
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0282172 A1

MacInnis

US 20090282172A1

(43) Pub. Date: Nov. 12, 2009

(54)

(76)

(21)

(22)

(63)

(60)

MEMORY ACCESSENGINE HAVING
MULTI-LEVEL COMMAND STRUCTURE

Alexander G. MacInnis, Los Altos,
CA (US)

Inventor:

Correspondence Address:
MCANDREWS HELD & MALLOY, LTD
500 WEST MADISON STREET, SUITE 3400
CHICAGO, IL 60661

Appl. No.: 121506,778

Filed: Jul. 21, 2009

Related U.S. Application Data

Continuation of application No. 1 1/945,702, filed on
Nov. 27, 2007, now Pat. No. 7,565,462, which is a
continuation of application No. 10/404,074, filed on
Apr. 1, 2003, now Pat. No. 7,302,503.

Provisional application No. 60/369,210, filed on Apr.
1, 2002.

Publication Classification

(51) Int. Cl.
G06F 3/28 (2006.01)
G06F 3/00 (2006.01)

(52) U.S. Cl. ... 710/5: 710/22

(57) ABSTRACT

A direct memory access system utilizing a local memory that
stores a plurality of DMA command lists, each comprising at
least one DMA command. A command queue can hold a
plurality of entries, each entry comprising a pointer field and
a sequence field. The pointer field points to one of the DMA
command lists. The sequence field holds a sequence value. A
DMA engine accesses an entry in the command queue and
then accesses the DMA commands of the DMA command list
pointed to by the pointerfield of the accessed entry. The DMA
engine performs the DMA operations specified by the
accessed DMA commands. The DMA engine makes avail
able the sequence value held in the sequence field of the
accessed entry when all of the DMA commands in the
accessed command list have been performed. In one embodi
ment, the command queue is part of the DMA engine.

Commands
from MPS

Sequence
Numbers

DMA Status F.
Sequence
number of

last completed
Command

List of DMA
Commands

470

Command
lists

List of DMA
Commands

List of DMA
Commands

490

Patent Application Publication Nov. 12, 2009 Sheet 1 of 4 US 2009/0282172 A1

124
Video
Analog/ VDEC Display Video
Digital 126

116

Bit Digital
Stream Transport Vigeo E Graphics

Processor O) Engine Decoder

1O2 Systern Bus 122

Audio DMA DRAM Controller HOSt CPU /F

Decoder Controller N108 1.
104

12

1O6
Audio

11O 114

1.

FG. 1

Patent Application Publication Nov. 12, 2009 Sheet 2 of 4 US 2009/0282172 A1

216 System BuS
COre 214
DeCOder
Processor

COP:
UnitO/Unit 1 HW ACC, Hw ACC

2O6 208 21 O

Register Bus

FIG 2

Patent Application Publication Nov. 12, 2009 Sheet 3 of 4 US 2009/0282172 A1

216
System Bus

Core
DeCOder

Processor

FG 3

Patent Application Publication Nov. 12, 2009 Sheet 4 of 4 US 2009/0282172 A1

Commands
from MPS

400

Sequence Command
Numbers lists

DMA Status =
Sequence
number of

last completed
Command

List of DMA
Commands

List of DMA
Commands

List of DMA
commands

480

470 490

FG. 4

US 2009/02821 72 A1

MEMORYACCESSENGINE HAVING
MULTI-LEVEL COMMAND STRUCTURE

PRIORITY CLAIM TO RELATED APPLICATION

0001. This application is a continuation of U.S. patent
application Ser. No. 1 1/945,702 which is a continuation of
U.S. patent application Ser. No. 10/404,074 (now U.S. Pat.
No. 7,302.503), filed Apr. 1, 2003, which claims priority to
and claims benefit from U.S. Provisional Patent Application
Ser. No. 60/369,210, entitled “MEMORYACCESSENGINE
HAVING MULTI-LEVEL COMMAND STRUCTURE
filed on Apr. 1, 2002, all of which are hereby expressly incor
porated herein by reference.

