(54) Title: ANALYSIS DEVICE AND ANALYSIS DISC USED FOR THE SAME

(54) 発明の名称: 分析装置とそれに使用する分析用ディスク

(57) Abstract: An analysis device capable of accurately reproduce the video of an object even when the object is arranged on an optical disc as an analysis disc. The analysis device includes a second pickup (106b) for catching and tracing a track on the analysis disc (201) and a first pickup (106a) fixed at a predetermined distance L from the second pickup on the disc. A signal identical to the tracking signal of the second pickup (106b) is applied to a tracking actuator driving the optical path of the first pickup (106a) in the radial direction of the analysis disc. While controlling the position of the second pickup (106b) in the radial direction from time to time, a part of the analysis object (110) is traced and read.

(57) 要約: 分析ディスクに分析対象を配置した分析用ディスクであっても、分析対象の映像をより正確に再生できる分析装置を提供することを目的とする。分析用ディスク201上のトラッ
2文字コード及び他の暗語については、定期発行されるPCTガゼットの巻頭に掲載されている「コードと暗語のガイドノート」を参照。

クを指摘してトレースする第2のピックアップ106bとこれからディスク上一定の距離で固定された第1のピックアップ106aを設けて、第1のピックアップ106aの光路を分析用ディスクの径方向に駆動するトラッキングアクチュエータに、第2のピックアップ106bのトラッキング信号と同じ信号を印加して、第2のピックアップ106bの時々の前記径方向の位置を制御しながら分析対象110の部分をトレースして読み取りさせる。
明細書

分析装置とそれに使用する分析用ディスク

5技術分野

本発明は、血液などの分析対象を分析用の光ディスクにセットし、この分析対象をトレースして映像として捉えようとすると分析装置に関する。

背景技術

10 特表平10-504397号公報などにあるように、光ディスクの再生機能を用いてディスク上のある部分を試験しようとする分析対象を設けて、これをトレースして分析対象の映像を取得する方法がある。

通常、光ディスク101は図7と図8に示すように、基盤101bの面にアルミ反射層のトラック102を形成し、そのトラックに微細な凹凸のビットとグループ103で情報が記録されている。104は保護層である。

図6に示す一般的な光ディスクドライブでは、ディスクモータ105で光ディスク101を矢印C方向に回転させながら、トラック102上をピックアップ106からのレーザー光PHで読み取る。ピックアップ106は、トラバースモータ108で駆動される送りねじ109に螺合しており、サーボコントロール回路107が、ピックアップ106の再生出力に基づいてトラック102を追従してトレースするように、トラバースモータ108を駆動してピックアップ106を径方向に移動させる。また、サーボコントロール回路107は、トラック102に記録されているアドレス情報を検出し、線速度が一定になるようにディスクモータ105を駆動（CLV制御）する。

さらに詳しくは、レーザー光PHの光ディスク101への照射位置は、トラ
パースモータ108の駆動だけでなく、ピックアップ106の内部に設けられたトラッキングアクチュエータ（図示せず）によってレーザー光Phの光路を光ディスク101の面に対して左右方向（径方向）に必要に応じて併せて駆動してトラッキング制御しながら正確にトラック102をトレースするように構成されている。

ここで、分析用ディスクの場合は、オーディオ用やビデオ用CDの場合とは異なり、さらに分析対象110が図7と図8に示したように、光ディスク101に配置され、従来の光ディスクドライブの技術を使用した分析装置は、この分析対象110をピックアップ106で読み取って映像信号処理解回路111で処理して分析対象110の映像を得ようとするものである。

このディスク上のトラックに書かれた符号化信号のアドレス情報を利用した場合、分析対象110の通過時のフォーカスやトラッキングのサーボ乱れによりアドレス情報がうまく取れない恐れがある。

