Title: COMPOSITIONS COMPRISING MENTHOL COMPOUNDS AS SOOTHING AGENTS

Abstract: The present invention relates to a soothing composition, comprising (a) menthol compounds, and (b) one or more cosmetically acceptable carriers.
COMPOSITIONS COMPRISING MENTHOL COMPOUNDS AS
SOOTHING AGENTS

FIELD OF INVENTION

[0001] The present invention belongs to the topical cosmetic and the pharmaceutical area and relates to a soothing composition comprising menthol compounds of form (Ia) and/or (Ib), which can effectively reduce the skin and scalp irritation sensation, especially during hair treatment, such as during hair colouring process.

[0002] The invention further relates to cosmetic formulations, especially hair treatment formulations, more especially hair colouring formulations comprising the mentioned soothing ingredient composition as well as the methods of hair treatment, especially hair colouring.

STATE OF THE ART

[0003] Recent years hair colouring has become immensely popular and globally hair colorants are a rapidly growing industry. As a result of an increasingly aging and thus greying global population, demand for hair dye products has been increasing rapidly, a trend likely to continue into the future.

[0004] There are a variety of reasons of hair colouring, including covering or hiding of grey hair, to change to a colour regarded as more fashionable or desirable, or to restore the original hair colour after it has been discoloured by hairdressing processes or sun bleaching.

[0005] Modern commercial hair colouring products can be divided into 2 main categories according to the chemistry involved:

[0006] Hair dye products with Oxidative process which may be further divided into 3 subcategories:

[0007] (i-i) permanent hair dyes (representing 70% of the market) are generally marketed as a two component kit containing a colouring cream and a revealing cream. The colouring cream contains the dye precursors (oxidation base and a coupler) and an alkali (usually ammonia or monoethanolamine). The revealing cream is the oxidizing agent (almost exclusively a stabilised hydrogen peroxide solution);

[0008] (i-ii) semi-permanent hair dyes (the hair is lightened less and the colours fade with time);

[0009] (i-iii) auto-oxidative hair dyes (offers the users, particularly males, colour development over a period of time);
Hair dye products with non-oxidative process (semi-permanent hair dyes).

Till now the researches focus mostly on the improvement of the colouring effect, duration, and the protection of the hair.

EP 2476405 A1 disclosed an oxidative hair colouring composition, which comprises non-ammonia alkalinizing agent and can provide a lift and/or intensity of colouration.

EP 1022014 A1 published a hair dye composition comprising an acid dye and an alkylene carbonate, which can prevent the scalp from colouring and has good fastness to shampoo.

WO 2001 072271 A2 related to an alkaline hair bleaching and colouring composition, which contains at least one oxidizer agent and a buffering system. This composition has a longer shelf-life and provides good grey coverage as well as quality lightening.

US 8,828,100 B1 concerned a colouring system comprising at least one of a metal salt to achieve the natural colour and shade.

EP 0875237 A2 disclosed a hair dye composition which improved resistance to dripping and running once applied to the hair by the addition of rheology modifiers.

Additional ly, US 2003/0140430 A1 developed a stable oxidative hair dye composition comprising, besides the two essential components dye precursor as colour ring agent, oxidizing agent, a non-ionic polyether polymer and/or a cationic condition agent, that result in long-lasting and true colour and do not adversely affect the texture and condition of the hair after application.

In contrast to the enthusiasm for "better and longer" colouring effect as well as the full protection for the hair, few studies are concentrated on the relief of the cutaneous discomfort caused by the application of hair colourants. On one hand the hair colouring is an easy and popular cosmetic practice, and the consumers have many choices of varied colouring products, that can dye their hair any time into any colour. But on the other hand the use of the varied products can also cause a range of adverse cutaneous sensation during or slightly after the hair colouration, such as itching, irritation and burning feelings. Especially for the people having "sensitive scalp", the approximate one hour-long process of hair colouring is usually not a comfortable experience.

A "sensitive scalp" is likewise characterized by reddening of the skin, tingling, prickling, and burning. Triggers are, for example shampoos or soaps, or other hair care compositions, surfactants, hard water having high lime concentrations and/or mechanical stress. Erythemas and hyperseborrhea (excessive production of sebum) of the scalp and dandruff are often associated with the phenomena described.

Besides the hair colouring process, when certain cosmetic formulations with a pH between 6.5 and 12 are applied, scalp/skin irritation sensation is also caused, especially for populations with sensitive skins. The mentioned cosmetic formulations may include hair colouration, hair perm, soaps, hair relaxer, depilatories, and other commercial cosmetic formulations with pH value >6.5.

Hence, an object of the present invention was to find a substance to reduce the skin/scalp irritation sensation caused by these cosmetic formulations with pH >6.5, and to provide a soothing composition which can be applied to eliminate the uncomfortable cuta-
neous sensation to great extent and bring calming feeling on the skin and/or scalp. The uncomfortable sensation generally includes stinging, burning, tingling, tickling and skin tightness, especially the scalp irritation during the hair treatment, especially the colouration. Another object of the present invention was to provide various stable cosmetic formulations comprising the said soothing composition, which compared to the formulations of the prior art could intensively relieve the mentioned uncomfortable sensation experienced by the consumers during their application.

DESCRIPTION OF THE INVENTION

[0022] The present invention provides a soothing composition comprising menthol compounds corresponding to the formula (Ia) and/or (Ib). The invention further provides cosmetic formulations, especially hair treatment formulations, more especially hair colouring formulations comprising the said soothing composition containing menthol compounds of formula (Ia) or (Ib) as well as the methods of hair treatment, especially hair colouring.

