

HYDROSTATIC WASHER TRANSMISSION

HYDROSTATIC WASHER TRANSMISSION

Filed Sept. 29, 1967

Sheet 2 of 2

United States Patent Office

3,443,405 Patented May 13, 1969

1

3,443,405 HYDROSTATIC WASHER TRANSMISSION HYDRUSTATIC WASTIER TRAINSMISSION
Herbert A. McAninich, Auburn, Ind., and Herbert N.
Underwood, Chicago, Ill., assignors to Borg-Warner
Corporation, Chicago, Ill., a corporation of Illinois
Filed Sept. 29, 1967, Ser. No. 671,675
Int. Cl. D06f, 29/00; F16d 33/00

HE Cl. 69, 23.7 U.S. Cl. 68-23.7 12 Claims

ABSTRACT OF THE DISCLOSURE

A hydraulic transmission for independently oscillating an agitator and rotating a clothes basket of an automatic washing machine including a positive displacement hydraulic pump consisting of a pumping element and a pump housing element which are relatively rotatable, one of these elements being connected to the clothes basket, the other element connected to the output shaft of an electric motor. The pump is used to provide fluid pressure to a hydraulic agitator motor for oscillation of the agitator and includes a device for selectively restricting the flow of fluid from the pump, thereby setting up a reaction torque on the pump element attached to the basket causing the basket to rotate at a speed approximately proportional to the restriction of the pump.

SUMMARY OF THE INVENTION

This invention relates to hydraulic transmissions and more particularly to a hydraulic transmission adapted for use in a fabric treating machine employing an oscillatable agitator and a rotatable clothes container.

Various approaches have been utilized to provide a 35 hydraulic transmission including a minimum number of operating parts and yet further providing the desirable features of an independent speed control for both agitator and spin speed. The most common fluid circuit includes a hydraulic pump and a pair of hydraulic motors, one only of which is operable when the pump is rotated in either direction of rotation. Means to independently control the speed of each of these motors are shown in a copending application Ser. No. 648,630 of common assignee.

One approach has been developed utilizing a hydraulic pump and one oscillatory hydraulic motor connected to an agitator, and is shown in U.S. Patent No. 3,388,569.

The hydraulic pump, operating in one direction of rotation, supplies fluid pressure to actuate the oscillatory 50 motor. Operating in the other direction of rotation, the hydraulic pump is utilized as a hydraulic coupling drivingly connectible to and rotating the clothes container during the extract-spin operation of the clothes washer, thus eliminating in its entirety a separate hydraulic motor for 55 the spin cycle previously believed to be essential to provide an operative transmission for clothes washers. The present invention is an improvement over the previously discussed transmission of U.S. Patent No. 3,388,569 in that means are provided to independently control the operating speed of both agitator and spin basket and further allows the speed of each to be infinitely varied between predetermined limits. The present invention also incorporates an improved spin brake to retard rotation of clothes basket after the completion of the spin cycle or upon 65 lifting of the lid for any reason.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a schematic view of a hydraulic transmission for a clothes washer during the agitate cycle embodying the principles of the invention.

2

FIGURE 2 is a schematic view showing the hydraulic transmission during the spin cycle operation.

FIGURE 3 is a section view taken along lines 3-3 of FIGURE 2.

DESCRIPTION OF THE PREFERRED **EMBODIMENTS**

Referring to FIGURE 1, a washing machine is illustrated comprising a tub 10 adapted to hold a laundering 10 fluid, a clothes container 11 and an oscillatable agitator 12. A hydraulic transmission 14 is illustrated for independently driving the clothes basket 11 for effecting a centrifugal drying operation herein referred to as the spin operation or the oscillatory agitator 12 of the automatic clothes washer. The transmission 14 includes a transmission inner housing generally designated as 15. An electric motor 16 is provided having a water pump 17 driven thereby for recirculating water in the clothes container 11 of the automatic washer and a source of power 18 is illustrated for operating the motor 16. A cycle selector switch 19 is schematically illustrated in simplified form although in a washer installation this function would be performed by a timer switch mechanism of known construction.

The important elements of the hydraulic transmission are as follows: The constant volume reversible fluid pump 21, an oscillatory agitator motor 22, a flow control valve 23 for the agitator motor, a bypass valve 24 for the agitator motor, means 25 to selectively restrict the output of

the pump 21 and a spin brake 26.