分析対象110の部分はあくまで分析対象110が存在するため、ピットやグループはその部分に存在できない。もしくは存在していても分析対象110の影響で著しくピットやグループの信号が読み取り難い。これらは光ディスクでいうところのDEFECT（欠陥）に相当する部分にて、ディスクに対する回転サーボ、トラッキングサーボ、フォーカスサーボはそこを通ずる間は正常にかからなくなる。結果としてこの分析対象110の部分を通過中にはディスクの回転が乱れたり、分析対象110の部分通過後、隣のトラックへ着地したりする不具合が多々発生する。DEFECTの部分のみ各サーボをホールド状態で保持せせるようにしたりする対処法はあるものの、あくまでもコントロールできなくなっている状態にあるため確実ではなく、配置する分析対象の数を増やす程、この不安定領域はさらに増加することになり、ますますサーボの乱れの影響を受けやすくなる。また、ディスク
の回転サーボコントロールにおいても同様の問題が発生する。

発明の開示

本発明は、光ディスクに分析対象を配置した分析用ディスクであっても、分析対象の映像をより正確に再生できる分析装置を提供することを目的とする。

本発明の分析装置は、分析対象を配置した分析用ディスクに検出光を照射し、前記分析対象の状態を読み取る分析装置において、前記分析対象が配置された第1の読み取りエリアと前記分析対象が配置されていない第2の読み取りエリアが分析用ディスクの異なる径の範囲に記録された分析用ディスクがセット可能であり、セットされた前記分析用ディスクの第1の読み取りエリアに検出光を照射し第1の読み取りエリアからの検出光を検出する第1のピックアップと、セットされた前記分析用ディスクの第2の読み取りエリアに検出光を照射し第2の読み取りエリアの検出光からトラック情報を検出する第2のピックアップとを設け、第1のピックアップと第2のピックアップとの分析用ディスクの径方向の間隔を一定に保持して第1、第2のピックアップを径方向に一体的に移動させるトラバース駆動を実施するよう構成し、第2のピックアップの光路を分析用ディスクの径方向に駆動してトラックをトレースするように第2のピックアップのトラッキングアクチュエータにトラッキング信号を供給するとともに、第1のピックアップの光路を分析用ディスクの径方向に駆動する第1のピックアップのトラッキングアクチュエータに第2のピックアップのトラッキング信号と同じ信号を増加して分析対象を読み取るように構成したことを特徴とする。
また、前記第１のピックアップは、分析用ディスクの読み取り位置の映像を読み取る機能を有しトラック情報を読み取る機能は有していないことを特徴とする。

また、２つのピックアップは、分析用ディスクの読み取り位置の映像を読み取る機能とトラック情報を読み取る機能を共に有しており、トラック情報を分析用ディスクから読み取った一方のピックアップを第２のピックアップとし、他方のピックアップを第１のピックアップとして自動切り替えするように構成したことを特徴とする。

また、第１の読み取りエリアを読み取る第１のピックアップを複数個設けたことを特徴とする。

本発明の分析用ディスクは、異なる径の範囲に第１の読み取りエリアと第２の読み取りエリアが形成された分析用ディスクであって、第２の読み取りエリアにはピックアップにてトレースすることが可能な信号化された信号が光学記録されており分析対象が配置されておらず、第１の読み取りエリアには分析対象を配置しピックアップにてトレースすることが可能な信号化された信号が光学記録されていないことを特徴とする。

本発明の分析用ディスクは、異なる径の範囲に第１の読み取りエリアと第２の読み取りエリアが形成された分析用ディスクであって、第１、第２の読み取りエリアにはピックアップにてトレースすることが可能な信号化された信号が光学記録されており、分析対象を第１、第２の読み取りエリアのうちの第１の読み取りエリアにだけ配置したことを特徴とする。
また、本発明の分析用ディスクは、第２の読み取りエリアの幅を第１の読み取りエリアの幅以上に設定したことを特徴とする。

5 また、本発明の分析装置は、前記分析対象が配置されていない第２の読み取りエリアからの検出光を検出する第２のピックアップがトラックにジャストフォーカスするに必要なフォーカス電圧を基準にして、この基準電圧にオフセット電圧を加えた電圧を、前記分析対象が配置された第１の読み取りエリアからの検出光を検出する第１のピックアップのフォーカスアクチ