[0023] The present invention provides a soothing composition, comprising

(a) menthol compounds corresponding to formulas (I), (II) and/or (III)

![Chemical Structures]

(I) \(\text{X} \)

(II) \(\text{OH} \)

(III) \(\text{OH} \)

in which \(\text{X} \) represents \(-Y\) or \(-\text{COZ}\) and \(Y\) represents the following groups:

(i) a linear or branched alkyl or hydroxyl alkyl radical containing 1 to 6 carbon atoms or an allyl radical;

(ii) a hydroxy or dihydroxyalkyl radical containing 1 to 6 carbon atoms;

(iii) a radical \(-\text{OCR}^1\);

(iv) a radical \(-\text{OC}(\text{M})\text{OH}\);

(v) a radical \(-\text{O}^\text{OC-S}\);

(vi) a radical \(-\text{OC}(\text{CH}_2)_n\text{COR}^2\)

wherein

\(M\) represents a linear or branched alkyl and/or alkenyl radical containing 1 to 10, preferably, 1 to 4 carbon atoms;

\(S\) represents a carbohydrate radical containing 5 to 12 carbon atoms, preferably, a fructose, a glucose or a sucrose radical;

\(n\) stands for 0 or for numbers of 1 to 6, preferably, of 2 to 3;

\(R^1\) represents a linear or branched alkyl- or hydroxyl alkyl radical containing 1 to 6, preferably, 1 to 2 carbon atoms or an allyl radical;
\[R^2 \] represents a hydroxyl radical or a radical -NR^3R^4;
\[R^3 \] and \[R^4 \], independently of one another, represent hydrogen or a linear or branched alkyi or hydroxyl alkyi radical containing 1 to 6, preferably, 1 to 2 carbon atoms,

while \(Z \) represents the following groups:

(vii) a radical NR^5R^6 or
(viii) a radical NHR^7

wherein

\[R^5 \] and \[R^6 \], independently of one another, represent hydrogen or a linear or branched alkyi or hydroxyl alkyi radical containing 1 to 6, preferably, 1 to 2 carbon atoms, a phenyl radical or an alkoxyphenyl radical containing 1 to 6, preferably, 1 to 2 carbon atoms in the alkoxy radical;

\[R^7 \] represents a radical -(CH_2_n)COOR^8;

\[R^8 \] represents a linear or branched alkyi or hydroxy alkyi radical containing 1 to 6, preferably, 1 to 2 carbon atoms, and

\(n \) stands for 0 or for numbers of 1 to 10, preferably, of 1 to 4, and

(b) one or more cosmetically acceptable carriers.

[0024] SOOTHING

[0025] In the present invention the term "soothing" means relieving from skin and/or scalp discomfort, such as stinging, burning, tingling, tickling and skin tightness, during and/or after the application of cosmetic formulations, especially those with a pH between 6.5 to 12, and at the meantime bringing a calming, emollient and lenitive sensation.

[0026] The term "cooling" means making the skin fresh, giving an impression of freshness. The sensation is similar as when the skin is immersed in cold water, or when cold or ice is put on the skin. A "cooling" effect gives the sensation to lower the temperature of the skin in a pleasant way.

[0027] MENTHOL COMPOUNDS

[0028] Menthol compounds, which can be used within the meaning of the invention, are, for example, selected from the group consisting of menthol methyl ether, menthone glyceryl acetal (FEMA GRAS\(^1\) 3807), menthone glyceryl ketal (FEMA GRAS 3808), menthyl lactate (FEMA GRAS 3748), menthol ethylene glycol carbonate (FEMA GRAS 3805), menthol propylene glycol carbonate (FEMA GRAS 3806), menthyl-N-ethyloxammat, monomethyl succinate (FEMA GRAS 3810), monomethyl glutamate (FEMA GRAS 4006), menthoxy-1,2-propanediol (FEMA GRAS 3784), menthoxy-2-methyl-1,2-propanediol (FEMA GRAS 3849) and the menthan

\(^1\) FEMA stands for "Flavor and Extracts Manufacturers Association" and GRAS is defined as "Generally Regarded As Safe". A FEMA GRAS designation means that the substance designated such has been tested according to standard methods and is considered to be toxicologically safe.
carboxylic acid esters and amides WS-3, WS-4, WS-5, WS-12, WS-14 and WS-30 and mixtures thereof.

[0029] Although menthol has been known as a cooling substance for many decades and is indispensable in a large number of uses to this date, this substance certainly has quite a number of disadvantages: it is volatile, has a pungent odour and a bitter flavour. In higher concentrations it is no longer percepted to be pleasantly cooling, but to be pungent and burning. Finally, menthol cannot be formulated arbitrarily, as it may interact with other chemical components. This has led to the development of the most diverse menthol compounds, of which a number within the meaning of the invention is capable to neutralize the negative features of menthofura n. All these substances are commercially available and can be produced according to the conventional methods of organic chemistry.

[0030] A first important representative of the substances forming component (b) is monomenthyl succinate (FEMA GRAS 3810), which was patented as a substance already in 1963 for Brown & Williamson Tobacco Corp. (U.S. Pat. No. 3,111,127). As a cooling agent it is subject matter of U.S. Pat. No. 5,725,865 and U.S. Pat. No. 5,843,466 (V.Mane Fils). Both the succinate and also the analogue monomenthyl glutarate (FEMA GRAS 4006) are important representatives of monomenthyl esters on the basis of di- and poly-carboxylic acids:

[0031]

[0032] Examples of applications of these substances are available, for example, in the publications of WO 2003 043431 (Unilever) or EP 1332772 A1 (IFF).

[0033] The next important group of preferred menthol compounds within the meaning of the invention comprises carbonate esters of menthol and polyols such as, for example, glycols, glycerol or carbohydrates such as, for example, menthol ethylenglycol carbonate (FEMA GRAS 3805 = Frescolat® MGC), menthol propylenglycol carbonate (FEMA GRAS 3784 = Frescolat® MPC), menthol 2-methyl-1,2-propandiol carbonate (FEMA GRAS 3849) or the corresponding sugar derivatives:

[0034] Menthol ethylene glycol carbonate
The use of such substances as a cooling agent for cigarettes is, for example, subject of U.S. Pat. No. 3,419,543 (Mold et al.) of 1968; their use as a physiological cooling agent is claimed in DE 4226043 Al (H&R).

