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(57) Abstract: The present invention related to a compact biosensor chip for fluorescence assays enabling detection of trace amounts
of biomolecules. It employs surface plasmons for the enhanced excitation and efficient collecting of fluorescence light in order to
amplity detected fluorescence light intensity. The integration of key optical elements onto the sensor chip by using concentric and

o linear gratings allows simplifying of design of overall biosensor setup.
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COMPACT PLASMON-ENHANCED FLUORESCENCE BIOSENSOR

FIELD OF THE INVENTION

The present invention is related to the signal amplification and enhancing the
sensitivity in fluorescence-based assays by using surface plasmon optics combined
with diffractive optical elements. It enables design of a compact biosensor for the

detection of trace amounts of biomolecules in liquid samples.

BACKGROUND OF THE INVENTION

Sensitive, portable and cost-effective biosensors are intensively pursued for the
detection of chemical and biological analytes in important areas of point-of-care
medical diagnostics, food control, security and environmental monitoring.
Fluorescence-based detection is one of the mostly used methods due to its intrinsic
capability for sensitive detection. In order to further advance its performance, various
approaches were researched including surface plasmon-enhanced fluorescence (PEF)
(J. R. Lakowicz, Plasmonics, 1, (2006) 5-33; Stewart, et al., Chemical Reviews, 108,
(2008) 494-521). Surface plasmons (SPs) are optical waves that originate from
coupled collective oscillations of electron density at metallic surfaces. These waves
exhibit strongly increased intensity and highly confined profile of electromagnetic field.
The coupling of fluorophore labels with surface plasmon field offers an attractive
means for the amplification of fluorescence signal-to-noise-ratio in bioassays through
the combination of increased fluorophore excitation rate, decreased background
signal, directional fluorescence emission and enhanced fluorophore quantum yield. Up
to now, two main approaches that rely on SPs propagating along continuous metallic
films were pursued and implementated to PEF biosensors. In surface plasmon-
enhanced fluorescence spectroscopy (SPFS) (Dostalek and Knoll, Biointerphases, 3,
(2008) 12-22; Liebermann and Knoll, Colloids and Surfaces a-Physicochemical and
Engineering Aspects, 171, (2000) 115-130; Herrmann, et al., US 6194223 B1), the
binding of fluorophore-labeled molecules to biomolecular recognition elements
attached on a metallic sensor surface is probed by the enhanced field intensity of SPs
at the wavelength matching the absorption band of used fluorophore labels. This
method takes advantage of the increased excitation rate of fluorophores that is directly
translated to an enhanced fluorescence signal, see Fig. 1. In surface plasmon-coupled

fluorescence emission (SPCE) (J. R. Lakowicz, et al., Biochemical and Biophysical
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Research Communications, 307, (2003) 435-439), highly directional fluorescence light
beam emitted via SPs at the emission wavelength is detected. Bulk optical prism
elements (Yuk, et al., Biosensors & Bioelectronics, 25, (2010) 1344-1349; J.R.
Lakowicz, et al., US 20050053974; Gryczynski, et al., US 20090218516 A1), and
metallic diffraction gratings (Kitson, et al., Optics Communications, 122, (1996) 147-
154) were reported for the extracting the fluorescence light trapped by SPs to the
radiation propagating to specific directions in the far field. A sensor chip with series of
hemispherical dielectric elements was proposed for disposable optical biosensor chips
with SPCE (Yuk, et al., Biosensors & Bioelectronics, 25, (2010) 1344-1349). Owing to
the confined profile of SP field at the metallic surface, only the fluorescence signal
originating from fluorophores in close proximity to the metallic surface (distance up to
~100 nm) is detected by SPFS and SPCE methods, leading to a greatly suppressed
background.

Various dielectric diffraction elements such as concentric gratings were used for
manipulation of light. However, they were not combined with metallic structures for the
amplificiation of fluorescence signal by using surface plasmons. These include the
following works:

US2003043475A1 describes a compact diffraction type lens which can
converge two wavelengths of light onto their corresponding optical recording media
having disc thickness values different from each other.

US2010091370A1 describes an optical resonator structure including a
substrate; a center disc formed on the substrate; a plurality of concentric grating rings
surrounding the center disc, the concentric rings spaced apart from the center disc and
from one another by regions of lower index of refraction material with respect thereto

US2012038918A1 describes an optical element which has the dual
functionalities of a grating and a Fresnel lens. The grating side may be coated with a
dielectric film.

EP1644871B1 discloses an optical security element having a substrate layer in
which a relief structure defined by relief parameters is shaped out in a surface region.

