
US011296720B2

(12) United States Patent
Chang et al .

(10) Patent No .: US 11,296,720 B2
(45) Date of Patent : Apr. 5 , 2022

(54) (56) References Cited DATA COMPRESSION USING REDUCED
NUMBERS OF OCCURRENCES

U.S. PATENT DOCUMENTS

(71) Applicant : Innogrit Technologies Co. , Ltd. , (
Shanghai (CN) 7,518,538 B1 * 4/2009 Schneider

7,605,721 B2 * 10/2009 Schneider
(72) Inventors : Yuan - Mao Chang , Hsinchu (TW) ;

Fang - Ju Ku , Zhubei (TW) 9,716,734 B2 *
11,115,049 B1 *

2009/0140894 A1 *

7/2017 Bhaskar
9/2021 Chang
6/2009 Schneider

HO3M 7/30
341/108

HO3M 7/4006
341/50

HO3M 7/30
HO3M 7/6005
HO3M 7/4006

341/51
G06F 15/7867

706/20
G06F 13/4027

(73) Assignee : Innogrit Technologies Co. , Ltd. ,
Shanghai (CN) 2014/0279776 A1 * 9/2014 Brown

2016/0371215 A1 * 12/2016 Brown
(*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U.S.C. 154 (b) by 0 days .

OTHER PUBLICATIONS

(21) Appl . No .: 17 / 000,666
Asymmetric numeral systems , Jarek Duda , arXiv : 0902.0271v5 [cs .
IT] , May 21 , 2009 .
Asymmetric numeral systems : entropy coding combining speed of
Huffman coding with compression rate of arithmetic coding , Jarek
Duda , arXiv : 1311 2540v2 [cs.IT] , Jan. 6 , 2014 . (22) Filed : Aug. 24 , 2020 1

(65) Prior Publication Data
US 2022/0060196 A1 Feb. 24 , 2022

(51)

* cited by examiner
Primary Examiner Jean B Jeanglaude
(74) Attorney , Agent , or Firm - IPRO , PLLC ; Xiaomin
Huang
(57) ABSTRACT
Systems , apparatus and methods are provided for compress
ing data . A method may include receiving an input data
block to be compressed , determining numbers of occur
rences for distinct symbols in the input data block , gener
ating reduced numbers of occurrences for the distinct sym
bols based on the numbers of occurrences for the distinct
symbols and encoding the input data block using the reduced
numbers of occurrences as probability distribution of the
distinct symbols in the input data block .

20 Claims , 5 Drawing Sheets

Int . Cl .
HOGM 7700 (2006.01)
HOZM 730 (2006.01)
H04L 69/04 (2022.01)
U.S. Cl .
CPC HO3M 776058 (2013.01) ; H04L 69/04

(2013.01)
Field of Classification Search
CPC HO3M 7/6058 ; HO3M 7700 ; H04L 69/04
USPC 341/50 , 51
See application file for complete search history .

(52)

(58)

300

Calculator
for ls and bs

laod bs
Buffers

302 310 312

Input Interface Input
Butter

Encoder
Engine

Output
Buffer

U.S. Patent

102

RECEIVE A BLOCK OF DATA

104

BUILD NUMBER OF OCCURRENCES AND CUMULATIVE NUMBER OF OCCURRENCES TABLES

Apr. 5 , 2022

106

ENCODE BASED ON THE TABLES

Sheet 1 of 5

108

OUTPUT ENCODED DATA

US 11,296,720 B2

FIG . 1

U.S. Patent

202
cena

77

Apr. 5 , 2022

FIG . 2A 204

Sheet 2 of 5

es

9

$ 2

7 - us

W

0

"

+ lotl , t ... tln - 2

FIG . 2B

US 11,296,720 B2

U.S. Patent

206

802
**** **

323

1

3832

Apr. 5 , 2022

C (x , s)

4

14

piace

a b

0

emai

7

3

4

6

Sheet 3 of 5

?

2

3

FIG . 20

US 11,296,720 B2

U.S. Patent

306

308

Apr. 5 , 2022

Calculator for ls and bs

Is and bs Buffers

302

304

310

Sheet 4 of 5

Input Interface

Input Buffer
]

Encoder Engine

Output Buffer

FIG . 3

US 11,296,720 B2

U.S. Patent

402

RECEIVE A BLOCK OF DATA

404

DETERMINE NUMBERS OF OCCURRENCES FOR DISTINCT SYMBOLS IN THE BLOCK OF DATA

Apr. 5 , 2022

GENERATE REDUCED NUMBERS OF OCCURRENCES FOR THE DISTINCT SYMBOLS

408

ENCODE THE BLOCK OF DATA USING THE REDUCED NUMBERS OF OCCURRENCES AS PROBABILITY DISTRIBUTION

Sheet 5 of 5 US 11,296,720 B2

FIG . 4

5

10

sure .
15

a

US 11,296,720 B2
1 2

DATA COMPRESSION USING REDUCED FIG . 2A schematically shows a number of occurrences
NUMBERS OF OCCURRENCES table in accordance with an embodiment of the present

disclosure .
TECHNICAL FIELD FIG . 2B schematically shows a cumulative number of

occurrences table in accordance with an embodiment of the
The disclosure herein relates to data compression , par present disclosure .

ticularly relates to lossless compression using entropy FIG . 2C schematically shows intervals for the states and
encoding . symbol state intervals in accordance with an embodiment of

the present disclosure .
BACKGROUND FIG . 3 schematically shows a compressor in accordance

with an embodiment of the present disclosure .
Data compression has been widely used in digital signal FIG . 4 schematically shows a compression process in

systems , such as communication and computing systems . In accordance with another embodiment of the pr ent disclo
information theory , Claude Shannon's source coding theo
rem (or noiseless coding theorem) establishes the limits to DETAILED DESCRIPTION possible data compression , and the operational meaning of
the Shannon entropy . According to Shannon's source coding Specific embodiments according to the present disclosure theorem , the optimal code length for a symbol is -logh P , will now be described in detail with reference to the accom
where b is the number of symbols used to make output codes 20 panying figures . Like elements in the various figures are
and P is the probability of the input symbol . Two of the most denoted by like reference numerals for consistency .
common entropy encoding techniques are Huffman coding FIG . 1 schematically shows a compression process 100 in
and Arithmetic coding . Since 2014 , data compressors have accordance with an embodiment of the present disclosure .
started using the Asymmetric Numeral Systems (ANS) At block 102 , a block of input data may be received . In one
family of entropy coding techniques , which allows combi- 25 embodiment , a storage system controller (e.g. SSD control
nation of the compression ratio of Arithmetic coding and a ler) may receive a stream of data to be stored in the storage
processing cost similar to Huffman coding . These existing system . In another embodiment , a signal transmitter may
ANS implementations , however , are developed for a gen receive a stream of data to be transmitted . The stream of data
eral - purpose computing system that normally uses a general- may be compressed using entropy encoding to reduce space
purpose Central Processing Unit (CPU) to perform the data 30 used for storage or bandwidth used for transmission .
compression or decompression operations . Therefore , there Accordingly , the compression process 100 may also be
is a need for a compression technique that is more hardware referred to an encoding process . In some embodiments , the
friendly , for example , suitable for a Field Programmable stream of data may be divided into blocks of data and each
Gate Array (FPGA) or an application specific integrate block of data may be encoded separately . Exemplary sizes of
circuit (ASIC) . 35 blocks may be 1 KB , 2 KB , 4 KB , etc. For example , one