10 ェータに印加して分析対象をトレースして映像を取得し、前記オフセット電圧を変更して第１のピックアップのフォーカス位置を変更して前記分析対象のトレースを繰り返して分析対象の映像を立体的に取得するよう構成したことを特徴とする。

15 図面の簡単な説明
図１は本発明の（実施の形態１）の分析装置の構成図
図２は同実施の形態のピックアップの構成図
図３は同実施の形態の分析用ディスクの一部切り欠き平面図
図４は同実施の形態の分析用ディスクの第２の読み取りエリアのトラック方向に沿った断面図
図５は本発明の（実施の形態３）の分析装置のフォーカス制御の具体例を説明する図
図６は従来の光ディスクドライブ装置による分析装置の構成図
図７は同従来例の光ディスクの一部切り欠き平面図
図8は同分析ディスクのトラック方向に沿った断面図

発明を実施するための最良の形態

以下、本発明の各実施の形態を図1〜図5に基づいて説明する。

なお、従来例を示す図6〜図8と同じものは同一の符号を付けて説明する。

（実施の形態1）

図1〜図4は本発明の（実施の形態1）を示す。

この（実施の形態1）では分析用ディスクの構造と分析装置の構造が従来とは異なっている。

分析用ディスク201には、図3と図4に示すように異なる径の範囲に、第1の読み取りエリア112と第2の読み取りエリア113が形成されている。第1の読み取りエリア112の径方向の幅をW1、第2の読み取りエリア113の径方向の幅をW2とした場合に、W2≧W1である。

第1の読み取りエリア112には、図4（b）に示すように基盤201bと保護膜204の間に分析対象110が配置されており、図4（a）に示す第2の読み取りエリア113に形成されているトラック102は形成されていない。第2の読み取りエリア113には分析対象110は配置されていない。分析用ディスク201は、基盤201bの面にアルミ反射層の前記トラック102を形成し、そのトラック102に微細な凹凸のビットとグループ103で情報が記録されている。

この分析用ディスク201がセットされる分析装置には、図1と図2に示すように第1、第2のピックアップ106a、106bが設けられている。

第1のピックアップ106aは、セットされた分析用ディスク201の第1の読み取りエリア112にレーザー光Phを照射し第1の読み取りエリア112
からの検出光を検出する。第2のピックアップ106bは、セットされた分析用ディスク201の第2の読み取りエリア113にレーザー光Phを照射し第2の読み取りエリア113からトラック情報を検出する。

第1のピックアップ106aから照射されるレーザー光Phと第2のピックアップ106bから照射されるレーザー光Phとの、分析用ディスク201の径方向の間隔Lを一定に保持しながら第1、第2のピックアップ106a、106bを径方向に一体に移動させるために、例えば、第1のピックアップ106aと第2のピックアップ106bをと、トラバースモータ108で駆動される送りねじ109の長さ方向（分析用ディスク201の径方向と同じ）に沿って配列すると共に、両者はブロック114を介して連結し、第2のピックアップ106bだけが送りねじ109に螺合している。

第1、第2のピックアップ106a、106bには、それぞれに、レンズ115をフォーカス方向に駆動するフォーカスアクチュエータ（図示せず）とレンズ115を分析用ディスク201の面に対して左右方向（径方向）に駆動するトラッキングアクチュエータ116a、116bとが設けられている。

ブロック114の長さは、第1のピックアップ106aからのレーザー光Phが第1の読み取りエリア112を照射し第2のピックアップ106bからのレーザー光Phが第2の読み取りエリア113を照射できる長さに設定されている。

さらに、第1、第2のピックアップ106a、106bは別々にフォーカス制御を実行すると共に、第2のピックアップ106bがトラック102をトレースする。そしてサーボコントロール回路107は、第2のピックアップ106bのトラッキングアクチュエータ116bに印加するトラッキング電圧と同じ信号を、第1のピックアップ106aのトラッキングアクチュエータ116aに印加するよう構成されている。