The menthol compounds menthyl lactate (FEMA GRAS 3748 = Frescolat® ML) and, particularly, menthone glyceryl acetal (FEMA GRAS 3807) or, respectively, menthone glyceryl ketal (FEMA GRAS 3808), which is marketed under the trade name Frescolat® MAG are preferred within the meaning of the invention.

The first structure is obtained by esterification of lactic acid with menthol, the latter by acetalisation of menthone with glycerol (cf. DE 2608226 Al, H&R). This group of compounds also includes 3-(l-Menthoxy)-1,2,propandiol, which is also known as Cooling Agent 10 (FEMA GRAS 3784, cf. US 6,328,982, TIC), and 3-(l-Menthoxy)-2-methyl-1,2,propandiol (FEMA GRAS 3849), which contains an additional methyl group.

3-(l-Menthoxy)-1,2,propandiol is produced, for example, according to the following scheme on the basis of menthol (cf. U.S. Pat. No. 4,459,425, Takagaso):
Alternative routes, in which menthol is reacted with epichlorohydrin in the first step, are described in U.S. Pat. No. 6,407,293 and U.S. Pat. No. 6,515,188 (Takagaso). An overview of preferred menthol compounds which are characterized by a CO bond is provided in the following:

Among these substances, the following substances have proven to be particularly advantageous: menthone glyceryl acetal/ketal and menthyl lactate as well as menthol ethylene glycol carbonate or, respectively, menthol propylene glycol carbonate, which are sold by the applicant under the trade names Frescolat® MGA, Frescolat® ML, Frescolat® MGC and Frescolat® MPC.

Menthol compounds, which have a C-C bond in the 3-position were developed for the first time in the 1970ies. Out of these, also a number of representatives within the meaning of the invention may be used. These substances are generally referred to as WS types. A menthol derivative forms the base body, in which the hydroxyl group is replaced by a carboxyl group (WS-1). All other WS types are derived from this structure such as, for example, the preferred species within the meaning of the invention WS-3, WS-4, WS-5, WS-12, WS-14 and WS-30. The two following illustrations show the synthesis paths:
The esters derived from WS-1 are described, for example, in U.S. Pat. No. 4,157,384, and the corresponding N-substituted amides in J. Soc. Cosmet. Chem. s. 185-200 (1978).

The one or more cosmetically acceptable carriers of the present invention forming component (b) are preferably not water or ethanol, and more preferably are selected from the group comprising (alkane) diols having 3 to 10 carbon atoms, preferably selected from the group consisting of 1,2-propylene glycol, 2-methylpropane-1,3-diol, 1,2-butylene glycol, 1,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,5-pentanediol, 2,4-pentanediol, 2-methyl-
2,4-diol, 1,2-hexanediol, 1,6-hexanediol, dipropylene glycol, preferably 1,2-butyleneglycol, and/or dipropylene glycol, and/or

[0054] (ii-1) esters having 6 to 36 carbon atoms, preferably monoesters, diesters or triesters, preferably selected from the group consisting of diethyl phthlate, diethyleneglycol, 2,6-naphthalate, isopropyl myristate, isopropyl palmitate, isopropyl stearate, isopropyl oleate, n-butyl stearate, n-hexyl laurate, n-decyl oleate, isoctyl stearate, isononyl stearate, isononyl isonona noate, 3,5,5-tri methyl hexyl 3,5,5-tri methylhexa noate, 2-ethylhexyl isonona noate, 2-ethylhexyl 3,5,5-trimethyl hexa noate, 2-ethyl hexyl 2-ethylhexyl palmitate, 2-ethyl hexyl laurate, 2-hexyldecyl stearate, cetearyl ethyl hexanoate, stearyl hepta noate, stearyl caprylate, 2-octyldecyl palmitate, oleyl oleate, oleyl erucate, erucyl oleate, erucyl erucate, 2-ethylhexyl isostearate, isotridecyl isonona noate, 2-ethyl hexyl cocoate, C12-15-alkyl benzoates, cetyl palmitate, triethyl citrate, tricacetin (triacetyl citrate), benzyl benzoate, benzyl acetate, vegetable oils (preferably olive oil, sunflower oil, soya oil, groundnut oil, rapeseed oil, almond oil, palm oil, coconut oil, palm kernel oil) and triglycerides, in particular glycercy1 stearate, glycercy1 trisisonona noate, glycercy1 laurate or triglycerides with identical or different C6 to C16 fatty acid radica ls (so-called medium m-chain triglycerides, in particular caprylic/ric triglycerides, like glycercy1 tricaprylyl (triclys), glycercy1 tricaprylyl triclys), and/or

[0055] (ii-2) branched and unbranched alkyl or alkenyl alcohols, preferably selected from the group consisting of decanol, decanol, octanol, octyl nole, dodecyl nole, dodecyl nole, octadecanol, decadienol, dodecadienol, oleyl alcohol, ricinoleyl alcohol, erucyl alcohol, stearyl alcohol, isostearyl alcohol, cetyl alcohol, lauryl alcohol, myristyl alcohol, arachidyl alcohol, linoleyl alcohol, linolenyl alcohol, hexyldecanol, octyldecanol (in particular 2-octyl-undecanol) and cetearyl alcohol and behenyl alcohol, and/or

[0056] (ii-3) branched and unbranched hydrocarbons and waxes, cyclic or linear silicone oils and dialkyl ethers having 6 to 24 carbon atoms, preferably selected from the group consisting of jojoba oil, isosricosene, dicaprylyl ether, mineral oil, petrolatum, silicone, squalene, cyclomethicone, decamethylcyclotrisiloxane, undecamethylcyclopentasiloxane, polydimethylsiloxane, and poly(methyl-phenyl) siloxane.

[0057] Glycerine or isopropanol can also be used as carriers.

[0058] It has been surprisingly found, when the soothing composition according to the present invention is used before, during or after the application of cosmetic formulations with an alkaline pH-value, the caused skin irritation sensation, such as stinging, burning, tingling, tickling and skin tightness, can be intensively relieved/prevented. The mentioned alkaline cosmetic formulations can include, but are not limited to, hair colouring formulation, hair relaxing formulation, perm, depilatory, soap, shaving foam, toothpaste or dental fixative cream, sun protection, AP/Deodora nts. Especially, during the application of hair colouration formulation and/or hair relaxing formulation, which can induce scalp irritation, especially sensitive scalp irritation, those uncomfortable symptoms can be significantly reduced through the use of the soothing composition of the present invention. It has also been observed that by using the soothing composition of the present invention the sensory profile of the hair treatment products, which are especially e.g. hair colouring products, can be improved without disadvantageous effect on the efficacy and/or quality of the hair treatment products.
Another object of the present invention is a cosmetic formulation (c) comprising a soothing composition of the present invention, wherein the cosmetic formulation (c) further comprises

(c-1) at least one separately provided oxidizing agent and

(c-2) at least one oxidation base, and optionally

(c-3) at least one coupler and/or

(c-4) at least one synthetic dye and/or

(c-5) at least one natural dye and/or

(c-6) an alkali

(c-7) adjuvants

In one preferred embodiment of the present invention the above-mentioned cosmetic formulation (c) is a permanent hair dyeing formulation:

PERMANENT HAIR DYEING

In the present invention the term "permanent hair dyeing" refers to the application of a permanent dyeing formulation onto hair, which results in a permanent change of the hair colour. The process of permanent hair dyeing requires mixing two separately provided formulations (a colouring cream with an alkaline pH and a revealing cream with a pH<7) together just before the application onto the hair. The two are mixed immediately before use to give a pH of 9.5 required for the colouration process. The colouring cream contains the dye precursors (oxidation base and a coupler) and an alkali (usually ammonia or monoethanolamine) which opens up hair cuticles and acts as a vehicle for the dye precursors to move deep into the hair follicles. The revealing cream is the oxidizing agent (almost exclusively a stabilised hydrogen peroxide solution) to oxidise the dye precursors and to lighten the natural hair colour.

During the formulation is kept on the hair (usually 20 to 40 minutes) a series of chemical reactions between the colouring cream and the revealing cream take place, in which the most decisive reaction is the oxidation of the dye precursors (especially the oxidation base) by the oxidizing agent into larger dye molecules which would be trapped in the hair, whereby a permanent colouring effect is achieved.

Oxidizing agents

The at least one oxidizing agent of the present invention is preferably chosen from hydrogen peroxide; urea peroxide; alkali metal ferricyanides or bromides; peroxigenated salts such as persulfates, perborates and percarbonates of alkali metal ions or alkaline earth metal ions, such as sodium, potassium and magnesium; or mixtures thereof. At least one redox enzyme(s) such as lactases, peroxidases and 2-electron oxidoreductases (such as uricase), optionally in the presence of the respective donor or cofactor thereof, may also be used as the at least one oxidizing agent.
[0066] The revealing cream containing the oxidizing agent may further comprise at least one basifying agent and/or at least one acidifying agent. For example, in one embodiment the at least one oxidizing agent comprises at least one oxidizing agent. Examples of the at least one oxidizing agent include, for example, organics or inorganics, such as hydrochloric acid, orthophosphoric acid, sulfuric acid, carboxylic acids such as acetic acid, tartaric acid, citric acid and lactic acid, and sulfonic acids.

[0067] The pH of the revealing cream containing is in one preferred embodiment, less than 7, for instance, if the oxidizing agent is hydrogen peroxide. The revealing cream may take the form of an solution, an emulsion, or a gel.

[0068] Oxidation base

[0069] The at least one oxidation dye precursor of the present invention is usually a oxidization base, which is preferably chosen from para-phenylenediamines, for instance, as described in patent applications FR-A-2766177 and FR-A-2766178, bis(phenyl)alkylenedia mines, 2-amino-phenols as described, for example, in patent applications FR-A-2766177 and FR-A-2766178, ortho-aminophenols or cationic double bases such as derivatives of the bis(aminophenyl)alkylenedia mine type described in patent application FR-A-2766179, ortho-phenylenediamines as described, for example, in patent applications FR-A-2782718, FR-A-2782716 and FR-A-2782719, and heterocyclic bases, and the corresponding salts thereof. These oxidation bases in combination with oxidizing products provide access to the color red species by a process of oxidative condensation.

[0070] Among the para-phenylenediamines non-limiting mention may be made of, for example, para-phenylenediamine, para-toluidenediame, 2-chloro-para-phenylenediamine, 2,3-dimethyl-para-phenylenediamine, 2,6-dimethyl-para-phenylenediamine, 2,5-dimethyl-para-phenylenediamine, N,N-dimethyl-para-phenylenediamine, N,N-dipropyl-para-phenylenediamine, 4-amino-N,N-diethyl-3-methylaniline, N,N-bis(β-hydroxyethyl)-para-phenylenediamine, 4-N,N-bis((P-hydroxyethyl)-amin-2-methylaniline, 4-N,N-bis(β-hydroxyethyl)amin-2-chloroaniline, 2-p-hydroxyethyl-para-phenylenediamine, 2-fluoro-para-phenylenediamine, 2-isopropyl-para-phenylenediamine, N-((P-hydroxypropyl)-para-phenylenediamine, 2-hydroxyethyl-para-phenylenediamine, N,N-dimethyl-3-methylaniline, N,N-diethyl-3-(hydroxyethyl)para-phenylenediamine, N,N-diethyl-3-(hydroxypropyl)para-phenylenediamine, N,N-diethyl-3-(hydroxypropyl)para-phenylenediamine, N,N-diethyl-3-(hydroxyethyl)para-phenylenediamine, N,N-diethyl-3-(hydroxyethyl)para-phenylenediamine,

[0071] Among the bis(phenyl)alkylenedia mines non-limiting mention may be made of, for example, N,N′-bis(P-hydroxyethyl)-N,N′-bis(4′-aminophenyl)-1,3-dia minopropanol, N,N′-bis(β-hydroxyethyl)-N,N′-bis(4′-aminophenyl)ethylenedia mine, N,N′-bis(4′-aminophenyl) tetramethylenedia mine, N,N′-bis(P-hydroxyethyl)-N,N′-bis(4′-aminophenyl) tetramethylenedia mine, N,N′-bis(4-methylaminophenyl)tetramethylenedia mine, N,N′-bis(4-aminophenyl)tetramethylenedia mine, N,N′-bis(4-cyanophenyl)tetramethylenedia mine, N,N′-bis(4-aminophenyl)tetramethylenedia mine, N,N′-bis(4-cyanophenyl)tetramethylenedia mine.
amo-3'-methylphenylethylenediamine and 1,8-bis(2,5-diamino-phenox)-3,6-dioxaoctane, and the corresponding salts thereof.

[0072] Among the para-a minophenols non-limiting mention may be made of, for example, para-aminophenol, 4-aminomethylphenol, 4-aminomethylchlorophenol, 4-aminomethylhydroxymethylphenol, 4-aminomethylphenol, 4-amino-2-hydroxymethylphenol, 4-amino-2-aminomethylphenol, 4-aminophenol, 4-amino-2-(P-hydroxyethy1)aminomethylphenol and 4-aminophenol, and the corresponding salts thereof with an acid.

[0073] Among the ortho-a minophenols non-limiting mention may be made of, for example, 2-aminophenol, 2-aminomethylphenol, 2-aminophenol, and the corresponding salts thereof.

[0074] Among the heterocyclic bases non-limiting mention may be made of, for example, 4,5-dia-mino-1-(B-hyroxethyl)pyrazole and/or 2,3-dia-mino-6,7-dihydro-1H,5H-pyrazolo-[1,2-a] pyrazol-1-one and the corresponding salts thereof, pyridine derivatives, pyrimidine derivatives, and pyrazole derivatives.

[0075] Among the pyridine derivatives non-limiting mention may be made of, for example, the compounds described, for example, in patents GB 1026978 and GB 1153196, for instance 2,5-dia-minopyridine, 2-(4-methoxyphenyl)aminopyridine, and the corresponding salts thereof.

[0076] Other pyridine oxidation bases that may be useful in the compound positions of the present invention are, for example, the 3-aminoazepinol [1,5-a] pyridine oxidation bases or corresponding salts thereof described, for example, in patent application FR2801308. Examples that may be mentioned include pyrazolo[1,5-a]pyrid-3-ylamine, 2-acetylaminopyrazolo[1,5-a]pyrid-3-ylamine, 2-morpholin-4-ylpyrazolo[1,5-a]pyrid-3-ylamine, 3-aminoazepinol[1,5-a]pyridine-2-carboxylic acid, 2-methoxypyrrozolo[1,5-a]pyrid-3-ylamine, (3-aminoazepinol[1,5-a]pyrid-7-yl)methanol, 2-(3-aminoazepinol[1,5-a]pyrid-5-yl)ethanol, 2-(3-aminoazepinol[1,5-a]pyrid-7-yl)ethanol, 3-(3-aminoazepinol[1,5-a]pyrid-2-yl)methanol, 3,6-dia-minopyrazolo[1,5-a]pyridine, 3,4-dia-minopyrazolo[1,5-a]pyridine, pyrazolo[1,5-a]pyridine-3,7-dia-minopyrazolo[1,5-a]pyridine, 5-morpholinylpyrazolo[1,5-a]pyrid-3-ylamine, 5-(3-aminoazepinol[1,5-a]pyrid-5-yl)(2-hydroxyethyl)aminol, 2-(3-aminoazepinol[1,5-a]pyrid-7-yl)(2-hydroxyethyl)aminol, 3-aminoazepinol[1,5-a]pyridin-ol, 3-aminoazepinol[1,5-a]pyridin-4-ol, 3-aminoazepinol[1,5-a]pyridin-6-ol and 3-aminoazepinol[1,5-a]pyridin-7-ol, and the corresponding salts thereof.

[0077] Among the pyrimidine derivatives, non-limiting mention may be made of, for example, the compounds described, for example, in patents DE 2359399; JP 88-169571; JP 05-63124; EP 0770375 or patent application WO 96/15765, for instance 2,4,5,6-tetraaminopyrimidine, 4-hydroxy-2,5,6-triaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 2,4,5,6-dihydroxy-2,5,6-triaminopyrimidine and 2,5,6-triaminopyrimidine, and the corresponding salts thereof, and the tautomeric forms thereof, when a tautomeric equilibrium exists.

[0078] Among the pyrazole derivatives, non-limiting mention may be made of the compounds described, for example, in patents DE 3843892 and DE 4133957, and patent applications WO 94/08969, WO 94/08970, FR-A-2733749 and DE 19543988, for instance, 4,5-
dia mino-1-methyl pyrazole, 4,5-diami no-l-(β-hydroxyethyl)pyrazole, 3,4-dia minopyrazole, 4,5-dia mino-l-(4′-chlorobenzyl)pyrazole, 4,5-dia mino-l,3-di methyl pyrazole, 4,5-dia mino-3-methyl-1-phenylpyrazole, 4,5-dia mino-l-methyl-3-phe nylpyrazole, 4-a mino-l,3-di methyl-5-hydrazinopyrazole, l-benzyl-4,5-dia mino-3-methyl-pyrazole, 4,5-dia mino-3-tet-butyl-l-methylpyrazole, 4,5-dia mino-l-tet-butyl-3-methyl-pyrazole, 4,5-dia mino-l-(4′-chlorobenzyl)pyrazole, 4,5-dia mino-l-methyl-3-hydroxymethyl pyrazole, 4,5-dia mino-3-hydroxyethyl-l-methylpyrazole, 4,5-dia mino-3-methyl-l-isopropylpyrazole, 4-a mino-5-(2′-ami noethyl) amino-1,3-dimethylpyrazole, 3,4,5-tria minopyrazole, l-methyl-3,4,5-tria minopyrazole, 3,5-dia mino-l methyl-4-methyla minopyrazole and 3,5-dia mino-4 ((β-hydroxyethyl) a mino-l methyl pyrazole, and the corresponding salts thereof. 4,5-dia mino-l-[(β-methoxyethyl) pyrazole may also be used.

[0079] Other pyrazole derivatives that may be useful in the compositions of the present invention are, for example, dia mino-N,N-di hyd tropyrazol-opyrazolones and those described in patent application FR 2886136, such as the followi ng compounds and the corresponding salts thereof: 2,3-dia mino-6,7-di hydro-1H,5 H-pyrazolo[1,2-a] pyrazol-l-one, 2-a mino-3 ethyla mino-6,7-dihydro-lH,5 H-pyrazolo-[1,2-a] pyrazol-l-one, amino-3-isopropyla mino-6,7 dihyd ro-lH,5H-pyrazol [1,2-a] pyrazol-l-one, 2-amino-3-(pyrrolidi n i-l-yl)-6,7-di hyd ro-lH,5 H-pyrazol [1,2-a] pyrazol-l-one, 4,5-dia mino-l,2-diethyl-l,2 di hydropyrazol-3-one, 4,5-dia mino-l,2-dihyd ropyrazol-3-one, 2-a mino-3-(2-hy d roxyethyl) a mino-6,7-di hydro-lH,5 H-pyrazolo [1,2-a] pyrazol-l-one, 2-a mino-3-di methyl a mino-6,7-di hyd ro-1H,5 H-pyrazolo [1,2-a] pyrazol-l-one, 2,3-dia mino-5,6,7,8-tetra hydro-lH,6H-pyridazi no[1,2-a] pyrazol-l-one, 4-a mino-1,2-diethyl-5 (pyrroli di n i-l-yl)-2 di hydropyrazol-3-one, 4-a mino-5-(3-di methyl am inopropyl) amino-l-yl)-1,2 diethyl-l,2-di hydropyrazol-3-one, 2,3-dia mino-6-hyd roxy-6,7-di hydro-lH,5H-pyrazol [1,2-a] pyrazol-l-one.

[0080] In one embodiment of the present invention, cationic oxidation bases of para phenylene dia mine structure are used, at least one of the amine functions of which is a tertiary amine bearing a pyrrolidine nucleus, the molecule comprising at least one quaternized nitrogen atom. Such bases are described, for example, in document EP-A-1348695.

[0081] Suitable primar y intermediates include for example, p-phenylene diamine derivatives such as: benzene-l,4-dia mine (commonly known as p-phenylene diamine), 2-methyl benzene-1,4-dia mine, 2-chloro-benzene-l,4-dia mine, N-phenyl-benzene-l,4-dia mine, N-(2 ethoxyethyl) benzene-l,4-dia mine, 2-[4-a mino-phenyl-(2-hydroxy-ethyl) a mino]-etha nol, (commonly known as N,N-bis(2-hydroxyethyl)-p-phenylene diamine) (2,5-dia mino-phenyl) metha nol, l-(2,5-dia mino-phenyl)-etha nol, 2-(2,5-dia mino-phenyl)-etha nol, N-(4 amino phenyl) benzene-l,4-dia mine, 2,6-dimethyl-benzene-l,4-dia mine, 2-isopropyl benzene-1,4 dia mine, l-[4-a minophenyl]a mino)-propa n-2-ol, 2-propyl-benzene-l,4-dia mine, l,3-bis(4 amino phenyl)(2-hydroxyethyl) amino) propan-2-ol, N4,N4,2-trimethylbenzene-1,4-dia mine, 2-methoxy-benzene-l,4-dia mine, l-(2,5-dia minophenylethane-1,2-diol, 2,3-di methyl benzene-1,4-dia mine, N-(4-a mino-3-hydroxy-phenyl)-acetamide, 2,6-diethylbenzene-l,4-dia mine, 2,5-dimethylbenzene-l,4-dia mine, 2-thien-2-yl benzene-1,4-dia mine, 2-thien-3-yl benzene-1,4-dia mine, 2-pyridin-3-yl benzene-l,4-dia mine, 11-b diphenyl-2,5-dia mine, 2-(methoxymethyl) benzene-l,4-dia mine, 2-(aminomethyl) benzene-1,4-dia mine, 2-(2,5-
dia minophenoxy)ethanol, N-[2-(2,5-dia minophenoxy)ethyl]-acetamide, N,N-dimethylbenzene-1,4-dia mine, N,N-diethylbenzene-1,4-dia mine, N,N-dipropylbenzene-1,4-dia mine, 2-[4-(2-hydroxyethyl)-amino]-ethanol, N-(2-methoxymethyl)benzene-1,4-dia mine, 3-[4-(aminophenoxy)amino] propyl-l-ol, 3-[4-(amino nophenoxy)-amino] propyl ne-1,2-diol, N-[4-(aminophenyl)butyl] benzene-1,4-dia mine, and 2-[2-(2-(2,5-dia minophenol)-oxy)ethoxy]ethoxy) benzene-1,4-dia mine; p-aminophenol derivatives such as: 4-aminophenol (com mon ly known as p-aminophenol), 4-m ethyla mino-phenol, 4-amin o-2-hyd roxymethyl-phenol, 4-amin o-2-m ethyl-phenol, 4-amin o-2-[(2-hydroxy ethyl)amin o]-phenol, 4-amin o-2- meth oxymethyl-phenol, 5-amin o-2-hydroxybenzoi c acid, l-(5-amin o-2-hydroxy-phenyl)-etha ne ne-1,2-di ol, 4-amin o-2-(2-hydroxy ethyl)-phenol, 4-amin o-3-(hydroxymethyl)phenol, 4-amin o-3-fluo ro-phenol, 4-amin o-2-(aminomethyl)-phenol, and 4-amin o-2-ll uorophenol;