INCORPORATION BY REFERENCE OF
RELATED APPLICATIONS

0002 The following U.S. patent applications are related to
the present application and are hereby specifically incorpo
rated by reference: patent application Ser. No. 10/114,679,
entitled METHOD OF OPERATING AVIDEO DECOD
ING SYSTEM” (Attorney Ref. No. 13305US01); patent
application Ser. No. 10/114,797, entitled “METHOD OF
COMMUNICATING BETWEEN MODULES IN A
DECODING SYSTEM” (Attorney Ref. No. 13304 US01);
patent application Ser. No. 10/114,798, entitled “VIDEO
DECODING SYSTEM SUPPORTING MULTIPLE STAN
DARDS (Attorney Ref. No. 13301 US01); patent applica
tion Ser. No. 10/114,619, entitled “INVERSE DISCRETE
COSINE TRANSFORM SUPPORTING MULTIPLE
DECODING PROCESSES” (Attorney Ref No.
13303US01); patent application Ser. No. 10/114,886, entitled
MEMORY SYSTEM FOR VIDEO DECODING SYS
TEM” (Attorney Ref. No. 13388US01); and patent applica
tion Ser. No. 10/113,094, entitled “RISC PROCESSORSUP
PORTING ONE OR MORE UNINTERRUPTIBLE
CO-PROCESSORS (Attorney Ref. No. 13306 USO1): all
filed on Apr. 1, 2002; patent application Ser. No. 10/293,633,
entitled “PROGRAMMABLE VARIABLE LENGTH
DECODER (Attorney RefNo. 13391US02); filed on Nov.
12, 2002; and patent application Ser. No. 10/404,387, entitled
VIDEO DECODING SYSTEM HAVING A PROGRAM
MABLE VARIABLE-LENGTH DECODER (Attorney Ref
No. 13300US02); and patent application Ser. No. 10/404,
389, entitled “INVERSE QUANTIZER SUPPORTING
MULTIPLE DECODING PROCESSES” (Attorney Ref. No.
13387US02); both filed on Apr. 1, 2003.

FIELD OF THE INVENTION

0003. The present invention relates generally to direct
memory access (DMA), and, more particularly, to a DMA
engine having a multi-level command structure.

BACKGROUND OF THE INVENTION

0004 Direct memory access, or DMA, is a method for
direct communication from a peripheral device to memory
with no programming involved. The data is moved to memory
via the bus without program intervention. The only effect on
the executing program is some slowing down of execution
time because the DMA activity “steals’ bus cycles that would
otherwise be used to access memory for program execution.
0005 DMA is a prime example of a hardware function in
the chip that benefits from queued commands. There are two
main aspects to this: (1) there are multiple DMA operations

Nov. 12, 2009

that need to be performed in one macroblock (MB) time
interval, and (2) there are performance advantages in giving
the DMA two macroblock times to complete each macrob
lock set of DMA operations, i.e., longer latency deadlines can
help to tolerate DRAM latency. Because the DMA engine
receives multiple commands in a given macroblock time
interval, some form of command list is necessary for accept
able performance. There are up to (approximately) twelve
DMA operations per macroblock for prediction fetches, and
up to (approximately) four DMA operations per macroblock
for write-backs, leading to a need for at least 16 DMA opera
tions per macroblock. With the pipeline structured to allow
two macroblock times of latency for each one macroblock set
of operations, the complete list of commands is not expected
to be empty at any time during normal operation. For
example, commands for a first macroblock are sent to the
DMA engine. Then commands for a second macroblock are
sent to the DMA engine, while DMA operations for the first
macroblock need not be complete yet. The first macroblock
operations should be done prior to the time when the DMA
commands for a third macroblock are sent to the DMA
engine, while the second macroblock operations need not be
done by that time. This means that it is not possible for
firmware (or anything else) to determine that the DMA engine
is “done with a particular macroblock by checking to see if
the entire command queue (assuming there is one) has been
completed.
0006 Further limitations and disadvantages of conven
tional and traditional approaches will become apparent to one
of skill in the art through comparison of such systems with the
present invention as set forth in the remainder of the present
application with reference to the drawings.

SUMMARY OF THE INVENTION

0007. One aspect of the present invention is directed to a
direct memory access system utilizing a local memory that
stores a plurality of DMA command lists, each comprising at
least one DMA command. A command queue can hold a
plurality of entries, each entry comprising a pointer field and
a sequence field. The pointerfield pointing to one of the DMA
command lists. The sequence field holds a sequence value. A
DMA engine accesses an entry in the command queue and
then accesses the DMA commands of the DMA command list
pointed to by the pointerfield of the accessed entry. The DMA
engine performs the DMA operations specified by the
accessed DMA commands. The DMA engine makes avail
able the sequence value held in the sequence field of the
accessed entry when all of the DMA commands in the
accessed command list have been performed. In one embodi
ment, the command queue is part of the DMA engine.
0008 Another embodiment of the present invention is
directed to a method of implementing direct memory access.
According to the method, a plurality of DMA command lists
are stored, each comprising at least one DMA command. A
command queue is maintained. The command queue is
designed to hold a plurality of entries. Each entry includes a
pointer field and a sequence field. The pointer field points to
one of the DMA command lists. The sequence field holding a
sequence value. An entry in the command queue is accessed.
The DMA commands of the DMA command list pointed to
by the pointer field of the accessed entry are then accessed.
The DMA operations specified by the accessed DMA com
mands are performed. The sequence value held in the