US20060018021A1 discloses an optical security element including an optical
grating structure which exhibits pleochroic properties when rotated or viewed from
changing observation locations. The optical grating structure is formed from a plurality

of selectively arranged grating elements.
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SHORT DESCRIPTION OF THE INVENTION

The invention describes a method and apparatus for an amplification of
fluorescence signal in assays for the detection of biomolecules through simultaneous
excitation and collection of emitted fluorescence light by using surface plasmons. It is
based on a planar sensor chip (biochip) with diffractive optical elements (DOE)
combined with Kretschmann configuration for the excitation and back-coupling of
surface plasmons into the substrate. Diffractive optical elements are prepared on the
biochip surface and include a concentric relief grating (CG) and linear relief grating
(LG). CG is designed to function as a holographic lens for the imaging of highly
directional surface plasmon-coupled fluorescence emission from fluorophore labels to
a spot below the biochip where a detector is placed. Additional LG element is
employed for the generating of surface plasmons at the excitation wavelength in order
to increase the excitation rate of fluorophores attached to biomolecules that are
specifically captured on the biochip. The reported approach offers the advantage of
increased intensity of fluorescence signal and reduced background. The
implementation of key optical elements on the biochip surface in form of DOEs
simplifies design of the overall biosensor optical setup which does not require optical
matching of a sensor chip to other bulk optical elements (such as prism or microscope
lens), and the biochip can be fabricated by mass production-compatible technologies

such as nanoimprint lithography.

DETAILED DESCRIPTION OF THE INVENTION

The present invention concerns a method and implementation of combined
surface plasmon-enhanced fluorescence spectroscopy (SPFS) and surface plasmon-
coupled fluorescence emission (SPCE) for sensitive detection of molecular and
biological analytes. It allows simplification of the biosensor design that is suitable for
portable compact devices. It relies on diffractive optical elements integrated to the
biochip for the coupling of an excitation beam to surface plasmons (linear grating - LG)
and for the imaging of surface plasmon-coupled fluorescence emission light to a spot
below the biochip where a detector is placed (concentric grating - CG), see Fig.2.
These elements replace traditionally used bulk optical components such as prisms and
microscope lenses and avoid the necessity of their optical matching to the sensor chip.
The whole biochip can be fabricated by mass production-compatible technologies such

as nanoimprint lithography, hot embossing or injection molding to inexpensive polymer
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materials. In addition, it enables multi-analyte detection of molecular analytes by using
microarrays since CG acts as a diffractive lens. Owing to this feature, the fluorescence
light intensity emitted from different areas on the biochip can be projected to spatially
separated spots in the image plane and independently detected with a spatially
sensitive detector (e.g., charge-coupled device — CCD).

There is thus provided according to one aspect of the invention a flat dielectric
substrate carrying a relief concentric grating element.

The dielectric substrate may be constructed of a material that is transparent to
light wavelengths that are suitable for the excitation and emission of fluorescence light
in visible and near infrared part of spectrum, such as polycarbonate, quartz or glass.

According to another aspect of the invention there is provided a flat substrate,
comprising at least one linear grating element and at least one concentric grating
element.

According to yet another aspect of the invention there is provided a structured
polymer layer on the substrate, wherein said relief concentric grating has a depth of at
least 10 nm and period between 0.2 and 1 micrometer.

According to yet another aspect of the invention there is provided a polymer
layer, wherein said polymer layer is structured by using interference lithography,
electron beam lithography or nanoimprint lithography.

According to yet another aspect of the invention there is provided a sensor chip
comprising a transparent glass or plastic substrate and on the outer surface a polymer
layer with at least one concentric grating element and at least one sensing area is
prepared.

According to yet another aspect of the invention there is provided a chip, further
comprising a metal layer on the sensing area in the middle of the concentric grating.

According to yet another aspect of the invention there is provided a chip,
wherein said metal is gold, silver, or aluminum.

The metal is to be selected to support surface plasmons in the visible and near
infrared part of spectrum.

According to yet another aspect of the invention there is provided a chip,
wherein said metal layer on a dielectric substrate exhibits a thickness between 30 and
70 nm and support surface plasmons.

The thickness of the metal layer is in such a manner to support surface

plasmons at the outer metal surface that are leaky into the dielectric substrate.
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According to yet another aspect of the invention there is provided a chip,
wherein biomolecular recognition elements for selected chemical or biological
compounds are attached to the metallic surface on the sensing area.