A fluid sump 28 is provided which is schematically illustrated for convenience at various places in the illustration of the invention, although in the actual construction, one fluid sump 28 is provided into which all the exhaust connections for various elements of the transmission exhaust fluid pressure. Electric leads 29 and 30 interconnect the source of power 18 with the motor 16, the lead 30 being a ground line. Lead 31 connects the source of power 18 to switch mechanism 19. Switch mechanism 19 is connected to the motor by a lead 32 or a lead 32a.

The hydraulic pump 21 includes a pumping element 35 and a rotatable pump housing element 36 operative within a fixed case 37. The inner housing generally designated as 15 is attached to, or made a part of, the pump housing element 36 which is attached to clothes container 11.

Any of a number of well-known types of hydraulic pumps could adequately perform the functions of the hydraulic pump 21, as for example, the crescent type of the gerotor type, but for reasons that will be later described, it is found that the vane type pump will perform best in the present transmission. For this reason, the hydraulic pump 21 is illustrated as a vane pump.

The pumping element 35 consists of a rotor 38 connectible to a rotatable drive member 39 of the electric motor 16. The rotor 38 contains a series of radial slots 42. A plurality of vanes 43 are provided, each vane adapted to slide within a slot 42.

The rotatable pump housing element 36 consists of an annular disc mounted eccentric to the rotor 38 and is shown drivingly connected to the clothes container 11. A pair of arcuate ports 44 and 45 are formed in the pump housing element 36 for communicating fluid from the sump 28 to pump 21 and, after the fluid is pressurized, from the pump 21. The ports 44 and 45 will either be inlet ports or exhaust ports depending upon the direction of rotation of the electric motor 16 and thereby the direction of rotation of the rotor 38.

A fluid conduit 47 is provided to communicate fluid from the sump 28 to port 45 when the motor 16 is operated in a direction so as to activate the agitate circuit. A check valve 48 allows fluid flow only in a direction from the sump 28 into pump 21. Fluid conduit

49 is provided to communicate fluid from sump 28 to port 44 when the electric motor 16 is operated in a direction to activate the spin circuit. Check valve 50 allows fluid flow only in a direction from the sump 28 into pump 21.

In the agitate circuit shown in FIGURE 1, a first fluid ⁵ conduit 52 connects the fluid pump 21 to an inlet 53 of the agitator motor flow control valve 23.

A fluid conduit 54 receives fluid from an outlet 55 of the agitator flow control valve 23 and communicates the fluid to an inlet 56 of a reversing valve 58 provided to alternately direct fluid pressure to either side of the agitator motor 22 through fluid conduits 59 or 60. Fluid is exhausted from the agitator motor 22 to sump 28 through conduits 61 and 62.

A fluid conduit 64 interconnects the fluid conduit 52 with an end 65 of the bypass valve 24. This end will be hereafter referred to as the "upstream" side of the bypass valve. Fuid conduit 66 communicates fluid from fluid conduit 54 to the other end 67 of the bypass valve 20 24, which end will be hereafter referred to as the "downstream" side of the bypass valve.

Fluid conduit 69 connects fluid conduit 54 to a basket lock 70 providing fluid pressure to urge the device in its lock position as will be hereafter described.

Agitator flow control valve 23 comprises a chamber 71 defined by the transmission housing 15. A valve member 72 is adapted to slide axially within the chamber 71 and has a tapered section 73 including a small end 74 and a large end 75. A cylindrical rod 77 concentric with the valve member 72 extends from the small end 74 of the tapered section 73 outside the housing 15. Immediately adjacent the large end 75 is a pilot section 78 of essentially the same diameter as the large

As shown in FIGURE 3, a pair of grooves 79 and 80 are provided in the pilot section 78 for the purpose of communicating fluid to act against an end 81 of the pilot section 78. The tapered section 73 coacts with an edge 83 of the housing 15 to define a variable orifice 84 40 through which fluid is communicated to the outlet 55 of the agitator flow control valve 23. A spring 85 acts against the end of the pilot section to bias the valve member 72 to the left.

to vary the position of the valve member 72 and thereby vary the area of the orifice 84. The speed control mechanism 87 includes a control lever 88 suitably attached to a cam 89 and adapted to rotate the cam according to a setting of the control lever 88. A lever arm 90 50 sump 28. is provided pivoted about an axis 91 having an end 92 biased to contact the cam 89 by a spring 94. The other end 95 of lever arm 90 is adapted to contact the cylindrical rod 77 and thereby selectively vary the position of valve 72 in response to positioning of the control 55 level 88.