このように、第2のピックアップ106bがフォーカス制御しながら第2の読
み取りエリア113のトラック102をトレースするために、サーボコントロール回路107が、トラバースモータ108とトラッキングアクチュエータ116bを駆動する。これによって、第2のピックアップ106bと一体に分析用ディスク201の径方向に移動する第1のピックアップ106aの第1の読み取りエリア112における読み取り位置も分析用ディスク201の径方向に移動する。

第2の読み取りエリア113には分析対象110が設けられていなかったため、第2のピックアップ106bは、トラバースモータ108とトラッキングアクチュエータ116bの駆動によって正確にトラック102をトレースすることができる。

また、第2のピックアップ106bがトラックをトレースして収集した正確なアドレス情報に基づいてサーボコントロール回路107はディスクモータ105を、線速度が一定になるように安定なCLV制御を実行することができ、第1のピックアップ106aは、安定なCLV制御中の分析用ディスク201から、第2のピックアップ106bでのトラッキング電圧によって分析用ディスク201の径方向の位置が正確に制御されながら分析対象110の画像を読み取ることができる。

なお、この実施の形態では、単一の第1のピックアップ106aで分析対象110を読み取ったが、第1の読み取りエリア112を読み取るピックアップを複数個にし、これらが第2のピックアップ106bと平行に移動するという条件さえ備えれば、ピックアップの数が増える分だけ映像取得の効率が上がることになる。

第1、第2のピックアップ106a、106bは、何れもが分析用ディスク201の分析対象の映像を読み取る機能とトラック情報を読み取る機能の両方を有していてもよいが、第1のピックアップ106aは、分析用ディスクの分析対象の映像を読み取る機能を有しトラック情報を読み取る機能は有
していなくても構成できる。
また、上記の説明では、分析用ディスクの内周側に第2の読み取りエリア113を設け、外周側に第1の読み取りエリア112を設けたが、分析用ディスクの内周側に第1の読み取りエリア112を設け、外周側に第2の読み取りエリア113を設けて構成することもでき、この（実施の形態1）では分析用ディスク201の内周側と外周側のいずれに第2の読み取りエリア113が配置されているのかを設定して、サーボコントロール回路107がトラッキング電圧を計算するための入力情報が2つのピックアップのどれから受け入れるのかを特定することが必要である。

（実施の形態2）
上記の（実施の形態1）では、分析用ディスク201の内周側と外周側のいずれに第2の読み取りエリア113が配置されているのかを設定する事が必要であったが、2つのピックアップのどれからトラックをトレースしたアドレス情報などが検出されるかを判定する手段を追加し、アドレス情報などが検出されたピックアップを第2のピックアップ106bとし、もう一方を第1のピックアップ106aとして自動切り替えするようにサーボコントロール回路107などを構成することによって、自動処理させることができる。
なお、この（実施の形態2）の場合には、図2に示したように第1の読み取りエリア112にはトラック102を設けてはいけないが、（実施の形態1）の場合には、第1、第2の読み取りエリア112、113の両方にトラック102を設け、第2の読み取りエリア113にだけ分析対象110を設けないように構成した分析用ディスクでも同様の動作を期待できる。

（実施の形態3）
上記の各実施の形態では、ピックアップが第1のピックアップ106aと第2のピックアップ106bとに分かれていることによって、分析対象110の映像を立体的に取得することができる。

つまり、第2のピックアップ106bのフォーカス位置をトラック102のピットやグループに自動制御するのに対して、第1のピックアップ106aのフォーカス位置を分析対象110の上部や下部に変更して、トレースを繰り返すことによって得られる映像の差から、分析対象110の映像を立体的に取得する。

