wo 2012/044687 A2 IO 000 OO OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

(19) World Intellectual Property Organization

International Bureau

AP0
0

(43) International Publication Date

5 April 2012 (05.04.2012)

WO 2012/044687 A2

(51) International Patent Classification:

(71) Applicant (for all designated States except US): IMERJ,

GO6F 9/22 (2006.01) GO6F 3/14 (2006.01) LLC [US/US]; 305 Interlocken Parkway, Broomfield, CO
GO6F 9/44 (2006.01) 80021 (US).
(21) International Application Number: (72) Inventors; and
PCT/US2011/053691 (75) Inventors/Applicants (for US only): REEVES, Brian
. - [CA/CA]; 73 Aberdeen Avenue, Hamilton, Ontario L8P
(22) International Filing Date: 2N8 (CA). REEVES, Paul [CA/CAJ; 1215 Riverbank
28 September 2011 (28.09.2011) Way, Oakville, Ontario L6H 6X4 (CA). TELTZ,
(25) Filing Language: English Richard [CA/CA]; 368 Herkimer Street, Hamilton, On-
o) tario L8P 2J1 (CA). REEVES, David [CA/CA]; 38 Lark-
(26) Publication Language: English spur Crescent, Ancaster, Ontario LOK 1C6 (CA). SIR-
(30) Priority Data: PAL, Sanjiv [CA/CA]; 3264 Stocksbridge Avenue,
61/389,117 1 October 2010 (01.10.2010) US Oakville, Ontario L6M OE3 (CA). TYGHE, Chris
61/507,209 13 July 2011 (13.07.2011) US [CA/CA]; 3268 Liptay Avenue, Oakville, Ontario L6M
61/507,206 13 July 2011 (13.07.2011) Us ON1 (CA). CHINCISAN, Octavian [CA/CA]; 57 Ro-
61/507,203 13 July 2011 (13.07.2011) Us mance Drive, Richmond Hill, Ontario L4S 2R7 (CA).
61/507,201 13 July 2011 (13.07.2011) US (74) Agent: CROUCH, Robert, G.; Marsh Fischmann &
61/507,199 13 July 2011 (13.07.2011) UsS Breyfogle LLP, 8055 E. Tufts Avenue, Suite 450, Denver,
13/246,133 27 September 2011 (27.09.2011) Us CO 80237 (US).
(81) Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,

[Continued on next page]

(54) Title: CROSS-ENVIRONMENT USER INTERFACE MIRRORING USING REMOTE RENDERING

2100
\.‘
2104

Calculate, using a first operating system, updates to a set of)/

(57) Abstract: A mobile computing device with a mobile operating system
and desktop operating system running concurrently and independently on
a shared kernel without virtualization. The mobile operating system pro-
! 5 per: ¢ 04 s vides a user experience for the mobile computing device that suits the mo-
surfaces of a firsl applicalion compiled for and in aclive
execution within the first operating system bile environment. The desktop Operatmg system prOVldeS a full desktop
1 o USer expgrience when the mqbile computing Flevice is docked to a second
user environment. Cross-environment rendering and user interaction sup-
port provide a seamless computing experience in a multi-operating system
computing environment. The seamless computing experience includes
mirroring the active user interaction space of the mobile operating system
to a display of a user environment associated with the desktop operating
system. The user interface is rendered by the desktop operating system by
accessing surface information of the active user interaction space directly
from shared memory. The mobile computing device may be a smartphone
running the Android mobile operating system and a full desktop Linux
distribution on a modified Android kernel.

Slore Lhe updaled sct of surfaces in a shared memory localion|
accessible by both the first operating system and a second
operating system running concurrently on a shared kernel

l)’2112

Render the updated set of surfaces to generate a first
graphics frame using the firs(opcraling syslem

l {ZMG

Display the first graphics frame to a first application display
of the first application on a first display of a first computing
cnvironment using the first operating system

l {2120

Pass a file descriptor indicating the shared memory location
to a console application compiled for and in active execution
within the sccond operating system

l 2124

Render the updated set of surfaces from the shared memory
Tocation to generate a second graphics frame that is
substantially identical to the first graphics frame via the
console application of the second operating system according
to the file descriptor

l 2128
Display the second graphics frame to a second application
display of the first application on a second display of a
second computing environment via the console application
of the sccond operating system, such that the second
application display is substantially identical to the first
application display

FIG. 21

WO 2012/044687 A2 I 0000) 00 O A A

84)

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,

GM, KF, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

WO 2012/044687 PCT/US2011/053691

CROSS-ENVIRONMENT USER INTERFACE MIRRORING USING REMOTE
RENDERING

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This Application is a non-provisional of and claims the benefit of the filing date of
U.S. Provisional Application Nos. 61/389,117, filed Oct. 1, 2010, entitled “Multi-
Operating System Portable Docking Device”; 61/507,199, filed July 13, 2011, entitled
“Dockable Mobile Software Architecture”; 61/507,201, filed July 13, 2011, entitled
“Cross-Environment Communication Framework™; 61/507,203, filed July 13, 2011,
entitled “Multi-Operating System”; 61/507,206, filed July 13, 2011, entitled “Auto-
Configuration of a Docked System in a Multi-OS Environment”; and 61/507,209, filed
July 13, 2011, entitled “Auto-Waking of a Suspended Secondary OS in a Dockable
System,” wherein the entire contents of the foregoing priority applications are

incorporated herein by reference for all purposes.

BACKGROUND
[0002] 1. Field

[0003] This Application relates generally to the field of mobile computing environments,
and more particularly to supporting multiple user environments through the use of

multiple operating systems in a single mobile computing device.
[0004] 2. Relevant Background

[0005] Mobile computing devices are becoming ubiquitous in today’s society. For
example, as of the end of 2008, 90 percent of Americans had a mobile wireless device. At
the same time, the capabilities of mobile devices are advancing rapidly, including
smartphones that integrate advanced computing capabilities with mobile telephony
capabilities. Mobile providers have launched hundreds of new smartphones in the last
three years based upon several different platforms (e.g., Apple iPhone, Android,
BlackBerry, Palm, and Windows Mobile). In the U.S., smartphone penetration reached
almost 23% by the middle of 2010, and over 35% in some age-groups. In Europe, the
smartphone market grew by 41% from 2009 to 2010, with over 60 million smartphone

subscribers as of July 2010 in the five largest European countries alone.

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0006] While smartphones are gaining in popularity and computing capability, they
provide a limited user experience. Specifically, they typically have an operating system
that is modified for mobile device hardware and a restricted set of applications that are
available for the modified operating system. For example, many smartphones run
Google’s Android operating system. Android runs only applications that are specifically
developed to run within a Java-based virtual machine runtime environment. In addition,
while Android is based on a modified Linux kernel, it uses different standard C libraries,
system managers, and services than Linux. Accordingly, applications written for Linux do
not run on Android without modification or porting. Similarly, Apple’s iPhone uses the
i0OS mobile operating system. Again, while i0S is derived from Mac OS X, applications
developed for OS X do not run on iOS. Therefore, while many applications are available
for mobile operating systems such as Android and i0OS, many other common applications
for desktop operating systems such as Linux and Mac OS X are not available on the

mobile platforms.

[0007] Accordingly, smartphones are typically suited for a limited set of user experiences
and provide applications designed primarily for the mobile environment. In particular,
smartphones do not provide a suitable desktop user experience, nor do they run most
common desktop applications. As a result, many users carry and use multiple computing
devices including a smartphone, laptop, and/or tablet computer. In this instance, each

device has its own CPU, memory, file storage, and operating system.

[0008] Connectivity and file sharing between smartphones and other computing devices
involves linking one device (e.g., smartphone, running a mobile OS) to a second, wholly
disparate device (e.g., notebook, desktop, or tablet running a desktop OS), through a
wireless or wired connection. Information is shared across devices by synchronizing data
between applications running separately on each device. This process, typically called

“synching,” is cumbersome and generally requires active management by the user.

SUMMARY
[0009] Embodiments of the present invention are directed to providing the mobile
computing experience of a smartphone and the appropriate user experience of a secondary
terminal environment in a single mobile computing device. A secondary terminal

environment may be some combination of visual rendering devices (e.g., monitor or

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

display), input devices (e.g., mouse, touch pad, touch-screen, keyboard, etc.), and other
computing peripherals (e.g., HDD, optical disc drive, memory stick, camera, printer, etc.)
connected to the computing device by a wired (e.g., USB, Firewire, Thunderbolt, etc.) or
wireless (e.g., Bluetooth, WiF1i, etc.) connection. In embodiments, a mobile operating
system associated with the user experience of the mobile environment and a desktop
operating system associated with the user experience of the secondary terminal

environment are run concurrently and independently on a shared kernel.

[0010] According to one aspect consistent with various embodiments, a method for
mirroring an active user interaction space includes calculating, using a first operating
system, updates to a set of surfaces of a first application compiled for and in active
execution within the first operating system, storing the updated set of surfaces in a shared
memory location accessible by both the first operating system and a second operating
system running concurrently on a shared kernel, rendering the updated set of surfaces to
generate a first graphics frame using the first operating system, displaying the first
graphics frame to a first application display of the first application on a first display of a
first computing environment using the first operating system, passing a file descriptor
indicating the shared memory location to a console application compiled for and in active
execution within the second operating system, rendering the updated set of surfaces from
the shared memory location to generate a second graphics frame that is substantially
identical to the first graphics frame via the console application of the second operating
system according to the file descriptor, and displaying the second graphics frame to a
second application display of the first application on a second display of a second
computing environment via the console application of the second operating system, such
that the second application display is substantially identical to the first application
display.

[0011] According to other aspects consistent with various embodiments, a graphics server
of the second operating system may be incompatible with a graphics server of the first
operating system and/or a drawing object instantiated by the first application. The first
operating system may be a mobile operating system and the second operating system may
be a desktop operating system. The first operating system may be an Android mobile
operating system and a graphics server of the second operating system may be an X-

windows graphics server.

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0012] According to other aspects consistent with various embodiments, the method may
include mapping, by the console application, the file descriptor to the process space of the
console application to generate a reference to the shared memory location. The method
may further include accessing, by the console application, the graphics frame from the

shared memory location via the reference to the shared memory location.

[0013] According to other aspects consistent with various embodiments, a mobile
computing device includes a first application compiled for and in active execution within
a first operating system and a set of surfaces updated by the first application stored in a
shared memory location accessible by both the first operating system and a second
operating system running concurrently with the first operating system on a shared kernel.
The mobile computing device further includes a first graphics frame for the first
application rendered by the first operating system and a second graphics frame for the
first application rendered by a console application of the second operating system by
accessing the updated surfaces from the shared memory location through a file descriptor

passed by the first operating system.

[0014] According to other aspects consistent with various embodiments, the mobile
computing device may include a first application display of the first application from the
first graphics frame displayed on a first display of a first computing environment
associated using the first operating system. The console application may display a second
application display of the first application from the second graphics frame on a second
display of a second computing environment using the second operating system. The
second application display may be substantially identical to the first application display.
The second operating system may include a graphics server that is incompatible with the
first application. The first operating system may be a mobile operating system and the

second operating system may be a desktop operating system.

[0015] According to other aspects consistent with various embodiments, the file
descriptor may be passed through an inter-process communication channel. The console
application may receive a reference to the shared memory location by mapping the file
descriptor to the process space of the console application. A graphics server of the second

operating system may be an X-windows type graphics server and the first application may

10

15

20

25

WO 2012/044687 PCT/US2011/053691

use a graphics library of the first operating system that is incompatible with the X-

windows type graphics server of the second operating system.

BRIEF DESCRIPTION OF THE DRAWINGS
[0016] Embodiments of the present invention are illustrated in referenced figures of the
drawings, in which like numbers refer to like elements throughout the description of the

figures.

[0017] FIG. 1 illustrates a computing environment that provides multiple user computing

experiences, according to various embodiments.

[0018] FIG. 2 illustrates an exemplary system architecture for a mobile computing

device, according to various embodiments.

[0019] FIG. 3 illustrates an operating system architecture for a computing environment,

according to various embodiments.

[0020] FIG. 4 illustrates an exemplary computing environment employing various aspects

of embodiments.

[0021] FIG. 5 illustrates aspects of an operating system architecture for a computing

environment, according to various embodiments.

[0022] FIG. 6 illustrates an exemplary boot procedure that may be used to configure an
operating system architecture of a mobile computing device in more detail, according to

various embodiments.

[0023] FIG. 7 illustrates an operating system architecture configuration for providing
cross-environment rendering of applications and/or user interaction spaces, according to

various embodiments.

[0024] FIG. 8 illustrates a computing environment with multiple user environments,

according to various embodiments.

[0025] FIG. 9 illustrates aspects of cross-environment remote rendering, according to

various embodiments.

10

15

20

25

WO 2012/044687 PCT/US2011/053691

[0026] FIG. 10 shows a flow diagram of an illustrative method for cross-environment

remote rendering in a non-extended rendering context, according to various embodiments.

[0027] FIG. 11 illustrates a registration and drawing process flow for cross-environment

remote rendering, according to various embodiments.

[0028] FIG. 12 shows a flow diagram of another illustrative method for cross-
environment rendering in a non-extended rendering context, according to various

embodiments.

[0029] FIG. 13 illustrates operating system architecture configuration 300b for providing
user interaction support to cross-environment applications, according to various

embodiments.

[0030] FIG. 14 illustrates aspects of user interaction support for cross-environment
applications rendered using a non-extended graphics context, according to various

embodiments.

[0031] FIG. 15 illustrates aspects of concurrent user interface support across multiple

OSs using extended rendering contexts, according to various embodiments.

[0032] FIG. 16 shows a flow diagram of an illustrative method for cross-environment

remote rendering in an extended rendering context, according to various embodiments.

[0033] FIG. 17 shows a flow diagram of another illustrative method for cross-
environment rendering in an extended rendering context, according to various

embodiments.

[0034] FIG. 18a illustrates a user environment that may be employed in cross-
environment rendering, in an extended rendering context, according to various

embodiments.

[0035] FIG. 18D illustrates an extended input queue that may be employed in cross-
environment rendering, in an extended rendering context, according to various

embodiments.

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0036] FIG. 19 illustrates a method for receiving input events that may be employed in
cross-environment rendering, in an extended rendering context, according to various

embodiments.

[0037] FIG. 20 shows a flow diagram of an illustrative method for cross-environment

rendering to provide a mirrored context, according to various embodiments.

[0038] FIG. 21 shows a flow diagram 2100 of another illustrative method for cross-

environment rendering to provide a mirrored context, according to various embodiments.

[0039] FIG. 22 illustrates aspects of cross-environment redirection, according to various

embodiments.

[0040] FIG. 23 illustrates a flow diagram of an illustrative method that may be employed

to perform aspects of cross-environment redirection, according to various embodiments.

[0041] FIG. 24 illustrates a flow diagram of another illustrative method that may be
employed to perform aspects of cross-environment redirection, according to various

embodiments.

DETAILED DESCRIPTION
[0042] Mobile telephony devices, (i.c., smartphones, handsets, mobile stations, portable
communication devices, etc.) that include computing capabilities are increasing in
popularity. Many of these smartphones include a mobile operating system (“OS”) running
on a mobile processor. While mobile processors and mobile OSs have increased the
capabilities of these devices, smartphones have not tended to replace personal computer
(“PC”) environments (i.e., Windows, Mac OS X, Linux) such as desktop or notebook
computers at least because of the limited user experience provided. In particular, the user
interface device(s) found on smartphones are typically tailored to the mobile
environment. For example, smartphones typically use a small thumb-style QWERTY
keyboard, touch-screen display, click-wheel, and/or scroll-wheel as user interface
devices. Mobile OSs, as well as applications (i.c., “Apps”) developed for mobile OSs, are
typically designed for the constraints of the mobile environment including a mobile
processor and the user interface device(s) present on mobile devices. Therefore, many
applications that have been developed for PC operating systems are not available for

mobile OSs (i.e., are not compiled for and do not run on mobile OSs). In addition, for
7

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

some tasks such as typing or editing documents, a full-size keyboard and large display are

easier to use than the user interface components typically found on a smartphone.