The bypass valve 24 includes a valve member 96 acting within a bore 97 defined by the housing 15. An annular chamber 98 in the bore 97 coacts with an edge 99 of the spool valve 96 to define a variable orifice 101 in 60 fluid communication with sump 28. The spool valve 96 has an end face 102 against which fluid pressure in the "upstream" end 65 acts and an end face 103 against which fluid pressure in the "downstream" end 67 acts. A spring 104 is provided in the "downstream" end 67 of bore 97 to urge spool valve 96 toward the "upstream" end 65 of bore 97. A pilot relief 106 is proivded in communication with bore 97 to serve as a safety valve by connecting the bore 97 to sump in case of extreme

The agitator motor 22 is of the rotary actuator or single vane motor type and receives fluid from the reversing valve 58. The agitator motor 22 includes a rotary actuator 107 connected to agitator 12, the rotary actuator 107 comprising a vane 108 attached to an integral 75 hub section 109. Any combination of commonly used vane fluid motors and reversing valves may be used, for example, the type whose operation is described in U.S. Patent No. 3,383,856.

The basket lock 70 is attached to the pump housing element 36 and consists of a piston member 111 adapted to slide within a bore 112 in response to fluid pressure. The piston member 111 includes a land section 113 and a pin section 114. The pin section 114 is adapted to contact an indent 115 in the fixed case 37 to prevent rotation of the pump housing element 36 and thereby prevent rotation of the clothes container 11 as will be hereafter described.

Fluid will be communicated to act on either a topside 117 or a bottom side 118 of the land section 113 depending on the direction of rotation of electric motor 16 so that when the electric motor is rotated in the agitate direction, fluid pressure will act on the bottom side 118 of the land section 113 urging the pin section 114 into restraining contact with indent 115 located in fixed case 37. When the electric motor 16 is rotated in the spin direction of rotation, fluid will act on the top side 117 of land section 113 urging the pin section 114 out of contact with the fixed case 37 and freeing the rotatable pump housing element 36 of the pump for rotation.

In the spin circuit shown in FIGURE 2, a fluid conduit 121 connects the fluid pump 21 to a first fluid inlet 122 of the restricting means 25. A fluid conduit 123 interconnects the fluid conduit 121 and the basket lock 70. A fluid conduit 124 communicates fluid from conduit 123 to a second fluid inlet 125 of the restricting means 25. A fluid conduit 127 communicates fluid pressure from conduit 121 to a spin-up relief 128.

The spin-up relief 128 is essentially a pressure relief valve and consists of an orifice 129 in the housing 15 which admits fluid to a chamber 130 also formed in the housing 15.

A tapered valve member 132 acts within the chamber 130 and is biased to close the orifice 129 by a resilient member, here shown as a spring 133. A fluid outlet 134 serves to communicate the chamber 130 with sump 28.

Restricting means 25 includes a valve member 135 hav-An agitator speed control mechanism 87 is provided 45 ing a uniformly tapered section 136 acting within a bore 138 formed in the housing 15. The tapered section 136 coacts with an annular chamber 139 in communication with the fluid inlet 125 to define a variable orifice 140 through which fluid is communicated from pump 21 to

> A spin speed control mechanism 87a is provided to selectively vary the position of the valve member 135 and thereby vary the area of the orifice 140. The spin speed control mechanism 87a is similar in design and operation to the agitator speed control mechanism 87, like numbers with the addition of suffix a being used to designate like components.

