WO 2004/042659 A1 ||| 080 A0 0 000 0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

21 May 2004 (21.05.2004)

(10) International Publication Number

WO 2004/042659 A1l

(51) International Patent Classification’: GO6T 15/00
(21) International Application Number:
PCT/US2002/035212

(22) International Filing Date:
1 November 2002 (01.11.2002)

(25) Filing Language: English

(26) Publication Language: English
(71) Applicant: SONY ELECTRONICS INC. [US/US]; 1
Sony Drive, Park Ridge, NJ 07656 (US).

(72) Inventors: MARRIN, Christopher, F.; 3300 Zanker
Road, San Jose, CA 95134 (US). MYERS, Robert, K.;
3300 Zanker Road, San Jose, CA 95134 (US). KENT,
James, R.; 650 Crossing Creek S., Gahanna, OH 43230
(US). BROADWELL, Peter, G.; 3300 Zanker Road, San
Jose, CA 95134 (US).

(74) Agent: BUTT, Richard, H.; Valley Oak Law, 5655 Silver
Creek Valley Road, #106, San Jose, CA 95138 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BFE, BJ, CE, CG, CIL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: A UNIFIED SURFACE MODEL FOR IMAGE BASED AND GEOMETRIC SCENE COMPOSITION

11

Incoming
Stream

Parsers

]

(57) Abstract: A system and
method (figure 1A, item 11) for
the real-time composition and
presentation of a complex, dynamic,
and interactive experience by
means of an efficient declarative
markup language (figure 1A, item

® 12). Using the Surface construct,
mmsﬁp,h/ _/30 P:;a authors can embed images or
f full-motion video data (figure 1A,
| m:;gﬁlm item 20) anywhere they would use
a traditional texture map within
their 3D scene. Authors can also
13 / % 284 use the results of rendering one
Buiitan’| 12 ScenaMar. 7] scene description as an image to be
Objects [N\ 2 |~ 28 texture mapped into another scene
Fhread Mar | ¢ (figure 1A, item 28). In particular,
20 L = LoadMgr. #0 the Surface allows the results of any
| [Author » Core Runtime INE] Event Mar. // rendering application to be used as
Objects . = § /ZBE a texture within the author’s scene
” Miedia Mor. aer (figure 1A, item 28). This allows
Surface Mgr. A/ declarative rendering of nested
. ‘;‘:;"c: — —— %6 scenes and rendering of scenes
having component Surfaces with
decoupled rendering rates figure
» 32 1A, item 26F).
Rendering Platiorm]
Layer Services
[& |

WO 2004/042659 A1 I} 110 A08OA0 T 00000 0 00 00

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 2004/042659 PCT/US2002/035212

A UNIFIED SURFACE MODEL FOR IMAGE BASED AND

GEOMETRIC SCENE COMPOSITION

Christopher F. Marrin
James R. Kent

Robert K. Myers
Peter G. Broadwell

Field of the Invention

This invention relates generally to a modeling language for 3D graphics and,

more particularly, to embedding images in a scene.

BACKGROUND OF THE INVENTION

In computer graphics, traditional real-time 3D scene rendering is based on
the evaluation of a description of the scene’s 3D geometry, resulting in the
production of an image presentation on a computer display. Virtual Reality
Modeling Language (VRML hereafter) is a conventional modeling language that
defines most of the commonly used semantics found in conventional 3D
applications such as hierarchical transformations, light sources, view points,
geometry, animation, fog, material properties, and texture mapping. Texture
mapping processes are commonly used to apply externally supplied image datato a
given geometry within the scene. For example VRML allows one to apply
externally supplied image data, externally supplied video data or externally supplied
pixel data to a surface. However, VRML does not allow the use of rendered scene
as an image to be texture mapped declaratively into another scene. In a declarative
markup language, the semantics required to attain the desired outcome are implicit,

and therefore a description of the outcome is sufficient to get the desired outcome.

PATENT / 50N3457.01 -1-

10

15

20

25

WO 2004/042659 PCT/US2002/035212

Thus, it is not necessary to provide a procedure (i.e., write a script) to get the desired
outcome. As a result, it is desirable to be able to compose a scene using
declarations. One example of a declarative language is the Hypertext Markup
Language (HTML).

Further, it is desirable to declaratively combine any two surfaces on which
image data was applied to produce a third surface. Itis also desirable to
declaratively re-render the image data applied to a surface to reflect the current state

of the image. .