図5に示す（実施の形態3）に基づいて更に具体的に説明する。

第2のピックアップ106bのフォーカス位置は、トラックの信号を取得するために図5（a）に示すように光ディスクの鏡面のピットとグループ103上である必要がある。

これに対して、第1のピックアップ106aのフォーカス位置は、トラック情報を取得する必要が無いため任意のフォーカス位置に設定してトレースすることが可能である。

このことを利用して第1のピックアップ106aのジャストフォーカス位置を故意に段階的オフセットしてデータ取得を繰り返すことにより、分析対象110の映像データを立体的に取得している。

具体的には第1のピックアップ106aのフォーカス位置を第2のピックアップ106bのフォーカスアクチュエータに加えるフォーカス電圧よりも段階的にオフセットさせた電圧を第1のピックアップ106aのフォーカスアクチュエータに印加する。

たとえば、第2のピックアップ106bがディスクのトラックにフォーカスを合わせるために必要なフォーカス電圧が+1.5ボルト、ピックアップの特性であるフォーカス移動距離／フォーカス印加電圧が300μm／Vであった
たと仮定する。
この場合、第1のピックアップ106aのフォーカスアクチュエータに＋1ボルトを印加して先ずトレースしてデータを得てし、同じ部分の次のトレースの際には＋1.1ボルトを印加してデータを得るというように、第1のピックアップ106aのフォーカスコイルへの印加電圧を0.1ボルトずつ順次に電圧を増やすことを繰り返して＋2.0ボルトまでフォーカス電圧を増加させてデータ取得を行うことによって、この場合には、光ディスクの分析対象110の300μmの厚みを10分割の分解能でトレースしたことになる。図5(b)は、第1の読み取りエリア112の分析対象110が立体であった例を示している。点線が第1のピックアップ106aのフォーカスアクチュエータに印加するフォーカス電圧を変えた時のそれぞれのジャストフォーカス位置を示している。

このように、分析対象110の厚み方向の形状の違いについても映像を取得することが可能となる。

以上のように本発明によれば、光ディスクに分析対象を配置した分析用ディスクであっても、分析対象の影響を受けてもピックアップを正確にトラッキング制御でき、かつ分析用ディスクの回転制御も分析対象の影響を受けずに安定して制御することができ、分析対象の鮮明な画像が抽出できるものである。
請求の範囲

1.
分析対象を配置した分析用ディスクに検出光を照射し、前記分析対象の状態を読み取る分析装置において、

5 前記分析対象が配置された第1の読み取りエリアと前記分析対象が配置されていない第2の読み取りエリアとが分析用ディスクの異なる径の範囲に記録された分析用ディスクがセット可能であり、

セットされた前記分析用ディスクの第1の読み取りエリアに検出光を照射し第1の読み取りエリアからの検出光を検出する第1のピックアップと、

10 セットされた前記分析用ディスクの第2の読み取りエリアに検出光を照射し第2の読み取りエリアの検出光からトラック情報を検出する第2のピックアップと

を設け、第1のピックアップと第2のピックアップとの分析用ディスクの径方向の間隔を一定に保持して第1、第2のピックアップを径方向に一体的に移動させるトラバース駆動を実施するよう構成し、

第2のピックアップの光路を分析用ディスクの径方向に駆動してトラックをトレースするように第2のピックアップのトラッキングアクチュエータにトラッキング信号を供給するとともに、第1のピックアップの光路を分析用ディスクの径方向に駆動する第1のピックアップのトラッキングアクチュエータに第2のピックアップのトラッキング信号と同じ信号を印加して分析対象を読み取るように構成した

分析装置。

2.

第1のピックアップは、分析用ディスクの読み取り位置の映像を読み取
る機能を有しトラック情報を読み取る機能は有していない
請求項1記載の分析装置。

3.
2つのピックアップは、分析用ディスクの読み取り位置の映像を読み取る機能とトラック情報を読み取る機能を共に有しており、トラック情報を分析用ディスクから読み取った一方のピックアップを第2のピックアップとし、他方のピックアップを第1のピックアップとして自動切り替えするように構成した
10 請求項1記載の分析装置。