US 2009/02821 72 A1

sequence field of the accessed entry is made available when
all of the DMA commands in the accessed command list have
been performed.
0009. Another embodiment of the present invention is
directed to a digital media processing system including a
memory element, a command queue, a media processor and a
DMA engine. The memory element stores a plurality of DMA
command lists, each comprising at least one DMA command.
The command queue is adapted to hold a plurality of entries,
each entry comprising a pointer field and a sequence field.
The pointer field points to one of the DMA command lists.
The sequence field holds a sequence value. The media pro
cessor is adapted to process digital media data elements. The
media processor provides entries to the command queue in
order to effect the performance of corresponding DMA
operations. Each entry corresponds to a specified media data
element. The DMA engine accesses an entry in the command
queue and then accesses the DMA commands of the DMA
command list pointed to by the pointer field of the accessed
entry. The DMA engine performs DMA operations specified
by the accessed DMA commands. The DMA engine provides
the sequence value held in the sequence field of the accessed
entry to the media processor when all of the DMA commands
in the accessed command list have been performed.
0010. It is understood that other embodiments of the
present invention will become readily apparent to those
skilled in the art from the following detailed description,
wherein embodiments of the invention are shown and
described only by way of illustration of the best modes con
templated for carrying out the invention. As will be realized,
the invention is capable of other and different embodiments,
and its several details are capable of modification in various
other respects, all without departing from the spirit and scope
of the present invention. Accordingly, the drawings and
detailed description are to be regarded as illustrative in nature
and not as restrictive.

DESCRIPTION OF THE DRAWINGS

0011. These and other features, aspects, and advantages of
the present invention will become better understood with
regard to the following description, appended claims, and
accompanying drawings where:
0012 FIG. 1 is a functional block diagram of a digital
media system in which the present invention may be illustra
tively employed.
0013 FIG. 2 is a functional block diagram of a decoding
system according to an illustrative embodiment of the present
invention.
0014 FIG. 3 is a functional block diagram of a decoding
system according to an illustrative embodiment of the present
invention.
0015 FIG. 4 is a functional block diagram depicting a
command structure of DMA engine according to an illustra
tive embodiment of the present invention.

DETAILED DESCRIPTION

0016 FIG. 1 is a functional block diagram of a digital
media system in which the present invention may be illustra
tively employed. It will be noted, however, that the present
invention can be employed in Systems of widely varying
architectures and widely varying designs.
0017. The digital media system of FIG. 1 includes trans
port processor 102, audio decoder 104, direct memory access

Nov. 12, 2009

(DMA) controller 106, system memory controller 108, sys
tem memory 110, host CPU interface 112, host CPU 114,
digital video decoder 116, display feeder 118, display engine
120, graphics engine 122, display encoders 124 and analog
video decoder 126. The transport processor 102 receives and
processes a digital media data stream. The transport processor
102 provides the audio portion of the data stream to the audio
decoder 104 and provides the video portion of the data stream
to the digital video decoder 116. In one embodiment, the
audio and video data is stored in main memory 110 prior to
being provided to the audio decoder 104 and the digital video
decoder 116. The audio decoder 104 receives the audio data
stream and produces a decoded audio signal. DMA controller
106 controls data transfer amongst main memory 110 and
memory units contained in elements such as the audio
decoder 104 and the digital video decoder 116. The system
memory controller 108 controls data transfer to and from
system memory 110. In an illustrative embodiment, system
memory 110 is a dynamic random access memory (DRAM)
unit. The digital video decoder 116 receives the video data
stream, decodes the video data and provides the decoded data
to the display engine 120 via the display feeder 118. The
analog video decoder 126 digitizes and decodes an analog
video signal (NTSC or PAL) and provides the decoded data to
the display engine 120. The graphics engine 122 processes
graphics data in the data stream and provides the processed
graphics data to the display engine 120. The display engine
120 prepares decoded video and graphics data for display and
provides the data to display encoders 124, which provide an
encoded video signal to a display device.
0018 Aspects of an illustrative embodiment of the present
invention relate to the architecture of digital video decoder
116. However aspects of the present invention can also be
employed in decoders of other types of media, for example,
audio decoder 104.