Traditionally, 3D scenes are rendered monolithically, producing a final
frame rate to the viewer that is governed by the worst-case performance determined
by scene complexity or texture swapping. However, if different rendering rates
were used for different elements on the same screen, the quality would improve and
viewing experience would be more television-like and not a web-page-like viewing

experience.

SUMMARY OF THE INVENTION

A system and method for the real-time composition and presentation of a
complex, dynamic, and interactive experience by means of an efficient declarative
markup language. Using the Surface construct, authors can embed images or full-
motion video data anywhere they would use a traditional texture map within their
3D scene. Authors can also use the results of rendering one scene description as an
image to be texture mapped into another scene. In particular, the Surface allows the
results of any rendering application to be used as a texture within the author's scene.
This allows declarative rendering of nested scenes and rendering of scenes having

component Surfaces with decoupled rendering rates
BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1A shows the basic architecture of Blendo.

PATENT / 50N3457.01 2-

10

WO 2004/042659 PCT/US2002/035212

15

20

25

Fig. 1B is a flow diagram illustrating flow of content through Blendo engine.

Fig. 2A illustrates how two surfaces in a scene are rendered at different

rendering rates.

Fig. 2B is a flow chart illustrating acts involved in rendering the two surfaces

shown in Fig. 2A at different rendering rates.
Fig. 3A illustrates a nested scene.

Fig. 3B is a flow chart showing acts performed to render the nested scene of
Fig. 3A.

DETAILED DESCRIPTION

Blendo is an exemplary embodiment of the present invention that allows
temporal manipulation of media assets including control of animation and visible
imagery, and cueing of audio media, video media, animation and event data to a
media asset that is being played. Fig. 1A shows basic Blendo architecture. ¥
easpsisssisssisssissihissinnininemissmnig. At the core of
the Blendo architecture is a Core Runtime module 10 (Core hereafter) which
presents various Application Programmer Interface (API hereafter) elements and the
object model to a set of objects present in system 11. During normal operation, a
file is parsed by parser 14 into a raw scene graph 16 and passed on to Core 10,
where its objects are instantiated and a runtime scene graph is built. The objects can
be built-in objects 18, author defined objects 20, native objects 24, or the like. The
objects use a set of available managers 26 to obtain platform services 32. These
platform services 32 include event handling, loading of assets, playing of media, and
the like. The objects use rendering layer 28 to compose intermediate or final images
for display. A page integration component 30 is used to interface Blendo to an

external environment, such as an HTML or XML page.

PATENT / 50N3457.01 .3-

10

15

20

25

WO 2004/042659 PCT/US2002/035212

Blendo contains a system object with references to the set of managers 26.
Each manager 26 provides the set of APIs to control some aspect of system 11. An
event manager 26D provides access to incoming system events originated by user
input or environmental events. A load manager 26C facilitates the loading of
Blendo files and native node implementations. A media manager 26E provides the
ability to load, control and play audio, image and video media assets. A render
manager 26G allows the creation and management of objects used to render scenes.
A scene manager 26A controls the scene graph. A surface manager 26F allows the
creation and management of surfaces onto which scene elements and other assets
may be composited. A thread manager 26B gives authors the ability to spawn and

control threads and to communicate between them.

Fig. 1B illustrates in a flow diagram, a conceptual description of the flow of
content through a Blendo engine. In block 50, a presentation begins with a source
which includes a file or stream 34 (Fig. 1A) of content being brought into parser 14
(Fig. L1A). The source could be in a native VRML-like textual format, a native
binary format, an XML based format, or the like. Regardless of the format of the
source, in block 53, the source is converted into raw scene graph 16 (Fig. 1A). The
raw scene graph 16 can represent the nodes, fields and other objects in the content,
as well as field initialization values. It also can contain a description of object

prototypes, external prototype references in the stream 34, and route statements.

The top level of raw scene graph 16 include nodes, top level fields and
functions, prototypes and routes contained in the file. Blendo allows fields and
functions at the top level in addition to traditional elements. These are used to
provide an interface to an external environment, such as an HTML page. They also
provide the object interface when a stream 34 is used as the contents of an external

prototype.

Each raw node includes a list of the fields initialized within its context. Each

raw field entry includes the name, type (if given) and data value(s) for that field.

PATENT / 50N3457.01 4

10

15

20

25

WO 2004/042659 PCT/US2002/035212

Each data value i des 2 number, a string, a raw node. and/or A tield that.can
represent an explicitly typed field value.

In block 60, the prototypes are extracted from the top level or raw scene
graph 16 (Fig. 1A) and used to populate the database of object prbtotypes accessible

by this scene.

The raw scene graph 16 is then sent through a build traversal. During this

traversal, each object is built (block 65), using the database of object prototypes.