[0043] Accordingly, users typically use separate computing devices for each computing
experience, including a smartphone, tablet computer, laptop computer, and/or desktop
computer. In this instance, each device has its own CPU, memory, file storage, and OS.
Connectivity and file sharing between smartphones and other devices involves linking
one device (e.g., smartphone, running a mobile OS) to a second, wholly disparate device
(e.g., notebook, desktop, or tablet running a desktop OS), through a wireless or wired
connection. Information is shared across devices by synchronizing data between
applications running separately on each device. This process, typically called “synching,”

is cumbersome and generally requires active management by the user.

[0044] FIG. 1 illustrates a computing environment 100 that provides multiple user
computing experiences with a mobile device that includes multiple operating systems
associated with separate user interaction spaces (i.e., user environments), according to
various embodiments. A first user interaction space 115 of computing environment 100
includes display(s) 116 and I/O devices 118 of mobile computing device 110. When
mobile computing device 110 is operated as a stand-alone mobile device, mobile OS 130
presents a typical mobile computing user experience through user interaction space 115.
The mobile computing experience provided by mobile OS 130 typically includes mobile
telephony capabilities and a graphical user interface (“GUI”) suited to user interaction
space 115 including display(s) 116 and I/O device(s) 118. For example, display(s) 116
may be a touch-screen display(s) and application programs (i.e., “Apps”) running on
mobile OS 130 may be controlled primarily through a gesture-based GUI of mobile OS
130 using touch-screen display(s) 116.

[0045] In computing environment 100, mobile computing device 110 may be docked
with secondary terminal environment 140 that includes 1/0 devices 144, 146, and/or 148.
In embodiments, mobile computing device 110 is docked with secondary terminal
environment 140 by connecting port 120 of mobile computing device 110 to port 142 of
secondary terminal environment 140. In this instance, secondary terminal environment
140 presents a second user interaction space of computing environment 100. In some

instances, the second user interaction space may be more suited to a desktop computing

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

experience. In these instances, desktop OS 160 can be associated with secondary terminal
environment 140 to provide the full capabilities of a notebook, tablet, or desktop

computer environment through the second user interaction space.

[0046] In embodiments, mobile OS 130 and desktop OS 160 run concurrently on a shared
kernel on a processor of mobile computing device 110. Concurrent execution of a mobile
OS and a desktop OS on a shared kernel is described in more detail in U.S. Patent
Application No.13/217,108, filed August 24, 2011, entitled “MULTI-OPERATING
SYSTEM,” herein incorporated by reference. In this way, a single mobile computing
device can provide a mobile computing experience through a first user interaction space
and a desktop computing experience through a second user interaction space. While the
ability to carry one mobile device that can execute multiple operating systems
concurrently through separate user interaction spaces solves a number of problems for a
user, each user interaction space (through the concurrently running mobile OS and
desktop OS) generally provides a separate set of available applications and user

functionality.

[0047] Embodiments of the invention are directed to facilitating apparent execution of an
application running in a first OS (e.g., mobile OS 130) within a second OS (e.g., desktop
OS 160), where the first and second OS are running concurrently on a shared kernel.
Notably, providing a user with input (e.g., input device) and output (e.g., display, audio,
etc.) support in a second OS for applications compiled for and running in a first (e.g.,
incompatible) OS involves addressing a number of issues. Additional issues can arise

when handling display and interactivity of multiple applications running concurrently.

[0048] Consider, for example, that a first and second application are both compiled for
the first OS and are running concurrently on the first OS. However, a user desires to view
graphical output of the first application and to interact with that first application through
input/output devices associated with the first OS (e.g., using a touchscreen display of a
mobile computing environment), and to view graphical output of the second application
and to interact with that second application through input/output devices associated with
the second OS (e.g., using a display, keyboard, and mouse of a desktop computing

environment). Handling this scenario involves concurrent handling of graphics in

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

multiple display environments and concurrent processing of multiple input/output streams

for separate applications all on separate (e.g., incompatible) operating systems.

[0049] Accordingly, embodiments provide various novel techniques for accessing
applications of a first OS within a user interaction space of a second OS, displaying
applications running in the first OS within the user interaction space of the second OS,
and handling user interaction with those applications through the user interaction space of
the second OS. Embodiments include a console application of the second OS that

supports various display and user interaction features of cross-environment applications.

[0050] One set of embodiments provides techniques for concurrent user interface support
across multiple-OS computing environments using a so-called “non-extended” rendering
context. Another set of embodiments provides techniques for concurrent user interface
support across multiple-OS computing environments using a so-called “extended”
rendering context. Yet another set of embodiments provides techniques for concurrent
user interface support across multiple OSs using a so-called “mirrored” context. Yet
another set of embodiments provides access from the user interaction space of the second
OS to applications available on the first OS. Each of these sets of embodiments will be

described more fully below.

[0051] As described above, computing environment 100 provides multiple user
computing experiences through multiple user interaction spaces associated with a mobile
device running multiple operating systems concurrently. Specifically, because mobile
computing device 110 includes multiple OSs, where each OS is suited to a particular
computing environment, mobile computing device 110 may be adapted with external I/O
devices to provide a broad range of user experiences with a single mobile computing
device. For example, a user may have a mobile computing device 110 and a secondary
terminal environment 140 that includes a keyboard, display, and/or pointing device(s) in a
laptop-type enclosure. When mobile computing device 110 is docked with this laptop-like
secondary terminal environment, the full capabilities of desktop OS 160 are available

through the secondary terminal environment 140.

[0052] FIG. 2 illustrates an exemplary hardware system architecture for mobile
computing device 110, according to various embodiments. Mobile computing device
hardware 112 includes mobile processor 114 that includes one or more CPU cores 204

10

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

and external display interface 220. Generally, mobile computing device hardware 112
also includes I/O devices 118, memory 206, storage devices 208, touch-screen display
controller 210 connected to touch-screen display 116, power management IC 214
connected to battery 216, cellular modem 218, communication devices 222, and/or other
devices 224 that are connected to processor 114 through various communication signals
and interfaces. I/O devices 118 generally includes buttons and other user interface
components that may be employed in mobile computing device 110. For example, I/O
devices 118 may include a set of buttons, (e.g., back, menu, home, search, etc.), off-
screen gesture area, click-wheel, scroll-wheel, QWERTY keyboard, etc. Other devices
224 may include, for example, GPS devices, LAN connectivity, microphones, speakers,
cameras, accelerometers, and/or MS/MMC/SD/SDIO card interfaces. External display
interface 220 may be any suitable display interface (e.g., VGA, DVI, HDM]I, etc.).

[0053] Processor 114 may be an ARM-based mobile processor. In embodiments, mobile
processor 114 is a mobile ARM-based processor such as Texas Instruments OMAP3430,
Marvell PXA320, Freescale iMX51, or Qualcomm QSD8650/8250. However, mobile

processor 114 may be another suitable ARM-based mobile processor or processor based
on other processor architectures such as, for example, x86-based processor architectures

or other RISC-based processor architectures.

[0054] While FIG. 2 illustrates one exemplary hardware implementation 112 for mobile
computing device 110, other architectures are contemplated as within the scope of the
invention. For example, various components illustrated in FIG. 2 as external to mobile
processor 114 may be integrated into mobile processor 114. Optionally, external display
interface 220, shown in FIG. 2 as integrated into mobile processor 114, may be external
to mobile processor 114. Additionally, other computer architectures employing a system
bus, discrete graphics processor, and/or other architectural variations are suitable for

employing aspects of the present invention.

[0055] FIG. 3 illustrates OS architecture 300 that may be employed to run mobile OS 130
and desktop OS 160 concurrently on mobile computing device 110, according to various
embodiments. As illustrated in FIG. 3, mobile OS 130 and desktop OS 160 are
independent operating systems. Specifically, mobile OS 130 and desktop OS 160 may

have independent and incompatible user libraries, graphics systems, and/or framework

11

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

layers. Functions and instructions for OS architecture 300 may be stored as computer
program code on a tangible computer readable medium of mobile computing device 110.
For example, instructions for OS architecture 300 may be stored in storage device(s) 208

of mobile computing device hardware 112.

[0056] In OS architecture 300, mobile OS 130 and desktop OS 160 run concurrently on
shared kernel 320. This means that mobile OS 130 and desktop OS 160 are running on
shared kernel 320 at the same time. Specifically, mobile OS 130 and desktop OS 160 both
interface to shared kernel 320 through the same kernel interface 322, for example, by
making system calls to shared kernel 320. Shared kernel 320 manages task scheduling for
processes of both mobile OS 130 and desktop OS 160. In this regard, mobile OS 130 and
desktop OS 160 are running independently and concurrently on shared kernel 320. In
addition, shared kernel 320 runs directly on mobile processor 114 of mobile computing
device hardware 112, as illustrated by hardware interface 312. Specifically, shared kernel
320 directly manages the computing resources of mobile computing device hardware 112
such as CPU scheduling, memory access, and 1/0. In this regard, hardware resources are
not virtualized, meaning that mobile OS 130 and desktop OS 160 make system calls

through kernel interface 322 without virtualized memory or I/O access.

[0057] As illustrated in FIG. 3, mobile OS 130 has libraries layer 330, application
framework layer 340, and application layer 350. In mobile OS 130, applications 352 and
354 run in application layer 350 supported by application framework layer 340 of mobile
OS 130. Application framework layer 340 includes manager(s) 342 and service(s) 344
that are used by applications running on mobile OS 130. For example, application
framework layer 340 may include a window manager, activity manager, package
manager, resource manager, telephony manager, gesture controller, and/or other
managers and services for the mobile environment. Application framework layer 340 may
include a mobile application runtime environment that executes applications developed
for mobile OS 130. The mobile application runtime environment may be optimized for
mobile computing resources such as lower processing power and/or limited memory
space. The mobile application runtime environment may rely on the kernel for process
isolation, memory management, and threading support. Libraries layer 330 includes user

libraries 332 that implement common functions such as I/O and string manipulation,

12

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

graphics functions, database capabilities, communication capabilities, and/or other

functions and capabilities.

[0058] As illustrated in FIG. 3, desktop OS 160 has libraries layer 360, framework layer
370, and application layer 380. In desktop OS 160, applications 382 and 384 run in
application layer 380 supported by application framework layer 370 of desktop OS 160.
Application framework layer 370 includes manager(s) 372 and service(s) 374 that are
used by applications running on desktop OS 160. For example, application framework
layer 370 may include a window manager, activity manager, package manager, resource
manager, and/or other managers and services common to a desktop environment.
Libraries layer 360 may include user libraries 362 that implement common functions such
as /O and string manipulation, graphics functions, database capabilities, communication

capabilities, and/or other functions and capabilities.

[0059] In various embodiments of the present disclosure, desktop OS 160 runs in a
separate execution environment from mobile OS 130. For example, mobile OS 130 may
run in a root execution environment and desktop OS 160 may run in a secondary
execution environment established under the root execution environment. Processes and
applications running on mobile OS 130 access user libraries 332, manager(s) 342 and
service(s) 344 in the root execution environment. Processes and applications running on
desktop OS 160 access user libraries 362, manager(s) 372 and service(s) 374 in the

secondary execution environment.

[0060] In embodiments, mobile OS 130 and desktop 160 are independent operating
systems with incompatible user libraries, graphics systems, and/or application
frameworks. Therefore, applications developed for mobile OS 130 may not run directly
on desktop OS 160, and applications developed for desktop OS 160 may not run directly
on mobile OS 130. For example, application 352, running in application layer 350 of
mobile OS 130, may be incompatible with desktop OS 160, meaning that application 352
could not run on desktop OS 160. Specifically, application 352 may depend on
manager(s) 342, service(s) 344, and/or libraries 332 of mobile OS 130 that are either not
available or not compatible with manager(s) 372, service(s) 374, and/or libraries 362 of

desktop OS 160.

13

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0061] As a result, mobile OS 130 and desktop OS 160 may have different sets of
available applications. In this regard, mobile OS 130 and desktop OS 160 of OS
architecture 300 provide separate user experiences through separate sets of applications
accessible through separate user interaction spaces. The user may access the applications
available on (i.e., compiled for and loaded within the execution environment of) mobile
OS 130 through a first user interaction space associated with mobile OS 130, and the
applications available on desktop OS 160 through a second user interaction space

associated with desktop OS 160.

[0062] As described above, mobile operating systems typically do not use the same
graphics environment as desktop operating systems. Graphics environments for desktop
OSs were designed for flexibility and high performance. For example, the X-window
system, used by some desktop OSs, provides platform and network independence at the
expense of greater processing and system resources. In contrast, graphics environments
for mobile OSs are designed more for efficiency and the specific user input devices of a
mobile computing environment and less for flexibility. Because the graphics
environments of mobile and desktop OSs are often different, an application running on a
mobile OS may not be re-directed to display within a user space of a desktop OS by re-
directing the graphics information from the graphics server of the mobile OS to the

graphics server of the desktop OS.

[0063] The most widely adopted mobile OS is Google’s Android. While Android is based
on Linux, it includes modifications to the kernel and other OS layers for the mobile
environment and mobile processors. In particular, while the Linux kernel is designed for a
PC (i.e., x86) CPU architecture, the Android kernel is modified for ARM-based mobile
processors. Android device drivers are also particularly tailored for devices typically
present in a mobile hardware architecture including touch-screens, mobile connectivity
(GSM/EDGE, CDMA, Wi-Fi, etc.), battery management, GPS, accelerometers, and
camera modules, among other devices. In addition, Android does not have a native X
Window System nor does it support the full set of standard GNU libraries, and this makes
it difficult to port existing GNU/Linux applications or libraries to Android.

[0064] Apple’s iOS operating system (run on the iPhone) and Microsoft’s Windows

Phone 7 are similarly modified for the mobile environment and mobile hardware

14

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

architecture. For example, while i0S is derived from the Mac OS X desktop OS, common
Mac OS X applications do not run natively on iOS. Specifically, iOS applications are
developed through a standard developer’s kit (“SDK™) to run within the “Cocoa Touch”
runtime environment of i0S, which provides basic application infrastructure and support
for key i0OS features such as touch-based input, push notifications, and system services.
Therefore, applications written for Mac OS X do not run on i10S without porting. In
addition, it may be difficult to port Mac OS X applications to iOS because of differences
between user libraries and/or application framework layers of the two OSs, and/or

differences in system resources of the mobile and desktop hardware.

[0065] In one embodiment consistent with OS architecture 300, an Android mobile OS
and a full Linux OS run independently and concurrently on a modified Android kernel. In
this embodiment, the Android OS may be a modified Android distribution while the
Linux OS (“Hydroid”) may be a modified Debian Linux desktop OS. FIGS. 4-6 illustrate
Android mobile OS 430, Android kernel 520, and Hydroid OS 660 that may be employed

in OS architecture 300 in more detail, according to various embodiments.

[0066] As illustrated in FIG. 4, Android OS 430 includes a set of C/C++ libraries in
libraries layer 432 that are accessed through application framework layer 440. Libraries
layer 432 includes the “bionic” system C library 439 that was developed specifically for
Android to be smaller and faster than the “glibc” Linux C-library. Libraries layer 432 also
includes inter-process communication (“IPC”) library 436, which includes the base
classes for the “Binder” IPC mechanism of the Android OS. Binder was developed
specifically for Android to allow communication between processes and services. Other
libraries shown in libraries layer 432 in FIG. 4 include media libraries 435 that support
recording and playback of media formats, surface manager 434 that managers access to
the display subsystem and composites graphic layers from multiple applications, 2D and
3D graphics engines 438, and lightweight relational database engine 437. Other libraries
that may be included in libraries layer 432 but are not pictured in FIG. 4 include bitmap
and vector font rendering libraries, utilities libraries, browser tools (i.e., WebKit, etc.),

and/or secure communication libraries (i.e., SSL, etc.).