The spin brake 26 includes a piston 142 acting within a chamber 143 in response to fluid pressure supplied from the hydraulic pump 21 through a conduit 144. Biasing means, here shown as a spring 145, are provided to urge piston 142 toward the right side of the chamber 143 as seen in FIGURE 1 when conduit 144 is not pressurized. A break band 147 is shown having one end 148 adapted to be inserted in a slot 149 in the piston 142 and another end 150 adapted to be inserted in a slot 151 in the pump housing element 36. The brake band 147 is shown encircling the pump housing element 36 one and a half times although it is obvious that other arrangepressure build-up in the agitator motor supply conduit 54. 70 ments would be acceptable. The brake band 147 is adapted to contact the fixed case 37 throughout its inner circumference when activated to retard relative rotation between the rotatable pump housing element 36 of the hydraulic pump 21 and the fixed case 37.

The operation of the hydraulic transmission of the

present invention in summary is as follows: The timer or cycle-selector switch of the automatic washer schematically represented by switch 19 will select either the wash or spin cycle for the hydraulic transmission.

When the electric motor 16 is activated in either direction of rotation, the pumping element 35 will also rotate, its speed of rotation corresponding to the speed of rotation of the rotatable drive member 39. After the first revolution of the pumping element 35, the vanes 43 will be disposed within their corresponding slots 42 out of 10 contact with the pump housing element 36 effecting a zero output of the pump 21 since no pumping action is taking place. At a predetermined rotational speed, the vanes will be urged to move radially outward by centrifugal force to contact the pump housing element 36 15 thereby initiating a pumping action. The desired rotational speed at which pumping becomes effective can be achieved by properly designing the geometry of the rotor and vanes. The obvious result of using this particular type of hydraulic pump is that it enables the electric 20 motor to build up sufficient speed before imposing a load on it. This allows use of a more economical splitphase motor rather than a more expensive capacitive start motor or an induction motor.

If the agitate cycle is selected, the pump 21 supplies 25 fluid pressure to conduit 52 which communicates the fluid to the inlet 53 of the agitator motor flow control valve 23. Fluid then enters the chamber 71. The position of cam 89 will determine the size of the orifice 84 between the tapered section 73 of the valve member 72 30 and edge 83.

Fluid leaves the chamber 71 through outlet 55 at a pressure lower than the pressure of the fluid which enters the chamber 71 in accordance with the principle well known in the art whereby a pressure drop will result 35 when fluid flows through a control orifice.

Fluid leaving chamber 71 is communicated to reversing valve 58 and agitate motor 22 through conduit 54 to drive the agitator 12 of the washing machine. Fluid is also communicated to basket lock 70 through conduit 40 69 and acts against the bottom side 118 of piston member 111 urging the piston member into locking engagement with the indent 115 and fixed case 37 thereby preventing rotation of the clothes container 11 in the agitate cycle.

In the absence of bypass valve 24, it would be obvious 45 that the variation in size of orifice 84 would have little effect on the speed of the agitate motor. The speed of the agitate motor 22 is directly proportional to the volume of fluid supplied to reversing valve 58 per unit time. Using a constant displacement pump the effect of reducing the size of orifice 84 would be to increase the average velocity of fluid across the orifice, the volume flow per unit time remaining essentially unchanged.

Fluid pressure is admitted to the upstream end 65 of 55 bore 97 from conduit 64 to act against end face 102 of the valve member 96 to urge the valve member 96 to the left allowing some of the fluid in the upstream end 65 of bore 97 to escape to sump. It is evident from FIGURE 1 that the pressure of fluid supplied to upstream 60 end 65 is substantially the same as the pressure of fluid supplied to orifice 84.

Fluid at the lower pressure is admitted to the downstream end 67 of bore 97 from conduit 66 to act against end face 103 of the valve member 96 which has the same 65 area as face 102. This force acts in cooperation with the force of spring 104 to bias the valve member 96 to the right thereby restricting the flow of fluid from upstream end 65 to sump 28.

It can now be seen that the characteristics of the spring 104 determine the value of the pressure drop across the orifice 84. The pressure drop for any given size orifice is dependent upon the volume of fluid passed through the

orifice increases, the resulting pressure drop across the orifice will also increase. The converse is also true.