In block 70, the routes in stream 34 are established. Subsequently, in block
75, each field in the scene is initialized. This is done by sending initial events to
non-default fields of Objects. Since the scene graph structure is achieved through
the use of node fields, block 75 also constructs the scene hierarchy as well. Events
are fired using in order traversal. The first node encountered enumerates fields in

the node. If a field is a node, that node is traversed first.

As a result the nodes in that particular branch of the tree are initialized.

Then, an event is sent to that node field with the initial value for the node field.

After a given node has had its fields initialized, the author is allowed to add
initialization logic (block 80) to prototyped objects to ensure that the node is fully
initialized at call time. The blocks described above produce a root scene. In block
85 the scene is delivered to the scene manager 26A (Fig. 1A) created for the scene.
In block 90, the scene manager 26A is used to render and perform behavioral

processing either implicitly or under author control.

A scene rendered by the scene manager 26A can be constructed using objects
from the Blendo object hierarchy. Anmnuisie———R——
SRR EERENEES: Objccts may derive some
of their functionality from their parent objects, and subsequently extend or modify
their functionality. At the base of the hierarchy is the Object. The two main classes

of objects derived from the Object are a Node and a Field. Nodes contain, among

PATENT / 50N3457.01 .5-

10

15

20

25

WO 2004/042659

other things, a render method, which gets called as part of the render traversal. The
data properties of nodes are called fields. Among the Blendo object hierarchy is a
class of objects called Timing Objects, which are described in detail below. The
following code portions are for exemplary purposes. It should be noted that the line
numbers in each code portion merely represent the line numbers for that particular

code portion and do not represent the line numbers in the original source code.

SURFACE OBJECTS

A Surface Object is a node of type SurfaceNode. A SurfaceNode class is the
base class for all objects that describe a 2D image as an array of color, depth and
opacity (alphé) values. SurfaceNodes are used primarily to provide an image to be -
used as a texture map. Derived from the SurfaceNode Class are MovieSurface,
ImageSurface, MatteSurface, PixelSurface and SceneSurface. It should be noted the
the line numbers in each code portion merely represent the line numbers for that

code portion and do not represent the line numbers in the original source code.

MovieSurface

The following code portion illustrates the MovieSurface node. A description

of each field in the node follows thereafter.

1) MovieSurface : SurfaceNode TimedNode AudioSourceNode {

2) field MF String url 0
3) field TimeBaseNode timeBase NULL
4) field Time duration 0
5) field Time loadTime 0
6) field String loadStatus “NONE”
}

A MovieSurface node renders a movie on a surface by providing access to
the sequence of images defining the movie. The MovieSurface’s TimedNode parent
class determines which frame is rendered onto the surface at any one time. Movies

can also be used as sources of audio.

PATENT/ 50N3457.01 6-

PCT/US2002/035212

10

15

20

25

WO 2004/042659 PCT/US2002/035212

In line 2 of the code portion, (“Multiple Value Field) the URL field
provides a list of potential locations of the movie data for the surface. The list is
ordered such that element 0 describes the preferred source of the data. If for any
reason element 0 is unavailable, or in an unsupported format, the next element may

be used.

In line 3, the timeBase field, if specified, specifies the node that is to provide
the timing information for the movie. In particular, the timeBase will provide the
movie with the information needed to determine which frame of the movie to
display on the surface at any given instant. If no timeBase is specified, the surface

will display the first frame of the movie.

In line 4, the duration field is set by the MovieSurface node to the length of

the movie in seconds once the movie data has been fetched.

In line 5 and 6, the loadTime and the loadStatus fields provide information
from the MovieSurface node concerning the availability of the movie data.
LoadStatus has five possible values, “NONE”, “REQUESTED”, “FAILED”,
“ABORTED?”, and “LOADED”.

“NONE" is the initial state. A “NONE” event is also sent if the node’s url is
cleared by either setting the number of values to 0 or setting the first URL string to
the empty string. When this occurs, the pixels of the surface are set to black and

opaque (i.e. color is 0,0,0 and transparency is 0).

A “REQUESTED?” event is sent whenever a non-empty url value is set. The
pixels of the surface remain unchanged after a “REQUESTED” event.

“FAILED" is sent after a “REQUESTED” event if the movie loading did not

- succeed. This can happen, for example, if the URL refers to a non-existent file or if

the file does not contain valid data. The pixels of the surface remain unchanged
after a “FAILED” event.