[0067] Application framework layer 440 of Android OS 430 provides a development

platform that allows developers to use components of the device hardware, access

15

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

location information, run background services, set alarms, add notifications to the status
bar, etc. Framework layer 440 also allows applications to publish their capabilities and
make use of the published capabilities of other applications. Components of application
framework layer 440 of Android mobile OS 430 include activity manager 441, resource
manager 442, window manager 443, dock manager 444, hardware and system services
445, desktop monitor service 446, multi-display manager 447, and remote communication
service 448. Other components that may be included in framework layer 440 of Android
mobile OS 430 include a view system, telephony manager, package manager, location

manager, and/or notification manager, among other managers and services.

[0068] Applications running on Android OS 430 run within the Dalvik virtual machine
431 in the Android runtime environment 433 on top of the Android object-oriented
application framework. Dalvik virtual machine 431 is a register-based virtual machine,
and runs a compact executable format that is designed to reduce memory usage and
processing requirements. Applications running on Android OS 430 include home screen
451, email application 452, phone application 453, browser application 454, and/or other
application(s) (“App(s)”) 455.

[0069] The Android OS graphics system uses a client/server model. A surface manager
(“SurfaceFlinger”) is the graphics server and applications are the clients. SurfaceFlinger
maintains a list of display ID’s and keeps track of assigning applications to display ID’s.
In one embodiment, mobile computing device 110 has multiple touch screen displays
116. In this embodiment, display ID 0 is associated with one of the touch screen displays
116 and display ID 1 is associated with the other touch screen display 116. Display ID 2
is associated with both touch screen displays 116 (i.e., the application is displayed on
both displays at the same time). Display ID’s greater than 2 are virtual displays, meaning
that they are not associated with a display physically present on mobile computing device

hardware 112.

[0070] Graphics information for Android applications includes windows, views, and
canvasses. Each window, view, and/or canvas is implemented with an underlying surface
object. Surface objects are double-buffered (front and back buffers) and synchronized
across processes for drawing. SurfaceFlinger maintains all surfaces in a shared memory

pool which allows all processes within Android to access and draw into them without

16

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

expensive copy operations and without using a server-side drawing protocol such as X-
Windows. Applications always draw into the back buffer while SurfaceFlinger reads from
the front buffer. SurfaceFlinger creates each surface object, maintains all surface objects,
and also maintains a list of surface objects for each application. When the application
finishes drawing in the back buffer, it posts an event to SurfaceFlinger, which swaps the
back buffer to the front and queues the task of rendering the surface information to the

frame buffer.

[0071] SurfaceFlinger monitors all window change events. When one or more window
change events occur, SurfaceFlinger renders the surface information to the frame buffer
for one or more displays. Rendering includes compositing the surfaces, i.e., composing
the final image frame based on dimensions, transparency, z-order, and visibility of the
surfaces. Rendering may also include hardware acceleration (e.g., OpenGL 2D and/or 3D
interface for graphics processing hardware). SurfaceFlinger loops over all surface objects

and renders their front buffers to the frame buffer in their Z order.

[0072] FIG. 5 illustrates modified Android kernel 520 in more detail, according to
various embodiments. Modified Android kernel 520 includes touch-screen display driver
521, camera driver(s) 522, Bluetooth driver(s) 523, shared memory allocator 524, IPC
driver(s) 525, USB driver(s) 526, WiFi driver(s) 527, I/O device driver(s) 528, and/or
power management module 530. I/O device driver(s) 528 includes device drivers for
external I/O devices, including devices that may be connected to mobile computing
device 110 through port 120. Modified Android kernel 520 may include other drivers and
functional blocks including a low memory killer, kernel debugger, logging capability,

and/or other hardware device drivers.

[0073] FIG. 6 illustrates Hydroid OS 660 in more detail, according to various
embodiments. Hydroid is a full Linux OS that is capable of running almost any
application developed for standard Linux distributions. In particular, libraries layer 662 of
Hydroid OS 660 includes Linux libraries that support networking, graphics processing,
database management, and other common program functions. For example, user libraries
662 may include the “glibc” Linux C library 664, Linux graphics libraries 662 (e.g.,

GTK, OpenGL, etc.), Linux utilities libraries 661, Linux database libraries, and/or other

Linux user libraries. Applications run on Hydroid within an X-Windows Linux graphical

17

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

environment using X-Server 674, window manager 673, and/or desktop environment 672.
[lustrated applications include word processor 681, email application 682, spreadsheet

application 683, browser 684, and other application(s) 685.

[0074] The Linux OS graphics system is based on the X-windows (or “X11”) graphics
system. X-windows is a platform-independent, networked graphics framework. X-
windows uses a client/server model where the X-server is the graphics server and
applications are the clients. The X-server controls input/output hardware associated with
the Linux OS such as displays, touch-screen displays, keyboards, pointing device(s), etc.
In this regard, X-windows provides a server-side drawing graphics architecture, i.c., the
X-server maintains the content for drawables including windows and pixmaps. X-clients
communicate with the X-server by exchanging data packets that describe drawing
operations over a communication channel. X-clients access the X communication
protocol through a library of standard routines (the “Xlib”). For example, an X-client may
send a request to the X-server to draw a rectangle in the client window. The X-server
sends input events to the X-clients, for example, keyboard or pointing device input,
and/or window movement or resizing. Input events are relative to client windows. For
example, if the user clicks when the pointer is within a window, the X-server sends a
packet that includes the input event to the X-client associated with the window that

includes the action and positioning of the event relative to the window.

[0075] Because of the differences in operating system frameworks, graphics systems,
and/or libraries, applications written for Android do not generally run on Hydroid OS 660
and applications written for standard Linux distributions do not generally run on Android
0OS 430. In this regard, applications for Android OS 430 and Hydroid OS 660 are not
bytecode compatible, meaning compiled and executable programs for one do not run on

the other.

[0076] In one embodiment, Hydroid OS 660 includes components of a cross-environment
communication framework that facilitates communication with Android OS 430 through
shared kernel 520. These components include IPC library 663 that includes the base
classes for the Binder IPC mechanism of the Android OS and remote communications

service 671.

18

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0077] In one embodiment, Hydroid OS 660 is run within a chrooted (created with the
‘chroot’ command) secondary execution environment created within the Android root
environment. Processes and applications within Hydroid OS 660 are run within the
secondary execution environment such that the apparent root directory seen by these
processes and applications is the root directory of the secondary execution environment.
In this way, Hydroid OS 660 can run programs written for standard Linux distributions
without modification because Linux user libraries 662 are available to processes running

on Hydroid OS 660 in the chrooted secondary execution environment.

[0078] Referring back to FIG. 3, mobile OS 130 and desktop 160 are in active concurrent
execution on shared kernel 320 on a mobile device. Mobile OS 130 and desktop OS 160
may be incompatible with regard to user libraries, graphics systems, and/or application
frameworks. Therefore, mobile OS 130 and desktop OS 160 have different sets of
available applications, meaning that at least some applications available on mobile OS
130 are not available on desktop OS 160 and vice-versa. Accordingly, mobile OS 130 and
desktop OS 160 of OS architecture 300 provide separate user experiences through
different sets of applications accessible through separate user interaction spaces. The user
may access the applications available on (i.e., compiled for and loaded within the
execution environment of) mobile OS 130 through the user interaction space associated
with mobile OS 130, and the applications available on desktop OS 160 through the user

interaction space associated with desktop OS 160.

[0079] Embodiments of the present invention extend the functionality of OS architecture
300 to provide a more seamless computing experience in a multi-OS computing
environment. Embodiments include cross-environment rendering of applications and/or
the user interaction space of a first operating system within a user interaction space of a
second operating system, even where the graphics environments of the first and second
operating systems are not compatible. Embodiments further include user-interaction
support of cross-environment applications, and accessing applications of the first
operating system from the user interaction space of the second operating system. This
functionality enables, for example, mobile OS applications, running on mobile OS 130, to
be displayed and interacted with through a user interaction space associated with desktop
OS 160. For example, while a user is interacting with desktop OS 160 through a user

interaction space associated with desktop OS 160, the user may wish to have access to a

19

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

particular application of mobile OS 130 that is not available for (i.e., is not compiled for
and does not run on) desktop OS 160. Using various embodiments disclosed below, the
user may access, display, and interact with an application compiled for and running on
mobile OS 130 through the user interaction space associated with desktop OS 160.
Notably, the embodiments provide cross-environment interaction support with any
application of the mobile OS, meaning that mobile OS applications do not need to be

modified to include specific cross-environment support to use the embodiments below.

[0080] To provide seamless cross-environment user interaction support for an application
and/or the user interaction space of a first OS (e.g., mobile OS 130) from within a user
interaction space of a second OS (e.g., desktop OS 160), it may be desirable for graphics
data of the application and/or the user interaction space (i.c., graphics context or active
display) to be rendered for display in the user interaction space of the second OS in real-
time. Real-time (or instant) rendering, in this context, means that graphics data of the
application is rendered to the user interaction space of the second OS fast enough that the
user can interact with the application without a noticeable or substantial reduction in
application performance due to delays associated with transferring the graphics
information. In this regard, the techniques for real-time (or instant) cross-environment
rendering, as described herein, provide for rapid transfer of graphics information, for
example, with a limited number of frame delays or other delays associated with copying
or transferring the graphics information from the first OS to the second OS. However, it
does not mean that the graphics transfer does not take any time, and the cross-
environment rendering techniques disclosed herein may be considered instant or in real-
time, even though a finite time period passes before the graphics information is displayed

on the user interaction space of the second OS.

[0081] To achieve cross-environment rendering of applications, a potentially large
amount of graphics data may be passed from the application running in the first operating
system to a graphics system of the second operating system. Existing mechanisms are not
capable of transferring the required graphics data without potentially affecting the display
update or frame rate. For example, transferring graphics data directly would not be
practical within the constraints of a mobile computing environment. Compression
techniques could be used to reduce the total amount of data to be transferred, but at the

cost of increased processing requirements to compress and de-compress the information.

20

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

Remote desktop-like systems could be used to pass vector graphics or graphics update
information, however, these are also typically slow when transferring large amounts of

graphics data or for rapidly changing graphics content.

[0082] FIG. 7 illustrates OS architecture configuration 300a, which may be employed to
provide cross-environment rendering of an application and/or the user interaction space of
a first OS within a user interaction space of a second OS, where the first and second OS
are running concurrently on a shared kernel and are associated with separate user
interaction spaces that include separate display devices, according to various
embodiments. Components of OS architecture configuration 300a allow applications
running on mobile OS 130 and/or the graphics context of mobile OS 130 to be rendered
within the user interaction space of desktop OS 160, where OS 130 and desktop OS 160
run concurrently on shared kernel 320. In various embodiments, an application is
displayed in a console window in the user interaction space of desktop OS 160 through
console application 782 of desktop OS 160. In one implementation, console application
782 is an X-windows type application that is displayed within the user interaction space

of desktop OS 160 through an X-windows type graphics system of desktop OS 160.

[0083] In OS architecture configuration 300a, mobile OS 130 includes graphics server
734 that allocates and manages surface information (e.g., surfaces 726, 727, and 728) for
applications (e.g., application 752 and 754) of mobile OS 130. In one embodiment,
graphics server 734 allocates memory for graphics surfaces using anonymous shared
memory (i.e., named memory blocks shared between processes that the kernel is allowed
to free). Graphics server 734 also allocates and tracks displays of mobile OS 130,
including displays that are integrated within mobile computing device hardware 112 (i.e.,
local displays) and so-called virtual displays through which applications of mobile OS
130 may be displayed remotely (i.e., within a user interaction space of another OS).
Mobile OS 130 may also include a window system for displaying multiple applications at
the same time on a display screen associated with mobile OS 130. In one embodiment,
mobile OS 130 includes a service that provides a remote communication channel for

access to components of mobile OS 130 from desktop OS 160.

[0084] OS architecture configuration 300a includes a first application 752 that is running

on mobile OS 130 and displayed within a first user interaction space associated with

21

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

mobile OS 130. OS architecture configuration 300a includes a second application 754
that is also running on mobile OS 130, but is displayed within a second user interaction
space associated with desktop OS 160 through cross-environment rendering according to
embodiments described below. In one embodiment, application 754 is displayed within a
console window of the second user interaction space through console application 782

running on desktop OS 160.

[0085] Generally, applications of mobile OS 130 instantiate views through which the user
interacts with the application. For example, an application may have a single view that
makes up the application window. Within views, applications instantiate drawing objects
for specific areas of the application interface. The drawing objects may be called canvases
or drawing layers and are the objects through which the application draws graphics
information. When an application instantiates a canvas or layer, graphics server 734
allocates memory for the surface information associated with the canvas or layer and
returns the drawing object to the application, which the application then uses to draw
graphics information for the surfaces of the canvas or layer. Graphics server 734 then
monitors the surface information and renders the surface information into the frame
buffer (e.g., frame buffer 716) when the surface information is updated. Typically, the
user also interacts with the application through the view objects. The view objects include
event listeners that are called by the mobile OS input queue 736 when actions are

performed by the user on the view object.

[0086] As illustrated in OS architecture 300a, surfaces 726, 727, and/or 728 are allocated
by graphics server 734 in shared memory 724. Shared memory 724 is managed by shared
kernel 320 and is accessible by all processes running on mobile OS 130 and desktop OS
160. As described above, shared memory 724 may be named shared memory. While
named shared memory is accessible by all processes running on shared kernel 320, other
processes cannot access regions of named shared memory by name. Accordingly, a file
descriptor to regions of named shared memory must be passed through an inter-process
communication mechanism to pass a reference to named shared memory across process
boundaries. Shared kernel 320 also includes IPC driver 725, which allows processes in
mobile OS 130 and desktop OS 160 to communicate with one another across process
boundaries. IPC driver 725 may be, for example, a Unix domain socket driver, Android

Binder driver, and/or network socket driver.

22

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0087] Desktop OS 160 of OS architecture configuration 300a includes console
application 782 and window system 774. Console application 782 is compiled for and
runs on desktop OS 160, and is displayed within a console window in the user interaction
space associated with desktop OS 160. Window system 774 may include a window
manager, graphics server, and/or graphics device interface that provides the basis for
representing graphical objects and transmitting them to display devices through desktop
OS frame buffer 718. For example, window system 774 may display console application
782 within the user interaction space of desktop OS 160 through desktop OS frame buffer
718. Window system 774 also provides input events from the user environment of
desktop OS 160 associated with console application 782 to console application 782. For
example, window system 774 may provide pointing device location or gesture
information from the user interaction space associated with desktop OS 160 to console

application 782.

[0088] In FIG. 7, memory blocks including shared memory 724, mobile OS frame buffer
716, and desktop OS frame buffer 718 are shown as located within shared kernel 320 for
ease of illustration. However, these memory blocks are physically located in tangible
memory storage elements of mobile computing device 110 and managed by shared kernel
320. For example, these memory blocks may be located in RAM on processor 114, and/or
in RAM of memory device 206 of mobile computing device hardware 112 illustrated in

FIG. 2.

[0089] OS architecture configuration 300a provides support for cross-environment
rendering of applications of a first operating system running on a shared kernel within a
user interaction space associated with a second operating system, where the first and
second operating systems run concurrently on the shared kernel. OS architecture
configuration 300a may be employed to provide support for cross-environment rendering
in a computing environment that provides multiple user computing experiences through
multiple user interaction spaces. For example, OS architecture configuration 300a may be

used in computing environment 100 as illustrated in FIG. 1.

[0090] FIG. 8 illustrates computing environment 800, according to various embodiments.
Computing environment 800 has a first user environment that includes touch-screen

display(s) 116 and other I/O devices 118 of mobile computing device hardware 112. This

23

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

user environment presents a first user interaction space through which the user interacts
with mobile OS 130. A second user environment of computing environment 800 includes
display monitor 844, keyboard 846, and/or pointing device 848. User environment 840
may be connected to mobile computing device 110 through dock connector 841 and dock
cable 843. Dock connector 841 and dock cable 843 may include a port that interfaces
through dock interface 122 to port 120 of mobile computing device 110 as illustrated in
FIG. 1. In this regard, user environment 840 provides a docked secondary terminal
environment to mobile computing device 110. In computing environment 800, desktop
OS 160 may be associated with docked secondary terminal environment 840 such that the
user can interact with desktop OS 160 through the user interaction space provided by
secondary terminal environment 840. While secondary terminal environment 840 is
illustrated as a typical desktop-type computing environment, desktop OS 160 may present
a second user interaction space through other types of computing environments, including

laptop, tablet, and/or other types of computing environments.