[0082] o-aminophenol derivatives such as: 2-aminophenol (com mon ly known as o-aminophenol), 2,4-dia minophenol, 2-amin o-5-methyl-phenol, 2-amin o-6-methyl-phenol, N-(4-amino-3-hydroxy-phenyl)-acetamide, and 2-amin o-4-methyl-phenol; and heterocyclic derivatives such as: pyrimidine-2,4,5,6-tetra mine (com mon ly known as 2,4,5,6- tetra minopyridine), l-methyl-lH-pyrazole-4,5-dia mine, 2-(4,5-dia mine-lH-pyrazol-2-yl)ethanol, N2,N2-dimethylpyridine-2,5-dia mine, 2-[l-(3-amin o-6-methoxy pyridin-2-yl)]amin oethanol, N2,N2-dimethyl- pyridine-2,5-dia mine, 2-[3-amino-6-methoxy pyridin-2-yl]amin oethanol, 6-methoxy-N2-methylpyridine-2,3-dia mine, 2,5,6-tria minopyrimidine-4(lH)-one, pyridine-2,5-dia mine, l-isopropyl-lH-pyrazole-4,5-dia mine, l-(4-methylbenzyl)-lH-pyrazole-4,5-dia mine, l-(benzyl)-lH-pyrazole-4,5-dia mine, and l-(4-chlorobenzyl)-lH-pyrazole-4,5-dia mine.

[0083] Couplers

[0084] The options I at least one coupler of the present invention is preferably chosen from those conventionally used for the dyeing of keratin fibres.

[0085] Among the at least one coupler, non-limiting mention may be made of, for example, meta-phenylenedia mines, meta-aminophenols, meta-di phenols, naphtholic couplers and heterocyclic couplers, and also the corresponding salts thereof.

[0086] Non-limiting mention may be made, for example, of 1,3-dihydroxybenzene, 1,3-dihydroxy-2-methyl benzene, 4-chloro-l,3-dihydroxybenzene, 2,4-diamino-l-(3-hydroxyethoxy)benzene, 2-amino-4-(3-hydroxyethy l)amin o-l-methoxybenzene, 1,3-diamobenzene, 1,3-bis(2,4-dia mine minophenox y)propyl ne, 3-ureidoanil ne, 3-ureido-l-dimethylaminobenzene, sesamol, l-P-hydroxyethylamin o-3,4-methylenedioxybenzene, a-naphthol, 2-methyl-l-naphthol, 6-hydroxyindole, 4-hydroxyindole, 4-hydroxy-N-methylindole, 2-amino-3-hydroxy pyridi ne, 6-hydroxybenzomorpholine, 3,5-dia mines, 2,6-dimethoxypyridine, l-N-β-hydroxyethyp amin o-3,4-methylenedioxybenzene, 2,6-bis(3-hydroxyethylamin o)tulene, 6-hydroxyndolen e, 2,6-dihydroxy-4-methyl pyridine, l-H-3-methylpyrazol-5-one, l-phenyl-3-methylpyrazol-5-one, 2,6-dimethylpyraz olo[1,5-b]-1,2,4-triazole, 2,6-dimethyl[3,2-c]-1,2,4-triazole and 6-methylpyrazolo[1,5-a]benzimidazole, the corresponding salts thereof with an acid, and mixtures thereof.

[0087] In general, the corresponding salts of the at least one oxidation base and at least one coupler that may be used in the context of the present invention may be chosen from the
corresponding salts with an acid such as the hydrochlorides, hydrobromides, sulfates, citrates, succinates, tartrates, lactates, tosylates, benzenesulfonates, phosphates and acetates.

[0088] Synthetic dyes

[0089] Non-limiting examples of the optional at least one synthetic direct dye of the present invention include, for example, the following direct dyes: azo direct dyes; methine direct dyes; carbonyl dyes; azine direct dyes; nitrobenzenic direct dyes; phthalo cyanine and porphyrin direct dyes; quinone direct dyes, and in particular anthraquinone, azomethine direct dyes, tri(hetero)arylmethine direct dyes; indoami ne direct dyes; indigoid direct dyes; nitro(hetero)aryl dyes; xanthene direct dyes; naphthoquinone or benzoquinone dyes; diazacarbocya nines and isomers thereof and tetraazacarbocya nines (tetraaza penta methines); alone or as mixtures.

[0090] For example, the azo dyes may comprise an -N=N- function where the two nitrogen atoms are not simultaneously engaged in a ring. However, it is not excluded for one of the two nitrogen atoms of the sequence -N=N- to be engaged in a ring. The azo direct dyes comprise the following dyes, which are described in the Colour Index Internationa l, 3rd edition: Disperse Red 17; Disperse Red 13; Basic Red 17; Basic Yellow 57; Basic Brown 16; Basic Brown 17; Disperse Yellow 9; Disperse Black 3; Disperse Blue 148; Disperse Violet 63; Solvent Orange 7; 1-(4'-aminophenylazo)-2-methyl-4-bis(phenoxymethyl)aminobenzene (INCl name: HC Yellow 7).