PATENT / 50N3457.01 -

10

15

20

25

WO 2004/042659 PCT/US2002/035212

An “ABORTED?” event is sent if the current state is “REQUESTED” and
then the URL changes again. If the URL is changed to a non-empty value,
“ABORTED?” is followed by a “REQUESTED” event. If the URL is changed to an
empty value, “ABORTED?” is followed by a “NONE” value. The pixels of the

surface remain unchanged after an “ABORTED” event.

A “LOADED?” event is sent when the movie is ready to be displayed. Itis
followed by a loadTime event whose value matches the current time. The frame of
the movie indicated by the timeBase field is rendered onto the surface. If timeBase

is NULL, the first frame of the movie is rendered onto the surface.

ImageSurface

The following code portion illustrates the ImageSurface node. A description

of each field in the node follows thereafter.

1) ImageSurface : SurfaceNode {

2) field MF String url 1l
3) field Time loadTime 0
4) field String JoadStatus “NONE”

}

An ImageSurface node renders an image file onto a surface. In line 2 of the
code portion, the URL field provides a list of potential locations of the image data
for the surface. The list is ordered such that element 0 describes the most preferred
source of the data. If for any reason element 0 is unavailable, or in an unsupported

format, the next element may be used.

In line 3 and 4, the loadTime and the loadStatus fields provide information
from the ImageSurface node concerning the availability of the image data.
LoadStatus has five possible values, “NONE”, “REQUESTED”, “FAILED”,
“ABORTED”, and “LOADED”.

“NONE” is the initial state. A “NONE” event is also sent if the node’s URL

is cleared by either setting the number of values to 0 or setting the first URL string

PATENT/ 50N3457.01 -8-

10

15

20

25

WO 2004/042659 PCT/US2002/035212

to the empty string. When this occurs, the pixels of the surface are set to black and

~ opaque (i.e. color is 0,0,0 and transparency is 0).

A “REQUESTED” event is sent whenever a non-empty URL value is set.
The pixels of the surface remain unchanged after a “REQUESTED” event.

“FAILED” is sent after a “REQUESTED” event if the image loading did not
succeed. This can happen, for example, if the URL refers to a non-existent file or if
the file does not contain valid data. The pixels of the surface remain unchanged
after a “FAILED” event.

An “ABORTED?” event is sent if the current state is “REQUESTED” and
then the URL changes again. If the URL is changed to a non-empty value,
“ABORTED” will be followed by a “REQUESTED” event. If the URL is changed
to an empty value, “ABORTED” will be followed by a “NONE” value. The pixels

of the surface remain unchanged after an “ABORTED?” event.

A “LOADED” event is sent when the image has been rendered onto the

surface. It is followed by a loadTime event whose value matches the current time.
MatteSurface

The following code portion illustrates the MatteSurface node. A description

of each field in the node follows thereafter.

1) MatteSurface : SurfaceNode {

2) field SurfaceNode surfacel NULL
3) field SurfaceNode surface2 NULL
4) field String operation ceee

S) field MF Float parameter 0

6) field Bool overwriteSurface2 FALSE

The MatteSurface node uses image compositing operations to combine the
image data from surfacel and surface2 onto a third surface. The result of the

compositing operation is computed at the resolution of surface2. If the size of

PATENT / 50N3457.01 O-

10

15

20

25

WO 2004/042659 PCT/US2002/035212

surfacel differs from that of surface2, the image data on surfacel is zoomed up or
down before performing the operation to make the size of surfacel equal to the size

of surface?.

In lines 2 and 3 of the code portion, the surfacel and surface2 fields specify
the two surfaces that provide the input image data for the compositing operation. In
line 4, the operation field specifies the compositing function to perform on the two

input surfaces. Possible operations are described below.

“REPLACE_ALPHA” overwrites the alpha channel A of surface2 with data
from surfacel. If surfacel has 1 component (grayscale intensity only), that
component is used as the alpha (opacity) values. If surfacel has 2 or 4 components
(grayscale intensity+alpha or RGBA), the alpha channel A is used to provide the
alpha values. If surfacel has 3 components (RGB), the operation is undefined. This
operation can be used to provide static or dynamic alpha masks for static or dynamic
images. For example, a SceneSurface could render an animated James Bond
character against a transparent background. The alpha component of this image

could then be used as a mask shape for a video clip.

“MULTIPLY_ALPHA?” is similar to REPLACE_AIPHA, except the alpha

values from surfacel are multiplied with the alpha values from surface?2.

“CROSS_FADE” fades between two surfaces using a parameter value to
control the percentage of each surface that is visible. This operation can
dynamically fade between two static or dynamic images. By animating the

parameter value (line 5) from 0 to 1, the image on surfacel fades into that of
surface2.