The biomolecular recognition element is able to capture target analyte. Various
types of biomolecular recognition elements are known in the art, e.g. antibodies,
aptamers, peptides, molecularly imprinted polymers, etc. To enable analyte detection,
a biomolecular element specific to the target analyte is immobilized in the sensing area
on the biochip. It needs to be assured that the biological activity of the immobilized
biomolecular recognition elements is conserved and the biochip surface exhibits non-
fouling properties. The possibility to regenerate the biomolecular recognition elements
(i.e., break their complex with the analyte molecules and make them available for
another use) can be considered.

In general, methods for the immobilization of biomolecular recognition elements
on metal films exploit physicochemical interactions such as chemisorptions, covalent
binding, electrostatic coupling, and high-affinity molecular linkers in multilayer systems
(e.g., streptavidin—biotin, proteins A or G, and complementary oligonucleotides) and
photo-immobilization (e.g., albumin conjugated with aryldiaziridines as a photo-linker).
For example, n-alkylthiols or disulfides may spontaneously self-assemble on gold into
well-ordered arrays.

According to yet another aspect of the invention there is provided a chip,
wherein biomolecular recognition elements are covalently attached by using self-
assembled monolayer (SAM), in polymer brush or hydrogel film.

SAMs have been employed in many immaobilization methods for spatially
controlled attachment of biomolecular recognition elements to surfaces of sensors. To
provide a desired surface concentration of biomolecular recognition elements on metal,
mixed SAMs of long-chained (nD12 and higher) n-alkylthiols terminated with functional
group for further attachment of biomolecular recognition elements and short-chained
alkylthiols for a non-fouling background have been developed. To deliver molecular
recognition elements to different sensing areas, the immobilization chemistry needs to
be spatially controlled. Most of the current technologies of proteins arrays are based
on the surfaces and formats that were earlier developed for DNA arrays. Most DNA
array production technigues were developed for glass supports, but they can be
tailored to noble metal surfaces with appropriate immobilization chemistries.

Combination of SAMs with covalent coupling of biomolecular recognition elements or
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non-covalent streptavidin—biotin system as a linker for attachment of biotinylated
biomolecular recognition elements are most frequently used approaches to
development of protein arrays on metal.

According to yet another aspect of the invention there is provided a chip,
wherein fluorophores are employed as labels and after their capture at the sensing
area they emit light via surface plasmons that are out-coupled to the substrate by
reverse Kretschmann configuration. The characteristic surface plasmon-coupled
fluorescence emission cone is totally internally reflected at the bottom substrate
interface and hits the concentric grating element at the top biochip surface.

According to yet another aspect of the invention there is provided a chip,
wherein the concentric grating focuses the light beam emitted from the sensing area at
a narrow spot below the biochip.

According to yet another aspect of the invention there is provided a chip,
wherein the concentric grating focuses the light beam emitted from different locations
on the sensing area to different spots below the biochip.

According to yet another aspect of the invention there is provided a chip,
wherein the concentric grating exhibits a relief modulation with the depth between 20
and 200 nm and the relief modulation with period between 200 nm and 1 um is chirped
and serves as a diffractive lens.

According to yet another aspect of the invention there is provided a chip,
wherein the concentric grating that is coated by a metal layer to increase its diffraction
efficiency.

According to yet another aspect of the invention there is provided a chip,
wherein the concentric grating exhibits sinusoidal or blazed relief modulation providing
high diffraction efficiency.

According to yet another aspect of the invention there is provided a chip,
wherein the fluorophore labels at the sensing area are organic chromophores or
guantum dots emitting fluorescence light in visible or near infrared part of spectrum.

According to yet another aspect of the invention there is provided a chip,
wherein said fluorophores are exited with a light beam at lower wavelength than their
emission wavelength.

According to yet another aspect of the invention there is provided a chip,
wherein excitation light is monochromatic and it is coupled to the biochip by a linear

grating, propagates in the biochip substrate and hits the sensing area.
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According to yet another aspect of the invention there is provided a chip,
wherein the said excitation beam hits the sensing area at the angle at which surface
plasmons are resonantly excited providing enhanced field intensity at the top of the
sensing area.

According to yet another aspect of the invention there is provided a chip,
wherein the excitation beam excites the fluorophore labels adhered to close proximity
to the sensing area.

According to yet another aspect of the invention there is provided a chip,
wherein the linear grating exhibits a periodic relief corrugation with the modulation
depth between 20 and 200 nm and period between 200 nm and 1 um.

