdL00

Q01 \m,

SHTEVL HHI NO Qdsvy 2dO0ONd

901 \m,

SHIEVL SHONTHEND00
A0 HHEWNAN HALLVTIOND ANV
1 SHONZRRODD0 40 dagNaN d0d

P01 ﬁ

g VIV AO HOOTd V IAHDEN

-
<01

U.S. Patent

Apr. 5, 2022
‘:4 e
& %
Wy oy
<L
™
0
8] ey fodice
[Yoo,
g LN
= &
] Py

US 11,296,720 B2

FIG. 2B

Sheet 2 of 5
"\,1
Nx
+
~ .
w .
o
+Q>
Wy
-ﬁu
-
3
Peni
b ™
o +
g
~~ =
@ Py
P <

US 11,296,720 B2

Sheet 3 of 5

Apr. 5, 2022

U.S. Patent

{

g

W

o
5

(]

¢« ¥1 ¢l ¢ 11

gggg!ﬁc&.‘;iis

80¢

¢

(s %)

US 11,296,720 B2

Sheet 4 of 5

Apr. 5, 2022

U.S. Patent

sovpoyuy ndog

=
0t

€ Ol
opng suisuyg opng
ding Joposuy mndug
o 1..\4, ey e
ey (ig POE
srepng Sq puE §7 30§
5q pue 57 IojemseD
Pas =
8¢ 90t
00¢

US 11,296,720 B2

Sheet 5 of 5

Apr. 5, 2022

U.S. Patent

¥ 'Ol
NOILOFI™LSIA
N $ ALTHEVHOUd SV SHONFAA1D20 40 SUHEWNN
420094 dHL DNISO VIVA 40 20079 dHL JQ0ONd
STOEWAS IONLLSIA dHL
g0v o HOA SHONTHMDD0 40 SMBENON 0N HIVEINTD
VAV A0 MDOTH HHL NI STOEWAS
1447 d LONLLSHI HOA SHONHMRILID0 4O SUEEWAN SNIWYH LHA
: VIVA 40 200714 V HATHOEY
07 -~

00¥

US 11,296,720 B2

1
DATA COMPRESSION USING REDUCED
NUMBERS OF OCCURRENCES

TECHNICAL FIELD

The disclosure herein relates to data compression, par-
ticularly relates to lossless compression using entropy
encoding.

BACKGROUND

Data compression has been widely used in digital signal
systems, such as communication and computing systems. In
information theory, Claude Shannon’s source coding theo-
rem (or noiseless coding theorem) establishes the limits to
possible data compression, and the operational meaning of
the Shannon entropy. According to Shannon’s source coding
theorem, the optimal code length for a symbol is -log, P,
where b is the number of symbols used to make output codes
and P is the probability of the input symbol. Two of the most
common entropy encoding techniques are Huffman coding
and Arithmetic coding. Since 2014, data compressors have
started using the Asymmetric Numeral Systems (ANS)
family of entropy coding techniques, which allows combi-
nation of the compression ratio of Arithmetic coding and a
processing cost similar to Huffman coding. These existing
ANS implementations, however, are developed for a gen-
eral-purpose computing system that normally uses a general-
purpose Central Processing Unit (CPU) to perform the data
compression or decompression operations. Therefore, there
is a need for a compression technique that is more hardware
friendly, for example, suitable for a Field Programmable
Gate Array (FPGA) or an application specific integrated
circuit (ASIC).

SUMMARY

The present disclosure provides systems and methods for
a lossless compression using entropy encoding. In an exem-
plary embodiment, there is provided a method that may
comprise receiving an input data block to be compressed,
determining numbers of occurrences for distinct symbols in
the input data block, generating reduced numbers of occur-
rences for the distinct symbols based on the numbers of
occurrences for the distinct symbols and encoding the input
data block using the reduced numbers of occurrences as
probability distribution of the distinct symbols in the input
data block.

In another exemplary embodiment, there is provided a
compressor that may comprise: an input interface configured
to receive an input data block to be compressed, an input
buffer coupled to the input interface to store the received
input data block to be compressed, a calculator coupled to
the input interface and configured to determine numbers of
occurrences for distinct symbols in the input data block and
generate reduced numbers of occurrences for the distinct
symbols based on the numbers of occurrences for the
distinct symbols, and an encoder engine configured to
encode the input data block using the reduced numbers of
occurrences as probability distribution of the distinct sym-
bols in the input data block.

BRIEF DESCRIPTION OF FIGURES

FIG. 1 schematically shows a compression process in
accordance with an embodiment of the present disclosure.

10

25

35

40

45

55

65

2

FIG. 2A schematically shows a number of occurrences
table in accordance with an embodiment of the present
disclosure.

FIG. 2B schematically shows a cumulative number of
occurrences table in accordance with an embodiment of the
present disclosure.

FIG. 2C schematically shows intervals for the states and
symbol state intervals in accordance with an embodiment of
the present disclosure.

FIG. 3 schematically shows a compressor in accordance
with an embodiment of the present disclosure.

FIG. 4 schematically shows a compression process in
accordance with another embodiment of the present disclo-
sure.

DETAILED DESCRIPTION

Specific embodiments according to the present disclosure
will now be described in detail with reference to the accom-
panying figures. Like elements in the various figures are
denoted by like reference numerals for consistency.

FIG. 1 schematically shows a compression process 100 in
accordance with an embodiment of the present disclosure.
At block 102, a block of input data may be received. In one
embodiment, a storage system controller (e.g. SSD control-
ler) may receive a stream of data to be stored in the storage
system. In another embodiment, a signal transmitter may
receive a stream of data to be transmitted. The stream of data
may be compressed using entropy encoding to reduce space
used for storage or bandwidth used for transmission.
Accordingly, the compression process 100 may also be
referred to an encoding process. In some embodiments, the
stream of data may be divided into blocks of data and each
block of data may be encoded separately. Exemplary sizes of
blocks may be 1 KB, 2 KB, 4 KB, etc. For example, one
embodiment of compressor may be configured to encode
blocks of size of 4 KB and a file with a size larger than 4 KB
may be divided into several 4 KB blocks and any leftover in
a remainder block smaller than 4 KB. And the blocks of data
may be encoded separately.

At block 104, tables used for encoding may be built. In
various embodiments, data in the input data block may be
represented or organized in distinct data units, for example,
4-bit, 8-bit, 16-bit, etc. The data units may be power of 2 bits
in some embodiments, but may not be power of 2 bits in
some other embodiments. For example, in one embodiment,
data in the input data block may be represented by American
Standard Code for Information Interchange (ASCII) code,
which is 7-bit. One data unit may be referred to as a symbol
and thus the input data block may comprise many symbols.
The total number of all symbols in an input data block may
be represented as S, ,,;,, which may be 1024, 2048, or 4096
or another number in single digit, double digits, hundreds,
thousands or larger. S, ;, may vary for different input
streams. Sometimes S,,,,; may be a fixed certain number, for
example, a number that is power of 2. Some other times
S,z May not be a fixed certain number and not necessarily
power of 2.