embodiment of compressor may be configured to encode
SUMMARY blocks of size of 4 KB and a file with a size larger than 4 KB

may be divided into several 4 KB blocks and any leftover in
The present disclosure provides systems and methods for a remainder block smaller than 4 KB . And the blocks of data

a lossless compression using entropy encoding . In an exem- 40 may be encoded separately .
plary embodiment , there is provided a method that may At block 104 , tables used for encoding may be built . In
comprise receiving an input data block to be compressed , various embodiments , data in the input data block may be
determining numbers of occurrences for distinct symbols in represented or organized in distinct data units , for example ,
the input data block , generating reduced numbers of occur- 4 - bit , 8 - bit , 16 - bit , etc. The data units may be power of 2 bits
rences for the distinct symbols based on the numbers of 45 in some embodiments , but may not be power of 2 bits in
occurrences for the distinct symbols and encoding the input some other embodiments . For example , in one embodiment ,
data block using the reduced numbers of occurrences as data in the input data block may be represented by American
probability distribution of the distinct symbols in the input Standard Code for Information Interchange (ASCII) code ,
data block . which is 7 - bit . One data unit may be referred to as a symbol

In another exemplary embodiment , there is provided a 50 and thus the input data block may comprise many symbols .
compressor that may comprise : an input interface configured The total number of all symbols in an input data block may
to receive an input data block to be compressed , an input be represented as Stotal , which may be 1024 , 2048 , or 4096
buffer coupled to the input interface to store the received or another number in single digit , double digits , hundreds ,
input data block to be compressed , a calculator coupled to thousands or larger . Stotai may vary for different input
the input interface and configured to determine numbers of 55 streams . Sometimes Stotal may be a fixed certain number , for
occurrences for distinct symbols in the input data block and example , a number that is power of 2. Some other times
generate reduced numbers of occurrences for the distinct Stotal may not be a fixed certain number and not necessarily
symbols based on the numbers of occurrences for the
distinct symbols , and an encoder engine configured to In general , a block of data may be formed by a set of
encode the input data block using the reduced numbers of 60 distinct symbols with each symbol occurring once or mul
occurrences as probability distribution of the distinct sym- tiple times . In some embodiments , a probability distribution
bols in the input data block . of the symbols may be calculated for the block of input data

and two tables may be built to represent the probability
BRIEF DESCRIPTION OF FIGURES distribution of the symbols , a number of occurrences table

65 and a cumulative number of occurrences table .
FIG . 1 schematically shows a compression process in In one embodiment , the input data may be scanned to

accordance with an embodiment of the present disclosure . build the set of distinct symbols , and also to count the

a

a

power of 2 .

' - c

10

2 15
to one .

L = . - EA ?)

US 11,296,720 B2
3 4

number of distinct symbols and how many times each number may be obtained by rounding up the division result
distinct symbol occurs in the block of input data . In various to the nearest whole number using a ceiling function , for
embodiments , a symbol may have a predefined size , for example , ceiling (1s - actua / DIV) . In another embodiment , the
example , one byte , two bytes , 4 bytes , etc. The size is not non - zero whole number may be obtained by rounding down
necessarily a power of two . As used herein , the set of distinct 5 the division result to the nearest whole number using a floor
symbols may also be referred to as an alphabet (A) , each function , for example , floor (1s - actua / DIV) , and if the result of
symbol may also be referred to as an element and repre- the floor function is zero , the non - zero whole number may
sented using the lower - case letter “ s . ” The lower - case letter be set as one . That is , the non - zero whole number may be
“ n ” may be used to represent the number of distinct symbols floor (1s - actual / DIV) +1 if is - actual is less than DIV . In yet
(or elements) in the alphabet with n being an integer larger another embodiment , the non - zero whole number may be
than one . It should be noted that in some embodiments , the obtained by rounding the division result to the closest whole
set of distinct symbols may be predetermined , for example , number (e.g. , rounding up if the reminder is equal to or
pre - programmed or given by a specification . In such greater than 0.5 and rounding down if the reminder is less
embodiments , the input data may be scanned to just count than 0.5) , and if the result by rounding is zero , set the result
the number of distinct symbols and how many times each
distinct symbol occurs in the block of input data . The predetermined number DIV may be any number

The number of occurrences for an element “ s ” may be larger than one and a typical example number may be a
denoted using the italicized lower - case letter “ 1 ” and sub- positive integer such as , but not limited to , 2 , 3 , or 4 , etc. The
script “ s ” as “ l , ” and the total occurrences of all symbols in 20 same predetermined number may be used to reduce the
the block may be represented as “ L ” (with number of occurrences for each distinct symbol in the input

block of data . After the reduction in each individual number
of occurrences for each distinct symbol , the number of total
occurrences of all symbols may also be reduced to a reduced

25 number of total occurrences of all symbols , which may be
represented as “ Lreduced . ” It should be noted that Lreduced
may be close to L'actual / DIV but not necessarily equal .

The probability of occurrence for one element may be As an example , suppose a symbol “ a ” appeared five (5)
calculated by dividing a number of occurrences for the times in a block of 4096 symbols and a symbol “ P ” appeared
element by the total occurrences of all symbols in the block . 30 three (3) times in the same block . There may be other
That is , the probability of element “ s ” in the block of symbols in the same block with a total number of occur
symbols is 1 / L . The number of occurrences for an element rences of 4088 (4096–8) . The symbol “ a ” may have an
representing an actual number of occurrences for the ele- actual number of occurrences of 5 and actual probability of
ment may be referred to as “ ls - actual ” and may be obtained , occurrences of 5/4096 . The symbol “ B ” may have an actual
for example , by counting how many times the element 35 number of occurrences of 3 and actual probability of occur
occurs in the block of input data . The total occurrences of all rences of 3/4096 . In an embodiment , the ceiling function
symbols in the block obtained by summing the actual may be used to obtain the reduced number of occurrences ,
numbers of occurrences for all distinct symbols may be with an example DIV being 4 , for symbol “ a ” the “ lg - reduced . "
referred to as the actual total occurrences of all symbols , or may be obtained by ceiling (1s - actua / DIV) , which is equal to
“ L'actuai ” . The probability of element “ g ” in the block of 40 two (2) and for symbol “ B ” the “ 15 - reduce ” may be obtained
symbols 15 - actua / L'actual may be referred to as an actual by ceiling (1s - actual / DIV) , which is equal to one (1) . In
probability . It should be noted that the number L'actual is another embodiment , the floor function may be used to
equal to Storat obtain the reduced number of occurrences , still with an