[0091] OS architecture configuration 300a may be used within computing environment
800 to provide cross-environment rendering of applications running on a first OS (i.e.,
mobile OS) and displayed within a user environment of a second OS (i.e., user
environment 840 associated with desktop OS 160). For example, application 754, running
on mobile OS 130, may be displayed within console window 882 on the user interaction
space 880 of desktop OS 160. Other windows within user interaction space 880, including
window 884 and 886, may be windows of other applications running on desktop OS 160.
To the user, computing environment 800 provides a seamless computing experience for
application 754 because application 754 can be used within the user interaction space of
desktop OS 160 as if it was running on desktop OS 160, while in fact application 754 is

running on mobile OS 130.

[0092] FIG. 8 illustrates a desktop-like secondary terminal environment 840. In this
instance, the user may interact with an application and/or the user interaction space of the
mobile OS through console window 882 using keyboard 846 and mouse 848 (i.e., a
primarily pointing device-based GUI) of secondary terminal environment 840. However,
cross-environment rendering of an application and/or mirroring of the mobile OS user
interaction space may be used with other secondary terminal environments. For example,

desktop OS 160 could be associated with a tablet-like secondary terminal environment

24

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

that includes a touch-screen display. In this instance, the user may interact with a cross-
environment application or mirrored user interaction space of mobile OS 130 in much the
same manner (i.e., a primarily gesture-based GUI) in which the user typically interacts

with the user interaction space of mobile OS 130.

[0093] As discussed above, embodiments of the invention are directed to providing
concurrent user interface support across cross-environment applications and/or a mirrored
user interaction space in a multiple-OS computing environment. In one example, user
interface support is provided for cross-environment applications to allow an application,
running on a first OS, to be displayed and interacted with through a user interaction space

of a second OS, substantially as if running natively on the second operating system.

[0094] Non-Extended Rendering Context Embodiments

[0095] Some embodiments handle concurrent user interface support across multiple OSs
without extending the graphics rendering context of the first operating system. The first
OS (e.g., the mobile OS, Android) is typically configured to define a single, active user
interaction space. The user interaction space includes an active display (e.g., with
associated characteristics, like resolution) and one or more active input devices for
allowing user interaction with the elements displayed on the active display. Accordingly,
the first OS establishes a rendering context through which it can render surface

information for applications that are running for display to the active display.

[0096] As described above, however, novel techniques are described herein for
effectively fooling the first OS into concurrently handling multiple user interaction
spaces. Moreover, the techniques allow the multiple user interaction spaces to be
associated with different (e.g., incompatible) operating systems on multiple computing
environments. Some embodiments involve techniques for handling the display outputs
through cross-environment remote rendering. Other embodiments involve techniques for

handling the user interaction in those contexts.

[0097] In cross-environment remote rendering, application graphics for an application
running on the first OS and displayed within a computing environment associated with a
second OS are rendered from within the second OS. In one embodiment, a console

application, running on the second OS, accesses surface information for the application

25

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

from shared memory and renders the application within a console window of the

computing environment associated with the second OS.

[0098] Suppose that a calendar application and a word processing application are both
compiled for and concurrently running on a first OS (e.g., mobile OS 130) on a mobile
device. A second OS (e.g., a non-mobile OS, like desktop OS 160) is running
concurrently on the mobile device using a shared kernel. A user has docked the mobile
device with a second, desktop computing environment, and desires to interact with the
word processing application through that desktop computing environment. It is desirable
to handle the user interaction space of the desktop computing environment using the
second OS of the mobile computing environment (i.e., the mobile device) in a way that is

transparent to the user.

[0099] FIG. 9 illustrates aspects of cross-environment remote rendering, according to
various embodiments. In application rendering diagram 900 illustrated in FIG. 9, the first
application 910 (e.g., calendar application) calculates updates for a first surface 912
within the first OS. The first surface 912 is stored in a first memory location in a shared
memory space by the first operating system. For example, the first memory location may
be a region of named shared memory. The first application 910 updates the back buffer
914 of the first surface 912. Similarly, the second application 930 (e.g., word processing
application) calculates updates for a second surface 932 using the first OS. The second
surface 932 is stored in a second memory location in the shared memory space (e.g., a

second region of named shared memory) by the first OS.

[0100] The first OS determines when to initiate a rendering sequence. For example, the
first OS may initiate a rendering sequence when surface information for surfaces 912
and/or 932 has changed. The first OS may perform a single loop over all surfaces,
including the first surface 912 and second surface 932, determining whether surface
information associated with particular applications has changed. In the rendering
sequence, if surface information for surface 912 has changed, the first OS swaps the front
buffer 916 and back buffer 914, such that the surface information that was in the back
buffer 914 is now in front buffer 916. The first operating system renders the first surface
912 into a third memory location 920 to create the final image 918 to be displayed within

a first user interaction space associated with the first OS.

26

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0101] If surface information for the second surface 932 has changed, the first OS notifies
the second OS that the surface information for the second surface 932 has changed.
Specifically, the first OS sends a draw notification to a console application of the second
OS indicating that surface 932 has been updated through an inter-process communication
channel. The draw notification may include a file descriptor to the front image 936,
and/or other characteristics of the shared memory space for front image 936 including
buffer size, layer order, etc. The console application maps the file descriptor to its process
space to obtain a reference to the second memory location. Through the reference to the
second memory location, the console application of the second OS reads directly the
surface information from the front image buffer 936 and renders the surface information
for the front image 936 of the second surface 932 in a console window 940 within a
second user interaction space associated with the second OS. In this way, the console
application can render the second application 930 in the console window 940 in real-time
without copying a graphics frame or surface information across processes. Instead, the
console application reads the surface information directly by mapping the shared memory
of the second surface 932 to its own process space using the file descriptor passed

through inter-process communication.

[0102] FIG. 10 shows a flow diagram 1000 of an illustrative method for cross-
environment remote rendering in a non-extended rendering context, according to various
embodiments. Embodiments maintain display of application graphics for a first
application (e.g., the calendar application) and a second application (e.g., the word
processing application), both compiled for and in active concurrent execution within a

first operating system.

[0103] The method 1000 begins at block 1004 by calculating updates to surfaces of the
first application using the first operating system. Calculating updates to the surfaces may
involve using application data to determine which surfaces have changed and in what
ways. For example, user interaction may have caused some surfaces to change position,
order (e.g., one layer may be partially in front of another layer, completely hidden by

another layer, etc.), size, color, texture, etc.

[0104] At block 1008, these updated surfaces of the first application are rendered using

the first operating system to generate a first graphics frame in a first memory location. For

27

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

example, a rendering engine of the first OS previously established a rendering context
associated with a display. A graphics frame can then be rendered by iterating through the
updated surface information to effectively draw a full or partial image of visible portions
of surfaces from the first application according to characteristics (e.g., resolution) of the
display associated with the rendering context. This graphics frame is rendered to a first
memory location. The memory location can be frame buffer memory, shared memory, or

any other useful memory location.

[0105] In some embodiments, at block 1012, the rendered first graphics frame is
displayed from the first memory location to a display of a first computing environment
associated with the first operating system. For example, the first graphics frame is
rendered into a back buffer portion of the frame buffer of the mobile device.
Subsequently, the frame buffer flips (i.e., the back buffer portion becomes the front buffer
portion) and the now-front buffer portion of the frame buffer is displayed to the display of

the mobile device.

[0106] At block 1016, updates are calculated to surfaces of the second application using
the first operating system. This may be performed substantially identically to the
calculation of block 1004 for surfaces of the first application. Unlike with the updated
surface data of the first application, however, the updated surface information of the
second application is not rendered by the first OS. Rather, at block 1020, the updated
surfaces of the second application are stored in a second memory location. The second
memory location is a shared memory location accessible by both the first and second

OSs, which are running concurrently on the shared kernel of the mobile device.

[0107] At block 1024, the updated surfaces of the second application are rendered using a
console application of the second operating system to generate a second graphics frame in
a third memory location. For example, console application 782 of FIG. 7 may render
updated surfaces of application 754 into frame buffer memory of the second OS (e.g.,
associated with the display of the second computing environment). In some embodiments,
at block 1028, the second graphics frame is displayed from the third memory location to a
display of a second computing environment associated with the second operating system.
For example, the display driver of the desktop computing environment display accesses

the frame buffer memory to access and display the second graphics frame. In certain

28

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

implementations, the console application also maintains a console interaction space, and
the second graphics frame is rendered into the console interaction space. For example, the
console application renders one or more windows on the desktop display, and the

graphics of the second application are displayed in one of those windows.

[0108] In some embodiments, the method 1000 iterates through the blocks to
concurrently maintain the graphics environments for both applications. For example, the
mobile OS calculates updates to the first application’s graphics and renders those updates
to mobile frame buffer memory; then the mobile OS calculates updates to the second
application’s graphics and stores those updates to shared memory, from where the
desktop OS’s console application renders those updates to desktop frame buffer memory;
then the method 1000 repeats with the next set of updates. Notably, some
implementations perform certain steps out of order and/or in parallel. For example, it may
be possible to calculate updates to surfaces for the first and second applications at
substantially the same time (i.e., perform blocks 1004 and 1016 substantially in parallel),
though only a portion of those updated surfaces will be rendered locally (e.g., at block
1008) and the other portion of those updated surfaces will be stored for remote rendering

(e.g., at blocks 1020 and 1024).

[0109] In one embodiment, an Android mobile OS and a full Linux OS (e.g., Hydroid)
are running concurrently on a shared kernel on a mobile device. When an Android
application is launched from Hydroid OS 660, a console application launches on Hydroid
OS 660 and requests that Android OS 430 launch the Android application and send draw
notifications for the Android application to the console application. Android OS 430
launches the Android application, associates the application with a virtual display ID and
registers the console application to receive draw notifications for the application. For
example, the Android graphics server (i.e., SurfaceFlinger) may allocate an unused virtual
display ID and associate the application with the virtual display ID through an application
object list. SurfaceFlinger allocates memory for surface information of the Android
application in shared memory and registers the console application to receive draw

notifications for the Android application.

[0110] When SurfaceFlinger determines that the surface information is updated,

SurfaceFlinger sends a draw notification to the console application through an inter-

29

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

process communication channel. For example, SurfaceFlinger may send the draw
notification to the console application through a unix domain socket, Binder interface,
and/or network socket. The draw notification includes a file descriptor to the surface
information. The file descriptor may be generated by SurfaceFlinger based on a
namespace for a named shared memory region of the surface. The draw notification may
also include data format, buffer size, and surface position information. The console
application maps the file descriptor to its process space and reads from the shared
memory location through the mapped file descriptor. The console application then renders
the graphics frame for the application directly from the surface information. The rendered
graphics frame is then displayed by the desktop OS graphics system (i.e., through the X-
windows graphics system of Hydroid OS 660).

[0111] FIG. 11 illustrates a registration and drawing process flow 1100 for cross-
environment remote rendering in more detail, according to various embodiments.
Initially, console application 1102, running on Hydroid OS 660, requests through IPC
channel 525 of shared kernel 520 at step 1106 that an Android application be started and
displayed within a user environment of Hydroid OS 660, or moved from a user
environment of Android OS 430 to a user environment of Hydroid OS 660. Android
requests from SurfaceFlinger 434 a virtual display ID for the application, starts the
application, and sets parameters for the virtual display at steps 1108, 1110, and 1112. At
step 1114, Android returns the display ID to the console application through IPC channel
525. At step 1116, the application requests a new surface, which SurfaceFlinger 434

creates by creating an instance of surface class 1104 at step 1118.

[0112] Console application 1102 instantiates a renderer object at step 1120, which
renders Android surface information through the X-window system of Hydroid OS 660.
At step 1122, console application 1102 registers a remotable interface of the renderer
object 1124 with SurfaceFlinger 434 to receive draw notifications for surface information
for the Android application. In one embodiment, the remotable interface of the renderer
object includes draw() and clear() methods that may be called through IPC channel 525.
At steps 1126 and 1128, SurfaceFlinger attaches the IPC object to the surface such that
the console application 1102 will be notified through the remotable interface when the

surface information has been updated.

30

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0113] Steps 1130 and 1132 are part of the render loop of process flow 1100. In the
render loop, SurfaceFlinger notifies console application 1102 that the surface information
is updated and passes a file descriptor to the surface information through IPC channel
525. For example, a draw method of the console application renderer may be called and
passed the file descriptor to the surface. Console application 1102 maps the file descriptor
to its process space and accesses the referenced shared memory location to read the
surface information and render the graphics frame to be displayed on a display of a

second computing environment associated with Hydroid OS 660.

[0114] FIG. 12 shows a flow diagram 1200 of another illustrative method for cross-
environment rendering in a non-extended rendering context, according to various
embodiments. As with the method 1000 of FIG. 10, embodiments maintain display of
application graphics for a first application and a second application, both compiled for

and in active concurrent execution within a first operating system.

[0115] The method 1200 begins at block 1204 by establishing a first rendering context of
the first operating system. The rendering context may be unique to the display with which
it is associated. For example, implementations of the mobile OS can be associated with a
mobile device display having a certain resolution. The rendering context may be
established to match the resolution of the associated display, so that graphics will be
appropriately rendered for that resolution. At block 1208, the method 1200 calculates
updates to surfaces of the first application using the first operating system. As discussed
above, calculating updates to the surfaces may involve using application data to

determine which surfaces have changed and in what ways.

[0116] The updated surfaces of the first application are then rendered using the first
operating system, at block 1212, to generate a first graphics frame in a first memory
location. Rendering typically involves converting graphical primitives into bits (e.g., a
bitmap) that form a graphics frame for display. For example, surface information defines
mathematically properties of each surface, including shape, size, color, layering order
(i.e., which other surfaces it is in front or in back of), transparency, etc. The rendering
engine of the OS can interpret the surface data to determine, at each location (e.g., “X, Y”
location) in the rendering context, what bit to display as a function of rendering all the

surface information (e.g., using iterative compositing, ray-tracing, and/or other

31

10

15

20

25

30

WO 2012/044687

PCT/US2011/053691

techniques). The updated surfaces of the first application can be rendered, using the first
rendering context, into a bitmap for storage into the first memory location (e.g., frame

buffer memory, shared memory, or any other useful memory location).

[0117] In some embodiments, at block 1216, the first graphics frame is displayed from
the first memory location to a display of a first computing environment associated with
the first operating system. For example, a display driver for the mobile device display
accesses associated frame buffer memory to display the bitmap generated in the first
rendering context. At block 1220, the first rendering context is disestablished (e.g., “torn

down”).

[0118] At block 1224, a second rendering context of the first operating system is
established. In some implementations, the second rendering context is identical to the first
rendering context. However, the second rendering context may also be established
according to characteristics of a display of the second computing environment (e.g., the
desktop display). Updates to surfaces of the second application are calculated using the
first operating system at block 1228. These updates are then rendered, at block 1232, in
the second rendering context of the first operating system to generate a second graphics
frame in a second memory location. Notably, the second memory location is a shared
memory location accessible by both the first operating system and the second operating

system, which are running concurrently on the shared kernel of the mobile device.

[0119] In some embodiments, at block 1236, the second graphics frame is displayed from
the second memory location to a display of a second computing environment associated
with the second operating system. It is worth noting that, unlike in FIG. 10, both
applications’ updated graphics frames are rendered using the first OS’s rendering engine.
For example, the console application of the second OS can access the second, shared
memory location to directly retrieve a rendered bitmap for display to the second
computing environment’s display. At block 1240, the second rendering context is
disestablished.

[0120] In some embodiments, the method 1200 iterates through the blocks to
concurrently maintain the graphics environments for both applications. For example, the
mobile OS iteratively establishes, uses, and tears down a rendering context for the first
application; then establishes, uses, and tears down a rendering context for the second

32

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

application. Using this technique, all the rendering can be performed by one OS (i.c., by
the rendering engine of the first OS), and there is no need to provide or use rendering
functionality of the other OS. However, the technique involves additional overhead

associated with repeatedly establishing and tearing down rendering contexts.