In general, a block of data may be formed by a set of
distinct symbols with each symbol occurring once or mul-
tiple times. In some embodiments, a probability distribution
of the symbols may be calculated for the block of input data
and two tables may be built to represent the probability
distribution of the symbols, a number of occurrences table
and a cumulative number of occurrences table.

In one embodiment, the input data may be scanned to
build the set of distinct symbols, and also to count the

US 11,296,720 B2

3

number of distinct symbols and how many times each
distinct symbol occurs in the block of input data. In various
embodiments, a symbol may have a predefined size, for
example, one byte, two bytes, 4 bytes, etc. The size is not
necessarily a power of two. As used herein, the set of distinct
symbols may also be referred to as an alphabet (A), each
symbol may also be referred to as an element and repre-
sented using the lower-case letter “s.” The lower-case letter
“n” may be used to represent the number of distinct symbols
(or elements) in the alphabet with n being an integer larger
than one. It should be noted that in some embodiments, the
set of distinct symbols may be predetermined, for example,
pre-programmed or given by a specification. In such
embodiments, the input data may be scanned to just count
the number of distinct symbols and how many times each
distinct symbol occurs in the block of input data.

The number of occurrences for an element “s” may be
denoted using the italicized lower-case letter “I” and sub-
script “s” as “1,” and the total occurrences of all symbols in
the block may be represented as “L” (with

The probability of occurrence for one clement may be
calculated by dividing a number of occurrences for the
element by the total occurrences of all symbols in the block.
That is, the probability of element “s” in the block of
symbols is 1 /.. The number of occurrences for an element
representing an actual number of occurrences for the ele-
ment may be referred to as “l,__,,,;” and may be obtained,
for example, by counting how many times the element
occurs in the block of input data. The total occurrences of all
symbols in the block obtained by summing the actual
numbers of occurrences for all distinct symbols may be
referred to as the actual total occurrences of all symbols, or
“Lorar - The probability of element “s” in the block of
symbols L, .../ Locne: may be referred to as an actual
probability. It should be noted that the number L,_,,,,; is
equal to S, .,

In various embodiments, the actual symbol probability
distribution may be processed to reduce the number of total
occurrences of all symbols. The process may be referred to
as a L reduction process or simply reduction. For example,
after obtaining (e.g., by counting) the number of occurrences
“Uy perar. Tor an element, this actual number of occurrences
may be reduced to generate a reduced number of occur-
rences “l_,.z.ceq Dy dividing “l_,...;.~ With a predeter-
mined number DIV and round the division result to a
non-zero whole number. In some embodiments, the set of
distinct symbols may comprise only elements that appear in
the input block of data to be compressed. That is, “l,_,_,...;”
is not zero for each element in the alphabet. In some other
embodiments, the alphabet may be a predetermined set of
symbols, for example, ASCII or extended ASCII, and in at
least one of such embodiments, not every element is nec-
essarily in the input block of data. In such an embodiment,
if “l,_, e may be zero for an element in the alphabet and
the reduced number of occurrences “l ..., for this
element may also be zero. Therefore, in all embodiments,
non-zero whole number may be obtained when the corre-
sponding “1, ...~ 1 not zero.

There may be different approaches to obtain the non-zero
whole number. In one embodiment, the non-zero whole

actua.

10

15

20

25

30

35

40

45

50

55

60

65

4

number may be obtained by rounding up the division result
to the nearest whole number using a ceiling function, for
example, ceiling(l;_,.,.../DIV). In another embodiment, the
non-zero whole number may be obtained by rounding down
the division result to the nearest whole number using a floor
function, for example, floor(l,_,_.,,,./DIV), and if the result of
the floor function is zero, the non-zero whole number may
be set as one. That is, the non-zero whole number may be
floor(l, ,..,../DIV)+1 if 1_,.,... is less than DIV. In yet
another embodiment, the non-zero whole number may be
obtained by rounding the division result to the closest whole
number (e.g., rounding up if the reminder is equal to or
greater than 0.5 and rounding down if the reminder is less
than 0.5), and if the result by rounding is zero, set the result
to one.

The predetermined number DIV may be any number
larger than one and a typical example number may be a
positive integer such as, but not limited to, 2, 3, or 4, etc. The
same predetermined number may be used to reduce the
number of occurrences for each distinct symbol in the input
block of data. After the reduction in each individual number
of occurrences for each distinct symbol, the number of total
occurrences of all symbols may also be reduced to a reduced
number of total occurrences of all symbols, which may be
represented as “L.,, ...~ It should be noted that L
may be close to L,_,,,/DIV but not necessarily equal.

As an example, suppose a symbol “a” appeared five (5)
times in a block 0f 4096 symbols and a symbol “B” appeared
three (3) times in the same block. There may be other
symbols in the same block with a total number of occur-
rences of 4088 (4096-8). The symbol “c” may have an
actual number of occurrences of 5 and actual probability of
occurrences of 5/4096. The symbol “p” may have an actual
number of occurrences of 3 and actual probability of occur-
rences of 3/4096. In an embodiment, the ceiling function
may be used to obtain the reduced number of occurrences,
with an example DIV being 4, for symbol “a” the “l__,. s.00q
may be obtained by ceiling(l,_,.,../DIV), which is equal to
two (2) and for symbol “p” the “1_,. ... may be obtained
by ceiling(l, ,...../DPIV), which is equal to one (1). In
another embodiment, the floor function may be used to
obtain the reduced number of occurrences, still with an
example DIV being 4, for symbol “o” the “1_,_ ..., may be
obtained by floor (1,_.,,../DIV), which is equal to one (1);
and for symbol “B”, because 1,_,_,,.; is less than DIV, the
“Lyreducea May be obtained by floor(l,_,,,../DIV)+1, which
is also equal to one (1). In both cases, after L reduction, the
reduced total number of occurrences for all symbols may be

reduced

el
Lyeduced = Z bireduced>
Py

which may be equal to 1024 (4096/4), or close to 1024 but
not equal to 1024 (e.g., larger or smaller than 1024).

In various embodiments, the probability distribution used
for compression or decompression may be the actual prob-
ability distribution or a probability distribution after a L
reduction and the compression is lossless in both cases. It
should be noted that an embodiment may obtain the best
compression ratio with the actual probability distribution.
Using a probability distribution after a L. reduction may
improve speed and reduce hardware cost (e.g., storage
space) but may sacrifice a little on compression ratio.
Because the compression and decompression techniques

US 11,296,720 B2

5

according to the present disclosure may be implemented
using either actual probability distribution or a probability
distribution after a L reduction, the term “1,” may be used as
a generic term for number of occurrences for an element “s”
which may be the actual number of occurrences for an
element “s” or a reduced number of occurrences for the
element “s”. And, the term “L” may be used as a generic
term for the number of total occurrences of all symbols in a
block of data, which may be the actual number of total
occurrences of all symbols in a block of data or a reduced
number of total occurrences of all symbols in a block of data.