0019 FIG. 2 is a functional block diagram of a media
decoding system 200, according to an illustrative embodi
ment of the present invention. The digital media decoding
system 200 of FIG. 2 can illustratively be employed to imple
ment the digital video decoder 116 of FIG. 1, or, alternatively,
to implement audio decoder 104. Decoding system 200
includes a core decoder microprocessor 202, bridge module
204, co-processor 206, two hardware accelerators 208 and
210, decoder memory module 212, register bus 214 and sys
tem bus 216. Register bus 214 and system bus 216 commu
nicate with the external host 114 and main memory 110. The
bridge module 204 includes direct memory access (DMA)
functionality. In an illustrative embodiment, the bridge mod
ule 204 is a “switch center” to arbitrate and interface between
different modules. In an alternative embodiment, the bridge
module 204 operates such that buses connect different mod
ules directly, as shown in FIG. 3.
0020. The acceleration modules 208 and 210 are hardware
accelerators that accelerate special decoding tasks that would
otherwise be bottlenecks for real-time media decoding if
these tasks were handled by the core processor 202 alone.
This helps the core processor 202 achieve the required per
formance. In an illustrative embodiment, the co-processor
206 is also a hardware accelerator that communicates with the
core processor 202 via a co-processor interface of the core
processor 202. In an illustrative embodiment wherein the
decoding system 200 is a video decoding system, the co
processor 206 is a variable-length decoder, and the accelera
tion modules perform one or more video decoding tasks, such

US 2009/02821 72 A1

as inverse quantization, inverse discrete cosine transforma
tion, pixel filtering, motion compensation and deblocking.
The system of FIGS. 2 and 3 are illustrative only. In accor
dance with the present invention, the decoding system 200
can have any number of hardware accelerators.
0021. The core processor 202 is the central control unit of
the decoding system 200. In an illustrative embodiment of the
present invention, the core processor 202 receives the data
units from the bitstream to be decoded. The core processor
202 prepares the data for decoding. In an embodiment
wherein the data being decoded is video data, the data unit
comprises macroblock coefficient data. The core processor
extracts the data for each data unit. After extracting the data
for each data unit, the core processor 202 illustratively depos
its the data in decoder memory 212. In an alternative embodi
ment, the core processor 202 provides the data directly to the
co-processor 206 for processing by the co-processor 206. The
core processor 202 also orchestrates a data unit processing
pipeline (such as a macroblock processing pipeline) for the
acceleration modules 206, 208 and 210 and fetches the
required data from main memory 110 via the bridge module
204. The core processor 202 also handles some data process
ing tasks. Where decoding system 200 is a video decoding
system, picture level processing, including sequence headers,
GOP headers, picture headers, time stamps, macroblock
level information, except the block coefficients, and buffer
management, are performed directly and sequentially by the
core processor 202, without using the accelerators 206, 208,
210, except for using a variable-length decoder 206 to accel
erate general bitstream parsing. In an illustrative embodiment
of the present invention, the core processor 202 is a MIPS
processor, such as a MIPS32 implementation, for example.
0022. The co-processor 206 retrieves data that was placed
in decoder memory 212 by the core processor 202 and per
forms one or more decoding functions on the retrieved data.
In an alternative embodiment, the co-processor 206 receives
the data to be processed directly from the core processor 202.
After processing the received data, the co-processor 206
deposits the processed data in decoder memory 212. The data
(such as DCT coefficients) deposited in decoder memory 212
by the co-processor 206 are processed by hardware accelera
tor module 208. After processing the data, hardware accel
erator 208 deposits the processed data in decoder memory
212. The data deposited in decoder memory 212 by hardware
accelerator 208 are processed by hardware accelerator mod
ule 210. After processing the data, hardware accelerator 210
deposits the processed data in decoder memory 212.
0023 The bridge module 204 arbitrates and moves data
between decoder memory 212 and main memory 110. The
bridge interface 204 includes a direct memory access (DMA)
engine. The bridge interface 204 illustratively includes an
internal bus network that includes arbiters and the DMA
engine. The bridge module 204 serves as an asynchronous
interface to the system buses.
0024 Decoder memory 212 is used to store data unit data
and other time-critical data used during the decoding process.
Each hardware block 206, 208, 210 accesses decoder
memory 212 to either read the data to be processed or write
processed data back. In an illustrative embodiment of the
present invention, all currently used data is stored in decoder
memory 212 to minimize access to main memory. The co
processor 206 and hardware accelerators 208 and 210 use the
decoder memory 212 as the source and destination memory
for their normal operation. Each module accesses the data in