[0121] The above embodiments of cross-environment rendering describe how a graphics
frame for an application running on a first OS may be displayed within a console window
of a user interaction space of a second OS in a multi-OS computing environment using
non-extended rendering contexts. To support user interaction with such cross-
environment applications, embodiments redirect input events from the user interaction
space of the second OS to the first OS in such a way that cross-environment applications
receive input events as if coming from the user interaction space of the first OS (i.e., the
application receives the input events through the same event handlers and/or views
through which it would receive user input if displayed within the user interaction space of

the first OS).

[0122] Referring back to FIGS. 7 and 8, desktop OS 160 is configured to provide a
second user interaction space through secondary terminal environment 840 suitable to a
desktop computing experience. As described above, application 752 may be displayed
within the user interaction space of mobile OS 130 while application 754, running on
mobile OS 130, is displayed in console window 882 of the second user interaction space
through console application 782 running on desktop OS 160 using embodiments of cross-
environment rendering described above. Notably, applications 752 and 754 can be any
applications compiled for mobile OS 130, running within the mobile OS runtime
environment and accepting input events through the mobile OS framework without
modification for being displayed or interacted with remotely (not on the user interaction

space of mobile OS 130).

[0123] FIG. 13 illustrates OS architecture configuration 300b for providing user
interaction support to cross-environment applications, according to various embodiments.
In OS architecture configuration 300b, device drivers in shared kernel 320 implement the
hardware interfaces for I/O devices 844, 846, and/or 848 that make up secondary terminal
environment 840. Through the device drivers, input events for these devices appear in

devices 1364, 1366, and/or 1368 of I/O devices 1360 of shared kernel 320. Because

33

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

system resources of shared kernel 320 are available to both mobile OS 130 and desktop
OS 160, mobile OS determines whether input events on input devices 1364, 1366, and/or
1368 are intended for mobile OS 130. When desktop OS 160 is configured to provide a
second user interaction space (i.e., mobile computing device 110 is docked to secondary
terminal environment 840), mobile OS 130 ignores input events from input devices
associated with the second user interaction space. In OS architecture configuration 300b,
mobile OS 130 ignores input events from devices 1364, 1366, and/or 1368. In this
instance, desktop OS 160 accepts input events from devices 1364, 1366, and/or 1368.

[0124] Desktop OS 160 processes input events from devices 1364, 1366, and/or 1368 and
determines how to distribute the events to various windows or GUI elements within
desktop OS 160. For example, window system 774 of desktop OS 160 may accept input
events from devices 1364, 1366, and/or 1368. In one embodiment, the graphics system of

desktop OS 160 is an X-windows graphics system.

[0125] In one instance, the user clicks a button of a pointing device at a screen location
within console window 882 of console application 782. A corresponding input event
appears in device 1368 and desktop OS 160 receives and processes the input event.
Window system 774 directs the input event to console application 782 through which
application 754, running on mobile OS 130, is displayed using embodiments of cross-
environment rendering. As described above, application 754 is a mobile application and
instantiates views and other event handlers using libraries of mobile OS 130 that receive
input from the input queue 736 of mobile OS 130 to accept user input. To present the
input event to application 754 in such a way that application 754 will properly interpret
the input event, console application 782 maps the input event to the graphics context of
mobile OS 130 and passes the event to the input queue 736 of mobile OS 130 through
virtual input device 1370. Virtual input device 1370 appears to mobile OS 130 as an input
device with the proper input event protocol for mobile OS 130. In addition, input events
are formatted by console application 782 to be relative to the graphics context of mobile
OS 130. Mobile OS 130 associates virtual input device 1370 with application 754 such
that application 754 receives the input event from the mobile OS event queue. For
example, mobile OS 130 may associate virtual input device 1370 with the virtual display

ID of application 754. In this way, application 754 receives and processes the input event

34

WO 2012/044687 PCT/US2011/053691

10

15

20

25

30

just as if application 754 was displayed and interacted with through the user interaction

space of mobile OS 130.

[0126] FIG. 14 illustrates aspects of user interaction support for cross-environment
applications rendered using a non-extended graphics context, according to various
embodiments. The method 1400 begins at block 1402, when an input event is received
from an input device (e.g., keyboard 846, pointing device 848) connected to mobile
computing device 110. As described above, the input event may appear in an input device
in the shared kernel. At block 1404, the mobile OS determines whether mobile computing
device 110 is docked and the desktop OS is associated with the input device. For
example, if mobile computing device 110 is not docked with a secondary terminal
environment and the desktop OS is suspended, the mobile OS may determine that the
desktop OS is not associated with the input device. If the desktop OS is suspended or the
input device is not part of a secondary terminal environment associated with the desktop

0S8, the mobile OS accepts the input command from the input device at block 1406.

[0127] If the desktop OS is not suspended and the input device is part of a secondary
terminal environment associated with the desktop OS, the mobile OS ignores the input
event on the input device and the desktop OS accepts the input event at block 1408. At
block 1410, the desktop OS distributes the input event to the appropriate window or GUI
element within the desktop OS. If the input event is not directed to the console window,
the input event is directed to another window or GUI element at block 1412. If the input
event is directed to the console window (e.g., the user clicks a pointing device within the
console window area), the input event is passed to the console application as an input

event at block 1414.

[0128] At block 1416, a virtual input device is generated for input events from the
console application. The virtual input device may be generated in the shared kernel or
input events may be written directly into the mobile OS input devices. At block 1418, the
console application maps the input event to the graphics context of the mobile OS. For
example, the console application may map the position of an input event within the
console window of the console application to the position within the graphics context of
the mobile OS. The console application may translate the input event for an input format

or input mode state for the mobile OS. For example, an input format may be different

35

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

between the desktop OS and the mobile OS. Even with common input formats, the
desktop OS and mobile OS may have different input mode states. For example, the
desktop OS may be processing input events using a non-touch mode input state while the
mobile OS is in a touch mode input state. In this instance, an input event generated by a
pointing device in the desktop OS user interaction space may be translated to appear as a

gesture-based event in the virtual input device.

[0129] At block 1420, the virtual input device is associated in the mobile OS with the
virtual display device for the application displayed within the console window. For
example, multiple applications may be running on the mobile OS and displayed within
different console windows on the user interaction space of the desktop OS. Each
application displayed within a separate console window in the user interaction space of
the desktop OS is assigned a virtual display ID within the mobile OS. Therefore, when
the mobile OS receives an input event from a console application of the desktop OS
through a virtual device, the mobile OS can map the virtual device to the correct
application through the virtual display ID. At block 1422, the input event is passed to the
application associated with the virtual display and the application can process the input
event as if it occurred through a user interaction space of the mobile OS. Notably, the
above method works with any application of mobile OS 130, the application does not
need to be specially designed to accept input events through the console application of the

desktop OS.

[0130] Extended Rendering Context Embodiments

[0131] Some embodiments handle concurrent user interface support across multiple OSs
by establishing extended rendering contexts within the first operating system. As
discussed above, the first OS (e.g., the mobile OS, Android) is typically configured to
define a single, active user interaction space with a single active rendering context. Novel
techniques are described herein for effectively fooling the first OS into concurrently
handling multiple user interaction spaces by tiling a number of so-called “context spaces”
into a single, extended rendering space and associating each context space with a different
display. Embodiments include techniques for handling the display outputs to multiple

user interaction spaces and techniques for handling the user interaction in those contexts.

36

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0132] Returning to the example discussed above with reference to the non-extended
rendering context embodiments, suppose again that a calendar application and a word
processing application are both compiled for a first OS (e.g., mobile OS, Android OS)
and are both running concurrently within the first OS on a mobile device. A second OS
(e.g., a non-mobile OS, like Hydroid) is running concurrently on the mobile device using
a shared kernel. A user has docked the mobile device with a second, desktop computing
environment, and the desktop computing environment is associated with and displaying
the user interaction space for the second OS. The user desires to interact with the word
processing application, running on the first OS, through the desktop computing
environment of the second OS. It is desirable to handle the user interaction space of the
desktop computing environment using the second OS of the mobile computing

environment (i.e., the mobile device) in a way that is transparent to the user.

[0133] FIG. 15 illustrates aspects of concurrent user interface support across multiple
OSs using extended rendering contexts, according to various embodiments. In application
rendering diagram 1500 illustrated in FIG. 15, the first application 1510 (e.g., calendar
application) calculates updates for a first surface 1512 within the first OS. The first
surface 1512 is stored in a first memory location in a shared memory space by the first
OS. Specifically, the first application 1510 updates the back buffer 1514 of the first
surface 1512. Similarly, the second application 1530 (e.g., word processing application)
calculates updates for a second surface 1532 using the first operating system. Again, the
updates by the second application 1530 to the second surface 1532 are made to the back
buffer 1534. The second surface 1532 is stored in a second memory location in the shared

memory space by the first OS.

[0134] The first OS determines when surface information is changed and initiates a
rendering sequence. The first OS may perform a single loop over all surfaces, including
the first surface 1512 and second surface 1532, determining when surface information
associated with particular applications has changed. In the rendering sequence, the first
OS determines when surface information is changed and swaps the front buffer 1516 and
back buffer 1514 of the first surface 1512, and the front buffer 1536 and back buffer 1534
of the second surface 1532. The first OS establishes an extended rendering context 1520
in a third memory location in a shared memory space and renders the first surface 1512

into a first context space 1522 of the extended rendering context 1520. The first OS

37

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

renders the second surface 1533 into a second context space 1524 of the extended

rendering context 1520.

[0135] In embodiments, the extended rendering context 1520 may overlap in memory
space with the frame buffer of the first OS. For example, the memory location of the first
context space 1522 of the extended rendering context 1520 may be coextensive with the
frame buffer of the first OS. The first OS passes a notification to the second OS that the
final image is rendered at the third memory location. For example, the first OS may pass a
file descriptor to the shared memory location of the second context space 1524 of the
extended context 1520 to a console application of the second OS through an inter-process
communication channel. The second OS accesses the second portion of the extended
graphics context at the third memory location to retrieve the rendered graphics frame
1538 for display in the console window 1540 of the second OS. For example, the console
application of the second OS may map the file descriptor to its process space and read the
rendered graphics frame from the third memory location for display within the user
interaction space of the second OS. In this way, the second OS displays the rendered

graphics frame for the second application within its user interaction space in real-time.

[0136] FIG. 16 shows a flow diagram 1600 of an illustrative method for cross-
environment rendering using an extended rendering context, according to various
embodiments. Embodiments maintain display of application graphics for a first
application (e.g., a calendar application) and a second application (e.g., a word processing
application). It is assumed that both applications are compiled for and in active concurrent
execution within a first operating system (e.g., the Android OS), but that a user desires to
interact with the second application through a second computing environment associated
with a second OS. Notably, these techniques can be applied in environments where the
two OSs are incompatible (e.g., applications compiled for the first OS could not be
directly executed on the second OS). In some implementations, as described above, the
two OSs are running independently and concurrently on a shared kernel of the mobile

device.

[0137] The method 1600 begins at block 1604 by establishing an extended rendering
context of the first OS. As discussed above, the rendering context is typically established

according to characteristics of a single, active display. However, the extended rendering

38

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

context is established to have a first context space associated with the first application and
a second context space associated with the second application. The first and second

context spaces are non-overlapping.

[0138] In some embodiments, the extended rendering context is generated by tiling the
active display of the local device (e.g., the display of the mobile device having the shared
kernel) and any virtual displays (i.e., displays of the first OS associated with console
windows displayed within the user interaction space of the second OS) to form what
looks to the first OS to be one, large display. Regions of the extended rendering context
are designated as non-overlapping context spaces to maintain their association with their
respective physical or virtual displays. Notably, in some implementations, different
context spaces may have different resolutions or other characteristics. Also, in certain
embodiments, context spaces are not contiguous. For example, the extended rendering
context is established in such a way that space is left between each context space that is

not assigned to any context space.

[0139] At block 1608, updates are calculated to surfaces of the first application and the
second application using the first operating system. The updated surfaces are then
rendered using the first operating system, at block 1612, to generate an extended graphics
frame in a shared memory location accessible by both the first operating system and a
second operating system (e.g., which may be running concurrently on a shared kernel). A
first portion of the extended graphics frame is associated with the first context space
(associated with the first application) and a second portion of the extended graphics frame
is associated with the second context space (associated with the second application. When
the rendering occurs at block 1608, the updated surfaces of the first application are
rendered to the first portion of the extended graphics frame, and the updated surfaces of
the second application are rendered to the second portion of the extended graphics frame.
It is worth noting that, in this way, the extended graphics frame effectively includes

rendered surfaces of both applications tiled into their appropriate context spaces.

[0140] In some embodiments, at block 1616, the first portion of the extended graphics
frame associated with the first context space is displayed from the shared memory
location to a display(s) of a first computing environment associated with the first OS. For

example, as discussed above, the shared memory location is frame buffer memory (or is

39

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

copied to frame buffer memory) of the mobile device, and a display device driver of the
mobile device accesses the frame buffer memory to display the first portion of the
extended graphics frame to its display(s). Further, in some embodiments, the second
portion of the extended graphics frame associated with the second motion space is
displayed, at block 1620, from the shared memory location to a display of a second
computing environment associated with the second operating system. For example, as
discussed above, the shared memory location is copied to frame buffer memory of the
second OS associated with the second (e.g., desktop) computing environment, and a
display device driver displays the second portion of the extended graphics frame to a

display of the second computing environment.

[0141] In embodiments discussed with reference to FIG. 12, rendering for the second
application’s updated graphics is performed remotely by the second OS. In embodiments
discussed with reference to FIG. 15, rendering for both applications is performed locally
by the rendering engine of the mobile device, but the rendering context is continually
established and disestablished. The embodiments discussed with reference to FIG. 16
allow rendering for both applications to be performed locally by the rendering engine of
the mobile device, while maintaining a single, albeit extended, rendering context (i.e.,

without disestablishing the rendering context).

[0142] FIG. 17 shows a flow diagram 1700 of another illustrative method for cross-
environment rendering using an extended rendering context, according to various
embodiments. As in the method 1600 of FIG. 16, embodiments maintain display of
application graphics for a first application and a second application that are both compiled
for and in active concurrent execution within a first operating system. The method 1700
begins by establishing an extended rendering context of the first operating system at
block 1704 and calculating updates to surfaces of the first application and the second
application using the first operating system at block 1708. As discussed above, the
extended rendering context is established to have a first context space associated with the
first application and a second context space associated with the second application. The
first and second context spaces are non-overlapping. In some implementations, blocks
1704 and 1708 are performed in a substantially identical manner to blocks 1604 and
1608, respectively.

40

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0143] At block 1712, the updated surfaces of the first application are rendered according
to the first context space using the first operating system to generate a first graphics frame
in a frame buffer of the first operating system. For example, the first context space may
be associated with a particular resolution, particular tiling offsets (e.g., starting “X”
position), etc. In some implementations, the first graphics frame is generated in a
substantially identical manner to generation of the respective portion of the extended
graphics frame in the method 1600 of FIG. 16. In some embodiments, at block 1716, the
first graphics frame associated with the first context space is displayed from the frame
buffer to a display of a first computing environment associated with the first operating

system.

[0144] At block 1720, the updated surfaces of the second application are rendered using
the first operating system to generate a second graphics frame in a shared memory
location. As discussed above, the shared memory location is accessible by both the first
operating system and a second operating system (e.g., which may be running concurrently
on a shared kernel). In some embodiments, at block 1724, the second graphics frame
associated with the second motion space is displayed from the shared memory location to
a display of a second computing environment associated with the second operating

system.

[0145] Notably, the embodiments of both FIGS. 16 and 17 establish extended rendering
contexts with context spaces for each application. However, while the method 1600 of
FIG. 16 renders all the graphics updates into a single extended bitmap, the method 1700
of FIG. 17 renders the graphics updates into separate bitmaps. One or the other technique
may be desirable, for example, depending on how memory is being managed and/or

accessed.