“BLEND” combines the image data from surfacel and surface2 using the
alpha channel from surface2 to control the blending percentage. This operation
allows the alpha channel of surface2 to control the blending of the two images. By
animating the alpha channel of surface2 by rendering a SceneSurface or playing a

MovieSurface, you can produce a complex travelling matte effect. If R1, G1, B1,

PATENT / SON3457.01 -10-

10

15

20

25

WO 2004/042659 PCT/US2002/035212

and Al represent the red, green, blue, and alpha values of a pixel of surfacel and
R2, G2, B2, and A2 represent the red, green, blue, and alpha values of the
corresponding pixel of surface2, then the resulting values of the red, green, blue, and
alpha components of that pixel are:

red =R1*(1-A2)+R2% A2

green =Gl*(1-A2)+G2* A2

blue =BIl*(1-A2)+B2%*A2
alpha =1

“ADD?”, and “SUBTRACT” add or subtract the color channels of surfacel
and surface2. The alpha of the result equals the alpha of surface2.

In line 5, the parameter field provides one or more floating point parameters
that can alter the effect of the compositing function. The specific interpretation of

the parameter values depends upon which operation is specified

In line 6, the overwriteSurface2 field indicates whether the MatteSurface
node should allocate a new surface for storing the result of the compositing
operation (overwriteSurface2 = FALSE) or whether the data stored on surface?

should be overwritten by the compositing operation (overwriteSurface2 = TRUE).

PixelSurface

The following code portion illustrates the SceneSurface node. A description

of the field in the node follows thereafter.

1) PixelSurface : SurfaceNode {
2) field Image image 000
1

A PixelSurface node renders an array of user-specified pixels onto a surface.

In line 2, the image field describes the pixel data that is rendered onto the surface.

PATENT / 50N3457.01 11-

(1)
2
3
@

10

15

20

25

WO 2004/042659 PCT/US2002/035212

The following code portion illustrates the use of SceneSurface node. A

description of each field in the node follows thereafter.

1) SceneSurface : SurfaceNode {

2) field MF ChildNode children 0
3) field Ulnt32 width 1
4) field Ulnt32 height 1

}

A SceneSurface node renders the specified children on a surface of the

specified size. The SceneSurface automatically re-renders itself to reflect the

“current state of its children.

In line 2 of the code portion, the children field describes the ChildNodes to
be rendered. Conceptually, the children field describes an entire scene graph that is

rendered independently of the scene graph that contains the SceneSurface node.

In lines 3 and 4, the width and height fields specify the size of the surface in
pixels. For example, if width is 256 and height is 512, the surface contains a 256 x

512 array of pixel values.

The MovieSurface, ImageSurface, MatteSurface, PixelSurface &

SceneSurface nodes are utilized in rendering a scene.

At the top level of the scene description, the output is mapped onto the
display, the "top level Surface." Instead of rendering its results to the display, the
3D rendered scene can generate its output onto a Surface usin g one of the above
mentioned SurfaceNodes, where the output is available to be incorporated into a
richer scene composition as desired by the author. The contents of the Surface,
generated by rendering the surface’s embedded scene description, can include color
information, transparency (alpha channel) and depth, as part of the Surface's
structured image organization. An image, in this context is defined to include a

video image, a still image, an animation or a scene.

PATENT / 50N3457.01 12-

10

15

20

25

WO 2004/042659 PCT/US2002/035212

A SurfaceW@hlso defined to support the specialized requiMients of various
texture-mapping systems internally, behind a common 1mage management interface.
As a result, any Surface producer in the system can be consumed as a texture by the
3D rendering process. Examples of such Surface producers include an Image
Surface, a MovieSurface, a MatteSurface, a SceneSurface, and an

ApplicationSurface.

An ApplicationSurface maintains image data as rendered by its embedded
application process, such as a spreadsheet or word processor, a manner analogous to

the application window in a traditional windowing system.

The integration of surface model with rendering production and texture
consumption allows declarative authoring of decoupled rendering rates.
Traditionally, 3D scenes have been rendered monolithically, producing a final frame
rate to the viewer that is governed by the worst-case performance due to scene
complexity and texture swapping. In a real-time, continuous composition
framework, the Surface abstraction provides a mechanism for decoupling rendering
rates for different elements on the same screen. For example, it may be acceptable
to portray a web browser that renders slowly, at perhaps 1 frame per second, but
only as long as the video frame rate prodﬁced by another application and displayed
alongside the output of the browser can be sustained at a full 30 frames per second.
If the web browsing application draws into its own Surface, then the screen
compositor can render unimpeded at full motion video frame rates, consuming the
last fully drawn image from the web browser's Surface as part of its fast screen

updates.

Fig. 2A illustrates a scheme for rendering a complex portion 202 of screen
display 200 at full motion video frame rate. Fig. 2B is a flow diagram illustrating
various acts included in rendering screen display 200 including complex portion 202
at full motion video rate. It may be desirable for a screen display 200 to be
displayed at 30 frames per second, but a portion 202 of screen display 200 may be

too complex to display at 30 frames per second. In this case, portion 202 is rendered

PATENT / 50N3457.01 -13-

10

15

20

25

WO 2004/042659 PCT/US2002/035212

on a first surface and stored in a buffer 204 és shown in block 210 (Fig. 2B). In
block 2135, screen display 200 including portion 202 is displayed at 30 frames per
second by using the first surface stored in buffer 204. While screen display 200,
including portioh 200, is being displayed, the next frame of portion 202 is rendered
on a second surface and stored in buffer 206 as shown in block220. Once this next
frame of portion 202 is available, the next update of screen display 200 uses the
second surface (block 225) and continues to do so till a further updated version of
portion 202 is available in buffer 204. While the screen display 200.is being
displayed using the second surface, the next frame of portion 202 is being rendered
on first surface as shown in block 230. When the rendering of the next frame on the
first surface is complete, the updated first surface will be used to display screen

display 200 including complex portion 202 at 30 frames per second.

The integration of surface model with rendering production and texture
consumption allows nested scenes to be rendered declaratively. Recomposition of
subscenes rendered as images enables open-ended authoring. In particular, the use
of animated sub-scenes, which are then image-blended into a larger video context,
enables a more relevant aesthetic for entertainment computer graphics. For
example, the image blending approach provides visual artists with alternatives to the

crude hard-edged clipping of previous generations of windowing systems.

Fig. 3A depicts a nested scene including an animated sub-scene. Fig3Bisa
flow diagram showing acts performed to render the nested scene of Fig. 3A. Block
310 renders a background image displayed on screen display 200, and block 315
places a cube 302 within the background image displayed on screen display 200.
The area outside of cube 302 is part of a surface that forms the béckground for cube
302 on display 200. A face 304 of cube 302 is defined as a third surface. Block 320
renders a movie on the third surface using a MovieSurface node. Thus, face 304 of
the cube displays a movie that is rendered on the third surface. Face 306 of cube
302 is defined as a fourth surface. Block 325 renders an image on the fourth surface

using an ImageSurface node. Thus, face 306 of the cube displays an image that is

PATENT / SON3457.01 -14-

10

15

WO 2004/042659 PCT/US2002/035212

rendered on the fourth surface. In block 330, the entire cube 302 is defined as a fifth
surface and in block 335 this fifth surface is translated and/or rotated thereby
creating a moving cube 52 with a movie playing on face 304 and a static image
displayed on face 306. A different rendering can be displayed on each face of cube
302 by following the procedure described above. It should be noted that blocks 310
to 335 can be done in any sequence including starting all the blocks 310 to 335 at

the same time.

It is to be understood that the present invention is independent of Blendo,
and it can be part of an embodiment separate from Blendo. It is also to be
understood that while the description of the invention describes 3D scene rendering,
the invention is equally applicable to 2D scene rendering. The surface model enables

authors to freely intermix image and video effects with 2D and 3D geometric

mapping and animation.

While particular embodiments of the present invention have been shown and
described it will be apparent to those skilled in the art that changes and
modifications may be made without departing from this invention in its broader
aspect and, therefore, the appended claims are to encompass within their scope all

such changes and modifications as fall within the true sprit and scope of this

invention.

PATENT/ 50N3457.01 -15-

10

15

20

WO 2004/042659 PCT/US2002/035212

We claim:

1. A computer system, comprising a computer and a computer program
executed by the computer, wherein the computer program comprises computer
instructions for:

composing a dynamic image using a first surface having a first image
rendered on it, and a second surface having a second image rendered on it;

wherein, the first image from the first surface and the second image from the

second surface are combined to compose the dynamic image.

2. The computer system of Claim 1, wherein the first image and the second
image are selected from a group consisting of a video image, a still image, an

animation and a scene.

3. The computer system of Claim 2, wherein the first image is rendered on a
first two dimensional pixel array, and the second image is rendered on a second two

dimensional pixel array.

4. The computer system of Claim 2, wherein the dynamic image is composed

according to declarative instructions.

5. The computer system of Claim 4, wherein the dynamic image is composed in

real time.