If for a range of orifice sizes the desired pressure drop is, for example, 10 p.s.i., a spring will be chosen with characteristics such that it will exert a force equal to that exerted by a pressure of 10 p.s.i. against the area of end face 102 of valve member 96. It is understood, of course, that the variation of spring force due to compression of the spring is negligible due to the small displacements involved and a low spring constant. For the bypass valve to open, the pressure of the fluid entering upstream end 65 of bore 97 must exceed the pressure of the fluid entering downstream end 67 by at least 10 p.s.i. If the pressure differential, hence the pressure drop across the orifice 84, is greater than 10 p.s.i., the bypass valve will open wider allowing a greater volume of fluid to be bypassed to sump. The volume of fluid through, hence the pressure drop across the orifice 84 will therefore be reduced until the pressure differential equals 10 p.s.i. at which point the system will be in equilibrium.

If the pressure differential is less than 10 p.s.i., the spring force plus the pressure force on end face 103 of the valve member 96 will exceed the force on the end face 102 causing the valve member 96 to close until the pressure differential reaches equilibrium at 10 p.s.i. Thus, it has been shown that with the selection of the proper spring the pressure drop across the orifice 84 can be held to the same predetermined value over a range of orifice sizes. Making use of this principle, it has been further shown that by varying the size of the orifice 84, which is accomplished by varying the orientation of the cam 89, the volume of fluid per unit time passing through the orifice 84 and delivered to the agitator motor may be varied, the speed of the agitator motor increasing as the flow increases.

If the spin cycle is selected, as shown in FIGURE 2, the pump 21 supplies fluid pressure to conduit 121 which communicates the fluid to bore 138 to act against valve 135 urging it in contact with lever arm 90a. Fluid is also communicated to the basket lock 70 to conduit 123 to act against top side 117 of land section 113 urging piston member 111 out of contact with indent 115 and thereby fixed case 37 and allowing clothes container 11 to be rotated for the centrifugal drying operation. Fluid conduit 144 is also pressurized, the fluid acting against the piston 142 urging the piston to move to the left against the force of spring 145. As the piston 142 moves to the left, the brake band 147 will be drawn toward the rotatable pump housing element 36 and out of contact with fixed case 37. Fluid is communicated from conduit 123 to chamber 139 of restricting means 125 by conduit 124 and flows from chamber 139 to sump 28 through the

By restricting the flow of fluid from chamber 139 to sump 28, we effectively restrict the output of the hydraulic pump 21 which creates a reaction torque on the rotatable pump housing element 36 inducing a rotation of the pump housing element 36 and, through its previously described connection, the clothes container 11 connected thereto. It can now be seen that by varying the position of valve member 135, we vary the area of orifice 140 and thereby vary the flow of fluid through orifice 140 to sump. The smaller the orifice 140 the less fluid is allowed to pass to sump and the more nearly the rotational speed of the pump housing element 36 approaches the speed of the pumping element 35. The difference in rotational speed between the pump housing element 36 and the pumping element 35 is accounted for mainly by the fluid allowed to leak to sump. If the valve member 135 were to completely close off communication between the outlet of the pump 21 and sump 28 and assuming zero leakage in the spin circuit, the rotational speed of both elements would be substantially the same, the hydraulic fluid becoming orifice per unit time. As the volume flow through the 75 trapped in the circuit. The net flow output of the pump 7

would be zero since there would be no relative rotation between the pumping elements.

If valve member 135 was now moved to allow a slight fluid flow from pump 21 to sump 28, this would allow a slight relative rotation between the elements. Since the rotational speed of pumping element 35 is substantially constant and determined by the speed of electric motor 16 to which it is attached, the result will be a decrease in the rotational speed of the pump housing element 36 and correspondingly a decrease in rotational speed of clothes

As the area of orifice 140 increases, the flow from pump 21 to sump increases allowing more relative rotation between the elements and slower speeds for clothes container 11. When the valve member 135 is positioned such that it offers virtually no resistance to the fluid flow between pump and sump, we reach the point of minimum rotational speed of the clothes container 11. The reaction torque on the pump housing element 36 at this time is solely due to the viscous drag between the pump elements. 20

Thus, it has been shown that the speed of clothes container 11 can be infinitely varied between a predetermined minimum and maximum speed by varying the restriction in the output of the hydraulic pump. A spin speed range of from 450 r.p.m. to 900 r.p.m. has been found to be 25 adequate for most applications.