According to yet another aspect of the invention there is provided a chip,
wherein the periodic modulation of linear grating is sinusoidal or blazed and provides
high diffraction efficiency.

According to yet another aspect of the invention there is provided a chip,
wherein the linear grating is coated by additional metal layer to enhance its diffraction
efficiency.

According to yet another aspect of the invention there is provided an apparatus
for detecting fluorescence in biochemical assays by combined surface plasmon-
enhanced fluorescence and surface plasmon-coupled emission methods, comprising:

a) a chip as described above with at least one linear, at least one concentric
gratings and layer architecture supporting surface plasmons; and

b) an excitation source that emits a light beam incident at the linear grating
and that is capble exciting fluorophores in the sensing area by surface plasmons; and

C) a light detector arranged to selectively detect fluorescence light that is
generated by excited fluorophores, emitted in form of surface plasmon-coupled
emission, and imaged to a spot below the chip.

According to yet another aspect of the invention there is provided an apparatus,
comprising the chip as descripted above as an insertable element.

According to yet another aspect of the invention there is provided an apparatus,
wherein the chip is a disposable element

According to yet another aspect of the invention there is provided a method for
measuring the concentration of an analyte in a sample by combined surface plasmon-
enhanced fluorescence and surface plasmon-coupled fluorescence emission

comprising the steps of:
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a) contacting a sensor chip as described above with a sample enabling the
capture of target analyte on a surface and decorating the captured target analyte with
fluorophore labels by using sandwich, displacement or competitive assays;

b) exposing the fluorescence label to excitation electromagnetic energy in
an amount sufficient to achieve surface plasmon-enhanced excitation; and

Cc) measuring the emitted fluorescence light intensity in form of surface
plasmon-coupled emission that is out-coupled from the biochip and imaged to a

detector by using the concentric grating

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts the geometry supporting surface plasmon modes on a
continuous metallic film that interact with a fluorophore (left) and a Jablonski diagram
with plasmon-mediated transitions in the fluorophore (right).

Figure 2a shows a schematic of the biochip carrying diffractive optical elements
(DOE) for the in-coupling of the excitation laser beam to the biochip and subsequent
excitation of surface plasmons (LG) and for the imaging of surface plasmon-coupled
fluorescence light to a detector (CG). Figure 2b depicts the side view of the biochip
and shows the propagation of the excitation and fluorescence beams.

Figure 3 depicts schematics of the preparation of the concentric grating element
(CG) by using sequential recording into a photoresist based on interference lithography

Figure 4 shows the dependence of the concentric grating element (CG) period
on the distance from its center obtained from simulations (line) and measured on
prepared biochips (squares).

Figure 5 depicts a schematic of UV imprint lithography employed for the transfer
of LG and CG elements to the biochip.

Figure 6 depicts an optical setup for the observation of imaging properties of
concentric (CG) element.

Figure 7 depicts an optical setup employed for a model immunoassay
experiment based on the biochip with plasmon-enhanced fluorescence detection.

Figure 8 shows the dependence of emission probability from a randomly
oriented dipole via surface lossy waves (quenching), surface plasmons that are out-
coupled into the substrate (SPCE) and optical waves propagating in free space. Gold
layer with the thickness of 50 nm sandwiched between a substrate (n,) and water (n;)

with a dipole emitting at the wavelength A.;,=670 nm are assumed.
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Figure 9 shows simulated angular dependence of the fluorescence intensity F of
SPCE that is back-coupled to the substrate from a randomly oriented dipole at the
distance d=20 nm from the gold surface at the wavelength A.,,=670 nm (solid line), and
the electric field intensity enhancement |E/Eof* at d=20 nm provided by the excitation of
SPs at the wavelength A.,=633 nm (dashed line).

Figure 10 shows simulations of -1% order diffraction efficiency of a sinusoidal
concentric grating (CG) element (at the fixed location with A=346 nm) depending on
the grating depth for the TM polarized light beam incident at the emission angle 8,m=71
deg and emission wavelength of A;,,=670 nm.

Figure 11 shows simulations of +1° order diffraction efficiency of a sinusoidal
linear grating (LG) element for the normal incident TM polarized beam at the
wavelength of A.,=633 nm and the period of A=437 nm dependent on the grating
depth.

Figure 12a) shows top view of the prepared biochip carrying LG and CG
diffractive elements (left) and measured spatial distribution of SPCE cone that is out-
coupled from the biochip by using a CG element at increasing distance below the
biochip D=1, 5, 10 and 15 mm (right). b) The cross-section of the fluorescence spot at
the distance of D=15 mm from the bottom of the sensor for the angular width of
individual CG segments are =3 and 10 deg.

Figure 13 shows measured kinetics of a-mlgG binding to the surface with
immobilized migG (specific affinity partner) and rlgG (reference molecule) on the
prepared biochip with CG and LG elements. The inserted graph shows the magnified
fluorescence intensity F(f) for the concentration from 30 pM to 1 nM

Figure 14 shows calibration curve of the developed biochip for the detection of

a-mlgG analyte fitted with a linear function. The baseline noise and LOD are indicated.

EXAMPLES

1. Materials and methods

1.1. Materials

Polydimethylsiloxane (PDMS) prepolymer and its curing agent were purchased
from Dow Corning (SYLGARD® 184). Poly(methyl methacrylate) (PMMA) was from
Sigma-Aldrich Handels (Austria). 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbo

cyanine, 4-chlorobenzenesulfonate salt (DiD) was from Invitrogen. This dye exhibits
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the absorption and emission bands at wavelengths of 1,,=644 nm and A¢,»,=665 nm,
respectively, and it was dispersed at the concentration of 700 nM in a toluene with
PMMA (1.4 wt.%). Dithiolalkanearomatic PEG 6-COOH (COOH-thiol) and
dithiolalkanearomatic PEG3-OH (PEG-thiol) are from SensoPath Technologies (USA).
Phosphate buffered saline (PBS) with pH 7.4 was obtained from Calbiochem
(Germany). PBS-Tween (PBS-T) buffer was prepared by adding 0.05% of Tween20
(Sigma-Aldrich, USA) to PBS buffer solution. Anti-mouse migG (a-mlgG) and mouse
mlgG (mlgG) were from Molecular Probes (USA). a-mlgG molecules were labeled with
Alexa Fluor 647 with the dye-to-protein molar ratio of 4.5. This dye exhibits the
absorption and emission wavelengths of 1,,=650 nm and 1.,=668 nm, respectively.
Rabbit IgG (rlgG) was from Abcam (USA). 10 mM acetate buffer (ACT) with pH 5.5
was prepared in house. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-
hydroxysuccinimide (NHS) were from Pierce (USA). Ethanolamine (Sigma-Aldrich,
USA) was dissolved in water at 1 M concentration with the pH of the solution adjusted

to 8.5 with sodium hydroxide.

1.2. Biochip preparation

Interference lithography (holography) was used for the preparation of master
gratings. Two different masters with linear sinusoidal relief grating (LG) and concentric
relief chirped grating (CG) were prepared and characterized by atomic force
microscope. LG exhibited the period of A=436 nm and depth of 100 nm. CG was
composed of 120 or 36 segments carrying chirped gratings with the varied period
between A=365 and 313 nm at the distance from the center of CG of 4.7 and 8.5 mm,
respectively, and with the average depth of 110 nm. Fig. 3 shows the preparation of
CG and LG elements by using interference lithography. Triangular sections on a
photoresist-coated substrate was sequentially exposed to an interference field with an
angular step 6 (6=10 or 3 deg) in order to approximate the concentric grating by a set
of chirped linear gratings. The interference pattern formed at the intersection of a
collimated and converging laser-beams was tuned by a cylindrical lens in order to
match the desired dependence of the period that was determined from simulations
(see Fig. 4). After the exposure of the photoresist to the interference field, the gratings
were subsequently etched with a developer AZ-303, rinsed with water and dried. In

order to prepare multiple replicas, the master grating was casted to PDMS and
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transferred into a UV curable polymer followed by the gold deposition as shown in Fig.
5. Gold layers with the thickness of 50 and 200 nm were deposited on the flat sensing
area and on the surface of LG and CG elements, respectively, by sputtering (UNIVEX
450C, Leybold Systems, Germany).

1.3. Simulations

Finite element method (FEM) grating solver DiPoG (Weierstrass Institute,
Germany) was used for the calculation of the diffraction efficiency. The chirped grating
and the overall biochip geometry was designed by using a ray-tracing tool Zemax
(Radiant Zemax, USA). For the simulation of surface plasmon-coupled emission,
home-developed scripts based on the CPS-model were used as described in our

previous works.

1.4. Surface modification

For the observation of imaging properties of CG element, 20 nm thick PMMA
layer doped with DiD dye was spin-coated on a gold-coated surface of a sensing area
and dried overnight at the room temperature. In order to function as a biosensor, the
sensing area with 50 nm thick gold layer was modified with a mixed thiol self-
assembled monolayer (SAM), and 1gG molecules were covalently attached to SAM
carboxylic functional moieties. The biochip was firstly immersed in a mixture of PEG-
thiol and COOH-thiol dissolved in ethanol (molar ratio of 9:1 and total concentration of
1 mM) overnight at room temperature. Afterwards the biochip was rinsed with ethanol
and dried in a stream of nitrogen. migG antibodies were immobilized by amine
coupling. Carboxylic terminal groups of COOH-thiol were activated by EDC and NHS
solution (concentrations in deionized water of 75 and 21 mg/mL, respectively) for 15
min, followed by the incubation with mlgG dissolved in ACT buffer at the concentration
of 50 pg/mL for 80 min. Unreacted active ester groups of the COOH-thiol were
passivated by 20 min incubation in ethanol amine solution. In a control experiment,

rigG with the same concentration was immobilized instead of migG.

1.5. Optical setup for testing of biochip performance
Diffracted and out-coupled SPCE beam propagating below the biochip was
made scattered at the rough surface of a diffuser which was placed at a distance D

from the chip. The spatial distribution of scattered fluorescence light was imaged to an
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electron multiplying charge-coupled device (EM-CCD iXon+885, Andor Technology,
Ireland) by a camera lens (UNIFOC 58, Schneider Kreuznach, Germany) as seen in
Fig. 6. A set of filters including notch filter (XNF-632.8-25.0M, CVI Melles Griot,
Germany) and band-pass filter band-pass filter (670F510-25, LOT-Oriel, Germany)
was used in order to suppress the background. For the investigation of surface
plasmon-enhanced intensity of the out-coupled SPCE light beam, the excitation light
beam was made incident from the bottom of the biochip at LG. The diffracted light
beam propagated in the biochip and excited SPs at the sensing area with 50 mn thick
gold film. As a reference, the fluorescence was excited with an excitation light beam
directly incident at the biochip surface from the top through water.

In a model bioassay experiment, the SPCE signal that was focused by the CG
element was collected by a microscope objective (NA=0.85, NT38-340, Edmund
Optics, Germany) and its intensity F was detected by a photomultiplier tube (H6240-
01, Hamamatsu, Japan) which was connected to a counter (53131A, Agilent, USA)
(Fig.7). The identical set of filters as in the measurement of spatial distribution of

fluorescence light was used to surpress the background signal.

2. RESULTS AND DISCUSSION

2.1 Surface plasmon-mediated fluorescence excitation and emission

As seen in simulations based on Chance-Prock-Silbey model as shown in Fig.
8, the coupling of a fluorophore with surface plasmons strongly depends on the
distance from a metal surface d. For a gold surface in contact with an aqueous
medium (ns=1.33) and a fluorophore represented as a randomly oriented dipole, the
simulations reveal that the majority of emitted light intensity at the wavelength around
Aem=670 nm is collected by propagating SPs at the distance around d~20 nm. Below
this distance, the emission is strongly quenched by Férster energy transfer while at
higher distances d>50 nm the majority of light intensity is emitted to waves propagating
in free space.

For a thin gold film attached to a dielectric substrate, the fluorescence light
emitted via SPs is transmitted through the metal film and forms a characteristic SPCE
cone which is directional in polar angle 6., and isotropic in azimuth angle ¢, see Fig. 8.
In Fig. 9, we simulated the dependence of the fluorescence intensity F on polar angle 8
assuming a randomly oriented dipole to be located on the top of 20 nm thick spacer

layer (d=20 nm) on a 50 nm thick gold layer. The SPCE intensity peaks at the polar
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angle 6.,=72 deg that is the plasmon resonance angle at the wavelength A¢»,=670 nm.
For the identical layer structure, electric field intensity enhancement |E/Egl? at d=20 nm
was calculated upon the excitation of SPs by a light beam hitting the gold surface from
the substrate under the angle of incidence 6, at the excitation wavelength A.,=633 nm.
The results in Fig. 9 reveals that strong field intensity builds up at the angle 6,,=74 deg

where the resonant condition for the excitation of SP at Asy is fulfilled.

2.2 Biochip design and development

As seen in the Fig. 2, the biochip composed of a BK7 glass slide with a sensing
area coated by a 50 nm thick gold film and attached biomolecular recognition elements
for the specific capture of fluorophore-labeled target molecules on its top. In order to
collect the fluorescence light intensity emitted in form of SPCE cone at the fluorophore
emission wavelength A.,,=670 nm from the sensing area, a relief concentric diffraction
grating (CG) around the sensing area was used. The grating was coated with 200 nm
thick gold film acts as a diffraction lens which images the SPCE cone emitted from the
sensing area to a spot below the biochip. The SPCE cone propagating at polar angles
between 8.,=67-77 deg (see Fig. 9) in the glass substrate is totally internally reflected
at the bottom glass surface, hits the surface of CG element and is diffracted to a
converging wave that focuses at a desired distance D below the biochip where a
detector is placed.

The dependence of the grating period A on the distance from the grating center
rwas determined by simulations (shown in Fig. 4) in order to diffract the incident SPCE
beam to the -1% order that propagates away from the surface through the glass
substrate and converges at D=10 mm. Sinusoidal relief corrugation was used with the
average modulation depth of 120 nm which, according to finite element method (FEM)
simulations, provides the maximum diffraction efficiency of 81 % (see Fig. 10). In order
to couple the excitation beam at the wavelength matching the absorption band of
fluorophore, additional linear grating (LG) was employed. LG with the period of A=437
nm was used which allowed the coupling of normal incident monochromatic beam to a
wave that propagates along in the glass substrate and totally internally reflects at
bottom and top interfaces with the angle 6,,=74 deg. When hitting the sensing area
with 50 nm thick gold film and aqueous sample on the top, the light beam generates

SPs at its surface as this angle coincides with SP resonance angle. LG exhibited
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sinusoidal profile with the modulation depth around 110 nm. For 1%t diffraction,

simulations predict moderate maximum diffraction efficiency of 34 % (Fig. 11).

2.3 Imaging properties of CG and LG elements

The imaging properties of CG were observed by the measurement of spatial
distribution of fluorescence light intensity out-coupled from the biochip at different
distances D below the biochip as seen in Fig. 6. The sensing area of the chip carrying
CG (see Fig. 12a) was coated with a PMMA layer loaded with a DiD dye (exhibiting
similar characteristics as Alexa Fluor 647 used in further biosensor experiments) with
the thickness 20 nm. In the used setup, the sensing area was brought in contact with
water and exposed to a normal incident laser beam at the wavelength A, illuminating
the area of around ~1 mm?. As seen in Fig. 12a, the intensity of fluorescence light
exhibits characteristic ring distribution with a decreasing diameter when increasing the
distance D. The fluorescence beam is focused and reaches a minimum diameter at the
distance of D~15 mm which is close to that predicted by simulations. The diameter of
the spot at which the fluorescence light is confined depends on the finess with which
CG is prepared. As Fig. 12b shows, full width at half maximum (FWHM) of the focused
beam crossection of 0.7 mm was observed for the angular width of individual CG
segment of =3 deg which is smaller than 2.3 mm measured for the wider segments
with 6=10 deg. Let us note that additional broadening of the focused fluorescence
beam area is caused by finite area on the sensing area that is illuminated by the
excitation beam and by chromatic abberation of the CG lens. The fluorescence
intensity detected in the focal plane at the wavelength A.»=670 nm is increased when
dyes dispersed on the surface are excited with the enhanced intensity of surface
plasmons at the excitation wavelength A.,=633 nm. In further experiments, the
excitation of the fluorescence light via surface plasmons at the wavelength A,=633 nm
was used. In this configuration, the laser beam was coupled to the biochip by the LG,
propagated along in the chip substrate and excited SPs on the sensing area at the
resonance angle .. Only moderate enhancement of the fluorescence light collected
by SPCE ~2.3 was observed with respect to that measured for normal incident
excitation beam from the top (data not shown). This is due to the relatively low
diffraction efficiency of the LG element (at least a factor of 0.34) and attenuation of the
excitation beam by multiple reflections at the surface between BK7 glass substrate and

200 nm thick gold (at least a fact of 0.6) which reduced the excitation light intensity by
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a factor >5. This values is in agreement with the the electric field intensity

enhancement |E/Eglz=17 predicted by the simulations in Fig. 9.