[0146] As with the embodiment of FIG. 12, in the embodiments of FIGS. 16 and 17 both
applications’ updated graphics frames are rendered using the first OS’s rendering engine.
Using the first OS’s rendering engine allows both applications to use hardware
acceleration capabilities of the mobile device that are available in the first OS. For
example, in the embodiments of FIGS. 12, 16, and/or 17, either or both of the first and the
second application may be rendered by the first OS using 2D or 3D hardware-assisted

rendering.

41

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0147] Remote display of a graphics frame for an application running on a first OS (i.e.,
mobile OS, Android) using an extended rendering context provides a way for the first OS
to provide rendering for multiple applications for display within multiple user interaction
spaces using a single rendering context. However, an extended rendering context creates
issues for handling input events for applications displayed through the extended rendering
context. Specifically, the input queue of the first OS must be configured to handle
multiple input events from multiple applications displayed through separate virtual

displays of an extended rendering context.

[0148] Embodiments of cross-environment user interaction support are directed to
handling user input events for multiple applications running on a first OS and displayed
on multiple separate user interaction spaces (i.e., the mobile device user interaction space
and a desktop OS user interaction space) through an extended rendering context of the
first OS. Embodiments include an extended input queue where input events from virtual
input devices for remotely displayed applications are mapped to separate motion spaces
within the input queue. For example, a first application (e.g., calendar application) is
running on a first OS and is being displayed to a first display associated with the first
device (e.g., the display of the mobile device on which the first OS is running). A second
application (e.g., word processing application) is also running concurrently with the first
application, but is rendered within a context space (i.e., virtual display) of the extended
rendering context and displayed on a second user interaction space of a second OS
running concurrently with the first OS on a shared kernel of a mobile device. The first OS
renders a graphics frame through an extended rendering context that includes both
application graphics for the first application in the first context space (i.e., the mobile
device display) and the second application in the second context space. The second
context space is displayed on a user interaction space of the second OS through a console

application running on the second OS.

[0149] Input events for applications displayed remotely through an extended rendering
context are received by the second OS (i.e., desktop OS, Hydroid) and passed to a virtual
input device by the console application of the second OS in the same manner as described
above for non-extended graphics contexts. However, as described above, the input events
received in the mobile OS from the virtual input device are relative to the console

window displayed within the user interaction space of the second OS. Virtual input

42

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

devices are mapped to motion spaces within the extended input queue that are associated
with virtual displays corresponding to remotely displayed applications. The extended
input queue allows the first OS to correctly process input from multiple local and virtual
input devices intended for multiple concurrently executing applications using a single

input queue.

[0150] FIGS. 18a and 18b illustrate aspects of user interaction support for cross-
environment applications using an extended rendering context, according to various
embodiments. FIG. 18a illustrates a user interaction space 1810 that is remotely
displaying applications running on a first OS (e.g., the GUI of the second OS displaying
applications running in the first OS). For example, first, second, and third applications
may be running on the first OS (i.e., in active concurrent execution with the first OS). The
first OS may display the first, second, and third applications within a first, second, and
third context space of an extended rendering context of the first OS according to
embodiments described above. Console windows 1812 and 1814 in user interaction space
1810 may be displaying the second application and the third application running in the
first OS, respectively.

[0151] FIG. 18b illustrates an extended input queue 1840 of the first OS that provides
user interaction support for each application running on the first OS. The extended input
queue 1840 includes a first motion space 1842, a second motion space 1844, and a third
motion space 1846. The first motion space is associated with the first context space of the
extended rendering context of the first OS, which is typically used to render a non-virtual
display 1852 of the first OS (i.e., the context space associated with display(s) 116 of
mobile computing device 110). The second and third motion spaces are associated with
virtual displays 1854, 1856, which are rendered through the second and third context

spaces, respectively.

[0152] When an input event occurs that is directed to a console window of a remotely
displayed application, the input event is directed to the motion space associated with the
virtual display through which the application is displayed. For example, if the user clicks
with a pointing device within console window 1812 of user interaction space 1810, as
indicated by input event 1820, the window system of the second OS directs the input

event to the console application associated with console window 1812. The console

43

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

application maps the input event to a virtual input device as described above. However,
the input event is relative to the console window 1812, If the input event is fed directly to
the input queue of the first OS, the input event would not be directed to the correct
application event handler. Therefore, the input event 1820 from the virtual input device is
remapped to the second motion space 1844. In this way, the extended input queue directs
the input event to event handlers of the second application which receive and process the

input event 1820.

[0153] In embodiments, virtual displays are offset within the mobile OS input queue. For
example, in FIG. 18b, virtual displays 1854 and 1856 are offset by virtual display offset

1858 within the mobile OS input queue 1840. Virtual display offset 1858 prevents virtual
displays from appearing adjacent within the input queue, which may cause an input event
intended for one virtual display from being interpreted within a motion space associated

with a different application. The virtual display offset should be large enough never to be
used as an actual virtual display resolution parameter. In one embodiment, virtual display

offset 1858 is selected to be 10000 pixels.

[0154] FIG. 19 illustrates a method 1900 for receiving input events for cross-environment
applications displayed through an extended rendering context, according to various
embodiments. For example, method 1900 may be used to process input events for a first
application and a second application running within a first OS, the first application
displayed locally on the user interaction space of the first OS and the second application
displayed remotely in a user interaction space of a second OS through an extended

rendering context of the first OS.

[0155] Method 1900 begins at block 1902, when a first user input is received in a first
OS, a first application and a second application in active concurrent execution within the
first OS, the first application displayed within a first user environment associated with the
first OS and the second application displayed within a second user environment
associated with a second OS, the first and second operating systems running concurrently
on a shared kernel, the first OS maintaining application graphics for the second
application by rendering a graphics frame for the second application through a first virtual
display of an extended rendering context. At block 1904, the first OS establishes an

extended input queue that includes a first motion space and a second motion space, the

44

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

second motion space corresponding to the first virtual display. For example, the first
operating system allocates the first virtual display for the second application, establishes
an extended rendering context having a first context space and a second context space,
associates the first virtual display with the second context space, and renders a graphics
frame for the second application through the second context space of the extended

rendering context using the techniques described above.

[0156] At block 1906, a first user input event is received by the first OS at a first virtual
input device from a first console application running in the second OS that is displaying
the rendered graphics frame for the second application through the second OS. At block
1908, the first virtual input device is mapped to the second motion space of the extended
input queue of the first operating system. Mapping the first virtual input device to the
second motion space allows the extended input queue of the first OS to correctly associate
input events from the first virtual input device to event handlers within views of the
second application. Specifically, when the input event is mapped to the second motion
space, the first OS will treat the input event as occurring at a location associated with the
second application in the extended input queue. At block 1910, the first OS passes the
first user input event to the second application from the mapped first virtual input device.
The extended input queue uses the tiled nature of the extended rendering context to
enable the input queue to handle multiple input events from multiple user interaction
spaces and direct the input events to the appropriate event handlers of the intended

applications.

[0157] Mirrored Context Embodiments

[0158] Embodiments of the extended and non-extended rendering contexts are described
above in the context of maintaining concurrent user interaction space support across
multiple applications over multiple operating systems. In many instances, it is desirable to
mirror the context for a single user interaction space. It is desired to view and interact
with the first OS (i.e., to “mirror” the interaction space) concurrently in a second
computing environment associated with a second OS (e.g., a desktop environment
associated with Hydriod OS). Through the mirrored user interaction space, the user can

interact with the first OS as if interacting through the local device (i.e., the user can

45

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

browse available applications, start and stop applications, use the search capabilities of
the first OS, etc.).

[0159] The first OS (e.g., the mobile OS, Android) is typically configured to define a
single, active user interaction space. The user interaction space includes an active display
(e.g., with associated characteristics, like resolution) and one or more active input devices
for allowing user interaction with the elements displayed on the active display. Novel
techniques are presented for using cross-environment rendering to provide one or more
mirrored user interaction spaces across multiple OSs. As discussed above, embodiments
operate even where the multiple OSs are incompatible and/or are running independently

and concurrently on a shared kernel.

[0160] Maintaining concurrent user interaction support with a mirrored context may be
accomplished using many of the same system elements referred to above with regard to
maintaining concurrent user interaction support for cross-environment applications. For
example, referring to FIG. 7, the graphics context for mobile OS 130 may be actively
displaying an application (e.g., applications 752 and/or 754) and/or a home screen of the
mobile OS 130 (e.g., home screen application 451 of Android OS 430). Surface
information for an actively displayed application and/or the home screen of the mobile
OS may be stored within shared memory 724. The mirrored context for mobile OS 130
may be displayed within the user interaction space of desktop OS 160 through console
application 782.

[0161] FIG. 20 shows a flow diagram 2000 of an illustrative method for cross-
environment rendering of a graphics context to provide a mirrored user interaction space,
according to various embodiments. The method 2000 begins at block 2004 by calculating,
using a first operating system, updates to a set of surfaces of a first application compiled
for and in active execution within the first operating system. For example, calculations
are made to determine changes in surface shapes, sizes, textures, layering, etc. The
surface updates are then rendered at block 2008, using the first operating system, to
generate a graphics frame. The graphics frame may be a bitmap that reflects the updated

graphics information for the application.

[0162] At block 2012, the graphics frame is stored in a shared memory location
accessible by both the first operating system and a second operating system. In some

46

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

embodiments, the first and second OS are running concurrently on a shared kernel. The
graphics frame may be displayed to a first application display of the first application on a
first display of a first computing environment using the first operating system at block
2016. For example, the shared memory location may be frame buffer memory or may be
copied to a frame buffer of the first operating system. A display device driver of the local
device (e.g., which is running the shared kernel) accesses the frame buffer memory to

display the bitmap.

[0163] Subsequent to storing the graphics frame in the shared memory location at block
2012, it is desirable to inform the second OS that the updated graphics information is
available. At block 2020, a file descriptor is passed, indicating the shared memory
location to a console application compiled for and in active execution within the second
OS. In some implementations, the file descriptor includes an indication of the shared
memory location. In other implementations, the file descriptor includes additional
information, like a flag indicating availability of updated graphics information for the

application being mirrored.

[0164] As described above, the console application may be an X-Windows or similar
type of application that is displayed within a window of a display in the second
computing environment. At block 2024, the console application accesses the updated
graphics information (e.g., the bitmap) at the shared memory location according to the file
descriptor and displays the graphics frame from the shared memory location to a second
application display of the first application on a second display of a second computing
environment. In some embodiments, the updated graphics information of the application
is displayed substantially concurrently on the displays of both the first and second

computing environments.

[0165] FIG. 21 shows a flow diagram 2100 of another illustrative method for cross-
environment rendering of a graphics context to provide a mirrored user interaction space,
according to various embodiments. As in FIG. 20, the method 2100 begins at block 2104
by calculating, using a first operating system, updates to a set of surfaces of a first
application compiled for and in active execution within the first operating system. At

block 2108, the updated set of surfaces is stored in a shared memory location accessible

47

10

15

20

25

WO 2012/044687 PCT/US2011/053691

by both the first operating system and a second operating system (e.g., running

concurrently on a shared kernel).

[0166] At block 2112, the updated set of surfaces is rendered with the first operating
system to generate a first graphics frame. The first graphics frame can then be displayed,
at block 2116, to a first application display of the first application on a first display of a
first computing environment using the first operating system. For example, the mobile OS
130 renders the updated application graphics and displays the updated graphics to the
display(s) 116 of the mobile device 110.

[0167] At any time subsequent to storing the updated set of surfaces in shared memory in
block 2108, it is desirable to notify the second OS that the updated graphics information
is available. At block 2120, a file descriptor is passed indicating the shared memory
location to a console application compiled for and in active execution within the second
operating system. Notably, the information stored in the shared memory is un-rendered
surface information (e.g., geometric primitives) rather than rendered bits as in the method

2000 of FIG. 20.

[0168] Accordingly, at block 2124, the updated set of surfaces is rendered by the second
operating system (e.g., via the console application according to the file descriptor) from
the shared memory location to generate a second graphics frame that is substantially
identical to the first graphics frame. At block 2128, the second graphics frame is
displayed to a second application display of the first application on a second display of a
second computing environment via the console application of the second operating
system, such that the second application display is substantially identical to the first

application display.

[0169] It is worth noting that additional overhead may be involved in replicating the
rendering on both the first and second operating systems. However, this additional
overhead may be worthwhile in a number of circumstances. For example, where the
displays of the different computing environments have appreciably different
characteristics, it may be desirable to render updated graphics information in separate

rendering contexts that are each suited for a respective one of the displays.

48

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0170] The methods of FIGS. 20 and 21 describe cross-environment mirroring of a
graphics context with active display of an application running in the first OS within the
mirrored graphics context. However, the methods may be used where no application is
actively displayed within the graphics context. For example, the graphics context may be
displaying a home screen or other feature (e.g., search screen, etc.) of the first OS. In
these instances, the surface information for the graphics context is updated by a
component of the first OS, and the other steps of the methods of FIGS. 20 and 21 may be

performed to provide the mirrored graphics context in the second application display.

[0171] Notably, cross-environment mirroring of a graphics context may be employed
concurrently with cross-environment rendering of an application. For example, a method
according to FIG. 20 or 21 may be used to mirror the active graphics context of the user
interaction space of the mobile device to a second user environment at the same time that
an application running on the first OS is displayed within the second user environment
using the techniques for cross-environment rendering of an application described above.
Referring to FIG. 8 for the sake of illustration, the user interaction space of the mobile OS
may be displayed within a first console window 882 while a mobile OS application is
displayed within a second console window 884 within the user interaction space of the

desktop OS on display 844.

[0172]Providing user interaction support for a mirrored graphics context may be
performed in substantially the same way as providing user interface support for a cross-
environment application illustrated in FIGS. 13, 14, 18, and/or 19. Specifically, input
events may be provided from a console application of the second OS to a virtual input
device. The first OS may accept input events from the virtual input device through an

extended or a non-extended input queue.

[0173] Cross-Environment Redirection Embodiments

[0174] The techniques described above provide cross-environment user interaction
support for applications and graphics contexts of a first operating system through a user
interaction space of a second operating system. To facilitate a transparent cross-
environment use model, embodiments are directed to providing access to applications
and/or mirrored contexts of a first operating system from the user interaction space of the
second operating system.

49

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0175] Referring back to FIG. 8, a user may interact with a first OS (i.e., mobile OS,
Android) through a first user interaction space that includes the interaction components
(i.e., touch screen display(s) 116, other I/O device(s) 118) on the mobile device. The user
may also interact with a second OS (i.e., desktop OS, Hydroid) through a second user
interaction space including a display 844 of secondary terminal environment 840. As
described above, the set of applications available for (i.e., compiled for and loaded within
the execution environment of) desktop OS 160 may be different than that available for
mobile OS 130. Embodiments are directed to making applications of mobile OS 130
accessible within the user interaction space of desktop OS 160 by providing menu icons
or menu list items within menus of the user interaction space of desktop OS 160 for

applications available on mobile OS 130.

[0176] FIG. 22 illustrates aspects of cross-environment redirection, according to various
embodiments. Within computing environment 2200 illustrated in FIG. 22, a user interacts
with desktop OS 160 through desktop OS user interaction space 2202. Within desktop OS
user interaction space 2202, menu bar 2220 includes icons or lists of available
applications. To launch an application, the user selects the application name or icon from
the menu bar or from drop-down or pop-up-lists of menu bar 2220. Traditionally, menu
bar 2220 includes only menu items or icons for applications available on desktop OS 160.
For example, menu items 2222, 2224, 2226, and/or 2228 may be applications available on
(i.e., compiled for and loaded within the execution environment of) desktop OS 160.
Embodiments of the invention are directed to providing cross-environment access to
applications and/or the graphics context of mobile OS 130 from desktop OS user
interaction space 2202. For example, menu items 2232, 2234, 2236, 2237, and/or 2238
may indicate applications available on mobile OS 130 and/or the graphics context of

mobile OS 130.