Nov. 12, 2009

decoder memory 212 as the data units (such as macroblock
data units) are processed through the system. In an illustrative
embodiment, decoder memory 202 is a static random access
memory (SRAM) unit. The CPU 114 has access to decoder
memory 212, and the bridge module 204 can transfer data
between decoder memory 212 and the main system memory
(DRAM) 110. The arbiter for decoder memory 212 is in the
bridge module 204.
0025 FIG. 4 is a functional block diagram depicting a
command structure of DMA engine 204 according to an
illustrative embodiment of the present invention. There can be
any number of lists 470,480,490 of DMA commands placed
in decoder memory 212. Each command list 470, 480, 490
has at least one command, and the commands are all sequen
tial in memory, with an indication as to which command is the
last command in a given list. In an illustrative embodiment,
the command lists 470, 480,490 are not linked lists, they are
just lists. There is also a command queue 400 in the DMA (in
the bridge 204) itself. Each entry 410, 420, 430, 440 in the
command queue 400 has two fields: a pointer 460 to a com
mand list 470, 480,490 and a sequence number 450. Entries
are pushed onto the queue by the core processor 202 writing
to a single queue input address. The DMA engine 204 takes
the commands off the queue 400 in FIFO order and performs
the operations specified by the commands in the command
list (such as list 470, 480 or 490) that is pointed to by the
command queue entry (such as 410, 420, 430,440). Once one
list 470, 480,490 has been completed, the DMA goes to the
list 470, 480,490 pointed to by the next entry 410, 420, 430,
440 in the queue 400. After all of the commands (in a list such
as list 470, 480 or 490) corresponding to an entry (such as
410, 420, 430 or 440) in the queue 400 have been completed,
the sequence number of that entry is sent to a DMA Status
output port, which is available to the core processor 202 as
part of the central status register. Firmware on the core pro
cessor 202 creates the sequence numbers. By policy, the
sequence numbers should be sequential, i.e., increasing
modulo 16 (0,1,2,..., 15, 0,...). With sequence numbers,
the firmware can identify, at any time, which entry in the
queue 400, i.e., which list (470, 480, 490) of DMA com
mands, has been completed. This is very beneficial if the list
of commands spans more than one MBlock time.
0026. Each DMA command, in the lists, should be as
compact as possible, while providing the required function
ality. According to an illustrative embodiment of the present
invention, each command fits into two 32-bit words, with one
word (e.g., the second) containing the DRAM address for the
transfer, and the other word (first) containing bits for: direc
tion of transfer, start address in SRAM/module; two bits to
select which SRAM or module; special transaction type (for
prediction reads); length of transfer; and whether this is the
last command in the list.

0027. Although a preferred embodiment of the present
invention has been described, it should not be construed to
limit the scope of the appended claims. For example, the
present invention is applicable to any type of coded data, in
addition to the media data illustratively described herein.
Those skilled in the art will understand that various modifi
cations may be made to the described embodiment. More
over, to those skilled in the various arts, the invention itself
herein will suggest solutions to other tasks and adaptations
for other applications. It is therefore desired that the present
embodiments be considered in all respects as illustrative and

US 2009/02821 72 A1

not restrictive, reference being made to the appended claims
rather than the foregoing description to indicate the scope of
the invention.

1. A direct memory access (DMA) system comprising:
a memory element storing a plurality of DMA command

lists, each comprising at least one DMA command;
a command queue adapted to hold a plurality of entries,

each entry comprising a pointer field and a sequence
field, the pointer field pointing to one of the DMA com
mand lists, the sequence field holding a sequence value;
and

a DMA engine adapted to access an entry in the command
queue and to access the DMA commands of the DMA
command list pointed to by the pointer field of the
accessed entry, the DMA engine further adapted to per
form DMA operations specified by the accessed DMA
commands, the DMA engine further adapted to make
available the sequence value held in the sequence field of
the accessed entry when all of the DMA commands in
the accessed command list have been performed.

2. The DMA system of claim 1 wherein the command
queue is included in the DMA engine.

3. The DMA system of claim 1 wherein a last DMA com
mand in each command list includes an indication that it is the
last command in the list.

4. The DMA system of claim 1 further comprising a pro
cessor adapted to provide the entries to the command queue in
order to effect the performance of corresponding DMA
operations.

5. The DMA system of claim 4 wherein the DMA engine is
adapted to provide the sequence value to the processor when
all of the DMA commands in the accessed command list have
been performed.

6. The DMA system of claim 1 wherein when all of the
DMA commands in the accessed command list have been
performed, the DMA engine is adapted to access a next entry
in the command queue and to access the DMA commands of
the DMA command list pointed to by the pointer field of the
accessed entry, the DMA engine further adapted to perform
DMA operations specified by the accessed DMA commands,
the DMA engine further adapted to make available the
sequence value held in the sequence field of the accessed
entry when all of the DMA commands in the accessed com
mand list have been performed.

7. The DMA system of claim 1 wherein the memory ele
ment is a static RAM memory element.

8. A method of implementing direct memory access
(DMA) comprising:

storing a plurality of DMA command lists, each compris
ing at least one DMA command;

maintaining a command queue adapted to hold a plurality
of entries, each entry comprising a pointer field and a
sequence field, the pointer field pointing to one of the
DMA command lists, the sequence field holding a
sequence value;

accessing an entry in the command queue;
accessing the DMA commands of the DMA command list

pointed to by the pointer field of the accessed entry;
performing DMA operations specified by the accessed
DMA commands; and

making available the sequence value held in the sequence
field of the accessed entry when all of the DMA com
mands in the accessed command list have been per
formed.

Nov. 12, 2009

9. The method of claim 8 wherein a last DMA command in
each command list includes an indication that it is the last
command in the list.

10. The method of claim 8 wherein a processor provides the
entries to the command queue in order to effect the perfor
mance of corresponding DMA operations.

11. The method of claim 10 wherein making available the
sequence value comprises providing the sequence value to the
processor when all of the DMA commands in the accessed
command list have been performed.

12. The method of claim 8 wherein the plurality of DMA
command lists are stored in a static RAM memory element.

13. The method of claim 8 further comprising:
when all of the DMA commands in the accessed command

list have been performed, accessing a next entry in the
command queue;

accessing the DMA commands of the DMA command list
pointed to by the pointer field of the accessed entry;

performing DMA operations specified by the accessed
DMA commands; and

making available the sequence value held in the sequence
field of the accessed entry when all of the DMA com
mands in the accessed command list have been per
formed.

14. A digital media processing system comprising:
a memory element storing a plurality of direct memory

access (DMA) command lists, each comprising at least
one DMA command;

a command queue adapted to hold a plurality of entries,
each entry comprising a pointer field and a sequence
field, the pointer field pointing to one of the DMA com
mand lists, the sequence field holding a sequence value;

a media processor adapted to process digital media data
elements and adapted to provide entries to the command
queue in order to effect the performance of correspond
ing DMA operations, each entry corresponding to a
specified media data element; and

a DMA engine adapted to access an entry in the command
queue and to access the DMA commands of the DMA
command list pointed to by the pointer field of the
accessed entry, the DMA engine further adapted to per
form DMA operations specified by the accessed DMA
commands, the DMA engine further adapted to provide
the sequence value held in the sequence field of the
accessed entry to the media processor when all of the
DMA commands in the accessed command list have
been performed.

15. The digital media processing system of claim 14
wherein the command queue is included in the DMA engine.

16. The digital media processing system of claim 14
wherein a last DMA command in each command list includes
an indication that it is the last command in the list.

17. The digital media processing system of claim 14
wherein when all of the DMA commands in the accessed
command list have been performed, the DMA engine is
adapted to access a next entry in the command queue and to
access the DMA commands of the DMA command list
pointed to by the pointerfield of the accessed entry, the DMA
engine further adapted to perform DMA operations specified
by the accessed DMA commands, the DMA engine further
adapted to provide the sequence value held in the sequence
field of the accessed entry to the media processor when all of

US 2009/02821 72 A1

the DMA commands in the accessed command list have been
performed.

18. The digital media processing system of claim 14
wherein the memory element is a static RAM memory ele
ment.

19. The digital media processing system of claim 14
wherein the media processor is a video processor adapted to
process digital video data elements and adapted to provide
entries to the command queue in order to effect the perfor

Nov. 12, 2009

mance of corresponding DMA operations, each entry corre
sponding to a specified video data element.

20. The digital media processing system of claim 19
wherein the video processor is adapted to process macroblock
data elements and adapted to provide entries to the command
queue in order to effect the performance of corresponding
DMA operations, each entry corresponding to a specified
macroblock data element.

c c c c c