2.4 Demonstration of model bioassay with SPFS/SPCE readout

In order to demonstrate the potential of developed biochip with combined SPFS
and SPCE for sensitive detection of biomolecules, a model immunoassay was carried
out. In this experiment, mouse IgG was immobilized on the sensing area by using thiol
SAM linker molecules and active ester chemistry. A flow-cell was attached to the
sensing area in order to flow liquid samples with the affinity binding partner anti-mouse
IgG (a-mlgG) that was labeled with a dye Alexa Fluor 670. The fluorescence signal F
upon sequential flow of samples (PBST) spiked with increasing concentration of a-
mlgG was measured in time by using the setup depicted in Fig. 7. Each sample was
flowed through the sensor for 10 min followed by the 10 min rinsing. Fig. 13 shows the
measured fluorescence kinetics F(f) for the concentrations of analyte ranging from 30
pM to 30 nM. It reveals that the affinity binding of the labeled analyte to the surface is
associated with a gradual increase of the fluorescence signal and that the slope of the
fluorescence signal dF/dt linearly increases with a-mlgG concentration. The control
experiment in which identical samples were injected to the sensor with another
antibody immobilized to the gold surface of sensing area (rabbit immunoglobulin G -
rigG) shows a negligible fluorescence signal indicating a highly specific response.
From obtained kinetics measured in triplicate, the calibration curve was obtained as
shown in Fig. 14. For each analyte concentration, the fluorescence signal slope df/dt
in the initial association phase was determined by linear fitting and plotted as a
function of the concentration of a-mlgG. The error bars represent the obtained
standard deviation (SD) that is attributed to the chip to chip variability. The limit of
detection (LOD) of 11 pM was determined at the intersection where the sensor signal

dF/dt matches 3-fold SD of the baseline fluorescence signal.
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CLAIMS:

1. A sensor chip comprising a transparent glass or plastic substrate with at
least one concentric grating element and at least one sensing area on its outer

surface.

2. The chip according to claim 1, further comprising a metal layer on the

sensing area, optionally in the middle of the concentric grating.

3. The chip according to claim 1 or 2, wherein said metal is gold, silver, or

aluminum and wherein said metal layer exhibits a thickness between 30 and 70 nm.

4. The chip according to any one of claims 1 to 3, wherein the concentric
grating exhibits a relief modulation with the depth between 20-200 nm and wherein
said relief modulation is optionally chirped and exhibits the period between 200 nm and

1 um.

5. The chip according to any one of claims 1 to 4, wherein the concentric
grating diffracts surface plasmon-coupled emission beam originating from fluorophores

on the sensing area to wave converging at a spot below the chip.

6. The chip according to any one of claims 1 to 5 comprising at least one
linear grating that exhibits the modulation depth higher than 10 nm and the period

between 200 nm and 1 um.

7. The chip according to any of claims 1 to 6 in which the linear grating
diffracts a monochromatic light beam propagating in a free space to a light beam that
propagates in the dielectric substrate and hits the sensing area under an angle of

incidence for which surface plasmons are resonantly excited in the sensing area.

8. The chip according to claim 7 in which the linear grating diffracts a
monochromatic light beam at the wavelength that is in the absorption band of the

fluorophores attached to the sensing area.



10

15

20

25

30

WO 2013/171197 PCT/EP2013/059908
17

9. The chip according to any one of claims 1 to 8, wherein biomolecular
recognition elements are attached to the metallic surface, optionally the recognition

elements are covalently attached.

10.  An apparatus for detecting fluorescence in biochemical assays employing
fluorophore labels that combines surface plasmon-enhanced fluorescence and surface
plasmon-coupled emission methods, comprising:

a) a chip according to any one of claims 1 to 9; and

b) an excitation source that emits a light beam incident at the linear grating and

that is capable exciting fluorophores in the sensing area by surface
plasmons; and

c) a light detector arranged to selectively detect fluorescence light that is

generated by excited fluorophores, emitted in form of surface plasmon-

coupled emission, and imaged to a spot below the chip.

11.  The apparatus according to claim 10, comprising the chip as an
insertable element, optionally as disposable element, and a permanent reader with a

lightsource and a detector.

12. A method for measuring the concentration of an analyte in a sample by
combined surface plasmon-enhanced fluorescence and surface plasmon-coupled
emission methods comprising the steps of:

a) contacting a sensor chip according to any one of claims 1 to 9 with a sample

comprising at least one fluorescence labeled analyte;

b) exposing the fluorescence label at the sensing area to excitation
electromagnetic energy in an amount sufficient to achieve surface plasmon-
enhanced excitation; and

c) measuring the intensity of surface plasmon-coupled fluorescence emission

from fluorophore labels.

13.  Aflat dielectric substrate with a polymer layer comprising at least one linear

grating element and at least one concentric grating element.
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14.  The polymer layer according to claim 13, wherein said gratings have a depth of

at least 10 nm and period between 0.2 and 1 pm.

15.  The polymer layer according to claim 13 or 14, wherein said gratings are
prepared by using interference lithography, electron beam lithography or nanoimprint

lithography.
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