[0177] Desktop OS user interaction space 2202 is displayed on a display within a user
interaction space (e.g., secondary terminal environment 840) associated with desktop OS
160. Menu bar 2220 of desktop OS 160 includes menu items 2222, 2224, 2226, and/or
2228 associated with applications compiled for and loaded on desktop OS 160 (e.g.,
compiled for Hydroid/Linux and loaded within the execution environment of Hydroid
0OS). Menu bar 2220 also includes menu items 2234, 2236, 2237, and/or 2238 associated
with applications compiled for and loaded on mobile OS 130 (e.g., compiled for Android

50

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

and loaded within the Android execution environment). When the user selects one of
menu items 2234, 2236, and/or 2238, the associated application is launched on mobile OS
130 and displayed within a console window of desktop OS 160, for example, within
window 2216 of desktop OS user interaction space 2202. Menu item 2232 may be
associated with the mobile OS graphics context such that if menu item 2232 is selected,
the graphics context of the mobile OS is displayed within a console window of desktop

OS 160.

[0178] FIG. 23 illustrates process flow 2300 that may be employed to build menu bar
2220 of desktop OS 160. At step 2302 of process flow 2300, desktop OS 160 queries
mobile OS 130 for a list of available applications. In one embodiment, a system service or
launcher application of desktop OS 160 queries a service of mobile OS 130 for all
launchable mobile OS application shortcuts. Mobile OS 130 responds with a list of
applications that are available (i.e., launchable shortcuts for available mobile OS
applications). The list of available applications may include all applications available on
mobile OS 130 (all applications loaded and executable on mobile OS 130) or a subset of
available mobile OS applications. For example, the list may include all applications that
appear on the application menu screen(s) of the mobile OS GUI At step 2304, desktop
OS 160 receives the list of applications from mobile OS 130. The list of applications
returned by mobile OS 130 includes application package names for each listed

application, and may also include application names and icons for each listed application.

[0179] Desktop OS 160 creates the menu items in menu bar 2220 for each application of
the list of applications by iterating over blocks 2306, 2308, and 2310. For each
application, desktop OS 160 instantiates an icon for the application in menu bar 2220 at
block 2306, associates the icon with a console application of desktop OS 160 at block
2308, and associates a parameter that indicates the package name of the application with
the icon at block 2310. The console application runs on desktop OS 160 and displays
graphics information for the application within desktop OS 160, using embodiments of
cross-environment rendering described above. In this way, when a user selects the menu
item, the console application is launched on desktop OS 160, and the package name of the

application is passed to the console application.

51

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0180] Desktop OS 160 may display the menu items associated with applications of
mobile OS 130 in a variety of ways. The menu items may be displayed in menu bar 2220,
or a drop-down menu that appears when a menu item that indicates that mobile OS
applications are available is selected. The menu items may be displayed using icons or
only application names in menu bar 2220 or the drop-down menu. In one embodiment,
desktop OS 160 displays a separate menu bar for mobile OS applications. In another
embodiment, menu items associated with mobile OS applications appear within the
desktop OS menu bar 2220 alongside or intermingled with menu items for desktop OS
applications. Optionally, the mobile OS menu items may be in an area 2230 of menu bar
2220 set off by delimiter 2240 or otherwise identifiable as including mobile OS menu
items. Menu bar 2220 may include a menu item for the active display of the mobile
device itself, i.e., a menu item that the user can select to display the user interaction space
of the mobile OS within a user environment of the desktop OS according to the methods
of FIGS. 20 and/or 21. In one embodiment, the home screen application of the mobile OS

is returned in the list of available applications and provided an associated menu item.

[0181] When the user selects a menu item associated with a mobile OS application,
desktop OS 160 launches the console application associated with the menu item and
passes the package name of the application to the console application. The console
application displays a window within the desktop OS user interaction space 2202 (i.e., the
console application displays within the graphics system of the desktop OS). The console
application sends a request to mobile OS 130 to launch the application (i.e., requests
mobile OS 130 to launch the application package name provided to the console
application as an execution parameter) and display the graphics frame for the application
through the console application. The application may or may not be currently running on
mobile OS 130. If the application is currently running on mobile OS 130, the display of
the application may be moved from mobile OS 130 to the desktop OS user interaction
space 2202 or displayed both on a display of the mobile device and user interaction space
2202 at the same time. Display of application graphics and user interaction support may
be accomplished for the application using any of the cross-environment rendering and

cross-environment user interface support techniques described above.

[0182] FIG. 24 illustrates process flow 2400 followed by mobile OS 130 to launch an

application in response to the user selecting a menu item associated with a mobile OS

52

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

application on menu bar 2220 of desktop OS GUI 880. Process flow 2400 begins at block
2402 when mobile OS 130 receives the request from desktop OS 160 to launch an
application compiled for the mobile OS and loaded within the execution environment of
the mobile OS for display on the desktop OS. At block 2404, the mobile OS allocates an
unused virtual display ID. For example, the graphics system of the mobile OS may keep a
list of virtual display ID’s and allocate an unused virtual display ID to the process of the
first application. At block 2406, the mobile OS launches the first application within the
mobile OS (i.e., running on the mobile OS). At block 2408, mobile OS 130 associates
refresh notifications for the first application with the virtual display. For example, the
graphics server of the mobile OS may keep a list of applications and their associated
virtual displays. At blocks 2410 and 2412, the mobile OS maintains graphics information
for the first application by monitoring application graphics for the first application and
notifying a console application of the desktop OS when application graphics information
for the first application is updated. Blocks 2410 and 2412 may correspond to maintaining
application graphics for cross-environment applications according to the methods of
FIGS. 10, 12, 16 and/or 17.

[0183] The foregoing description has been presented for purposes of illustration and
description. Furthermore, the description is not intended to limit embodiments of the
invention to the form disclosed herein. While a number of exemplary aspects and
embodiments have been discussed above, those of skill in the art will recognize certain

variations, modifications, permutations, additions, and sub-combinations thercof.

[0184] The various operations of methods described above may be performed by any
suitable means capable of performing the corresponding functions. The means may
include various hardware and/or software component(s) and/or module(s), including, but

not limited to a circuit, an application specific integrated circuit (ASIC), or processor.

[0185] The various illustrative logical blocks, modules, and circuits described may be
implemented or performed with a general purpose processor, a digital signal processor
(DSP), an ASIC, a field programmable gate array signal (FPGA), or other programmable
logic device (PLD), discrete gate, or transistor logic, discrete hardware components, or
any combination thereof designed to perform the functions described herein. A general

purpose processor may be a microprocessor, but in the alternative, the processor may be

53

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

any commercially available processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or more

microprocessors in conjunction with a DSP core, or any other such configuration.

[0186] The steps of a method or algorithm described in connection with the present
disclosure, may be embodied directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module may reside in any form of
tangible storage medium. Some examples of storage media that may be used include
random access memory (RAM), read only memory (ROM), flash memory, EPROM
memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM and so
forth. A storage medium may be coupled to a processor such that the processor can read
information from, and write information to, the storage medium. In the alternative, the
storage medium may be integral to the processor. A software module may be a single
instruction, or many instructions, and may be distributed over several different code

segments, among different programs, and across multiple storage media.

[0187] The methods disclosed herein comprise one or more actions for achieving the
described method. The method and/or actions may be interchanged with one another
without departing from the scope of the claims. In other words, unless a specific order of
actions is specified, the order and/or use of specific actions may be modified without

departing from the scope of the claims.

[0188] The functions described may be implemented in hardware, software, firmware, or
any combination thereof. If implemented in software, the functions may be stored as one
or more instructions on a tangible computer-readable medium. A storage medium may be
any available tangible medium that can be accessed by a computer. By way of example,
and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM,
CD-ROM, or other optical disk storage, magnetic disk storage, or other magnetic storage
devices, or any other tangible medium that can be used to carry or store desired program
code in the form of instructions or data structures and that can be accessed by a computer.
Disk and disc, as used herein, include compact disc (CD), laser disc, optical disc, digital
versatile disc (DVD), floppy disk, and Blu-ray® disc where disks usually reproduce data

magnetically, while discs reproduce data optically with lasers.

54

10

15

20

25

30

WO 2012/044687 PCT/US2011/053691

[0189] Thus, a computer program product may perform operations presented herein. For
example, such a computer program product may be a computer readable tangible medium
having instructions tangibly stored (and/or encoded) thereon, the instructions being
executable by one or more processors to perform the operations described herein. The

computer program product may include packaging material.

[0190] Software or instructions may also be transmitted over a transmission medium. For
example, software may be transmitted from a website, server, or other remote source
using a transmission medium such as a coaxial cable, fiber optic cable, twisted pair,
digital subscriber line (DSL), or wireless technology such as infrared, radio, or

microwave.

[0191] Further, modules and/or other appropriate means for performing the methods and
techniques described herein can be downloaded and/or otherwise obtained by a user
terminal and/or base station as applicable. For example, such a device can be coupled to a
server to facilitate the transfer of means for performing the methods described herein.
Alternatively, various methods described herein can be provided via storage means (e.g.,
RAM, ROM, a physical storage medium such as a CD or floppy disk, etc.), such that a
user terminal and/or base station can obtain the various methods upon coupling or
providing the storage means to the device. Moreover, any other suitable technique for

providing the methods and techniques described herein to a device can be utilized.

[0192] Other examples and implementations are within the scope and spirit of the
disclosure and appended claims. For example, due to the nature of software, functions
described above can be implemented using software executed by a processor, hardware,
firmware, hardwiring, or combinations of any of these. Features implementing functions
may also be physically located at various positions, including being distributed such that
portions of functions are implemented at different physical locations. Also, as used
herein, including in the claims, “or” as used in a list of items prefaced by “at least one of”
indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C”
means A or B or C or AB or AC or BC or ABC (i.e., A and B and C). Further, the term
“exemplary” does not mean that the described example is preferred or better than other

examples.

55

10

WO 2012/044687 PCT/US2011/053691

[0193] Various changes, substitutions, and alterations to the techniques described herein
can be made without departing from the technology of the teachings as defined by the
appended claims. Moreover, the scope of the disclosure and claims is not limited to the
particular aspects of the process, machine, manufacture, composition of matter, means,
methods, and actions described above. Processes, machines, manufacture, compositions
of matter, means, methods, or actions, presently existing or later to be developed, that
perform substantially the same function or achieve substantially the same result as the
corresponding aspects described herein may be utilized. Accordingly, the appended
claims include within their scope such processes, machines, manufacture, compositions of

matter, means, methods, or actions.

56

WO 2012/044687 PCT/US2011/053691

CLAIMS
What Is Claimed Is:

1. A method comprising:

calculating, using a first operating system, updates to a set of surfaces of a first
application compiled for and in active execution within the first operating system;

storing the updated set of surfaces in a shared memory location accessible by both the
first operating system and a second operating system running concurrently on a shared kernel;

rendering the updated set of surfaces to generate a first graphics frame using the first
operating system;

displaying the first graphics frame to a first application display of the first application on
a first display of a first computing environment using the first operating system;

passing a file descriptor indicating the shared memory location to a console application
compiled for and in active execution within the second operating system;

rendering the updated set of surfaces from the shared memory location to generate a
second graphics frame that is substantially identical to the first graphics frame via the console
application of the second operating system according to the file descriptor; and

displaying the second graphics frame to a second application display of the first
application on a second display of a second computing environment via the console application
of the second operating system, such that the second application display is substantially identical

to the first application display.

2. The method of claim 1, wherein a graphics server of the second operating system

is incompatible with a drawing object instantiated by the first application.

3. The method of claim 1, wherein a graphics server of the first operating system is

incompatible with a graphics server of the second operating system.

4. The method of claim 1, wherein the first operating system comprises a mobile

operating system and the second operating system comprises a desktop operating system.

57

WO 2012/044687 PCT/US2011/053691

5. The method of claim 1, wherein the first operating system comprises an Android
mobile operating system and a graphics server of the second operating system comprises an X-

windows graphics server.

6. The method of claim 1, further comprising mapping, by the console application,
the file descriptor to the process space of the console application to generate a reference to the

shared memory location.

7. The method of claim 6, further comprising accessing, by the console application,
the graphics frame from the shared memory location via the reference to the shared memory

location.

8. A mobile computing device, comprising;:

a first application compiled for and in active execution within a first operating system;

a set of surfaces updated by the first application stored in a shared memory location
accessible by both the first operating system and a second operating system running concurrently
with the first operating system on a shared kernel;

a first graphics frame for the first application rendered by the first operating system; and

a second graphics frame for the first application rendered by a console application of the
second operating system by accessing the updated surfaces from the shared memory location

through a file descriptor passed by the first operating system.

9. The mobile computing device of claim &, further comprising a first application
display of the first application from the first graphics frame displayed on a first display of a first

computing environment associated using the first operating system.

10. The mobile computing device of claim 8, wherein the console application displays
a second application display of the first application from the second graphics frame on a second

display of a second computing environment using the second operating system.

11. The mobile computing device of claim 10, wherein the second application display

is substantially identical to the first application display.

58

WO 2012/044687 PCT/US2011/053691

12. The mobile computing device of claim 8, wherein the second operating system

further comprises a graphics server that is incompatible with the first application.

13. The mobile computing device of claim 8, wherein the first operating system
comprises a mobile operating system and the second operating system comprises a desktop

operating system.

14. The mobile computing device of claim 8, wherein the file descriptor is passed

through an inter-process communication channel.

15. The mobile computing device of claim 8, wherein the console application receives
a reference to the shared memory location by mapping the file descriptor to the process space of

the console application.

16. The mobile computing device of claim 8, wherein a graphics server of the second
operating system is an X-windows type graphics server and wherein the first application uses a
graphics library of the first operating system that is incompatible with the X-windows type

graphics server of the second operating system.

17. A computing device including a computer-readable medium storing instructions
for a physical processor, the instructions, when executed, causing the processor to perform steps
comprising:

calculating, using a first operating system, updates to a set of surfaces of a first
application compiled for and in active execution within the first operating system;

storing the updated set of surfaces in a shared memory location accessible by both the
first operating system and a second operating system running concurrently on a shared kernel;

rendering the updated set of surfaces to generate a first graphics frame using the first
operating system;

displaying the first graphics frame to a first application display of the first application on
a first display of a first computing environment using the first operating system;

passing a file descriptor indicating the shared memory location to a console application

compiled for and in active execution within the second operating system;

59

WO 2012/044687 PCT/US2011/053691

rendering the updated set of surfaces from the shared memory location to generate a
second graphics frame that is substantially identical to the first graphics frame via the console
application of the second operating system according to the file descriptor; and

displaying the second graphics frame to a second application display of the first
application on a second display of a second computing environment via the console application
of the second operating system, such that the second application display is substantially identical

to the first application display.

60

WO 2012/044687 PCT/US2011/053691

1124
100
\ 14
R 14 __
110 | MOBILE DEVICE 120 1y | /7
L/
PORT @ PORT > /0 DEVICE
142 | 146
@ : 7
MOBILE PROCESSOR |- 114 l
|
130~ MoBILE | |DEskTOP|] | . | VO DEVICE
0S 0S i i
! 148
| o
|
[1o L] 116 ! /O DEVICE
18—t DISPLAY(S) | | |
| DEVICE(S) i""m |
e e ——— |
e o

WO 2012/044687 PCT/US2011/053691

2/24
1196 238 236
SCREEN STORAGE || oy 12
DISPLAY /
PROCESSOR . 114
TOUCH
SCREEN
DISPLAY /\J:> 204 20
CONTROLLER - od 20 A/
// /‘/
212 EXT. DISPLAY
214 INTERFACE ®>
POWER
MANAGEMENTK #)
IC PORT
216 218 224 222
CELLULAR OTHER COMM.
BATTERY MODEM DEVICES DEVICES /\J:>

FIG. 2

WO 2012/044687

3/24

300

Sa

1304

350
352

\

7

340y

\

P

3427

330 4~
3321

MOBILE OS

7

APPLICATION LAYER

H APt) APz N

J

\

354
3827

344
372

PCT/US2011/053691

[FRAMEWORK LAYER)
{MANAGER(S)] [SERVICE(S)].
(| IBRARIES LAYER)
_,[USER LIBRARIES J

322@

DESKTOP OS

\

(APPLICATION LAYER |
,[APP #3 J [APP #4 }x
[FRAMEWORK LAYER)
-
’[MANAGER(S)] [SERVICE(S)]_
i
(| IBRARIES LAYER W
[USER LIBRARIES]—z.