6. The computer system of Claim 2, wherein the dynamic image is composed in

real time.
7. The computer system of Claim 2, wherein the first image has a first opacity

value, the second image has a second opacity value and the dynamic image has a

third opacity value.

PATENT / S0N3457.01 ' -16-

10

15

20

WO 2004/042659 PCT/US2002/035212

8. The compWr system of Claim 7, further comprising cordilter instructions
for:
overwriting the second opacity value with the first opacity value when

combining the first image and the second image to produce the dynamic image.

9. The computer system of Claim 7, further comprising computer instructions

for:

multiplying the first opacity value with the second opacity value to obtain the

third opacity value.

10. The computer system of Claim 7, further comprising the computer
instructions for:
animating the opacity value of the second image when combining the first

image and the second image thereby producing a travelling matte effect.

11. A computer system, comprising a computer and a computer program
executed by the computer, wherein the computer program comprises computer
instructions for:

rendering a first image on a first surface;

rendering a second image on a second surface;

rendering a third scene on a third surface; wherein the first image is used as a

texture for the third scene, and the second image is blended with the texture to form

the third scene.

12. The computer system of Claim 11, wherein the user provides declarative

instructions to render the first image, the second image and the third scene.

13, The computer system of Claim 11, wherein the second image changes over

time.

PATENT / 50N3457.01 -17-

10

15

20

WO 2004/042659 PCT/US2002/035212

14. The computer system of Claim 11, further comprising computer instructions
for:
declaratively rendering a fourth scene on a fourth surface, wherein the third

scene is blended within the fourth scene to form a sub-scene within the fourth scene.

15. The computer system of Claim 14, wherein the second image within the sub-

scene changes to reflect the changes in the second image on the second surface.

16. The computer system of Claim 11, wherein the first image and the second
image can be chosen from a group consisting of a video image, a still image, an

animation and a.scene.

17. A computer system, comprising a computer and a computer program
executed by the computer, wherein the computer program comprises computer
instructions for:

rendering a first scene at a first rendering rate; and

rendering a second scene at a second rendering rate, wherein the second

scene forms a sub-scene within the first scene.

18. The computer system of Claim 17, wherein the first scene and the second

scene are rendered based on declarative instructions.

19. The computer system of Claim 17, wherein a first rendering of the second
scene is stored in a first buffer and a second rendering of the second scene is stored
in a second buffer, and the first rendering and the second rendering are updated

continually, one rendering being updated at a time.
20. The computer system of Claim 19, wherein the sub-scene is refreshed using

the latest rendering chosen from a group consisting of the first rendering and the

second rendering.

PATENT / 50N3457.01 -18-

10

15

20

WO 2004/042659 PCT/US2002/035212

21. The computer system of Claim 20, wherein the first rendering rate is equal to

the second rendering rate.

22. A method of composing a dynamic image using a computer, the method of
comprising:

rendering a first image on a first surface;

rendering a second image on a second surface; and

combining the first image and the second image to compose the dynamic

image.

23. The method of Claim 22, wherein the first image and the second image are
selected from a group consisting of a video image, a still image, an animation and a

scene.

24. The method of Claim 23, wherein the scene includes at least one image from

a group consisting of a video image, a still image, an animation and a scene.

25. The method of Claim 22, further comprising a rendering of the first image on
a first two dimensional pixel array, and rendering the second image on a second two

dimensional fixed array.

26. The method of Claim 22, further comprising providing declarative

instructions to compose the dynamic image.

27. The method of Claim 22, wherein the dynamic image is composed in real

time.

28. The method of Claim 22, further comprising;:
providing a first opacity value for the first image;
providing a second opacity value for the second image;

providing a third opacity value for the dynamic image.

PATENT/ 50N3457.01 -19-

10

15

20

WO 2004/042659 PCT/US2002/035212

29. The method of Claim 28, further comprising:

overwriting the second opacity value with the first opacity value.

30. The method of Claim 28, further comprising:
multiplying the first opacity value and the second opacity value to obtain the

third opacity value.

31. The method of Claim 28, further comprising:
animating the opacity value of the second image when combining the first

image and the second image thereby producing a matte effect.

32. A method of composing a scene using a computer, the method comprising:
rendering a first image on a first surface;
rendering a second image on a second surface;
rendering a first scene on a third surface using a first image as a texture for

the scene and blending the second image with the texture to from the first scene.

33. The method of Claim 32, further comprising:
providing declarative instructions to render the first image, the second image

and the first scene.
34. The method of Claim 32, wherein the second image changes over time.

35. The method of Claim 32, wherein the first image and the second image are

chosen from a group of consisting of a video image, a still image, an animation and

a scene.

36. A method of displaying a scene using a computer, the method comprising:
rendering a first scene at a first rendering rate; and
rendering a second scene at a second rendering rate, wherein the second

scene forms a sub-scene within the first scene.

PATENT / SON3457.01 20-

10

15

WO 2004/042659 PCT/US2002/035212

37. The method of Claim 36, further comprising:
providing declarative instructions to render the first scene and the second

scene.

38. The method of Claim 36, further comprising:

storing a first rendering of the second scene in a first buffer and a second
rendering of the second scene in a second buffer; and

continually updating, one rendering at a time, the first rendering and the

second rendering.

39. The method of Claim 36, further comprising:
rendering the sub-scene using the latest rendetin g chosen from the group

consisting of the first rendering and the second rendering.

40. The method of Claim 36, wherein the first rendering rate is different from the

second rendering rate.

PATENT/ 50N3457.01 21-

WO 2004/042659 PCT/US2002/035212

11

h U % 14
ncoming
Stream /
Parsers
16
/ / 30 To
Raw Scene Graph » Page
R Page
"1 integration
26
18 / 26A
7 4
Bullt-in 12 1 Scene Mgr. q
Objects N\ / 0 % 26B
N 7 Thread Mgr. 4 286G
Load Magr. 4
Ly g / 26D
» % Core Runtime - B Event Mgr. A
N - [/ 26E
! @ Media Mgr.
/ 26F
Surface Mgr. A
/ 206G
Render Mgr.
28 N y :
N Rendering Platform A
Layer Services
0S

Fig. 1A

1/6

WO 2004/042659

PCT/US2002/035212

Bring a file stream 34 of content from a

source into a parser

50
v

Convert to a raw scene graph

/]

/55

. 60
Extract prototypes and populate database,/

of object prototypes

Build each object

/65

Establish all routes in stream 34

/70

Initialize each fi

eld in the scene

/75

Add initialization logic

80
V

Deliver to scene manager

/85

Perform behavioral processing

/90

Fig

. 1B

2/6

WO 2004/042659 PCT/US2002/035212

200
//
206
7
P
N
/ ~'~\
202
A
204

Fig. 2A

3/6

WO 2004/042659

PCT/US2002/035212

Render portion 42 on the first surface
stored in a buffer 44

A

/210

Display screen display 40 and portion 42

215

thereof at 30 frames per second using the
first surface

7 ~

Render next frame of portion 42 on the)
second surface and store it in buffer 46

/ 220

Display screen display 40 and portion 42
thereof at 30 frames per second using the
second surface

/ 225

Render next frame of portion 42 on the
furst surface stored in buffer 44

)/230

Y

Fig. 2B

4/6

WO 2004/042659 PCT/US2002/035212

200

302

304

306

Fig. 3A

5/6

WO 2004/042659

PCT/US2002/035212

Render a background 4

310
/

Place a cube in the background

315

Render movie on one face (third surface)

of the cube using MovieSurface node 4

320
L

Render an image on another face (fourth

surface) of the cube using ImageSurface /

node

325
/

330
Define the entire cube as a surface (fifth //

surface)

Translate and/or rotate the entire cube 4

/ 335

Fig. 3B

6/6

International application No.

INTERNATIONAL SEARCH REPORT PCT/USo2/35212

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :GoeT 15/00
US CL : 345/478, 629

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Us. : 845/473, 629

Minimum documentation searched (classification system followed by classification symbols)

Seaﬁﬂ’eelf,GL Programming Guide

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

ACM, IEEE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X Woo et al. OpenGl Programming Guide, Third Edition, Addison-| 1-9, 11-30, 32-40
Wesley, 1999, pages 20-27, 220-253, 367-379, 404, 422-427.

I:I Further documents are listed in the continuation of Box C. D See patent family annex.

* . Special categories of cited documents:

“AY document defining the general state of the art which is not considered
to be of particular relevance

"E" earlior document published on or after the international filing date

"L document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other
spocial reason (as specified)

no" document referring to an oral disclosure, use, exhibition or other
means
wpr document published prior to the international filing date but later

thau the priority date claimed

R later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

e docnment of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is combined
with one or more other such documents, such combination being
obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

23 JANUARY 2008

Date of mailing of the international search report

(.

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3280

|
Authorized officer
Almis Jankus z/) 4
INA .
Telephone No.

(703) 805-9795

Form PCT/ISA/210 (second sheet) (July 1998)%

/

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