An example with L being 8 and an alphabet having three
elements may be used to illustrate the compression and
decompression operations according to an embodiment. The
three elements alphabet may be represented as {a, b, ¢} with
“a”, “b”, “c” representing three distinct symbols. In this
example, assuming that the number of occurrences for
element “a” is one (1), the number of occurrences for
element “b” is five (5) and the number of occurrences for
element “c” is two (2), the probability of occurrence for
element “a” may be 1/8, the probability of occurrence for
element “b” may be 5/8 and the probability of occurrence for
element “c” may be 2/8. In the example, the letters “a,” “b”
and “c” may be used to represent any three different distinct
symbols, not necessarily the letters themselves. It should be
noted that each element a, b or ¢ may have a predefined size
that may be different in different embodiments because
different embodiments may use different codes for the
elements. For example, the predefined size for an element
may be 7 bits in ASCII, 8 bits in extended ASCII, or 32 bits
in UTF-32.

FIG. 2A schematically shows a number of occurrences
table 202 in accordance with an embodiment of the present
disclosure. The number of occurrences table 202 may be a
table of number of occurrences for all elements of the
symbol set and may be referred to as the 1, table. For each
symbol s, (with the subscript “1” from O to n-1), its number
of occurrences is 1, may be stored. It should be noted that the
first row of elements is shown in table 202 for illustration.
In some embodiments, the position of each number of
occurrences in the second row may correspond to the
position of the corresponding symbol in the symbol set and
thus, the table 202 may only need the second row recording
the numbers of occurrences of the symbols. For the example
of the alphabet being {a, b, ¢} with three symbols (n=3) the
number of occurrences table may be Table 1 below. In one
embodiment, the alphabet {a, b, ¢} may be stored in a
symbols table separately during the encoding operation and
the list of number of occurrences {1, 5, 2} may be stored as
an alternative to the Table 1 with positions of the number of
occurrences corresponding to the positions of symbols in the
list of symbols in the alphabet.

G
S

TABLE 1

Number of occurrences of symbol set {a, b, c}
in the simple example

a b c

1 5 2

FIG. 2B schematically shows a cumulative number of
occurrences table 204 in accordance with an embodiment of
the present disclosure. The cumulative number of occur-
rences table 204 may be a table of cumulative occurrences
for all elements of the symbol set. A cumulative occurrence
for an element, which may be referred to as b,, is the sum

10

15

20

25

30

35

40

45

50

55

60

65

6

of occurrences of all elements preceding the element in the
alphabet. In other words, the cumulative occurrence for one
element is a running total of occurrences for elements before
this element in the symbol set. The cumulative number of
occurrences table 204 may also be referred to as the b, table.
For symbol s, there is no element preceding the first
element, so the cumulative occurrence for symbol s, may be
zero stored in table 204. For all subsequent symbols s, (with
the subscript “i” from 1 to n-1), their respective cumulative
occurrence may be O+lo+ . . . +l,_;.

It should be noted that the first row of elements is shown
in table 204 for illustration. In some embodiments, the
position of each cumulative occurrence in the second row
may correspond to the position of the corresponding symbol
in the symbol set and thus, the table 204 may only need the
second row recording the cumulative occurrences for the
symbols. For the example of the alphabet being {a, b, ¢}
with three symbols (n=3) the cumulative occurrences table
b, may be Table 2 below. In one embodiment, the alphabet
{a, b, ¢} may be stored separately during the encoding
operation and the list of cumulative occurrences {0, 1, 6}
may be stored as an alternative to the Table 2 with positions
of the cumulative number of occurrences corresponding to
the positions of elements in the list of elements in the
alphabet.

TABLE 2

Cumulative occurrences of symbol set {a, b, c}

in the simple example
a b c
0 1 6

In one embodiment, either table 202 or table 204 may
have the row of symbols but not both.

Referring back to FIG. 1, at block 106, encoding may be
performed based on the number of occurrences and cumu-
lative number of occurrences tables and at block 108,
encoded data may be output from a compressor. In one
embodiment, the encoding may generate a sequence of
numbers with each symbol from the input block of symbols
being processed. Each number in the sequence of numbers
may represent a state that may be generated based on already
processed symbols at that point, and the next number in the
sequence may be a function of the current state and the
incoming symbol. In some embodiments, the encoding
function may be represented as C(x,s), with x being a current
state and s being the incoming symbol (e.g., the next symbol
to be processed).

It should be noted that a decoding process may work on
the encoding generated states in a reversed order. That is, the
last encoded symbol may be the first symbol decoded, and
the decoding process may start from the last state generated
during the compression process 100 and work until the first
state generated during the compression process 100. In one
embodiment, to get the decoded symbols in the order of
input block of symbols, the compression process 100 may
start with the last symbol of the input block and work
backward until the first symbol of the input block. In another
embodiment, the compression process 100 may start with
the first symbol of the input block and work forward until the
last symbol of the input block, and correspondingly the
decoding process may get the last symbol of the input block
decoded first and the first symbol of the input block decoded
last.

US 11,296,720 B2

7

Embodiments according to the present disclosure may
need to choose L distinct states for compression. In some
embodiments, the L distinct states may be an interval of L
different numbers generated during the compression process
100. The interval may be a range for the sequence of
numbers. During the compression process 100, when a state
generated by the encoding function C(x,s) exceeds the
range, some bits of the generated state may be transferred to
an output stream (or output buffer) such that the remaining
portion of the generated state may fall into the interval. In
some embodiments, the generated state may be right shifted
to reduce the value of the generated state and the shifted bits
may be transferred to the output stream (or output buffer). In
various embodiments, the interval for the states may have a
span of L, for example, M to M+L-1, in which M may be
the base value of the range of states and may be an integer
equal to or larger than zero. FIG. 2C schematically shows
intervals for the states and symbol state intervals in accor-
dance with an embodiment of the present disclosure. The
table shown in FIG. 2C may be an encoding state table for
the simple example of {a, b, ¢} with distribution of {1/8, 5/8,
2/8}. The first row may be states that may be generated
during an encoding process. The second row may be num-
bers of occurrences for encoding symbol “a”, the third row
may be numbers of occurrences for encoding symbol “b”
and the fourth row may be numbers of occurrences for
encoding symbol “c”. Block 206 may be a selection of 3 to
10 as the L distinct states (e.g., the base value M being 3 for
the range of states). In block 206, symbol “a” may have a
range of numbers of occurrences of 1 to 1 (e.g., state interval
of 1 to 1), symbol “b” may have a range of numbers of
occurrences 2 to 4 and 5 to 6 (e.g., state interval of 2 to 6),
and symbol “c” may have a range of numbers of occurrences
of 0 to 1 (e.g., state interval of 0 to 1).

In at least one embodiment, the range of the states may be
chosen as L to 2*L-1 with “L”” being the sum of occurrences
of all symbols and “*” representing multiplication. In such
an embodiment, the base value “M” of the range of the states
may be equal to L. Each symbol “s” may also have a symbol
state interval Int, of 1, to 2*] 1. Block 208 may be such a
selection with 8 to 15 as the interval for the states (with M
being 8 and L also being 8). In block 208, symbol “a” may
have a range of numbers of occurrences of 1 to 1 (e.g., state
interval of 1 to 1 with 1, being 1), symbol “b” may have a
range of numbers of occurrences 5 to 9 (e.g., state interval
of 5 to 9 with 1, being 5), and symbol “c”” may have a range
of numbers of occurrences 2 to 3 (e.g., state interval of 2 to
3 with 1 being 2).

In some embodiments, with M being selected as equal to
“L”, encoding at block 106 may start with initializing the
state “x” to an initial value of “L,” then encoding may be
performed such that for each symbol in the input data block,
based on the number of occurrences table and the cumula-
tive occurrences table, a number of shifts for right-shifting
a current state “x” for encoding a current symbol and a next
state “x” may be obtained dynamically at runtime. For
example, in one embodiment, encoding at block 106 may
execute a loop for each symbol of the input block. The loop
may work on the symbols from the last symbol to the first
symbol of the input block. Inside the loop, the value of “x”
may be right shifted until what’s left of “x,” which may be
referred to as x,,,,, may fall into the symbol state interval for
the current symbol. The number of shifts may be referred to
as nBits. The next value of state generated by encoding the
current symbol “s” may be determined by adding the cumu-
lative occurrence for the current symbol to the x,,, and
subtracting the number of occurrences for the current sym-

35

40

45

55

8

bol and adding M. That is, the new “x” is equal to b,+x,,,,~
1.+M. The nBits of bits being shifted right may be output to
the encoded data in block 108.

In one embodiment, the encoding and output operation in
block 106 and 108 may be represented in pseudo code as
follows, in which “lg()” is the binary logarithm function,
“>>" is the right shift operator, “&” is the belong to operator:

Initial x=M, R=lg(L);

For the last symbol to the first symbol of the block of
symbols to be encoded

For i=0 to R;

nBits=i;
xtmp%(>>i;
until (x,,,,Elnt,) break;

end

New x=b+x,,, ~1+M;

Output least significant nBits bits of x (which may be

referred to as x[(nBits-1):0]) to the encoded data
end

At the end of the compression process 100, the encoding
result may include the encoded data and a final state x. The
final state x may be the new state x generated by encoding
the last symbol in the input subtracted by M. The encoding
result may be output at the block 108.

Block 106 and block 108 may be explained using the
simple example symbols set {a, b, ¢} with “L” being 8,
number of occurrences being {1, 5, 2} and cumulative
occurrences being {0, 1, 6}. To encode a string “bac”, in an
embodiment that starts from the last symbol and works until
the first symbol, the letter “c” may be encoded first. The
initial value “x” may be initialized to 8.

The letter “c” may have cumulative occurrences of 6 and
number of occurrences of 2. The symbol state interval for
“c” may be 2 to 3 (e.g., 2*2-1). The initial x value 8 may
be represented in binary as b1000 so it may need to be right
shifted twice for the value x,,,, to become b10 (e.g., decimal
number 2) to fall into the 2 to 3 interval. The new state “x”
may become 6+2-2+8, which may be equal to 14. The right
shifted two bits bO0 may be put into the encoded data.

With the state “x” now being 14, the next letter “a” may
be encoded. The letter “a” may have a cumulative occur-
rence of 0 and number of occurrences of 1. The symbol state
interval for “a” may be 1 to 1 (e.g., 2*1-1). The number 14
may be represented in binary as b1110 so it may need to be
right shifted three times for the value x,,,, to become b1 to
fall into the 1 to 1 interval. The new state “x” may become
0+1-1+48, which may equal to 8. The right shifted three bits
b110 may be put into the encoded data.

With the state “x” now being 8, the next letter “b” may be
encoded. The letter “b” may have a cumulative occurrence
of 1 and number of occurrences of 5. The symbol state
interval for “b” may be 5 to 9 (e.g., 2*5-1). The number 8
may be represented in binary as b1000 and it may need no
shift (zero shift) for the value x,,,, to fall into the 5 to 9
interval. The new state “x” may become 1+8-5+8, which
may equal to 12. Because “b” may be a last symbol to be
encoded, no bits may be put into the encoded data after
encoding “b” and a final state x may be obtained by
subtracting [, from the last generated new state “x” (e.g.,
12-8). Therefore, in one embodiment, the encoding result
output from a compressor may be encoded data b11000 and
a final state x 4.

It should be noted that there is no restriction for the order
in which the right shifted bits may be put into the encoded
data. That is, a compressor may be configured to put the
righted shifted bits into the encoded data in different orders
as long as the order information may be preserved such that

tmp

US 11,296,720 B2

9

a decompressor may obtain this information later for decod-
ing. For example, encoding “a” generated three bits b110
being shifted out and put in the encoded data as b110 or
b011, and the order information may be preserved for the
decompressor to obtain and use for decoding.

Moreover, sets of bits corresponding to consecutive sym-
bols generated in successive encoding operation loops also
may be concatenated in any order as long as the concatena-
tion order information may be preserved such that a decom-
pressor may obtain this concatenation information later for
decoding. For example, b00O generated by encoding the first
element “c” and b110 generated by encoding the second
element “b” may be concatenated by b011+b00 as b01100 or
b00+b011 as b00011, and the concatenation order informa-
tion may be preserved for the decompressor to obtain and
use for decoding. It at least one embodiment, the bit order,
the concatenation order or both may be predetermined (e.g.,
specified in a specification) and the compressor and decom-
pressor may follow the predetermined orders and thus, in
this embodiment, the bit order, the concatenation order or
both may not need to be preserved and passed to the
decompressor because the decompressor may correctly
decode by using the predetermined orders.

Because the compression process 100 may include a loop
with a loop index starting from O stepping up one by one to
Ig(L) for each symbol, an embodiment of the compression
process 100 with L reduction (smaller L) may take less time
to complete the compression than an embodiment of the
compression process 100 without L reduction.

Compressor embodiments according to the present dis-
closure may be friendly to hardware implementations. The
number of occurrences table may need n entries (with n
being number of distinct symbols of the alphabet) and the
cumulative number of occurrences table may also need n
entries. The entry size may be 1g(L) bits such that the
required storage for these two tables may be 2*n*1g(L), in
which may be the multiplication operator and “Ig()”” may the
binary logarithm function. An embodiment with L. reduction
may also be more hardware friendly than an embodiment
without L reduction, because the tables may take less space
with smaller entry size (L. smaller thus 1g(L) smaller). In
embodiments in which the bit length of a symbol may be
equal to lg(L), the alphabet may be stored together with
either table 202 or 204. In embodiments in which the bit
length of a symbol is not equal to 1g(L), the alphabet may be
stored in a separate list and the tables 202 and 204 may only
need the second rows in respective tables. It should be noted
that encoding techniques according to the present disclosure
do not need any encoding tables that contains a list of
generated states with each state accompanied by a corre-
sponding symbol (a previous state encoded with this symbol
to generate the state). Therefore, compressor embodiments
according to the present disclosure may need little storage
space, and may be friendly to be implemented in a Field
Programmable Gate Array (FPGA) or an Application Spe-
cific Integrated Circuit (ASIC), etc.

FIG. 3 schematically shows a compressor 300 in accor-
dance with an embodiment of the present disclosure. The
compressor 300 may be configured to implement the com-
pression process 100. The compressor 300 may comprise an
input interface 302, an input buffer 304, a calculator 306, a
table buffer 308, an encoder engine 310 and an output buffer
312. The input interface 302 may be coupled to an external
bus and configured to perform block 102 to receive data to
be encoded. The received data may have one copy stored in
the input buffer 304 and another copy sent to the calculator
306. The calculator 306 may be configured to perform block

10

15

20

25

30

35

40

45

50

55

60

65

10

104 including: scanning the input data to build the alphabet
if alphabet is not given, determining the number of occur-
rences for each symbol in the alphabet and calculating the
cumulative occurrences. The table buffer 308 may store the
tables generated by the calculator 306, which may include
the number of occurrences table 202 and the cumulative
occurrences table 204.

In some embodiments, symbols in the alphabet may be
represented in an order, for example, extended ASCII code
is a list of 256 consecutive numbers that correspond to 256
characters, English characters in lower case are 26 letters
from “a” to “z.” In such embodiments, the alphabet may be
obtained without scanning the input data and there may not
be a need to store the alphabet because both encoder and
decoder may obtain such information (e.g., the encoding or
decoding specification may provide the alphabet) and the
address or index of each entry of the table 202 and table 204
may indicate the corresponding symbol. For example, if the
alphabet is extended ASCII, the first symbol may be “null”
and the first entry in the table 202 may correspond to the
number of occurrences for symbol “null” and the first entry
in the table 204 may correspond to the cumulative occur-
rences for symbol “null.” In another example, if the alphabet
is English letters in lower case, the first symbol may be “a”
and the first entry in the table 202 may correspond to the
number of occurrences for symbol “a” and the first entry in
the table 204 may correspond to the cumulative occurrences
for symbol “a.”

In some other embodiments, the alphabet may be built by
scanning the input data and the distinct symbols in the input
data may be unknown before the scan. In such embodiments,
the alphabet may be built at runtime and, in one embodi-
ment, it may be stored in a separate table or list in the table
buffer 308. In another embodiment, the alphabet may be
built at runtime but the list of symbols may be a row in either
the table 202 or the table 204 in the table buffer 308 so that
there is no need for a separate alphabet table or list.

The encoder engine 310 may be configured to carry out
the encoding operation at block 106 using the tables in the
table buffer 308 and data in the input buffer 304. The
encoded data may be put into the output buffer 312 for the
block 108. In some embodiments, the alphabet and number
of occurrences may also be put into the output buffer 312.
Moreover, in some embodiment, the bit order and concat-
enation order information for the encoded data may also be
output (e.g., to the output stream or into the output buffer).

FIG. 4 schematically shows a compression process 400 in
accordance with another embodiment of the present disclo-
sure. In one or more embodiments, the compression process
400 may also be referred to as an encoding process and the
terms and techniques described with respect to the compres-
sion process 100 are also applicable in the compression
process 400 unless otherwise noted. At block 402, a block of
input data may be received. The block 402 may be identical
to block 102 of the compression process 100 in various
embodiments.

At block 404, numbers of occurrences of distinct symbols
in the block of input data may be determined. As described
with respect to block 104, in various embodiments, data in
the input data block may be represented or organized in
symbols, which may be power of 2 bits in some embodi-
ments and not power of 2 bits in some other embodiments,
and the total number of all symbols in an input data block
may be represented as S, ;. In general, a block of data may
be formed by a set of distinct symbols with each symbol
occurring once or multiple times. In one embodiment, the
input data may be scanned to build the set of distinct

US 11,296,720 B2

11

symbols, and also to count the number of distinct symbols
and how many times each distinct symbol occurs in the
block of input data. Therefore, in block 404, “1__,, ..., for the
set of distinct symbols in the block of input data and
“Lpesar. for the block of data may be obtained.

At block 406, reduced numbers of occurrences for the
distinct symbols in the input block of data may be generated.
In one embodiment, for example, after counting the number
of occurrences “1,_,_,,;” for an element, this actual number
of occurrences may be reduced to generate a reduced num-
ber of occurrences “l ..o’ Py dividing “1, ...~ with a
predetermined number DIV and round the division result to
a non-zero whole number. There may be different
approaches to obtain the non-zero whole number as
described with respect to block 104 and they may be
implemented in various embodiments for block 406. For
example, the non-zero whole number may be obtained by
rounding up the division result to the nearest whole number
using a ceiling function; rounding down the division result
to the nearest whole number using a floor function, and if the
result of the floor function is zero, setting the non-zero
whole number to one; or rounding the division result to the
closest whole number (e.g., rounding up if the reminder is
equal to or greater than 0.5 and rounding down if the
reminder is less than 0.5), and if the result by rounding is
zero, setting the non-zero whole number to one.

After the reduction in each individual number of occur-
rences for each distinct symbol, the number of total occur-
rences of all symbols may also be reduced to a reduced
number of total occurrences of all symbols, which may be
represented as “L.,, ...~ It should be noted that L., ..
may be close to L_,,,,/DIV but not necessarily equal.

At block 408, the block of data may be encoded using the
reduced numbers of occurrences as probability distribution.
After the reduction for each individual number of occur-
rences for each distinct symbol, the reduced number of total
occurrences of all symbols “L.,, ,,...,” may be obtained and
probability of occurrences for each distinct symbol may be
“Ls-redsced Lreduceq- Ad any entropy encoding scheme based
on the probability distribution may be used to perform the
encoding.

In some embodiments, at block 408, encoding tables may
be built using the reduced numbers of occurrences of the
distinct symbol and encoding using these tables may be
performed. In one embodiment, for example, tables 202 and
204 may be built using the reduced number of occurrences
of the distinct symbols and the encoding techniques for the
compression process 100 (e.g., implementations for blocks
104, 106 and 108) may be used.

In some other embodiments, any conventional Asymmet-
ric Numeral Systems (ANS) encoding approach may be used
at block 408 for encoding, including but not limited to,
stream ANS coding, table ANS, range ANS, etc. In one
embodiment, for example, three ANS tables may be built: a
start table, a number of bits table and an encoding states
table may be built and used for encoding. The start table may
be represented as start[s] and the number of bits table may
be represented as nb[s], with the index “s” being the
elements in the alphabet. Each entry in the start table may be
obtained by start[s]=-1_,,.coAsum(all 1 ., . 5 with s'<s
(s' may represent an element in the alphabet that may be
positioned before the element “s”). Each entry in the number
of bits table may be obtained by nb[s]=(k[s]<<r)-
(L redieead<<K[s]), in which “<<” being the left shift operator,
k[s]=R-floor(lg(l; rogucea)s R being 1g(L,.zceq)s T being
R+1. It should be noted that because R is obtained by
1g(L,. z,c0q), this particular embodiment may need L, 4,..., 10

10

15

20

25

30

35

40

45

50

55

60

65

12

be power of 2. The encoding states table may be represented
as EncodingTable[i] with the index “1” fromOto L, ~1.
To fill the encoding states table, the initial value for the state
X may be set to zero, and an iteration step may be set to
518%L, . gceat3s i1 Which “*” may be a multiplication opera-
tor. A loop with the index “i” from 0 to L, ;,,..,~1 may be
used to fill the entries of the encoding states table. Inside the
loop, EncodingTable[i] may be set to the current state X and
the next state X may be set to mod(X+step, L., c0q)s I
which mod() is the modulo function.

In this embodiment, once the ANS tables may be com-
pleted, encoding may be performed using the ANS tables.
The number of bits to be generated for a current element “s”
may be nbBits=(x+nb|[s])>>r, in which “x”” may be a current
state and “>>" may be a right shift operator. A temporary
state x,,,, may be set to the current state right shift nbBits
times. And the new state X may be set to EncodingTable
[start[s]+x,,,,]+L and nbBits bits of the current state x (e.g.,
x[nbBits-1:0]) may be output to the encoded data (e.g.,
output stream or output buffer).

In one embodiment, ANS tables may be generated by
pseudo code as follows, in which R is 1g(L,, ;,,.e0), I=R+1,
“<<” is the left shift operator, “>>" is the right shift operator,
“* is the multiplication operator, mod() is the modulo
function:

For each element

start[s]=-1_, ..o rsum(all 1

k[S] :R_ﬂoor(lg(ls—reduced));

nb[s]=(k[s]<<0)-(,. cqcea<K[s]);

end

X=0; step=5/8*L,,, s ceat3;

fori=0to L,,,,...~1

EncodingTable[i]=X;

X=mod(X+step, L,.s.ccq);

end

The encoding process using the ANS tables may be
represented by pseudo code as follows:

Initial X:Lreducedi Rzlg(LVeduced);

For the last symbol to the first symbol of the block of
symbols to be encoded

nbBits=(x+nb[s])>>r;

X, X>>0bBits;

New x=EncodingTable[start[s]+x,,,, 141, sceq

Output least significant nBits bits of x (which may be

referred to as x[(nBits-1):0]) to the encoded data

end

The present disclosure provides systems and methods for
a lossless compression using entropy encoding. In an exem-
plary embodiment, there is provided a method that may
comprise receiving an input data block to be compressed,
generating a number of occurrences table and a cumulative
occurrences table for symbols in the input data block, for
each symbol in the input data block, based on the number of
occurrences table and the cumulative occurrences table,
dynamically obtaining a number of shifts for right-shifting a
current state “x” to encode a current symbol, outputting
right-shifted bits to encoded data and obtaining a next state
“x” and obtaining a final state “X” from a last state “x”
generated in a final loop.

The compression process 400 may be implemented by an
embodiment of the compressor 300 in which the table buffer
308 may be optional. Because some embodiments may
perform the compression using encoding tables (e.g., tables
202 and 204, or ANS tables) and some other embodiments
may perform the compression without using encoding tables
(e.g., stream ANS coding).

G
S

) where s'<s;

s-reduce

US 11,296,720 B2

13

In one exemplary embodiment, there is provided a
method that may comprise receiving an input data block to
be compressed, determining numbers of occurrences for
distinct symbols in the input data block, generating reduced
numbers of occurrences for the distinct symbols based on
the numbers of occurrences for the distinct symbols and
encoding the input data block using the reduced numbers of
occurrences as probability distribution of the distinct sym-
bols in the input data block.

In one embodiment, encoding the input data block using
the reduced number of occurrences may comprises: building
a number of occurrences table and a cumulative occurrences
table using the reduced numbers of occurrences for the
distinct symbols; for each symbol in the input data block,
based on the number of occurrences table and the cumula-
tive occurrences table, dynamically obtaining a number of
shifts for right-shifting a current state “x” to encode a current
symbol, outputting right-shifted bits to encoded data and
obtaining a next state “x”; and obtaining a final state “X”
from a last state “x” generated in a final loop.

In one embodiment, the method may further comprise
initializing an initial state “x” to a number L, _,,.., With
L, suceq Deing a sum of all reduced numbers of occurrences
in the number of occurrences table. The final state “X” may
be obtained from the last state “x” by the last state “X”
Subtracting L, ;,ccu

In one embodiment, dynamically obtaining the number of
shifts and obtaining the next state “x” may comprise: right
shifting a value of the state “x” a number of shifts until a
right-shifted value of the state “x” falls into a symbol state
interval for a current symbol, recording the number of shifts
as nBits, obtaining a reduced number of cumulative occur-
rences for the current symbol from the cumulative occur-
rences table, obtaining a reduced number of occurrences for
the current symbol from the number of occurrences table
and obtaining a next value of the state “x” by adding the
reduced cumulative occurrences for the current symbol to
the right-shifted value of the state “x” and subtracting the
reduced number of occurrences for the current symbol and
adding L, ... in which L, . may be a sum of all
reduced numbers of occurrences for all distinct symbols in
the input data block.

In one embodiment, the reduced numbers of occurrences
for the distinct symbols may be generated by dividing each
of the numbers of occurrences by a predetermined number
and rounding division results to non-zero whole numbers.

In one embodiment, rounding the division results to the
non-zero whole numbers may be performed using a ceiling
function on each division result.

In one embodiment, rounding the division results to the
non-zero whole numbers may be performed by using a floor
function on each division result, and if a result of the floor
function is zero, setting a corresponding non-zero whole
number to one.

In one embodiment, rounding the division results to the
non-zero whole numbers may be performed by rounding
each division result to a closest whole number, and if a result
by rounding to the closest whole number is zero, setting a
corresponding non-zero whole number to one.

In one embodiment, encoding the input data block using
the reduced number of occurrences may comprises building
a start table, a number of bits table and an encoding states
table using the reduced numbers of occurrences; and encod-
ing the input data block using the start table, the number of
bits table and encoding states table.

In one embodiment, each entry in the start table may be
obtained by start[s]=l, . ceatstm(all 1. ... with s'<s

20

25

40

45

65

14

(I oduceq being a reduced number of occurrences for a
distinct symbol “s” and s' being a distinct symbol in a set of
the distinct symbols positioned before “s™); each entry in the
number of bits table may be obtained by nb[s]=(k[s]<<r)-
(.o drced<<k[s]), in which “<< being the left shift operator,
k[s] being R-floor(lg(l; resicea)): R being 1g(L,ogcea)s T
being R+1, L., ;... being a sum of all reduced numbers of
occurrences, floor() being a floor function and Ig() being a
binary logarithm function; and the encoding states table may
be obtained by initializing a state X to zero and an iteration
step to 5/8*L,, ,.....+3, and then executing a loop with a loop
index “i” from Oto L,, ...~ and each entry of the encoding
states table EncodingTable[i] being set to a current state X
and obtaining a next state X as mod(X+step, L,, ,,...), i
which “*” may be a multiplication and mod() may be a
modulo function.

In another exemplary embodiment, there is provided a
compressor that may comprise: an input interface configured
to receive an input data block to be compressed, an input
buffer coupled to the input interface to store the received
input data block to be compressed, a calculator coupled to
the input interface and configured to determine numbers of
occurrences for distinct symbols in the input data block and
generate reduced numbers of occurrences for the distinct
symbols based on the numbers of occurrences for the
distinct symbols, and an encoder engine configured to
encode the input data block using the reduced numbers of
occurrences as probability distribution of the distinct sym-
bols in the input data block.

In one embodiment, to encode the input data block using
the reduced number of occurrences may comprise: building
a number of occurrences table and a cumulative occurrences
table using the reduced numbers of occurrences for the
distinct symbols; for each symbol in the input data block,
based on the number of occurrences table and the cumula-
tive occurrences table, dynamically obtaining a number of
shifts for right-shifting a current state “x” to encode a current
symbol, outputting right-shifted bits to encoded data and
obtaining a next state “x”; and obtaining a final state “X”
from a last state “x” generated in a final loop.

In one embodiment, the encoder engine may be further
configured to initialize an initial state “x” to a number
L esicea With L, . being a sum of all reduced numbers of
occurrences in the number of occurrences table. The final
state “X” may be obtained from the last state “x” by the last
state “x” subtracting L, .-

In one embodiment, to dynamically obtain the number of
shifts and obtain the next state “x”, the encoder engine may
be further configured to: right shift a value of the state “x”
a number of shifts until a right-shifted value of the state “x”
falls into a symbol state interval for a current symbol, record
the number of shifts as nBits, obtain reduced cumulative
occurrences for the current symbol from the cumulative
occurrences table, obtain a reduced number of occurrences
for the current symbol from the number of occurrences table,
and obtain a next value of the state “x” by adding the
reduced cumulative occurrences for the current symbol to
the right-shifted value of the state “x” and subtracting the
reduced number of occurrences for the current symbol and
adding L, ... in which L, . may be a sum of all
reduced numbers of occurrences for all distinct symbols in
the input data block.

In one embodiment, the reduced numbers of occurrences
for the distinct symbols may be generated by dividing each
of the numbers of occurrences by a predetermined number
and rounding division results to non-zero whole numbers.

US 11,296,720 B2

15

In one embodiment, rounding the division results to the
non-zero whole numbers may be performed using a ceiling
function on each division result.

In one embodiment, rounding the division results to the
non-zero whole numbers may be performed by using a floor
function on each division result, and if a result of the floor
function is zero, setting a corresponding non-zero whole
number to one.

In one embodiment, rounding the division results to the
non-zero whole numbers may be performed by rounding
each division result to a closest whole number, and if a result
by rounding to the closest whole number is zero, setting a
corresponding non-zero whole number to one.

In one embodiment, to encode the input data block using
the reduced number of occurrences, the encoder engine may
be further configured to: build a start table, a number of bits
table and an encoding states table using the reduced numbers
of occurrences; and encode the input data block using the
start table, the number of bits table and encoding states table.

In one embodiment, each entry in the start table may be
obtained by start[s]=l_ ... sum(@ll 1., . .1 with s'<s
(L oduceq being a reduced number of occurrences for a
distinct symbol “s” and s' being a distinct symbol in a set of
the distinct symbols positioned before “s”); each entry in the
number of bits table may be obtained by nb[s]=(k[s]<<r)-
(L redieead<<K[s]), in which “<<” being the left shift operator,
k[s] being R-floor(lg(l; resicea)), R being 1g(L,ocea)s T
being R+1, L, ..., being a sum of all reduced numbers of
occurrences, floor() being a floor function and Ig() being a
binary logarithm function; and the encoding states table may
be obtained by initializing a state X to zero and an iteration
step to 5/8*L.,, 1....a+3, and then executing a loop with a loop
index “i” fromOto L,, ;,..,~1 and each entry of the encoding
states table EncodingTable[i] being set to a current state X
and obtaining a next state X as mod(X+step, L, ,..0), 11
which “*” may be a multiplication and mod() may be a
modulo function.

Any of the disclosed methods and operations may be
implemented as computer-executable instructions (e.g., soft-
ware code for the operations described herein) stored on one
or more computer-readable storage media (e.g., non-transi-
tory computer-readable media, such as one or more optical
media discs, volatile memory components (such as Dynamic
Random Access Memory (DRAM) or Static Random Access
Memory (SRAM)), or nonvolatile memory components
(such as hard drives)) and executed on a device controller
(e.g., firmware executed by ASIC). Any of the computer-
executable instructions for implementing the disclosed tech-
niques as well as any data created and used during imple-
mentation of the disclosed embodiments can be stored on
one or more computer-readable media (e.g., non-transitory
computer-readable media).

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purposes of illustra-
tion and are not intended to be limiting, with the true scope
and spirit being indicated by the following claims.

What is claimed is:

1. A method, comprising:

receiving an input data block to be compressed;

determining numbers of occurrences for distinct symbols
in the input data block;

generating reduced numbers of occurrences for the dis-
tinct symbols based on the numbers of occurrences for
the distinct symbols; and

20

30

40

45

55

60

65

16

encoding the input data block using the reduced numbers
of occurrences as probability distribution of the distinct
symbols in the input data block.

2. The method of claim 1, wherein encoding the input data
block using the reduced number of occurrences comprises:

building a number of occurrences table and a cumulative

occurrences table using the reduced numbers of occur-
rences for the distinct symbols;

for each symbol in the input data block, based on the

number of occurrences table and the cumulative occur-
rences table, dynamically obtaining a number of shifts
for right-shifting a current state “x” to encode a current
symbol, outputting right-shifted bits to encoded data
and obtaining a next state “x”; and

obtaining a final state “X” from a last state “x”

in a final loop.

3. The method of claim 2, further comprising initializing
an initial state “x” to a number L.,_ .., with L. ..., being
a sum of all reduced numbers of occurrences in the number
of occurrences table, wherein the final state “X” is obtained

from the last state “x” by the last state “x” subtracting
L

generated

reduced®

4. The method of claim 2, wherein dynamically obtaining
the number of shifts and obtaining the next state “x”,
comprises:

right shifting a value of the state “x” a number of shifts

until a right-shifted value of the state “x™ falls into a
symbol state interval for a current symbol;

recording the number of shifts as nBits;

obtaining a reduced number of cumulative occurrences

for the current symbol from the cumulative occurrences
table;
obtaining a reduced number of occurrences for the current
symbol from the number of occurrences table; and

obtaining a next value of the state “x” by adding the
reduced cumulative occurrences for the current symbol
to the right-shifted value of the state “x” and subtract-
ing the reduced number of occurrences for the current
symbol and adding L, ..» with L, .. being a sum
of all reduced numbers of occurrences for all distinct
symbols in the input data block.

5. The method of claim 1, wherein the reduced numbers
of occurrences for the distinct symbols are generated by
dividing each of the numbers of occurrences by a predeter-
mined number and rounding division results to non-zero
whole numbers.

6. The method of claim 5, wherein rounding the division
results to the non-zero whole numbers is performed using a
ceiling function on each division result.

7. The method of claim 5, wherein rounding the division
results to the non-zero whole numbers is performed by using
a floor function on each division result, and if a result of the
floor function is zero, setting a corresponding non-zero
whole number to one.

8. The method of claim 5, wherein rounding the division
results to the non-zero whole numbers is performed by
rounding each division result to a closest whole number, and
if a result by rounding to the closest whole number is zero,
setting a corresponding non-zero whole number to one.

9. The method of claim 1, wherein encoding the input data
block using the reduced number of occurrences comprises:

building a start table, a number of bits table and an

encoding states table using the reduced numbers of
occurrences; and

encoding the input data block using the start table, the

number of bits table and encoding states table.

US 11,296,720 B2

17

10. The method of claim 9, wherein each entry in the start
table is obtained by start[s]=-1,,tsum(@ll 1., . .
with §'<s (I,_,.z...q Deing a reduced number of occurrences
for a distinct symbol “s” and s' being a distinct symbol in a
set of the distinct symbols positioned before “s™); each entry
in the number of bits table is obtained by nb[s]=(k[s]<<r)-
(s rodriced<<k[s]), in which “<< being the left shift operator,
k[s] being R-floor(lg(l; resicea)), R being 1g(L,ocea)s T
being R+1, L, ..., being a sum of all reduced numbers of
occurrences, floor() being a floor function and Ig() being a
binary logarithm function; and the encoding states table is
obtained by initializing a state X to zero and an iteration step
to 5/8%*L,, /.0.at3s and then executing a loop with a loop
index “i” fromOto L,, ;,..,~1 and each entry of the encoding
states table EncodingTable[i] being set to a current state X
and obtaining a next state X as mod(X+step, L, ,..0), 11
which “*” is a multiplication and mod() is a modulo
function.

11. A compressor, comprising:

an input interface configured to receive an input data
block to be compressed;

an input buffer coupled to the input interface to store the
received input data block to be compressed;

a calculator coupled to the input interface and configured
to: determine numbers of occurrences for distinct sym-
bols in the input data block, and generate reduced
numbers of occurrences for the distinct symbols based
on the numbers of occurrences for the distinct symbols;
and

an encoder engine configured to encode the input data
block using the reduced numbers of occurrences as
probability distribution of the distinct symbols in the
input data block.

12. The compressor of claim 11, wherein to encode the
input data block using the reduced number of occurrences
comprises:

building a number of occurrences table and a cumulative
occurrences table using the reduced numbers of occur-
rences for the distinct symbols;

for each symbol in the input data block, based on the
number of occurrences table and the cumulative occur-
rences table, dynamically obtaining a number of shifts
for right-shifting a current state “x” to encode a current
symbol, outputting right-shifted bits to encoded data
and obtaining a next state “x”’; and

obtaining a final state “X” from a last state “x”
in a final loop.

13. The compressor of claim 12, wherein the encoder
engine is further configured to initialize an initial state “x”
to anumber L, .., With L . ., being a sum of all reduced
numbers of occurrences in the number of occurrences table,
wherein the final state “X” is obtained from the last state “x”
by the last state “x” subtracting L,. ;.00

14. The compressor of claim 12, wherein to dynamically
obtain the number of shifts and obtain the next state “x”, the
encoder engine is further configured to:

right shift a value of the state “x” a number of shifts until
a right-shifted value of the state “x” falls into a symbol
state interval for a current symbol;

record the number of shifts as nBits;

generated

20

30

40

45

50

55

18

obtain reduced cumulative occurrences for the current
symbol from the cumulative occurrences table;

obtain a reduced number of occurrences for the current
symbol from the number of occurrences table; and

obtain a next value of the state “x” by adding the reduced
cumulative occurrences for the current symbol to the
right-shifted value of the state “x” and subtracting the
reduced number of occurrences for the current symbol
and adding L, ..o With L, .., being a sum of all
reduced numbers of occurrences for all distinct sym-
bols in the input data block.

15. The compressor of claim 11, wherein the reduced
numbers of occurrences for the distinct symbols are gener-
ated by dividing each of the numbers of occurrences by a
predetermined number and rounding division results to
non-zero whole numbers.

16. The compressor of claim 15, wherein rounding the
division results to the non-zero whole numbers is performed
using a ceiling function on each division result.

17. The compressor of claim 15, wherein rounding the
division results to the non-zero whole numbers is performed
by using a floor function on each division result, and if a
result of the floor function is zero, setting a corresponding
non-zero whole number to one.

18. The compressor of claim 15, wherein rounding the
division results to the non-zero whole numbers is performed
by rounding each division result to a closest whole number,
and if a result by rounding to the closest whole number is
zero, setting a corresponding non-zero whole number to one.

19. The compressor of claim 11, wherein to encode the
input data block using the reduced number of occurrences,
the encoder engine is further configured to:

build a start table, a number of bits table and an encoding
states table using the reduced numbers of occurrences;
and

encode the input data block using the start table, the
number of bits table and encoding states table.

20. The compressor of claim 19, wherein each entry in the
start table is obtained by start[s]=-1,,,, .. +sum(all
L ednceq) With s'<s (induced being a reduced number of
occurrences for a distinct symbol “s” and s' being a distinct
symbol in a set of the distinct symbols positioned before
“s”); each entry in the number of bits table is obtained by
nb[s]=(k[s]<<t)-(l. . 20es<K[s]), in Which “<<” being the
left shift operator, k[s] being R-floor(Ig(l,_,. 1.0.s))s R being
1g(L, o zea)- T being R+1, L, . - being a sum of all reduced
numbers of occurrences, floor() being a floor function and
lg() being a binary logarithm function; and the encoding
states table is obtained by initializing a state X to zero and
an iteration step to 5/8*L,_ ..., +3, and then executing a loop
with a loop index “i” from Oto L,,;,..,~1 and each entry of
the encoding states table EncodingTable[i] being set to a
current state X and obtaining a next state X as mod(X+step,
L, esucea)s 10 Which “*” is a multiplication and mod() is a
modulo function.