160

380
384

370
L-374

360
- 362

322—\@

320—1,[

KERNEL

@,312

112—\{

HARDWARE

FIG. 3

WO 2012/044687 PCT/US2011/053691

4/24

430

RN

ANDROID OS

APPLICATION LAYER
450 ,\/451 ”452 ”453 ,\j54 455

(o) (o) (7o) [(]

\. S

~

 FRAMEWORK LAYER
444
440"‘ 4 N 4 ,%442f ,%443f
a1-H— ACTMITY RESOURCE WINDOW DOCK
MANAGER MANAGER MANAGER MANAGER

6 7 48

445+ HARDWARE DESKTOP MULTI- REMOTE

& SYSTEM MONITOR DISPLAY COMM.
SERVICES SERVICE MANAGER SERVICE

\. S \. \. S
\. S

~

[LIBRARIES LAYER [ANDROID RUNTIME |
4327} A~ 3%

e N\

34| SURFACE MEDIA | [IPC LIBRARY |
MANAGER | | LIBRARIES (BINDER) | [

A

e 431

4% ~ 439

N - . MACHINE
4374 SQLITE SGL/OPENGL BIONIC

DALVIK VIRTUAL],\, 433

\. J \ J \ J

FIG. 4

WO 2012/044687 PCT/US2011/053691

5/24
52\
(ANDROID KERNEL)
CAMERA | [BLUETOOTH| | SHARED DRI{/PECR(S)
TOUCH- DRIVER(S) | | DRIVER(S) MEMORY
(BINDER)
SCREEN | % 5%6 597 528 529
DISPLAY | ——aL= AL YL L2
DRIVER USB WIF| /O DEVICE POWER
DRIVER(S) | | DRIVER(S) | | DRIVER(S) MGMT.

FIG. 5

WO 2012/044687

PCT/US2011/053691

6/24
660
(HYDROID OS)
(APPLICATION LAYER)
—— 681 662 663 o84 885
WORD SPREAD-
PROCESSOR | | EMAIL sHEeT | |BROWSER
[FRAMEWORK LAYER)
670y 6T o2 673 674
REMOTE DESKTOP WINDOW X SERVER
COMM. ENV. MANAGER
SERVICE
[LIBRARIES LAYER)
6624~ 661 662 663 /664
UTILS GRAPHICS | (IPC LIBRARY GLIBC
LIBRARIES LIBRARIES (BINDER)

FIG. 6

WO 2012/044687

PCT/US2011/053691

7/24
300a\
130~ MOBILE 0S 1 DESKTOP 0S T 160
350 APPLICATION LAYER (APPLICATION LAYER 380
752— [APP#2 ! , ~
_ AR e CONSOLE APPLICATION ||| o,
734 ——__[GRAPHICS SERVER] L)
(WINDOW SYSTEM)
736 ——__[INPUT QUEUE] L 774
322«@ 322—\@
(KERNEL)
SHARED MEMORY Ny
3207 [SURFACE 1 J [SURFACE 2 J SURFACE N
4 Y Y y,
A NG
726 727 s 128
76 = MoBILE 0S DESKTOP || 718
FB IPC DRIVER OSFB

FIG. 7

WO 2012/044687 PCT/US2011/053691

8/24

FIG. 8

WO 2012/044687

PCT/US2011/053691

0/24
900
910 / 930
~ ~
APP 1 APP 2
912 /332
SURFACE 1 J L |91 |sUrFacE? J L | o
FRONT IMAGE | | BACK IMAGE FRONT IMAGE | | BACK IMAGE
R 1Y |) |
Z
936
RENDER IPC RENDER
v v
ANDROID OS FB CONSOLE WINDOW
FINAL IMAGE FINAL IMAGE 938
920~ " - 040
918" @]

FIG. 9

WO 2012/044687 PCT/US2011/053691

10/24

1000

/

1004
Calculate updates to surfaces of the first f
—»| application using the first operating
system

1 1008

1012

Render the updated surfaces of the first
application using the first operating
system to generate a first graphics

Display the first graphics frame
from the first memory location to
a display of a first computing
environment associated with the

f in a fi 1 i . .
rame 1n a first memory location first operating system

Y 1016
Calculate updates to surfaces of the
second application using the first
operating system

v 1020

Store the updated surfaces of the
second application in a second memory
location, the second memory location
being a shared memory location
accessible by both the first operating
system and a second operating system
running concurrently on a shared
kernel

3 1024

1028

Display the second graphics
frame from the third memory
location to a display of a second

Render the updated surfaces of the
second application using a console

application of the second operating |—;
system to generate a second graphics
frame in a third memory location

computing environment
associated with the second
operating system

FIG. 10

WO 2012/044687

PCT/US2011/053691

11/24
1100
13;)02 5‘)25 4340 / 4334 13304
CONSOLE PC ANDROID SURFACE SURFACE
APPLICATION FRAMEWORK FLINGER CLASS
R oo T F--
| CREATE/REGISTER SURFAGE | | o
' |
| STARTMOVE b | 1108] |
| 0| PRI s sercapsopvy) |
C 1106 1$06] .
| | | STARTS OR RELAYBUT |
| 1110 |
' | | | !
|
| | | GETWIDTH/GEHEIGHT |
| DISPLAY D [fe-ISPLAYID 1l || | i
i 1114 CREATE SURFACE- |
i 1114 »" | NEW SURFACE [|
| CREATE RENDERER Y 4 7o
| 118 i
i | | !
| | | |
| | | |
|
| REGISTER! 126 | |
i | [0BJ LOCK ¢ | i
|
: | | | 122 1124 <—| | :
] | | ATTACHIE, I |
' | | | !
|
S Lo e Lo vt T
1 r T e
| RENDERING | | (1 Lock &7 |
|
L | | 1
: I | | DRAW / CLEAR 7 1
. | | r |
, | B | DRAW/CLEAR 1132 |
| <DRAW,LCLEARD‘ W oo
|
| [] 1132 | | |
! | I I I |

WO 2012/044687 PCT/US2011/053691

12/24

1204 1200
Establish a tirst rend.ering context of the f /
tirst operating system
Y 1208

Calculate updates to surfaces of the first {
application using the first operating

system
v g
Render the updated surfaces of the first Display the first graphics frame
application in the first rendering from the first memory location to
context of the first operating system to —i a display of a first computing
generate a first graphics frame in a first environment associated with the
memory location first operating system
v
Disestablish the first rendering context
Y 1220
Establish a second rendering context of
the first operating system
1224

v

Calculate updates to surfaces of the
second application using the first
operating system \

T 1228
Render the updated surfaces of the 1232 f1236
second application in the second
rendering context of the first operating Display the second graphics
system to generate a second graphics frame from the second memory

frame in a second memory location, the S location to a display of a second
second memory location being a shared computing environment
memory location accessible by both the associated with the second

first operating system and a second operating system

operating system running concurrently

on a shared kernel

v 1240

Disestablish second rendering context

FIG. 12

WO 2012/044687 PCT/US2011/053691
13/24
*300b
130~ MOBILE 0S 1 DESKTOP 0S T 160
350 APPLICATION LAYER [APPLICATIONLAYER h_3g0
752—' (DD # | e N
__APP#®R CONSOLE APPLICATION
o T Y 782
754
734-—;_[SURFACE MANAGER] \)
[WINDOWSYSTEM |
736-—__[|NPUT QUEUE] —— 774
300t KERNEL]
(COMM. DRIVER Y925
/0 DEVICE(S) L 1360
1362 1364 1366 1368 1370
~ ~ ~ A~
|
(Fers) (8] (ke) (mouseo) | vo i
\ i i i)
Y
16—

SEQ|T

WO 2012/044687 PCT/US2011/053691

14/24

1400
Receive an input command from an input /
device connected to a mobile computing 1402
device

Input Event

.) Accept input command in
associated with ptinp

~—~ 1406

Resktop OS2 mobile O
Accept the input command by the
window system in desktop OS — 1408

1410

Pass input command as
input event to desktop

nput command

directed to console o~ 1412

window? GUI or application
Pass input command as an input event 1414
to console application

|

Generate virtual input device for input
events from console application L~ 1416

|

Map input command to graphics
context of mobile OS and pass to

virtual input device = 1418
Associate the virtual input device with
~—~ 1420

a virtual display of the mobile OS

y

Pass input event from virtual input
device to application associated with | _~_ 1499

the virtual display
FIG. 14

WO 2012/044687

PCT/US2011/053691

1516 Y

15/24
1500
/‘1/510 / /1330
APP 1 APP 2
/.1/512 /1332
SURFACE 1 < L |1514] SURFACE 2 S

FRONT IMAGE | | BACK IMAGE

FRONT IMAGE | | BACK IMAGE

/I
[4
1536
RENDER RENDER
v v
MOBILE OS GRAPHICS CONTEXT
FINAL IMAGE :
| __
] s
Z 7
r’ 1522 1524 IPC READ
1520
v
CONSOLE WINDOW
FINAL IMAGE
1540 ﬁ ~ 1538

FIG. 15

WO 2012/044687 PCT/US2011/053691

16/24

1604 1600
Establish an extended rendering context f /
of the first operating system having a
tirst context space of the extended
rendering context associated with the
first application and a second context
space of the extended rendering context
associated with the second application
1608
Calculate updates to surfaces of the first
application and the second application
using the first operating system
1612
Render the updated surfaces using the f
first operating system to generate an
extended graphics frame in a shared
memory location accessible by both the {1 616
tirst operating system and a second
operating system running concurrently Display the first portion of the
on a shared kernel, such that a first extended graphics frame
portion of the extended graphics frame associated with the first context
is associated with the first context space space from the shared memory
and a second portion of the extended location to a display of a first
graphics frame is associated with the computing environment
second context space, and such that the associated with the first operating
updated surfaces of the first application system
are rendered to the first portion of the [
extended graphics frame and the l {1 620
updated surfaces of the second
application are rendered to the second Display the second portion of the
portion of the extended graphics frame extended graphics frame
associated with the second
context space from the shared
memory location to a display of a
second computing environment
FIG] 1 6 associated with the second
operating system

WO 2012/044687

17124

1704

Establish an extended rendering context
of the first operating system having a
tirst context space of the extended
rendering context associated with the
first application and a second context
space of the extended rendering context
associated with the second application

l 1708
2

Calculate updates to surfaces of the first
application and the second application
using the first operating system

l 1712
‘s

PCT/US2011/053691

1700

/

1716

£

Render the updated surfaces of the first
application using the first operating
system to generate a first graphics
frame in a frame buffer of the first
operating system

Display the first graphics frame
associated with the first context
space from the frame buffer to a
display of a first computing
environment associated with the
tirst operating system

l 1720
‘s

1724

£

Render the updated surfaces of the
second application using the first
operating system to generate a second

location accessible by both the first

operating system and a second
operating system running concurrently
on a shared kernel

graphics frame in a shared memory

Display the second graphics
frame associated with the second
context space from the shared
memory location to a display of a
second computing environment
associated with the second
operating system

FIG. 17

WO 2012/044687 PCT/US2011/053691

18/24

DESKTOP Ul 1820 ~ 1810

CONSOLE WINDOW 1 ét] - 1812

@ b~ 1814
]
CONSOLE WINDOW 2
FIG. 18a
MOBILE OS GRAPHICS MOTION SPACE
1842 1844 1846
’ﬁ/ T // | ,n/
852 | 180 1854 | 1856
~ i X i L I~ 1840
| é |
| |
| | —
SR SR A -
| |
| |
| |
| |
| P | R
| B }I »
' ¢
VIRTUAL DISPLAY OFFSET— 1898

FIG. 18b

WO 2012/044687 PCT/US2011/053691

19/24

1900

system, a first application and a second application
in active concurrent execution within the first
operating system, the first application displayed
within a first user environment associated with the
tirst operating system and the second application
displayed within a second user environment | 1902
associated with a second operating system, the first
and second operating systems running concurrently
on a shared kernel, the first operating system
maintaining application graphics for the second
application by rendering a graphics frame for the
second application through a first virtual display of
an extended rendering context

|

Establish an extended input queue of the first

operating system having a first motion space and a | ¢~ 1904

second motion space, the second motion space
associated with the first virtual display

|

Receive the first user input event at a first virtual
input device from a fi le application of the |~ 190

put device from a first console application of the
second operating system

|

Map the first virtual input device to the second 1908
motion space of the extended input queue of the first -3
operating system

|

Pass the first user input event to the second 1910
application from the mapped first virtual input |
device

Receiving a first user input in a first operating /

FIG. 19

WO 2012/044687 PCT/US2011/053691

20/24
2000

/

2004

Calculate, using a first operating system, updates to a set of
surfaces of a first application compiled for and in active
execution within the first operating system

l 2008
'3

Render, using the first operating system, the set of surfaces
according to the updates to generate a graphics frame

l)/2012

Store the graphics frame in a shared memory location
accessible by both the first operating system and a second
operating system running concurrently on a shared kernel

l)/2016

Display the graphics frame to a first application display of
the first application on a first display of a first computing
environment using the first operating system

l)/2020

Pass a file descriptor indicating the shared memory location
to a console application compiled for and in active execution
within the second operating system

l 2024

Display the graphics frame from the shared memory location
to a second application display of the first application on a
second display of a second computing environment via the

console application of the second operating system according

to the file descriptor, such that the second application display
is substantially identical to the first application display

FIG. 20

WO 2012/044687 PCT/US2011/053691

21/24

2100
\‘

Calculate, using a first operating system, updates to a set of
surfaces of a first application compiled for and in active
execution within the first operating system

l 2108

Store the updated set of surfaces in a shared memory location
accessible by both the first operating system and a second
operating system running concurrently on a shared kernel

l)/2112

Render the updated set of surfaces to generate a first
graphics frame using the first operating system

l)/2116

Display the first graphics frame to a first application display
of the first application on a first display of a first computing
environment using the first operating system

l f21 20

Pass a file descriptor indicating the shared memory location
to a console application compiled for and in active execution
within the second operating system

l 2124

Render the updated set of surfaces from the shared memory
location to generate a second graphics frame that is
substantially identical to the first graphics frame via the
console application of the second operating system according
to the file descriptor

l 2128
'3

Display the second graphics frame to a second application
display of the first application on a second display of a
second computing environment via the console application
of the second operating system, such that the second
application display is substantially identical to the first
application display

FIG. 21

2104

WO 2012/044687

2200

PCT/US2011/053691

22/24

2214

0 }
A [_J
I

1>

1>

2272/ " /,/ :
22§0 2%30 9916
U 80 EHHE
2202/) /" / 222: {J 222’; 6223": 11223(; ld
2220 2222 2226 29899936 2238

FIG. 22

WO 2012/044687 PCT/US2011/053691

23/24

2300

Query a first operating system for a list of
applications compiled for the first operating
system and loaded within a first execution
environment of the first operating system by
a second operating system having a second
execution environment, the first and second
operating systems running concurrently on a
shared kernel

v

Receive a list of applications objects, each
application object including an application ~—2304
package

v

Instantiate a menu item corresponding to a
—» received application object of the list of ~—2306
application objects

v

Associate the menu item with a console

applicat.ion of the second OS such that the . 2308

menu item, when selected, executes the
console application

v

Associate a parameter that indicates the 2310
application package in the first OS ~
corresponding to the application object

— 2302

FIG. 23

WO 2012/044687 PCT/US2011/053691

24/24

2400

Receive, by a first operating system, a
request from a second operating system to
launch in the first operating system a first
application compiled for the first operating | 9409
system and loaded within a first execution
environment of the first operating system,

the first and second operating systems

running concurrently on a shared kernel

|

Allocate a virtual display in the first OS 2404

|

Launch the first application within the first

03 - 2406

Associate refresh notifications for the first L 2408
application with the virtual display

N Monitor application graphics of the first | 2410

application by the first OS

|

Notify a console application of the second
— OS when the application graphics - 2412
information is updated

FIG. 24

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings

