
(19) United States
US 20070234159A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0234159 A1
BUSHARD et al. (43) Pub. Date: Oct. 4, 2007

(54) METHOD AND APPARATUS FOR TESTING A
RING OF NON-SCAN LATCHES WITH
LOGIC BUILT-N SELF-TEST

(76) Inventors: LOUIS BERNARD BUSHARD,
Rochester, MN (US); Nathan Paul
Chelstrom, Cedar Park, TX (US);
Naoki Kiryu, Tokyo (JP); David John
Krolak, Rochester, MN (US)

Correspondence Address:
IBM CORP (YA)
CFO YEE & ASSOCATES PC
P.O. BOX 802.333
DALLAS, TX 75380 (US)

(21) Appl. No.: 11/278,313

(22) Filed: Mar. 31, 2006

518

DATAN

RNGON

Publication Classification

(51) Int. Cl.
GOIR 3L/28 (2006.01)

(52) U.S. Cl. .. 714/733

(57) ABSTRACT

A method and apparatus for loading a ring of non-scan
latches for a logic built-in self-test. A logic built-in self-test
value is loaded into a scannable latch from the logic built-in
self-test. An override control signal is asserted in response to
loading the logic built-in self-test value into the scannable
latch. A non-scan latch is forced to load the logic built-in
self-test value from the scannable latch in response to
asserting the override control signal. Logic paths in the ring
of non-scan latches are exercised. The non-scan latch is part
of the logical paths. The test results are captured from the
logic paths and the test results are compared against
expected test results to determine if the logic paths within
the ring of non-scan latches are functioning properly.

RNG OUT

RING 2 OUT

514

RING 3 OUT

500

Patent Application Publication Oct. 4, 2007 Sheet 1 of 7 US 2007/0234159 A1

100
Y

FIG. I.

FIG. 2

UNIT 1
210 202 208 216 236

GRAPHICS MAIN AUDIO Ekacks. A
204

240 238
BUS BUS

c is
USBAND PC/Pcle kERE RD

CD-ROM LAN E. DEVICES MOUSE MODEM
ADAPTER

226 230 212 232 234 220 222 224

Patent Application Publication Oct. 4, 2007 Sheet 2 of 7 US 2007/0234159 A1

MEMORY

304

MEMORY 304

LOGICBUILT-INSELF-TEST 308

402 400

FIG. 4
(PRIOR ART) SCANNABLE

LATCH

NON-SCAN
LATCH

COMBINATORIAL COMBINATORIAL
LOGIC LOGIC

404 408
SCANNABLE

LATCH

410

Patent Application Publication Oct. 4, 2007 Sheet 3 of 7 US 2007/0234159 A1

530

518 AOH L - DATA OUT
DATAN 520 524

526
502 AOL RING O OUT

RING ON 510

520 524

RING 1 OUT

RING 2 OUT

522

RING 3 OUT

500

FIG. 5
522

Patent Application Publication Oct. 4, 2007 Sheet 7 of 7 US 2007/0234159 A1

902 LOAD THE SCANNABLE LATCHES
AND READ THE PRIOR TEST RESULT

NON-SCAN LATCHES ARE FORCED
TO LOAD DATA FROM ONLY THE

SCANNABLE LATCHES

904

LOAD THENON-SCAN LATCHES
RESIDING IN PIPELINES AND

SHIFT THE SCANNABLE
LATCHES TO STRESS TIMING

EXERCISE THENORMAL LOGIC
908 PATHS TO BE EXERCISED

COVERAGE ADEQUATE

906

910 YES

CAPTURE TEST RESULTS AND
COMPARE AGAINST EXPECTED

912 VALUE TO DETERMINE PASS/FAIL

FIG. 9

US 2007/0234159 A1

METHOD AND APPARATUS FOR TESTING A
RING OF NON-SCAN LATCHES WITH LOGIC

BUILT-N SELF-TEST

BACKGROUND

0001)
0002 The present application relates generally to data
processing, and more particularly to a computer imple
mented method and apparatus for testing a ring of non-scan
latches with logic built-in self-test.
0003 2. Description of the Related Art

1. Field of the Invention

0004 Data processing systems use increasingly complex
circuitry, logic, and other electronic components to effi
ciently process data. Many times, it is financially advanta
geous to build computer chips that may be tested with on
board logic built-in self-test (LBIST). Conventional logic
built-in self-test allows chips to be tested and reevaluated
when installed, during start-up, or at any other time. Logic
built-in self-test helps diagnose fabrication problems more
effectively, saving time and money.
0005. However, logic built-in self-test requires the ability
to scan or shift data through latch elements of a design in
order to load logic built-in self-test patterns and to capture
the test results afterwards. The logic built-in self-test test
patterns are loaded into the logic to ensure that the logic is
functioning properly and to create the expected test data or
results. Scannable latches allow data values to be directly
loaded to the scannable latch. Non-scan latches are not
directly loadable. As a result, a non-scan latch must have a
value clocked in. Scannable latches require more area and
may be slightly slower than non-scan latches. As a result, it
is financially advantageous to use as large a proportion of
non-scan latches as possible.
0006. In order to be able to test non-scan latches with
logic built-in self-test, the depth of non-scan latches is
typically limited to a depth of three or less in a data pipeline.
Additionally, no loop-backs from non-scan latches could be
tested because Such loops prevented loading predictable
values in the non-scan latches from predictable Scanlatches.
A loop back refers to an output of a non-scan latch inter
connect to an input of another non-scan latch which is
located before the non-scan latch with respect to data flow.
0007 Consequently, a series of non-scan latches or mul
tiple non-scan latches configured in a loop or ring is called
a ring of non-scan latches. Testing of this type of circuit has
been discouraged because the ring of non-scan latches
appears as an infinite number of non-Scanlatches to the logic
built-in self-test. The infinite appearance of the ring of
non-scan latches violates the depth limit and no loop
requirements of logic built-in self-test. Consequently, testing
rings of non-scan latches using logic built-in self-test has
been impracticable.

SUMMARY

0008. The illustrative embodiments provide a method
and apparatus for a logic built-in self-test. A logic built-in
self-test value is loaded into a scannable latch from the logic
built-in self-test. An override control signal is asserted in
response to loading the logic built-in self-test value into the
scannable latch. A non-scan latch is forced to load the logic

Oct. 4, 2007

built-in self-test value from the scannable latch in response
to asserting the override control signal. Logic paths in the
ring of non-scan latches are exercised. The non-Scanlatch is
part of the logical paths. The test results are captured from
the logic paths and the test results are compared against
expected test results to determine if the logic paths within
the ring of non-scan latches are functioning properly.

BRIEF DESCRIPTION OF THE DRAWINGS

0009. The novel features believed characteristic of the
illustrative embodiments are set forth in the appended
claims. The illustrative embodiments themselves, however,
as well as a preferred mode of use, further objectives and
advantages thereof, will best be understood by reference to
the following detailed description of the illustrative embodi
ments when read in conjunction with the accompanying
drawings, wherein:
0010 FIG. 1 is a pictorial representation of a data pro
cessing system in which illustrative embodiments may be
implemented;
0011 FIG. 2 is a block diagram of a data processing
system in which illustrative embodiments may be imple
mented;
0012 FIG. 3 is a block diagram of a computer chip with
logic built-in self-test in accordance with an illustrative
embodiment;
0013 FIG. 4 is a block diagram for a current logic
pipeline;

0014 FIG. 5 is a block diagram for a non-scan latch stage
in accordance with an illustrative embodiment;
0015 FIGS. 6A-6B is a block diagram of a non-scan
latch ring in accordance with an illustrative embodiment;
0016 FIG. 7 is a block diagram of a non-scan latch stage
for use with logic built-in self-test in accordance with an
illustrative embodiment;
0017 FIG. 8 is a timing diagram illustrating loading a
non-scan latch in accordance with an illustrative embodi
ment; and
0018 FIG. 9 is a flowchart for loading test pattern values
in a non-scan latch ring in accordance with an illustrative
embodiment.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0019. With reference now to the figures and in particular
with reference to FIG. 1, a pictorial representation of a data
processing system is shown in which the illustrative embodi
ments may be implemented. Computer 100 is depicted
which includes system unit 102, video display terminal 104,
keyboard 106, storage devices 108, which may include
floppy drives and other types of permanent and removable
storage media, and mouse 110. Additional input devices may
be included with personal computer 100, such as, for
example, a joystick, touchpad, touch screen, trackball,
microphone, and the like. Computer 100 may be any suitable
computer, such as an IBM(R) eServer'TM computer or Intel
liStation(R) computer, which are products of International
Business Machines Corporation, located in Armonk, N.Y.
Although the depicted representation shows a personal com

US 2007/0234159 A1

puter, other embodiments may be implemented in other
types of data processing systems, such as a network com
puter. Computer 100 also preferably includes a graphical
user interface (GUI) that may be implemented by means of
systems Software residing in computer readable media in
operation within computer 100.
0020. With reference now to FIG. 2, a block diagram of
a data processing system is shown in which illustrative
embodiments may be implemented. Data processing system
200 is an example of a computer, such as computer 100 in
FIG. 1, in which code or instructions implementing the
processes of the illustrative embodiments may be located. In
the depicted example, data processing system 200 employs
a hub architecture including a north bridge and memory
controller hub (MCH) 202 and a south bridge and input/
output (I/O) controller hub (ICH) 204. Processor 206, main
memory 208, and graphics processor 210 are coupled to
north bridge and memory controller hub 202. Graphics
processor 210 may be coupled to the MCH through an
accelerated graphics port (AGP), for example.
0021. In the depicted example, local area network (LAN)
adapter 212 is coupled to southbridge and I/O controller hub
204 and audio adapter 216, keyboard and mouse adapter
220, modem 222, read only memory (ROM) 224, universal
serial bus (USB) ports and other communications ports 232,
and PCI/PCIe devices 234 are coupled to south bridge and
I/O controller hub 204 through bus 238, and hard disk drive
(HDD) 226 and CD-ROM drive 230 are coupled to south
bridge and I/O controller hub 204 through bus 240. PCI/
PCIe devices may include, for example, Ethernet adapters,
add-in cards, and PC cards for notebook computers. PCI
uses a card bus controller, while PCIe does not. ROM 224
may be, for example, a flash binary input/output system
(BIOS). Hard disk drive 226 and CD-ROM drive 230 may
use, for example, an integrated drive electronics (IDE) or
serial advanced technology attachment (SATA) interface. A
super I/O (SIO) device 236 may be coupled to south bridge
and I/O controller hub 204.

0022. An operating system runs on processor 206 and
coordinates and provides control of various components
within data processing system 200 in FIG. 2. The operating
system may be a commercially available operating system
such as Microsoft(R) Windows(R XP (Microsoft and Win
dows are trademarks of Microsoft Corporation in the United
States, other countries, or both). An object oriented pro
gramming system, Such as the JavaTM programming system,
may run in conjunction with the operating system and
provides calls to the operating system from Java programs or
applications executing on data processing system 200 (Java
and all Java-based trademarks are trademarks of Sun Micro
systems, Inc. in the United States, other countries, or both).
0023 Instructions for the operating system, the object
oriented programming system, and applications or programs
are located on Storage devices, such as hard disk drive 226,
and may be loaded into main memory 208 for execution by
processor 206. The processes for different embodiments may
be performed by processor 206 using computer implemented
instructions, which may be located in a memory Such as, for
example, main memory 208, read only memory 224, or in
one or more peripheral devices.
0024. The hardware in FIGS. 1-2 may vary depending on
the implementation. Other internal hardware or peripheral

Oct. 4, 2007

devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted in FIGS. 1-2.
Also, the processes of the illustrative embodiments may be
applied to a multiprocessor data processing system.
0025. In some illustrative examples, data processing sys
tem 200 may be a personal digital assistant (PDA), which is
generally configured with flash memory to provide non
Volatile memory for storing operating system files and/or
user-generated data. A bus system may be comprised of one
or more buses, such as a system bus, an I/O bus and a PCI
bus. Of course the bus system may be implemented using
any type of communications fabric or architecture that
provides for a transfer of data between different components
or devices attached to the fabric or architecture. A commu
nications unit may include one or more devices used to
transmit and receive data, such as a modem or a network
adapter. A memory may be, for example, main memory 208
or a cache Such as found in north bridge and memory
controller hub 202. A processing unit may include one or
more processors or CPUs. The depicted examples in FIGS.
1-2 and above-described examples are not meant to imply
architectural limitations. For example, data processing sys
tem 200 also may be a tablet computer, laptop computer, or
telephone device in addition to taking the form of a PDA.
0026. The illustrative embodiments provide for a com
puter implemented method, apparatus, and computer usable
program code for compiling source code. The methods in the
depicted embodiments may be performed in a data process
ing system, Such as data processing system 100 shown in
FIG. 1 or data processing system 200 shown in FIG. 2.
0027 FIG. 3 is a block diagram of a computer chip with
logic built-in self-test in accordance with an illustrative
embodiment. FIG. 3 is a chip that may be used in any part
of a data processing system, Such as data processing system
200 of FIG. 2. Chip 300 may be a processor, communica
tions component, memory, graphics component, or other
data processing component. Chip 300 includes logic 302
that implements the functionality of chip 300. Chip 300 may
or may not include memory 304. Memory 304 may be used
to store, read, and write values in chip 300. Data is passed
between memory 304 and logic 302 by bus 306. Logic
built-in self-test 308 (LBIST) tests the functionality of chip
300 and ensures that logic 302 processes data properly.
0028. For example, LBIST308 may load a logic built-in
self-test pattern from memory 304 into logic 302 for testing.
The logic built-in self-test pattern includes multiple test
values that are loaded into components within logic 302 for
functional testing of logic 302. Chip 300 testing may be
performed after manufacture, installation, at start-up, or to
trouble shoot chip 300. Chip 300 passes the testing if the test
data produced by logic 302 match the expected test results.
The test results may be in the form of a final signature that
is compared against an expected value. Pins 310 may be
used to interconnect chip 300 with the data processing
system or to interconnect chip 300 with other hardware
components.
0029 Chip 300 may include other components and mod
ules necessary to perform the designated functionality.
LBIST 308 contains the apparatus and processes of the
illustrative embodiment.

0030 FIG. 4 is a block diagram for a conventional logic
pipeline. Pipeline 400 is an example of different latches

US 2007/0234159 A1

within a pipeline stage. Scannable latch 402 inputs data
signals into combinatorial logic 404 which in turn inputs the
signals to non-scan latch 406. Non-scan latch 406 inputs the
signals to combinatorial logic 408, which in turn inputs the
signals to scannable latch 410. The data signal is a logic high
or a logic low corresponding to a 1 or a 0. The currently
available systems allow up to three non-Scanlatches, such as
non-scan latch 406 in pipeline 400 before a scannable latch,
such as scannable latch 402 must be inserted. No feedback
paths from non-scan latch 406 to its inputs are allowed nor
may the output of non-scan latch 406 input to a non-scan
latch input at an earlier stage of pipeline 400.

0031. During logic built-in self-test testing, the scannable
latches, such as Scannable latch 402 are loaded or scanned
with a test pattern value. Logic built-in self-test logic, Such
as LBIST 308 of FIG. 3, loads the test pattern in this
example. For example, the pattern may be a set of binary
values that produce known output results when passed
through or processed by components of pipeline 400. Then
the non-scan latches, such as non-scan latch 406, are loaded
by clocking non-scan latch 406 to load the test pattern value
from scannable latch 402 through combinatorial logic 408 to
non-scan latch 406. In these examples, one clock pulse per
non-scan stage is used to load the non-scan latches. After
loading the non-scan latches, one or more clock cycles are
run on all the latches to complete the testing using the
pattern values. After the clock cycles are run on all the
latches, the results of the test are scanned out by logic
built-in self-test logic and the next test pattern is scanned in
by logic built-in self-test logic.

0032 To further clarify, the logic built-in self-test tests
the functionality of pipeline 400 after loading test pattern
values into the Scannable latches. In these examples, the test
pattern values are loaded during a channel fill operation.
This additional operation is a non-scan latch fill step in
which non-scan latch 406 is loaded from scannable latches,
such as scannable latch 402, in a fixed number of cycles
equal to the allowed depth of the non-scan pipeline 400. The
fixed number of cycles ensure that non-scan latch 406
contain predictable values prior to the logic built-in self-test
functional test.

0033. In another implementation, additional non-scan
latches load non-scan latches, such as non-scan latch 406.
When other non-scan latches load non-scan latch 406,
non-scan latch 406 cannot be any further than two latches in
pipeline 400 away from another scannable latch. The prox
imity of non-scan latch 406 to scannable latch 402 ensures
that enough cycles in length are present to allow all the
non-scan latches in pipeline 400 to be loaded.

0034. A functional test sequence tests non-scan latch 406
after non-scan latch has been loaded. The functional test
sequence causes the normal logic paths including combina
torial logic 404 and combinatorial logic 408 to be exercised,
with the result loaded into Scannable latches, such as scan
nable latch 410. Typically the functional test runs for one,
two, or three cycles prior to completion of the functional test
sequence as directed by the logic built-in self-test. The
channel fill operation also serves as a channel unload
operation in which the state after the tests results of func
tional test sequence is captured in a component Such as a
multiple input signature register (MISR) as output from data
out scannable latch 410. After the designated number of

Oct. 4, 2007

cycles or iterations has been run, the logic built-in self-test
captures the tests results and compares the test results
against the expected value to determine pass/fail. Test results
are captured by reading the values in data out Scannable
latch 410. For example, the value stored in data out scan
nable latch 410 may be temporarily read and then stored in
memory for comparison by logic built-in self-test.

0035 FIG. 5 is a block diagram for a non-scan latch stage
in accordance with an illustrative embodiment. Non-scan
latch stage 500 includes various components including
exemplary latches and logical gates. Non-scan latch 500
would be untestable when connected in a ring shown in FIG.
6A-6B. Non-scan latch stage 500 includes four rings each
with an input and output through non-scan latch stage 500.
The ring inputs include ring 0 in 502, ring 1 in 504, ring 2
in 506, and ring 3 in 508. The ring outputs include ring 0 out
510, ring 1 out 512, ring 2 out 514, and ring 3 out 516. Data
in latch 518 is a scannable latch with inputs into logic gates
520. Logic gates 520 may be a multiplexor, AND, OR,
NAND, NOR, XOR, or other common digital logical gates
or combination of gates. Control latches 522 are scannable
latches that input data into logic gates 520. Ring 0 in 502,
ring 1 in 504, ring 2 in 506, and ring 3 in 508 are also input
into logical gates 520.
003.6 Logical gates 520 output passes through ramp
latches 524. Ramp latches 524 are non-scan latches. The
output of ramp latches 524 passes to logical gate 526.
Control latches 528 also have inputs into logical gate 526.
The output of logical gate 526 passes to data out latch 530.
Data out latch 530 is also a scannable latch.

0037 Normal logic built-in self-test testing in full scan
environments, such as non-scan latch stage 500, includes a
channel fill operation. During the channel fill operation,
scannable latches such as data in latch 518 may load values
from a pseudo random pattern generator (PRPG). Simulta
neously, test results or a signature of the prior test are read.
The prior test results are typically ignored during the initial
load.

0038 FIG. 6A-6B is a block diagram of a non-scan latch
ring in accordance with an illustrative embodiment. Non
scan latch ring 600 includes a ring of non-scan latch stages,
such as non-scan latch stage 500 of FIG. 5 interconnected in
series to form a ring. The depth of non-scan latch ring 600
appears to be infinite because of the ring architecture as
opposed to discrete non-scan latch stages or groups of
interconnected non-scan latch stages.
0039) Non-scan latch ring 600 is an exemplary non-scan
latch loop. A ring or loop of non-scan latches may take
involve different structures or forms in addition to that
shown in these examples. Non-Scanlatch ring is distinguish
able by a circular flow of data as outputs of latches, stages,
or logic are inputs to other latches, stages or logic.

0040 FIG. 7 is a block diagram of a non-scan latch stage
for use with logic built-in self-test in accordance with an
illustrative embodiment. Non-scan latch stage 700 may be
implemented in a computer chip and more specifically in
logic, such as chip 300 and logic 302 of FIG.3 respectively.
Non-scan latch stage 700 is interconnected in a ring to form
a ring of non-scan latches, such as non-scan latch ring 600
of FIG. 6. This configuration is easily tested using a logic
built-in self-test.

US 2007/0234159 A1

0041 Logic built-in self-test control latch 702 and con
trol latches 704 are input into logic block 706. Control
latches 704 may be control elements, such as control latches
522 of FIG. 5. Logic built-in self-test control latch 702 is
connected to logic block 706. Logic block 706 may be
logical gates, such as logic gates 520 of FIG. 5. The output
of logic block 706 provides a control signal to multiplexor
708. Logic built-in self-test control latch 702 is controlled
directly by a logic built-in self-test engine, such as logic
built-in self-test 308 of FIG. 3. Multiplexor 708 may be a
logic gate, such as logic gate 526 of FIG. 5.
0042 Multiplexor 708 has two inputs, input latch 710, a
scannable latch, and ramp latch 712, a non-scan latch. Logic
built-in self-test control latch 702 provides an override
control signal that passes through logic block 706 forcing
multiplexor 708 to pass the value in input latch 710 through
to non-scan latch 714. As a result, at the beginning of a
channel fill operation used to load a logic built-in self-test
pattern value, a known value is loaded into input latch 710.
Logic built-in self-test control latch 702 is used as a control
signal to override control latches 704 in order to ensure that
input latch 710, a scannable latch with a value of the logic
built-in self-test pattern, is loaded into non-scan latch 714.
The value in input latch 710 is passed through multiplexor
708 to non-scan latch 714 so that the logic built-in self-test
sequence may begin. In other embodiments, logic built-in
self-test control latch 702 may be replaced by a scannable
latch or other logical component. Additionally, logic built-in
self-test logic may be used to pass through the override
control signal to logic block 706.
0.043 Various illustrative embodiments force a non-scan
latch, Such as non-scan latch 714 to load a value from a
scannable latch, such as input latch 710 so that logic built-in
self-test pattern values may be correctly loaded into non
scan latches interconnected in a ring.
0044) In another illustrative embodiment, non-scan latch
714 may be forced to any known value prior to clocking or
executing the first test. As a result, non-scan latch 714
receives the known value and immediately is ready for
testing.
0045 FIG. 8 is a timing diagram illustrating loading a
non-scan latch in accordance with an illustrative embodi
ment. Timing diagram 800 corresponds to a non-scan latch
stage, such as non-scan latch stage 700 of FIG. 7. Timing
diagram 800 includes various signals, including clock 802.
scan 804, scan latch clock enable 806, non-scan latch clock
enable 808, and logic built-in self-test fill 810.
0046 Timing diagram 800 also includes various periods
associated with the various signals, including period 1812,
period 2814, period 3816, period 4818, period 5820. During
period 1812, the logic built-in self-test loads the test pattern
and reads the prior test result. The test result is scanned and
the pattern values loaded by a logic built-in self-test engine,
such as logic built-in self-test 308 of FIG. 3. Period 2814
represents the non-scan latch load. During this step logic
built-in self-test fill 810 forces non-scannable latches to load
from Scannable logic.
0047 As applied to an exemplary non-scan latch stage,
such as non-scan latch stage 700 of FIG. 7, a control signal
from logic built-in self-test control latch 702 may be used to
pass a value in input latch 710 through multiplexor 708 to
non-scan latch 714.

Oct. 4, 2007

0048. During period 3816, logic built-in self-test per
forms a scan shift allowing the logic to be tested at speed
during the test cycle of period 4818. The normal logic paths
are exercised during period 4818. The test cycle of period
4818 may be multiple cycles. For example, the test cycle is
frequently less than four cycles. Period 5820 is the same as
period 1812. The test result is read to the logic built-in
self-test.

0049 FIG. 9 is a flowchart for loading test pattern values
in a non-scan latch ring in accordance with an illustrative
embodiment. FIG. 9 may be implemented in a intercon
nected ring of non-scan latch stages. Such as non-Scanlatch
stage 700 of FIG. 7. The non-scan latch stages may inter
connect to form a ring of non-scan latches such as non-scan
latch ring 600 of FIG. 6.

0050. The process begins by the logic built-in self-test
loading the scannable latches and reading the prior test result
(step 902). The scannable latches are loaded with test pattern
values that may be stored in the logic built-in self-test or in
a memory controlled by the logic built-in self-test. For
example, a logic 1 may be loaded into a scannable latch in
step 902. The scannable latches may be input latches, such
as input latch 710 of FIG. 7. The prior test results of the logic
built-in self-test testing of the non-scan latch ring are
ignored during step 902 the first time through the loop.

0051 Next, the logic built-in self-test forces the non-scan
latches to load data from only the scannable latches (step
904). Logic built-in self-test forces all non-scan latches with
inputs that may come from both scannable and non-scan
nable latches to load data from only the scannable latches.
A non-Scanlatch, Such as logic built-in self-test control latch
702 may be used to force another non-scan latch, such as
non-scan latch 714 of FIG. 7 to load a known value for the
functional test. The non-Scanlatch may generate an override
control signal that forces a test value through to the latch.
For example, the override control signal may be used to
force logic between the scannable latch and non-scan latch
to pass through the test value stored in the scannable latch.

0052 Next, the process loads the non-scan latches resid
ing in pipelines and shifts the scannable latches to stress
timing (step 906). By stressing timing, the timing response
of all logic within the pipeline is tested for conflicts, errors,
and unstable logic. As a result, any timing conflicts of
components in the logic may cause a different value to be
generated for the test results. Incorrect test results indicate
that the logic is not functioning correctly for the designed
purpose of the logic. Step 906 may be extended enough
cycles to allow all the non-scan latches to be loaded for the
functional test. The illustrative embodiments allow non-scan
latches to be loaded from both non-scan latches and scan
nable latches. Additionally, non-scan latches within a ring of
non-scan latches are not limited to be no more than two
latches in the pipeline away from a scannable latch.

0053 Next, the ring of non-scan latches exercise the
normal logic paths to be exercised (step 908). Exercising
normal logic paths refers to running or clocking the non
scan circuits as will occur during normal operation of the
chip in which the non-scan circuit is embedded. By testing
the normal logic paths in step 908, the logic built-in self-test
ensures that the ring of non-scan latches produce correct
results during practical use. Logic paths represent the dif

US 2007/0234159 A1

ferent ways data may flow through the ring of non-scan
latches. During step 908 the test result are loaded into
scannable latches.

0054 Next, the process determines if the test coverage is
adequate (step 910). For example, a programmable limit
may be used to control the number of iterations. The logic
built-in self-test loop count may be established during
design using a test tool. In one example, the test coverage is
considered adequate when a number of executions exposes
approximately 98 percent of all faults. The number of
executions is used by the process in step 910 to ensure that
the test coverage is adequate. If the test coverage is not
adequate, the process returns to step 902. If the test coverage
is adequate in step 910, the process captures the test results
and compares against expected value to determine pass/fail
(step 912). In these illustrative examples, steps 902-908 may
be run for multiple cycles or loops prior to terminating the
functional test based on the determination of step 910.
0.055 The various illustrative embodiments provide a
computer implemented method and apparatus for testing a
ring of non-scan latches with logic built-in self-test. Using
additional logic built-in self-test logic, non-scan latches are
forced to load a logic built-in self-test pattern value from
upstream Scannable latches. By loading from a non-scan
latch or scannable latches, the ring of non-scan latches may
be effectively tested using logic built-in self-test.

0056. The illustrative embodiments can take the form of
an entirely hardware embodiment, an entirely software
embodiment or an embodiment containing both hardware
and software elements. The illustrative embodiments are
implemented in software, which includes but is not limited
to firmware, resident software, microcode, etc.

0057. Furthermore, the illustrative embodiments can take
the form of a computer program product accessible from a
computer-usable or computer-readable medium providing
program code for use by or in connection with a computer
or any instruction execution system. For the purposes of this
description, a computer-usable or computer readable
medium can be any tangible apparatus that can contain,
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution
system, apparatus, or device.

0.058. The medium can be an electronic, magnetic, opti
cal, electromagnetic, infrared, or semiconductor System (or
apparatus or device) or a propagation medium. Examples of
a computer-readable medium include a semiconductor or
Solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), a rigid magnetic disk and an optical disk.
Current examples of optical disks include compact disk-read
only memory (CD-ROM), compact disk-read/write (CD-R/
W) and DVD.
0059 A data processing system suitable for storing and/
or executing program code will include at least one proces
Sor coupled directly or indirectly to memory elements
through a system bus. The memory elements can include
local memory employed during actual execution of the
program code, bulk storage, and cache memories which
provide temporary storage of at least Some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.

Oct. 4, 2007

0060 Input/output or I/O devices (including but not
limited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers.

0061 Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modem and Ethernet cards are just
a few of the currently available types of network adapters.
0062) The description of the illustrative embodiments
have been presented for purposes of illustration and descrip
tion, and is not intended to be exhaustive or limited to the
illustrative embodiments in the form disclosed. Many modi
fications and variations will be apparent to those of ordinary
skill in the art. The embodiment was chosen and described
in order to best explain the principles of the illustrative
embodiments, the practical application, and to enable others
of ordinary skill in the art to understand the illustrative
embodiments for various embodiments with various modi
fications as are Suited to the particular use contemplated.

What is claimed is:
1. A method for loading a ring of non-scan latches for a

logic built-in self-test comprising:

loading a logic built-in self-test value into a scannable
latch from the logic built-in self-test; and

responsive to loading the logic built-in self-test value into
the scannable latch, asserting an override control sig
nal;

responsive to asserting the override control signal, forcing
a non-scan latch to load the logic built-in self-test value
from the scannable latch; and

exercising logic paths in the ring of non-scan latches,
wherein the non-scan latch is part of the logical paths;
and

capturing test results from the logic paths and comparing
the test results against expected test results to determine
if the logic paths within the ring of non-scan latches are
functioning properly.

2. The computer implemented method of claim 1, wherein
the override control signal is part of logic built-in self-test
logic used to force the non-scan latch to load the logic
built-in self-test value.

3. The computer implemented method of claim 1, further
comprising:

shifting the scannable latches to stress timing.
4. The computer implemented method of claim 1, wherein

the exercising step further comprises:
clocking the logic paths until test coverage of the logical

paths is adequate.
5. The computer implemented method of claim 1, wherein

the override control signal is passed to the non-scan control
latch from a logic built-in self-test engine.

6. The computer implemented method of claim 1, wherein
the logic built-in self-test value is a value of a logic built-in
self-test pattern loaded into the ring of non-scan latches to
test functionality.

US 2007/0234159 A1

7. A ring of non-scan latches comprising:
a plurality of non-scan latch stages, wherein the plurality

of non-scan latch stages are interconnected to form the
ring of non-scan latches, wherein the plurality of non
Scan latch stages includes a plurality of non-scan
latches;

control logic operably connected to at least one of the
plurality of non-scan latches, wherein during logic
built-in self-test testing, an override control signal
passed through the control logic forces the at least one
of the plurality of non-scan latches to load a logic
built-in self-test value from an input latch operably
connected to the at least one of the plurality of non-scan
latches, wherein the input latch is a scannable latch.

8. The ring of non-scan latches of claim 7, wherein the
input latch connects to the at least one of the plurality of
non-scan latches through a logic gate.

9. The ring of non-scan latches of claim 8, wherein the
control logic connects to the at least one of the plurality of
non-scan latches through a logic gate.

10. The ring of non-scan latches of claim 11, wherein the
control logic controls the logic gate.

11. The ring of non-scan latches of claim 10, wherein the
override control signal controls the control logic.

12. The ring of non-scan latches of claim 11, wherein the
control logic and logic gate are a logical gate.

13. A data processing chip with logic built-in self-test
comprising:

digital logic, wherein the digital logic includes a ring of
non-scan latches;

a logic built-in self-test operably connected to the digital
logic;

wherein the logic built-in self-test in the ring of non-scan
latches asserts an override control signal in response to

Oct. 4, 2007

a scannable latch being loaded with a logic built-in
self-test value, wherein the override control signal
forces a non-scan latch to load the logic built-in self
test value from the scannable latch for verifying func
tionality of the ring of non-scan latches and the corre
sponding digital logic.

14. The data processing chip of claim 13, wherein the chip
is any of a processor, communications component, memory,
or graphics component.

15. The data processing chip of claim 13, wherein the
non-scan latch is forced to any known value prior to clock
ing a first logic built-in self-test pattern for immediately
testing the ring of non-scan latches.

16. The data processing chip of claim 13, further com
prising:

a memory operably connected to the digital logic for
storing and accessing a logic built-in self-test pattern;

wherein the logic built-in self-test value is a part of the
logic built-in self-test pattern.

17. The data processing chip of claim 13, wherein a
logical gate is operably connected as an input to the non
scan latch.

18. The data processing chip of claim 17, wherein the
override control signal forces the logical gate to pass the
logic built-in self-test value from the scannable latch to the
non-scan latch.

19. The data processing chip of claim 18, wherein the
logical gate is any of an AND, OR, NAND, XOR, and
multiplexor.

20. The data processing chip of claim 13, wherein results
of the logic built-in self-test are captured from the non-scan
latch.