4.
第1の読み取りエリアを読み取る第1のピックアップを複数個設けたことを特徴とする
15 請求項1記載の分析装置。

5.
異なる径の範囲に第1の読み取りエリアと第2の読み取りエリアが形成された分析用ディスクであって、
20 第2の読み取りエリアにはピックアップにてトレースすることが可能な符号化された信号が光学記録されており分析対象が配置されておらず、第1の読み取りエリアには分析対象を配置しピックアップにてトレースすることが可能な符号化された信号が光学記録されていない分析用ディスク。
6.
異なる径の範囲に第1の読み取りエリアと第2の読み取りエリアが形成された分析用ディスクであって、
第1、第2の読み取りエリアにはピックアップにてトレースすることが可能な符号化された信号が光学記録されており、分析対象を第1、第2の読み取りエリアのうちの第1の読み取りエリアにだけ配置した分析用ディスク。

7.

8.
前記分析対象が配置されていない第2の読み取りエリアからの検出光を検出する第2のピックアップがトラックにジャストフォーカスするに必要なフォーカス電圧を基準にして、この基準電圧にオフセット電圧を加えた電圧を、前記分析対象が配置された第1の読み取りエリアからの検出光を検出する第1のピックアップのフォーカスアクチュエータに印加して分析対象をトレースして映像を取得し、前記オフセット電圧を変更して第1のピックアップのフォーカス位置を変更して前記分析対象のトレースを繰り返して分析対象の映像を立体的に取得するよう構成した請求項1記載の分析装置。
FIG. 2
FIG. 3

201 分析用ディスク
102 トラック
112 第1の読み取りエリア
113 第2の読み取りエリア
110 分析対象
FIG. 4

(a)

(b)
INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/06501

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl.² G01N21/27, G01N21/01

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl.² G01N21/00-21/74

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PATOLIS, WPI/L

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2000-173080 A (Ricoh Co., Ltd.), 23 June, 2000 (23.06.00), Full text; Figs. 2, 14, 16 (Family: none)</td>
<td>1,4,5,6,7 2,8</td>
</tr>
<tr>
<td>X</td>
<td>JP 2001-4519 A (Ricoh Co., Ltd.), 12 January, 2001 (12.01.01), Full text (Family: none)</td>
<td>1,5 2,8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search 26 August, 2003 (26.08.03)

Date of mailing of the international search report 09 September, 2003 (09.09.03)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer
Telephone No.

Facsimile No.

Form PCT/ISA/210 (second sheet) (July 1998)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 9-237914 A (Hamamatsu Photonics Kabushiki Kaisha), 09 September, 1997 (09.09.97), Full text (Family: none)</td>
<td>8</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl.² G01N21/27 G01N21/01

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl.² G01N21/00-21/74

最小限資料以外の資料で調査を行った分野に含まれるもの

- 日本国実用新案公報 1922-1996年
- 日本国公開実用新案公報 1971-2003年
- 日本国登録実用新案公報 1994-2003年
- 日本国実用新案登録公報 1996-2003年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

PATOLIS
WPI/L

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ＊</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2000-173080 A（株式会社SPI）2000.06.23, 全文, 図2, 14, 16, （ファジー-なし）</td>
<td>1, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2001-4619 A（株式会社SPI）2001.01.12, 全文, （ファジー-なし）</td>
<td>2, 8</td>
</tr>
<tr>
<td>Y</td>
<td>JP 9-237914 A（株式会社スピーカ）1997.09.09, 全文, （ファジー-なし）</td>
<td>8</td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリ

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日後の出願または特許であるが、国際出願日以後において公表されたもの

「L」優先権主催に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」出版による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主催の基礎となる出願

○ C欄の続きにも文献が列挙されている。

○ パテントファミリーに関する別紙を参照。

国内調査を完了した日 26.06.03
国内調査報告の発送日 09.09.03

国際調査関係の名称及びあて先
日本国特許庁（ISA/JP）
郵便番号 100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
樋口 宗彦

電話番号 03-3581-1101 内線 3290

特許号 PCT/ISA/210（第2ページ）（1998年7月）