When the spin cycle is initiated, the torque required to accelerate the clothes container 11 and the wet clothes contained therein from a position initially at rest up to a desired rotational speed is initially quite high. This 30 high starting torque results in a relatively high pressure in the spin fluid circuit. The spin-up relief 128 is set to open at a predetermined pressure bypassing some of the output of hydraulic pump 21 to sump until the clothes container 11 has attained a sufficient velocity and the 35 inertia of the standing basket and clothes has been overcome. The torque now required to rotate the clothes container 11 is considerably less and the pressure in the spin circuit correspondingly decreases allowing the spin-up relief 128 to close and further allowing restricting means 25 $\,^{40}$ to maintain control over the rotational speed of the clothes container 11.

When the spin cycle has been completed and the cycle selector switch has been automatically switched to off, the electric motor will stop spinning substantially instantaneously, thereby stopping rotation of the pumping element 35. Absent some provisions for a spin brake, the clothes container and clothes would tend to continue spinning and the only forces acting to decelerate the container would be the viscous drag between the pump elements and the effects of friction.

When the pumping element 35 ceases rotation, the conduit 144 is no longer pressurized and the spring 145 forces piston 142 to the right causing the brake band 147 to contact the inner face of fixed case 37 around substantially the entire inner circumference. This contact between the rotating brake band 147 and the fixed case 37 serves to rapidly decelerate the rotation of the pump housing element 36 and the clothes basket 11 connected thereto.

What is claimed is:

1. A drive arrangement for a fabric-treating machine including a fabric container the drive arrangement comprising; a motor having a rotatable drive member; a hydraulic pump comprising a pumping element and a pump housing element which are relatively rotatable, one of said elements connected to said drive member and the other of said elements connected to said container; means for selectively restricting the flow of fluid from said pump to induce rotation of said container by said pump element attached thereto whereby the rotational speed of said container is responsive to said restricting means; speed control means associated with said restricting means operative to vary the position of said restricting means, thereby varying the speed of rotation of said container.

8

2. A drive arrangement as in claim 1 including means normally biased closed and adapted to open at a predetermined fluid pressure to bypass some of the flow of fluid from the outlet of said pump to a hydraulic sump until said fabric container has reached a predetermined rotational speed.

3. A drive arrangement as in claim 1 including: a fixed case enclosing said hydraulic pump; brake means associated with said pump element connected to said fabric container and adapted to contact said fixed case to decelerate rotation of said pump element and thereby said container; actuating means attached to said brake means operative to position said brake means out of contact with said fixed case when said container is rotated and also operative to urge said brake means into contact with said fixed case when said motor is deactivated.

4. A drive arrangement for a clothes cleaning machine having a clothes container and an agitator in said container, the drive arrangement comprising: an electric reversible motor having a rotatable drive member; driving means for said agitator operative to actuate said agitator when said motor is operated in a first direction of rotation; driving means for said container including a pump comprising a pumping element and a pump housing element, one of said elements being connected to said container, the other of said elements being connected to said drive member; means for selectively restricting the flow of fluid from said pump when said electric motor is operated in a second direction of rotation to induce rotation of said container by said pump element attached thereto whereby the rotational speed of said container is responsive to said restricting means; speed control means associated with said restricting means operative to vary the position of said restricting means, thereby varying the speed of rotation of said container.

5. A hydraulic drive arrangement for a clothes cleaning machine having a clothes basket and an agitator in said basket, the drive arrangement comprising: a pump including a pumping element and a pump housing element which are relatively rotatable, one of said elements being connected to said basket; a motor having a drive member connectible to the other of said said pump elements; a hydraulic motor connected to said agitator; valve means controlling operation of said hydraulic motor to actuate said agitator; means for selectively restricting the flow of fluid from said pump to compel rotation of said pump element attached to said basket and thereby said basket whereby the rotational speed of said basket is responsive to said restricting means; speed control means associated with said restricting means operative to vary the position of said restricting means thereby varying the speed of rotation of said basket.

6. A hydraulic drive arrangement as in claim 5 including: a fixed case enclosing said pump; brake means associated with said pump element connected to said fabric container and adapted to contact said fixed case to decelerate rotation of said pump element and thereby said container; actuating means attached to said brake means operative to position said brake means out of contact with said fixed case when said container is rotated and also operative to urge said brake means into contact with said fixed case when said electric motor is deactivated.

7. A hydraulic drive arrangement for a clothes cleaning machine having a clothes basket and an agitator in said basket, said drive arrangement comprising: a pump including a pumping element and a pump housing element which are relatively rotatable, one of said elements being connected to said basket; a reversible electric motor having a drive member connectible to the other of said pumping elements; a hydraulic motor connected to said agitator; valve means controlling operation of said hydraulic motor to actuate said agitator when said electric motor is operated in a first direction of rotation; means including restricting means for selectively restricting the flow of fluid from said pump when said electric motor is operated in a sec-

ond direction of rotation to induce rotation of said pump element attached to said basket and thereby said basket whereby the rotational speed of said basket is responsive to said restricting means; speed control means associated with said restricting means operative to vary the position of said restricting means thereby varying the speed of rotation of said basket.

8. A hydraulic drive arrangement as in claim 7 including: a fixed case enclosing said hydraulic pump; brake means associated with said pump element connected to said fabric container and adapted to contact said fixed case to decelerate rotation of said pump element and thereby said container; actuating means attached to said brake means operative to position said brake means out of contact with said fixed case when said container is rotated and also opertaive to urge said brake means into contact with said fixed case when said electric motor is deactivated.

9. A hydraulic drive arrangement as in claim 7 including: a fixed case enclosing said hydraulic pump; brake 20 means associated with said pump element connected to said fabric container and adapted to contact said fixed case to decelerate rotation of said pump element and thereby said container; actuating means attached to said brake means operative to position said brake means out of contact with said fixed case when said container is rotated and also operative to urge said brake means into contact with said fixed case when said electric motor is deactivated.

10. A hydraulic drive arrangement for a clothes cleaning machine having a clothes basket and an oscillatable agita- 30 tor in said basket, the drive arrangement comprising: a pump including a pumping element and a pump housing element which are relatively rotatable, one of said pump elements being connected to said basket; a reversible electric motor having a drive shaft connectible to the other 35 of said pump elements; a rotary actuator type hydraulic motor connected to said agitator; valve means controlling the flow of hydraulic fluid to alternate sides of a vane of said hydraulic motor to oscillate said agitator when said electric motor is operated in a first direction of rotation; 40 means including restricting means for selectively restricting the flow of fluid from said pump when said electric motor is operated in the second direction of rotation to induce rotation of said pump element attached to said basket and thereby said basket whereby the rotational 45 speed of said basket is responsive to said restricting means; speed control means associated with said restricting means operative to vary the position of said restricting means thereby varying the speed of rotation of said container.

11. A hydraulic drive arrangement as in claim 10 including: a fixed case enclosing said hydraulic pump; brake means associated with said pump element connected to said basket and adapted to contact said fixed case to decelerate rotation of said pump element and thereby said container; actuating means attached to said brake means operative to position said brake means out of contact with said fixed case when said basket is rotated and also operative to urge said brake means into contact with said fixed case when said electric motor is deactivated.

12. A hydraulic transmission having first and second output members at least one of which is selectively operable; a reversible fluid pump comprising a pumping element and a pump housing element which are relatively rotatable; first and second fluid circuits connected to said pump whereby fluid pressure is supplied to said first fluid circuit to rotate said first output member when said pump is rotated in one direction and fluid pressure is supplied to said second fluid circuit to oscillate said second output member when said pump is rotated in the opposite direction; means connecting one of said pump elements to said first output member; means for selectively restricting the flow of fluid from said pump to induce rotation of said first output member by said pump element attached thereto whereby the rotational speed of said output member is responsive to said restricting means; speed control means associated with said restricting means operative to vary the position of said restricting means thereby varying the speed of rotation of said first output member.

References Cited

UNITED STATES PATENTS

	2,787,920	4/1957	Blaha 192—58 XR
5	2,894,369	7/1959	Zierick 192—58 XR
	2,969,860	1/1961	Raun 192—58 XR
	3,115,218	12/1963	Waldrop 68—23 XR
	3,242,703	3/1966	Brundage 68—23
0	3,292,755	12/1966	Rodgers 192—58
	3,334,496	8/1967	Roeske 68—23
	3,359,761	12/1967	Underwood et al 68—23
	3,388,569	6/1968	Kurtz 68—23

WILLIAM I. PRICE, Primary Examiner.

U.S. Cl. X.R.

60---53