In various embodiments , the actual symbol probability example DIV being 4 , for symbol “ a ” the “ 15 - reduc
distribution may be processed to reduce the number of total 45 obtained by floor (1s - actual / DIV) , which is equal to one (1) ;
occurrences of all symbols . The process may be referred to and for symbol “ ” , because 15 - actuai is less than DIV , the
as a L reduction process or simply reduction . For example , “ 15 - reduced ” may be obtained by floor (1s - actua // DIV) +1 , which
after obtaining (e.g. , by counting) the number of occurrences is also equal to one (1) . In both cases , after L reduction , the
“ 1 1s - actua ? ” for an element , this actual number of occurrences reduced total number of occurrences for all symbols may be
may be reduced to generate a reduced number of occur- 50
rences “ 15 - reduced ” by dividing “ 15 - actua ” with a predeter
mined number DIV and round the division result to a
non - zero whole number . In some embodiments , the set of Lreduced = { li - reduced
distinct symbols may comprise only elements that appear in
the input block of data to be compressed . That is , “ 15 - actuai
is not zero for each element in the alphabet . In some other which may be equal to 1024 (4096/4) , or close to 1024 but
embodiments , the alphabet may be a predetermined set of not equal to 1024 (e.g. , larger or smaller than 1024) .
symbols , for example , ASCII or extended ASCII , and in at In various embodiments , the probability distribution used
least one of such embodiments , not every element is nec- for compression or decompression may be the actual prob
essarily in the input block of data . In such an embodiment , 60 ability distribution or a probability distribution after a L
if “ 1 15 - actuar ” may be zero for an element in the alphabet and reduction and the compression is lossless in both cases . It
the reduced number of occurrences “ lg - reduced ” for this should be noted that an embodiment may obtain the best
element may also be zero . Therefore , in all embodiments , compression ratio with the actual probability distribution .
non - zero whole number may be obtained when the corre- Using a probability distribution after a L reduction may
sponding “ 15 - actual ” is not zero . 65 improve speed and reduce hardware cost (e.g. , storage

There may be different approaches to obtain the non - zero space) but may sacrifice a little on compression ratio .
whole number . In one embodiment , the non - zero whole Because the compression and decompression techniques

s -

. s -

22

' s - reduced may be

s

-
n - 1

i = 0

>> 55 s

>

s -

-

a

5

a

S

? . b ?

US 11,296,720 B2
5 6

according to the present disclosure may be implemented of occurrences of all elements preceding the element in the
using either actual probability distribution or a probability alphabet . In other words , the cumulative occurrence for one
distribution after a L reduction , the term “ 15 ” may be used as element is a running total of occurrences for elements before
a generic term for number of occurrences for an element “ s ” , this element in the symbol set . The cumulative number of
which may be the actual number of occurrences for an occurrences table 204 may also be referred to as the b , table .
element " s " or a reduced number of occurrences for the For symbol so , there is no element preceding the first element “ s ” . And , the term “ L ” may be used as a generic element , so the cumulative occurrence for symbol so may be term for the number of total occurrences of all symbols in a zero stored in table 204. For all subsequent symbols s ; (with block of data , which may be the actual number of total the subscript “ i ” from 1 to n - 1) , their respective cumulative occurrences of all symbols in a block of data or a reduced 10 occurrence may be 0 + 1 , + . . . +1 : -1 : number of total occurrences of all symbols in a block of data . It should be noted that the first row of elements is shown An example with L being 8 and an alphabet having three in table 204 for illustration . In some embodiments , the elements may be used to illustrate the compression and
decompression operations according to an embodiment . The position of each cumulative occurrence in the second row
three elements alphabet may be represented as { a , b , c) with 15 may correspond to the position of the corresponding symbol
“ a ” , “ b ” , “ c ” representing three distinct symbols . In this in the symbol set and thus , the table 204 may only need the
example , assuming that the number of occurrences for second row recording the cumulative occurrences for the
element “ a ” is one (1) , the number of occurrences for symbols . For the example of the alphabet being { a , b , c }
element “ b ” is five (5) and the number of occurrences for with three symbols (n = 3) the cumulative occurrences table
element “ c ” is two (2) , the probability of occurrence for 20 b , may be Table 2 below . In one embodiment , the alphabet
element “ a ” may be 1/8 , the probability of occurrence for { a , b , c } may be stored separately during the encoding
element “ b ” may be 5/8 and the probability of occurrence for operation and the list of cumulative occurrences { 0 , 1 , 6 }
element “ c ” may be 2/8 . In the example , the letters “ a , " “ b ” may be stored as an alternative to the Table 2 with positions
and “ c ” may be used to represent any three different distinct of the cumulative number of occurrences corresponding to
symbols , not necessarily the letters themselves . It should be 25 the positions of elements in the list of elements in the
noted that each element a , b or c may have a predefined size alphabet .
that may be different in different embodiments because
different embodiments may use different codes for the TABLE 2
elements . For example , the predefined size for an element
may be 7 bits in ASCII , 8 bits in extended ASCII , or 32 bits 30 Cumulative occurrences of symbol set { a , b , c }

in the simple example in UTF - 32 .
FIG . 2A schematically shows a number of occurrences

table 202 in accordance with an embodiment of the present
disclosure . The number of occurrences table 202 may be a
table of number of occurrences for all elements of the 35
symbol set and may be referred to as the 1 , table . For each In one embodiment , either table 202 or table 204 may
symbol s ; (with the subscript “ i ” from 0 to n - 1) , its number have the row of symbols but not both .
of occurrences is 1 ; may be stored . It should be noted that the Referring back to FIG . 1 , at block 106 , encoding may be
first row of elements is shown in table 202 for illustration . performed based on the number of occurrences and cumu
In some embodiments , the position of each number of 40 lative number of occurrences tables and at block 108 ,
occurrences in the second row may correspond to the encoded data may be output from a compressor . In one
position of the corresponding symbol in the symbol set and embodiment , the encoding may generate a sequence of
thus , the table 202 may only need the second row recording numbers with each symbol from the input block of symbols
the numbers of occurrences of the symbols . For the example being processed . Each number in the sequence of numbers
of the alphabet being { a , b , c } with three symbols (n = 3) the 45 may represent a state that may be generated based on already
number of occurrences table may be Table 1 below . In one processed symbols at that point , and the next number in the
embodiment , the alphabet { a , b , c } may be stored in a sequence may be a function of the current state and the
symbols table separately during the encoding operation and incoming symbol . In some embodiments , the encoding
the list of number of occurrences { 1 , 5 , 2 } may be stored as function may be represented as C (x , s) , with x being a current
an alternative to the Table 1 with positions of the number of 50 state and s being the incoming symbol (e.g. , the next symbol
occurrences corresponding to the positions of symbols in the to be processed) .
list of symbols in the alphabet . It should be noted that a decoding process may work on

the encoding generated states in a reversed order . That is , the
TABLE 1 last encoded symbol may be the first symbol decoded , and

55 the decoding process may start from the last state generated
Number of occurrences of symbol set { a , b , c } during the compression process 100 and work until the first in the simple example state generated during the compression process 100. In one

embodiment , to get the decoded symbols in the order of
input block of symbols , the compression process 100 may

60 start with the last symbol of the input block and work
backward until the first symbol of the input block . In another

FIG . 2B schematically shows a cumulative number of embodiment , the compression process 100 may start with
occurrences table 204 in accordance with an embodiment of the first symbol of the input block and work forward until the
the present disclosure . The cumulative number of occur- last symbol of the input block , and correspondingly the
rences table 204 may be a table of cumulative occurrences 65 decoding process may get the last symbol of the input block
for all elements of the symbol set . A cumulative occurrence decoded first and the first symbol of the input block decoded
for an element , which may be referred to as bs , is the sum last .

0 1 6

S

? . b ?

1 5 2

S

Xtmp = X >> i ;

S

a

2

US 11,296,720 B2
7 8

Embodiments according to the present disclosure may bol and adding M. That is , the new “ x ” is equal to b , + Xtmp
need to choose L distinct states for compression . In some 1 , + M . The nBits of bits being shifted right may be output to
embodiments , the L distinct states may be an interval of L the encoded data in block 108 .
different numbers generated during the compression process In one embodiment , the encoding and output operation in
100. The interval may be a range for the sequence of 5 block 106 and 108 may be represented in pseudo code as
numbers . During the compression process 100 , when a state follows , in which “ lg () " is the binary logarithm function ,
generated by the encoding function C (x , s) exceeds the is the right shift operator , “ E ” is the belong to operator :
range , some bits of the generated state may be transferred to Initial x = M , R = lg (L) ;
an output stream (or output buffer) such that the remaining For the last symbol to the first symbol of the block of
portion of the generated state may fall into the interval . In 10 symbols to be encoded
some embodiments , the generated state may be right shifted For i = 0 to R ;
to reduce the value of the generated state and the shifted bits nBits = i ;
may be transferred to the output stream (or output buffer) . In
various embodiments , the interval for the states may have a until (xemp Elnt) break ;
span of L , for example , M to M + L - 1 , in which M may be 15 end
the base value of the range of states and may be an integer New x = b + X mp - 1 , + M ; ,
equal to or larger than zero . FIG . 2C schematically shows Output least significant nBits bits of x (which may be
intervals for the states and symbol state intervals in accor- referred to as x [(nBits - 1) : 0]) to the encoded data
dance with an embodiment of the present disclosure . The end
table shown in FIG . 2C may be an encoding state table for 20 At the end of the compression process 100 , the encoding
the simple example of { a , b , c } with distribution of { 1 / 8,5 / 8 , result may include the encoded data and a final state x . The
2/8 } . The first row may be states that may be generated final state x may be the new state x generated by encoding
during an encoding process . The second row may be num- the last symbol in the input subtracted by M. The encoding
bers of occurrences for encoding symbol “ a ” , the third row result may be output at the block 108 .
may be numbers of occurrences for encoding symbol “ b ” 25 Block 106 and block 108 may be explained using the
and the fourth row may be numbers of occurrences for simple example symbols set (a , b , c) with " L " being 8 ,
encoding symbol “ c ” . Block 206 may be a selection of 3 to number of occurrences being { 1 , 5 , 2 } and cumulative
10 as the L distinct states (e.g. , the base value M being 3 for occurrences being { 0 , 1 , 6 } . To encode a string “ bac ” , in an
the range of states) . In block 206 , symbol “ a ” may have a embodiment that starts from the last symbol and works until
range of numbers of occurrences of 1 to 1 (e.g. , state interval 30 the first symbol , the letter “ c ” may be encoded first . The
of 1 to 1) , symbol “ b ” may have a range of numbers of initial value “ X ” may be initialized to 8 .
occurrences 2 to 4 and 5 to 6 (e.g. , state interval of 2 to 6) , The letter “ c ” may have cumulative occurrences of 6 and
and symbol “ c ” may have a range of numbers of occurrences number of occurrences of 2. The symbol state interval for
of 0 to 1 (e.g. , state interval of 0 to 1) . “ c ” may be 2 to 3 (e.g. , 2 * 2–1) . The initial x value 8 may

In at least one embodiment , the range of the states may be 35 be represented in binary as b1000 so it may need to be right
chosen as L to 2 * L - 1 with “ L ” being the sum of occurrences shifted twice for the value Xymp to become b10 (e.g. , decimal
of all symbols and “ * ” representing multiplication . In such number 2) to fall into the 2 to 3 interval . The new state “ x ”
an embodiment , the base value “ M ” of the range of the states may become 6 + 2–2 + 8 , which may be equal to 14. The right

equal to L. Each symbol “ s ” may also have a symbol shifted two bits b00 may be put into the encoded data .
state interval Int , of 1 , to 2 * 1 , -1 . Block 208 may be such a 40 With the state “ x ” now being 14 , the next letter “ a ” may
selection with 8 to 15 as the interval for the states (with M be encoded . The letter “ a ” may have a cumulative occur
being 8 and L also being 8) . In block 208 , symbol “ a ” may rence of O and number of occurrences of 1. The symbol state
have a range of numbers of occurrences of 1 to 1 (e.g. , state interval for “ a ” may be 1 to 1 (e.g. , 2 * 1-1) . The number 14
interval of 1 to 1 with 1 , being 1) , symbol may be represented in binary as b1110 so it may need to be

state interval 45 right shifted three times for the value x , tmp to become b1 to
of 5 to 9 with 1 , being 5) , and symbol “ c ” may have a range fall into the 1 to 1 interval . The new state “ x ” may become
of numbers of occurrences 2 to 3 (e.g. , state interval of 2 to 0 + 1-1 + 8 , which may equal to 8. The right shifted three bits
3 with 1 , being 2) . b110 may be put into the encoded data .

In some embodiments , with M being selected as equal to With the state “ x ” now being 8 , the next letter “ b ” may be
“ L ” , encoding at block 106 may start with initializing the 50 encoded . The letter “ b ” may have a cumulative occurrence
state “ x ” to an initial value of “ L , ” then encoding may be of 1 and number of occurrences of 5. The symbol state
performed such that for each symbol in the input data block , interval for “ b ” may be 5 to 9 (e.g. , 2 * 5–1) . The number 8
based on the number of occurrences table and the cumula- may be represented in binary as b1000 and it may need no
tive occurrences table , a number of shifts for right - shifting shift (zero shift) for the value Xtmp to fall into the 5 to 9
a current state “ x ” for encoding a current symbol and a next 55 interval . The new state “ x ” may become 1 + 8–5 + 8 , which
state “ x ” may be obtained dynamically at runtime . For may equal to 12. Because “ b ” may be a last symbol to be
example , in one embodiment , encoding at block 106 may encoded , no bits may be put into the encoded data after
execute a loop for each symbol of the input block . The loop encoding “ b ” and a final state x may be obtained by
may work on the symbols from the last symbol to the first subtracting L from the last generated new state “ x ” (e.g. ,
symbol of the input block . Inside the loop , the value of “ x ” 60 12–8) . Therefore , in one embodiment , the encoding result
may be right shifted until what's left of “ x , ” which may be output from a compressor may be encoded data b11000 and
referred to as Ximp , may fall into the symbol state interval for a final state x 4 .
the current symbol . The number of shifts may be referred to It should be noted that there is no restriction for the order
as nBits . The next value of state generated by encoding the in which the right shifted bits may be put into the encoded
current symbol “ s ” may be determined by adding the cumu- 65 data . That is , a compressor may be configured to put the
lative occurrence for the current symbol to the Xymp and righted shifted bits into the encoded data in different orders
subtracting the number of occurrences for the current sym- as long as the order information may be preserved such that

may be

may have a
range of numbers of occurrences 5 to 9 (e

a

US 11,296,720 B2
9 10

a decompressor may obtain this information later for decod- 104 including : scanning the input data to build the alphabet
ing . For example , encoding “ a ” generated three bits b110 if alphabet is not given , determining the number of occur
being shifted out and put in the encoded data as b110 or rences for each symbol in the alphabet and calculating the
b011 , and the order information may be preserved for the cumulative occurrences . The table buffer 308 may store the
decompressor to obtain and use for decoding . 5 tables generated by the calculator 306 , which may include

Moreover , sets of bits corresponding to consecutive sym- the number of occurrences table 202 and the cumulative
bols generated in successive encoding operation loops also occurrences table 204 .
may be concatenated in any order as long as the concatena- In some embodiments , symbols in the alphabet may be
tion order information may be preserved such that a decom- represented in an order , for example , extended ASCII code
pressor may obtain this concatenation information later for 10 is a list of 256 consecutive numbers that correspond to 256
decoding . For example , 600 generated by encoding the first characters , English characters in lower case are 26 letters
element “ c ” and b110 generated by encoding the second from “ a ” to “ z . ” In such embodiments , the alphabet may be
element “ b ” may be concatenated by b011 + 500 as b01100 or obtained without scanning the input data and there may not
500 + 6011 as b00011 , and the concatenation order informa- be a need to store the alphabet because both encoder and
tion may be preserved for the decompressor to obtain and 15 decoder may obtain such information (e.g. , the encoding or
use for decoding . It at least one embodiment , the bit order , decoding specification may provide the alphabet) and the
the concatenation order or both may be predetermined (e.g. , address or index of each entry of the table 202 and table 204
specified in a specification) and the compressor and decom- may indicate the corresponding symbol . For example , if the
pressor may follow the predetermined orders and thus , in alphabet is extended ASCII , the first symbol may be “ null ”
this embodiment , the bit order , the concatenation order or 20 and the first entry in the table 202 may correspond to the
both may not need to be preserved and passed to the number of occurrences for symbol “ null ” and the first entry
decompressor because the decompressor may correctly in the table 204 may correspond to the cumulative occur
decode by using the predetermined orders . rences for symbol “ null . ” In another example , if the alphabet

Because the compression process 100 may include a loop is English letters in lower case , the first symbol may be “ a ”
with a loop index starting from 0 stepping up one by one to 25 and the first entry in the table 202 may correspond to the
lg (L) for each symbol , an embodiment of the compression number of occurrences for symbol “ a ” and the first entry in
process 100 with L reduction (smaller L) may take less time the table 204 may correspond to the cumulative occurrences
to complete the compression than an embodiment of the for symbol “ a . ”
compression process 100 without L reduction . In some other embodiments , the alphabet may be built by

Compressor embodiments according to the present dis- 30 scanning the input data and the distinct symbols in the input
closure may be friendly to hardware implementations . The data may be unknown before the scan . In such embodiments ,
number of occurrences table may need n entries (with n the alphabet may be built at runtime and , in one embodi
being number of distinct symbols of the alphabet) and the ment , it may be stored in a separate table or list in the table
cumulative number of occurrences table may also need n buffer 308. In another embodiment , the alphabet may be
entries . The entry size may be lg (L) bits such that the 35 built at runtime but the list of symbols may be a row in either
required storage for these two tables may be 2 * n * lg (L) , in the table 202 or the table 204 in the table buffer 308 so that
which may be the multiplication operator and “ lg () ” may the there is no need for a separate alphabet table or list .
binary logarithm function . An embodiment with L reduction The encoder engine 310 may be configured to carry out
may also be more hardware friendly than an embodiment the encoding operation at block 106 using the tables in the
without L reduction , because the tables may take less space 40 table buffer 308 and data in the input buffer 304. The
with smaller entry size (L smaller thus 1g (L) smaller) . In encoded data may be put into the output buffer 312 for the
embodiments in which the bit length of a symbol may be block 108. In some embodiments , the alphabet and number
equal to 1g (L) , the alphabet may be stored together with of occurrences may also be put into the output buffer 312 .
either table 202 or 204. In embodiments in which the bit Moreover , in some embodiment , the bit order and concat
length of a symbol is not equal to 1g (L) , the alphabet may be 45 enation order information for the encoded data may also be
stored in a separate list and the tables 202 and 204 may only output (e.g. , to the output stream or into the output buffer) .
need the second rows in respective tables . It should be noted FIG . 4 schematically shows a compression process 400 in
that encoding techniques according to the present disclosure accordance with another embodiment of the present disclo
do not need any encoding tables that contains a list of sure . In one or more embodiments , the compression process
generated states with each state accompanied by a corre- 50 400 may also be referred to as an encoding process and the
sponding symbol (a previous state encoded with this symbol terms and techniques described with respect to the compres
to generate the state) . Therefore , compressor embodiments sion process 100 are also applicable in the compression
according to the present disclosure may need little storage process 400 unless otherwise noted . At block 402 , a block of
space , and may be friendly to be implemented in a Field input data may be received . The block 402 may be identical
Programmable Gate Array (FPGA) or an Application Spe- 55 to block 102 of the compression process 100 in various
cific Integrated Circuit (ASIC) , etc. embodiments .
FIG . 3 schematically shows a compressor 300 in accor- At block 404 , numbers of occurrences of distinct symbols

dance with an embodiment of the present disclosure . The in the block of input data may be determined . As described
compressor 300 may be configured to implement the com- with respect to block 104 , in various embodiments , data in
pression process 100. The compressor 300 may comprise an 60 the input data block may be represented or organized in
input interface 302 , an input buffer 304 , a calculator 306 , a symbols , which may be power of 2 bits in some embodi
table buffer 308 , an encoder engine 310 and an output buffer ments and not power of 2 bits in some other embodiments ,
312. The input interface 302 may be coupled to an external and the total number of all symbols in an input data block
bus and configured to perform block 102 to receive data to may be represented as Stotal . In general , a block of data may
be encoded . The received data may have one copy stored in 65 be formed by a set of distinct symbols with each symbol
the input buffer 304 and another copy sent to the calculator occurring once or multiple times . In one embodiment , the
306. The calculator 306 may be configured to perform block input data may be scanned to build the set of distinct

s

2

s - actual

s s

a

??? <<

s

US 11,296,720 B2
11 12

symbols , and also to count the number of distinct symbols be power of 2. The encoding states table may be represented
and how many times each distinct symbol occurs in the as Encoding Table [i] with the index “ i ” from 0 to reduced - 1 .
block of input data . Therefore , in block 404 , “ 15 - actual ” for the To fill the encoding states table , the initial value for the state
set of distinct symbols in the block of input data and X may be set to zero , and an iteration step may be set to
“ L'actua ” for the block of data may be obtained . 5 5 / 8 * Lreduced + 3 , in which " * " may be a multiplication opera “
At block 406 , reduced numbers of occurrences for the tor . A loop with the index “ i ” from 0 to reduced - 1 may be

distinct symbols in the input block of data may be generated . used to fill the entries of the encoding states table . Inside the In one embodiment , for example , after counting the number loop , Encoding Table [i] may be set to the current state X and
of occurrences “ 15 - a 1 for an element , this actual number the next state X may be set to mod (X + step , Lreduced) , in of occurrences may be reduced to generate a reduced num- 10 which mod () is the modulo function . ber of occurrences “ 15 - reduced ” by dividing “ 15 - actuai " with a In this embodiment , once the ANS tables may be com predetermined number DIV and round the division result to

non - zero whole number . There may be different pleted , encoding may be performed using the ANS tables .
approaches to obtain the non - zero whole number as The number of bits to be generated for a current element “ s ”
described with respect to block 104 and they may be 15 may be nbBits = (x + nb [s]) >> r , in which “ x ” may be a current
implemented in various embodiments for block 406. For state and may be a right shift operator . A temporary
example , the non - zero whole number may be obtained by state Xtmp may be set to the current state right shift nbBits
rounding up the division result to the nearest whole number times . And the new state x may be set to Encoding Table
using a ceiling function ; rounding down the division result [start [s] + Xtmpl + L and nbBits bits of the current state x (e.g. ,
to the nearest whole number using a floor function , and if the 20 x [nbBits - 1 : 0]) may be output to the encoded data (e.g. ,
result of the floor function is zero , setting the non - zero output stream or output buffer) .
whole number to one ; or rounding the division result to the In one embodiment , ANS tables may be generated by
closest whole number (e.g. , rounding up if the reminder is pseudo code as follows , in which R is lg (Lreduced) , r = R + 1 ,
equal to or greater than 0.5 and rounding down if the “ << ” is the left shift operator , “ >> ” is the right shift operator ,
reminder is less than 0.5) , and if the result by rounding is 25 is the multiplication operator , mod () is the modulo
zero , setting the non - zero whole number to one . function :

After the reduction in each individual number of occur- For each element " S "
rences for each distinct symbol , the number of total occur- start [s] = - 15 - reduced + sum (all 15 ureduced) where s ' < s ;
rences of all symbols may also be reduced to a reduced k [s] = R - floor (Ig (15 - reduced)) ;
number of total occurrences of all symbols , which may be 30 nb [s] = (k [s] << r) - (15 - reduced << k [s]) ;
represented as “ Lreduced . ” It should be noted that L reduced end
may be close to Lactual / DIV but not necessarily equal . X = 0 ; step = 5 / 8 * L reduced + 3 ;
At block 08 , the block of data may be encoded using the for i = 0 to Lreduced - 1

reduced numbers of occurrences as probability distribution . Encoding Table [i] = X ;
After the reduction for each individual number of occur- 35 X = mod (X + step , L reduced) ;
rences for each distinct symbol , the reduced number of total end
occurrences of all symbols “ L reduce ̂ " may be obtained and The encoding process using the ANS tables may be
probability of occurrences for each distinct symbol may be represented by pseudo code as follows :
“ Is - reduced / Lreduced . And any entropy encoding scheme based Initial x = L reduced , R = lg (Lreduced) ;
on the probability distribution may be used to perform the 40 For the last symbol to the first symbol of the block of
encoding symbols to be encoded

In some embodiments , at block 408 , encoding tables may nbBits = (x + nb [s] >> r ;
be built using the reduced numbers of occurrences of the Xtmp = >>> nbBits ;
distinct symbol and encoding using these tables may be New x = Encoding Table [start [s] + Xemp] + L reducedi
performed . In one embodiment , for example , tables 202 and 45 Output least significant nBits bits of x (which may be
204 may be built using the reduced number of occurrences referred to as x [(nBits - 1) : 0]) to the encoded data
of the distinct symbols and the encoding techniques for the end
compression process 100 (e.g. , implementations for blocks The present disclosure provides systems and methods for
104 , 106 and 108) may be used . a lossless compression using entropy encoding . In an exem

In some other embodiments , any conventional Asymmet- 50 plary embodiment , there is provided a method that may
ric Numeral Systems (ANS) encoding approach may be used comprise receiving an input data block to be compressed ,
at block 408 for encoding , including but not limited to , generating a number of occurrences table and a cumulative
stream ANS coding , table ANS , range ANS , etc. In one occurrences table for symbols in the input data block , for
embodiment , for example , three ANS tables may be built : a each symbol in the input data block , based on the number of
start table , a number of bits table and an encoding states 55 occurrences table and the cumulative occurrences table ,
table may be built and used for encoding . The start table may dynamically obtaining a number of shifts for right - shifting a
be represented as start [s] and the number of bits table may current state “ x ” to encode a current symbol , outputting
be represented as nb [s] , with the index “ s ” being the right - shifted bits to encoded data and obtaining a next state
elements in the alphabet . Each entry in the start table may be “ X ” and obtaining a final state “ X ” from a last state “ x ”
obtained by start [s] = - 15 - reduced + sum (all is - reduced) with s ' < s 60 generated in a final loop .
(s ' may represent an element in the alphabet that may be The compression process 400 may be implemented by an
positioned before the element “ s ”) . Each entry in the number embodiment of the compressor 300 in which the table buffer
of bits table may be obtained by nb [s] = (k [s] << r)- 308 may be optional . Because some embodiments may
(15 - reduced << k [s]) , in which “ << ” being the left shift operator , perform the compression using encoding tables (e.g. , tables
k [s] = R - floor (Ig (15 - reduced)) , R being lg (L reduced) , r being 65 202 and 204 , or ANS tables) and some other embodiments
R + 1 . It should be noted that because R is obtained by may perform the compression without using encoding tables
lg (L reduced) , this particular embodiment may need L reduced to (e.g. , stream ANS coding) .

a

5

a

US 11,296,720 B2
13 14

In one exemplary embodiment , there is provided a (15 - reduced being a reduced number of occurrences for a
method that may comprise receiving an input data block to distinct symbol “ s ” and s ' being a distinct symbol in a set of
be compressed , determining numbers of occurrences for the distinct symbols positioned before “ s ”) ; each entry in the
distinct symbols in the input data block , generating reduced number of bits table may be obtained by nb [s] = (k [s] << r)
numbers of occurrences for the distinct symbols based on (15 - reduced << k [s]) , in which “ << ” being the left shift operator ,
the numbers of occurrences for the distinct symbols and k [s] being R - floor (Ig (1s - reduced)) , R being Ig (L reduced) , r encoding the input data block using the reduced numbers of being R + 1 , L reduced being a sum of all reduced numbers of occurrences as probability distribution of the distinct sym occurrences , floor () being a floor function and Ig () being a bols in the input data block .

In one embodiment , encoding the input data block using 10 be obtained by initializing a state X to zero and an iteration
binary logarithm function ; and the encoding states table may

the reduced number of occurrences may comprises : building
a number of occurrences table and a cumulative occurrences step to 5 / 8 * L reduced + 3 , and then executing a loop with a loop
table using the reduced numbers of occurrences for the index “ i ” from 0 to reduced - 1 and each entry of the encoding
distinct symbols ; for each symbol in the input data block , states table EncodingTable [i] being set to a current state X
based on the number of occurrences table and the cumula- 15 and obtaining a next state X as mod (X + step , Lreduced) , in
tive occurrences table , dynamically obtaining a number of which “ * ” may be a multiplication and mod () may be a
shifts for right - shifting a current state “ x ” to encode a current modulo function .
symbol , outputting right - shifted bits to encoded data and In another exemplary embodiment , there is provided a
obtaining a next state “ x ” ; and obtaining a final state “ X ” compressor that may comprise : an input interface configured
from a last state “ x ” generated in a final loop . 20 to receive an input data block to be compressed , an input

In one embodiment , the method may further comprise buffer coupled to the input interface to store the received
initializing an initial state “ x ” to a number Lreduced with input data block to be compressed , a calculator coupled to
L reduced being a sum of all reduced numbers of occurrences the input interface and configured to determine numbers of
in the number of occurrences table . The final state “ X ” may occurrences for distinct symbols in the input data block and
be obtained from the last state “ x ” by the last state “ X ” 25 generate reduced numbers of occurrences for the distinct
Subtracting Lreduced symbols based on the numbers of occurrences for the

In one embodiment , dynamically obtaining the number of distinct symbols , and an encoder engine configured to
shifts and obtaining the next state “ x ” may comprise : right encode the input data block using the reduced numbers of
shifting a value of the state “ x ” a number of shifts until a occurrences as probability distribution of the distinct sym
right - shifted value of the state “ x ” falls into a symbol state 30 bols in the input data block .
interval for a current symbol , recording the number of shifts In one embodiment , to encode the input data block using
as nBits , obtaining a reduced number of cumulative occur- the reduced number of occurrences may comprise : building
rences for the current symbol from the cumulative occur- a number of occurrences table and a cumulative occurrences
rences table , obtaining a reduced number of occurrences for table using the reduced numbers of occurrences for the
the current symbol from the number of occurrences table 35 distinct symbols ; for each symbol in the input data block ,
and obtaining a next value of the state “ x ” by adding the based on the number of occurrences table and the cumula
reduced cumulative occurrences for the current symbol to tive occurrences table , dynamically obtaining a number of
the right - shifted value of the state “ x ” and subtracting the shifts for right - shifting a current state “ ” to encode a current
reduced number of occurrences for the current symbol and symbol , outputting right - shifted bits to encoded data and
adding Lreduced in which reduced may be a sum of all 40 obtaining a next state “ x ” ; and obtaining a final state “ X ”
reduced numbers of occurrences for all distinct symbols in from a last state “ x ” generated in a final loop .
the input data block . In one embodiment , the encoder engine may be further

In one embodiment , the reduced numbers of occurrences configured to initialize an initial state “ x ” to a number
for the distinct symbols may be generated by dividing each Lreduced with L reduced being a sum of all reduced numbers of
of the numbers of occurrences by a predetermined number 45 occurrences in the number of occurrences table . The final
and rounding division results to non - zero whole numbers . state “ X ” may be obtained from the last state “ x ” by the last

In one embodiment , rounding the division results to the state “ x ” subtracting L reduce
non - zero whole numbers may be performed using a ceiling In one embodiment , to dynamically obtain the number of
function on each division result . shifts and obtain the next state “ x ” , the encoder engine may

In one embodiment , rounding the division results to the 50 be further configured to : right shift a value of the state “ x ”
non - zero whole numbers may be performed by using a floor a number of shifts until a right - shifted value of the state “ x ”
function on each division result , and if a result of the floor falls into a symbol state interval for a current symbol , record
function is zero , setting a corresponding non - zero whole the number of shifts as nBits , obtain reduced cumulative
number to one . occurrences for the current symbol from the cumulative

In one embodiment , rounding the division results to the 55 occurrences table , obtain a reduced number of occurrences
non - zero whole numbers may be performed by rounding for the current symbol from the number of occurrences table ,
each division result to a closest whole number , and if a result and obtain a next value of the state “ x ” by adding the
by rounding to the closest whole number is zero , setting a reduced cumulative occurrences for the current symbol to
corresponding non - zero whole number to one . the right - shifted value of the state “ x ” and subtracting the

In one embodiment , encoding the input data block using 60 reduced number of occurrences for the current symbol and
the reduced number of occurrences may comprises building adding Lreduced in which reduced may be a sum of all
a start table , a number of bits table and an encoding states reduced numbers of occurrences for all distinct symbols in
table using the reduced numbers of occurrences ; and encod- the input data block .
ing the input data block using the start table , the number of In one embodiment , the reduced numbers of occurrences
bits table and encoding states table . 65 for the distinct symbols may be generated by dividing each

In one embodiment , each entry in the start table may be of the numbers of occurrences by a predetermined number
obtained by start [s] = ls - reduced + sum (all 1st - reduced) with s ' < s and rounding division results to non - zero whole numbers .

a

a

a

reduced

s

-

US 11,296,720 B2
15 16

In one embodiment , rounding the division results to the encoding the input data block using the reduced numbers
non - zero whole numbers may be performed using a ceiling of occurrences as probability distribution of the distinct
function on each division result . symbols in the input data block .

In one embodiment , rounding the division results to the 2. The method of claim wherein encoding the input data
non - zero whole numbers may be performed by using a floor 5 block using the reduced number of occurrences comprises :
function on each division result , and if a result of the floor building a number of occurrences table and a cumulative function is zero , setting a corresponding non - zero whole occurrences table using the reduced numbers of occur
number to one . rences for the distinct symbols ; In one embodiment , rounding the division results to the for each symbol in the input data block , based on the non - zero whole numbers may be performed by rounding 10 number of occurrences table and the cumulative occur each division result to a closest whole number , and if a result
by rounding to the closest whole number is zero , setting a rences table , dynamically obtaining a number of shifts
corresponding non - zero whole number to one . for right - shifting a current state “ x ” to encode a current

In one embodiment , to encode the input data block using symbol , outputting right - shifted bits to encoded data
the reduced number of occurrences , the encoder engine may 15 and obtaining a next state “ x ” ; and
be further configured to : build a start table , a number of bits obtaining a final state “ X ” from a last state “ x ” generated
table and an encoding states table using the reduced numbers in a final loop .
of occurrences ; and encode the input data block using the 3. The method of claim 2 , further comprising initializing
start table , the number of bits table and encoding states table . an initial state “ X ” to a number Line with Lreduced being

In one embodiment , each entry in the start table may be 20 a sum of all reduced numbers of occurrences in the number
obtained by start [s] = 15 - reduced + sum (all 1st - reduced) with s ' < s of occurrences table , wherein the final state “ X ” is obtained
(15 - reduced being a reduced number of occurrences for a from the last state “ x ” by the last state “ x ” subtracting
distinct symbol “ s ” and s ' being a distinct symbol in a set of Lreduced
the distinct symbols positioned before “ s ”) ; each entry in the 4. The method of claim 2 , wherein dynamically obtaining
number of bits table may be obtained by nb [s] = (k [s] << r) - 25 the number of shifts and obtaining the next state “ x ” ,
(15 - reduced << k [s]) , in which " << " being the left shift operator , comprises :
k [s] being R - floor (ig (1s - reduced)) , R being lg (Lreduced) , r right shifting a value of the state “ x ” a number of shifts
being R + 1 , L reduced being a sum of all reduced numbers of until a right - shifted value of the state “ x ” falls into a
occurrences , floor () being a floor function and 1g () being a symbol state interval for a current symbol ;
binary logarithm function ; and the encoding states table may 30 recording the number of shifts as nBits ;
be obtained by initializing a state X to zero and an iteration obtaining a reduced number of cumulative occurrences
step to 5/8 * Lreduced + 3 , and then executing a loop with a loop for the current symbol from the cumulative occurrences
index “ i ” from 0 to L reduced - 1 and each entry of the encoding ole ;
states table Encoding Table [i] being set to a current state X obtaining a reduced number of occurrences for the current
and obtaining a next state X as mod (X + step , Lreduced) , in 35 symbol from the number of occurrences table ; and

may be a multiplication and mod () may be a obtaining a next value of the state “ x ” by adding the
modulo function . reduced cumulative occurrences for the current symbol
Any of the disclosed methods and operations may be to the right - shifted value of the state “ x ” and subtract

implemented as computer - executable instructions (e.g. , soft- ing the reduced number of occurrences for the current
ware code for the operations described herein) stored on one 40 symbol and adding reduced with reduced being a sum L
or more computer - readable storage media (e.g. , non - transi of all reduced numbers of occurrences for all distinct
tory computer - readable media , such as one or more optical symbols in the input data block .
media discs , volatile memory components (such as Dynamic 5. The method of claim 1 , wherein the reduced numbers
Random Access Memory (DRAM) or Static Random Access of occurrences for the distinct symbols are generated by
Memory (SRAM)) , or nonvolatile memory components 45 dividing each of the numbers of occurrences by a predeter
(such as hard drives)) and executed on a device controller mined number and rounding division results to non - zero
(e.g. , firmware executed by ASIC) . Any of the computer- whole numbers .
executable instructions for implementing the disclosed tech- 6. The method of claim 5 , wherein rounding the division
niques as well as any data created and used during imple- results to the non - zero whole numbers is performed using a
mentation of the disclosed embodiments can be stored on 50 ceiling function on each division result .
one or more computer - readable media (e.g. , non - transitory 7. The method of claim 5 , wherein rounding the division
computer - readable media) . results to the non - zero whole numbers is performed by using

While various aspects and embodiments have been dis- a floor function on each division result , and if a result of the
closed herein , other aspects and embodiments will be appar- floor function is zero , setting a corresponding non - zero
ent to those skilled in the art . The various aspects and 55 whole number to one .
embodiments disclosed herein are for purposes of illustra- 8. The method of claim 5 , wherein rounding the division
tion and are not intended to be limiting , with the true scope results to the non - zero whole numbers is performed by
and spirit being indicated by the following claims . rounding each division result to a closest whole number , and

if a result by rounding to the closest whole number is zero ,
What is claimed is : 60 setting a corresponding non - zero whole number to one .
1. A method , comprising : 9. The method of claim 1 , wherein encoding the input data
receiving an input data block to be compressed ; block using the reduced number of occurrences comprises :
determining numbers of occurrences for distinct symbols building a start table , a number of bits table and an

in the input data block ; encoding states table using the reduced numbers of
generating reduced numbers of occurrences for the dis- 65 occurrences ; and

tinct symbols based on the numbers of occurrences for encoding the input data block using the start table , the
the distinct symbols ; and number of bits table and encoding states table .

*

which « * »

a

US 11,296,720 B2
17 18

10. The method of claim 9 , wherein each entry in the start obtain reduced cumulative occurrences for the current
table is obtained by start [s] = -15 - reduced + sum (all 1s - reduced) symbol from the cumulative occurrences table ;
with s ' < s (15 - reduced being a reduced number of occurrences obtain a reduced number of occurrences for the current for a distinct symbol “ s ” and s ' being a distinct symbol in a symbol from the number of occurrences table ; and set of the distinct symbols positioned before “ s ”) ; each entry 5
in the number of bits table is obtained by nb [s] = (k [s] << r) obtain a next value of the state “ x ” by adding the reduced
(15 - reduced << k [s]) , in which " << " being the left shift operator , cumulative occurrences for the current symbol to the
k [s] being R - floor (Ig (1s - reduced)) , R being Ig (Lreduced) , r right - shifted value of the state “ x ” and subtracting the
being R + 1 , reduced being a sum of all reduced numbers of reduced number of occurrences for the current symbol
occurrences , floor () being a floor function and 1g () being a 10 and adding Lreduced , with reduced being a sum of all
binary logarithm function ; and the encoding states table is reduced numbers of occurrences for all distinct sym
obtained by initializing a state X to zero and an iteration step bols in the input data block .
to 5 / 8 * L reduced + 3 , and then executing a loop with a loop
index “ i ” from 0 to reduced - 1 and each entry of the encoding 15. The compressor of claim 11 , wherein the reduced

numbers of occurrences for the distinct symbols are gener states table Encoding Table [i] being set to a current state X 15
and obtaining a next state X as mod (X + step , L reduced) , in ated by dividing each of the numbers of occurrences by a
which " * " is a multiplication and mod () is a modulo predetermined number and rounding division results to

non - zero whole numbers . function .
11. A compressor , comprising : 16. The compressor of claim 15 , wherein rounding the
an input interface configured to receive an input data 20 division results to the non - zero whole numbers is performed

block to be compressed ; using a ceiling function on each division result .
an input buffer coupled to the input interface to store the 17. The compressor of claim 15 , wherein rounding the

received input data block to be compressed ; division results to the non - zero whole numbers is performed
a calculator coupled to the input interface and configured by using a floor function on each division result , and if a

to : determine numbers of occurrences for distinct sym- 25 result of the floor function is zero , setting a corresponding
bols in the input data block , and generate reduced non - zero whole number to one .
numbers of occurrences for the distinct symbols based 18. The compressor of claim 15 , wherein rounding the on the numbers of occurrences for the distinct symbols ; division results to the non - zero whole numbers is performed and

an encoder engine configured to encode the input data 30 and if a result by rounding to the closest whole number is by rounding each division result to a closest whole number ,
block using the reduced numbers of occurrences as zero , setting a corresponding non - zero whole number to one . probability distribution of the distinct symbols in the
input data block . 19. The compressor of claim 11 , wherein to encode the

12. The compressor of claim 11 , wherein to encode the input data block using the reduced number of occurrences ,
input data block using the reduced number of occurrences 35 the encoder engine is further configured to :
comprises : build a start table , a number of bits table and an encoding

building a number of occurrences table and a cumulative states table using the reduced numbers of occurrences ;
occurrences table using the reduced numbers of occur and
rences for the distinct symbols ; encode the input data block using the start table , the for each symbol in the input data block , based on the 40 number of bits table and encoding states table . number of occurrences table and the cumulative occur
rences table , dynamically obtaining a number of shifts 20. The compressor of claim 19 , wherein each entry in the
for right - shifting a current state “ x ” to encode a current start table is obtained by start [s] = - 15 - reduced + sum (all
symbol , outputting right - shifted bits to encoded data 15 ' - reduced) with s ' < s (induced being a reduced number of
and obtaining a next state “ x ” ; and occurrences for a distinct symbol “ s ” and s ' being a distinct

obtaining a final state “ X ” from a last state “ x ” generated symbol in a set of the distinct symbols positioned before
in a final loop . “ s ”) ; each entry in the number of bits table is obtained by

13. The compressor of claim 12 , wherein the encoder nb [s] = (k [s] << r) - (15 - reduced << k [s]) , in which “ << ” being the
engine is further configured to initialize an initial state “ x ” left shift operator , k [s] being R - floor (ig (15 - reduced)) , R being
to a number Lreduced with L reduced being a sum of all reduced 50 lg (L reduced) , r being R + 1 , L reduced being a sum of all reduced
numbers of occurrences in the number of occurrences table , numbers of occurrences , floor () being a floor function and
wherein the final state “ X ” is obtained from the last state " X " lg () being a binary logarithm function ; and the encoding
by the last state “ x ” subtracting L reduced states table is obtained by initializing a state X to zero and

14. The of claim 12 , wherein to dynamically an iteration step to 5 / 8 * L reduced + 3 , and then executing a loop compressor
obtain the number of shifts and obtain the next state “ X ” , the 55 with a loop index “ i ” from 0 to reduced - 1 and each entry of
encoder engine is further configured to : the encoding states table Encoding Table [i] being set to a

right shift a value of the state “ x ” a number of shifts until current state X and obtaining a next state X as mod (X + step ,
a right - shifted value of the state “ X ” falls into a symbol Lreduced) , in which “ * ” is a multiplication and mod () is a
state interval for a current symbol ; modulo function .

record the number of shifts as nBits ;

-
)

a 45
a

a