[0091] The dyes of the methine family comprise compounds comprising at least one sequence from >C=C< and -N=N- wherein the two atoms are not simultaneously engaged in a ring. However, it is pointed out that one of the nitrogen or carbon atoms of the sequences may be engaged in a ring. For example, the dyes of this family are derived from compounds of true methine type (comprising at least one above mentioned sequence -C=C-); of azomethine type (comprising at least one, or more, sequences -C=N-) with, for example, azacarboya nines and their isomers, diazacarbocya nines and thei r isomers, and tetraazacarboya nines; of mono- and dialkylmethane type; of indoa mine (or diphenyla mine) type; of indophenol type; or of indoa niline type.

[0092] With regard to the dyes of the carbonyl family, non-limiting mention may be made of, for example dyes chosen from acidone, benzoquinone, anthraquinone, naphthoquinone, benza ntheone, anthranthrene, pyra ntheone, pyrazola ntheone, pyrimidine nnoanthone, flavanthone, idantheone, flavone, (iso)violanthone, isooindolinone, benzimidazolone, isoquino-linone, anthrapyrindone, pyrazoloquinazolone, perine none, quinacridone, quinophthale none, indigoid, thioindigo, naphthylimide, anthrapyridine, diketopyrrolopyrrole and coumarin dyes.

[0093] With regard to the dyes of the azine family, non-limiting mention may be made of, for example, azine, xanthene, thioxa nthene, fluoridine, acridine, (di)oxazine, (di)thiazine, pyrnon dyes, Basic Blue 17, Basic Red 2, and Solve nt Ora nge 15.

[0094] The nitrobenzenic direct dyes may be chosen from, for example, nitrobenzene and nitropyridine direct dyes, mention may be made in a non-limiting manner of the followings com pounds: l,4-diamino-2-nitrobenzene; l-a mino-2-nitro-4-Phydroxyethylamine minobenzene; l-a mino-2-nitro-4-bis (β-hydroxyethyl)aminobenzene; l,4-bis (β-hydroxyethyl) amino-2-nitro-4-bis (P-hydroxyethyl-
amino)benzene; l-β-hyd roxyethyla mino-2-nitro-4-a minobenzene; l-β-hyd roxyethyla mino-
2-nitro-4-(ethyl) (β-hydroxyethyl)la minobenzene; l-a mino-3-methyl-4^-hyd roxyethyla mino-6-
nitrobenzene; l-a mino-2-nitro-4^-hyd roxyethyla mino-5-
chlorobenzene; l,2-dia mino-4- nitrobenzene; l-a mino-2^-hydroxyethyla mino-5-
nitrobenzene; l,2-bis (β- hydroxyethyla mino)-4-nitrobenzene; l-a mino-2-
tris(hydroxymethyl)methyla mino-5-nitro-
benzene; l-hydroxy-2-a mino-5-nitrobenzene, 1-
hyd roxy-2-a mino-4-nitrobenzene; 1- hydroxy-3-nitro-4-a minobenzene; l-hydroxy-2-a mino-
4,6-dinitrobenzene; l-β-hydroxy-
ethyla mino-5-nitrobenzene; l-β-hydroxyethyla mino-5-
chlorobenzene; l,2-dia mino-4-
propyla mino-4-nitrobenzene; l,2-bis (β-hyd roxyethyla mino-
4-trifl uromethyl-2-
nitrobenzene; l^-hydroxyethyla mino-4-trifluoromethyl-2-
nitrobenzene; l-β- hydroxyethyla mino-3-methyl-2-nitrobenzene; l^-am inoethyla mino-5-
methoxy-2- nitrobenzene; l-hydroxy-2-ch lor o-6-ethyla mino-4-nitrobenzene; l-hyd roxy-
chloro-6- amino-4-nitrobenzene; l-hyd roxy-6-bis(β-hyd roxyethyla mino-3-nitrobenzene; 1-
β-hyd roxy- ethyla mino-2-nitrobenzene; l-hyd roxy-4- β-hydroxyethyla mino-3-nitrobenzene.

[0095] With regard to the dyes of porphyr i n or phtha locya nine type, it is possible to use cat-
ionic or non-cationic compounds, optionaly comprised at least one meta l or meta l ions, for
insta nce alkali meta ls, alk aline-ea rth meta ls, zinc and silicon.

[0096] Among the quinone direct dyes non-limiti ng mention may be made of, for example,
the fol lowi ng dyes: Disperse Red 15; Solvent Violet 13; Solvent Blue 14; Disperse Violet 1;
Disperse Violet 4; Disperse Blue 1; Disperse Violet 8; Disperse Blue 3; Disperse Red 11;
Disperse Blue 7; Disperse Blue 14; Basic Blue22; Disperse Violet 15; Disperse Blue 377;
Disperse Blue 60; Basic Blue 99. It is also possible to mention the following compouds: 1 -N-
methylmorpholinium propyla mino-4-hyd roxya nthraquinone; l-a minopropyla mino-4-
methyla minoa nthraquinone; 1-a minopropyla minoanthraquinone; 5^-hyd roxyethyl,l-4-
dia minoa nthraquinone; 2-a minoethyla minoa nthraquinone; l,4-bis (3,v- dihydroxypropyla-
mino)a nthraquinone, and also the coumarin com pound Disperse Yellow 82.

[0097] Among the triylmetha ne dyes that may be used according to the present inven-
tion, non-limiti ng mention may be made of, for example, the fol lowi ng com pounds: Basic
Green 1; Basic Violet 3; Basic Violet 14; Basic Blue 7; and Basic Blue 26.

[0098] Among the indoa mine dyes that may be used according to the present inven-
tion, non-limiti ng mention may be made of, for example, the fol lowing com pounds: 2-β-
hyd roxyethyla mino-5-[bis(β-4^-hyd roxyethyla mino)anilino-1,4-benzoquinone; 2-β- hydroxy-
ethyla mino-5-(2^-methoxy-4^-a mino)anilino-1,4-benzoquinone; 3-N(2^-ch lor o-4^-hy-
droyl)phenylacetyla mino-6-methoxy-1,4-benzoqui none imine; 3-N(3^-ch lor o-4^- methyl-
aminophenyl ureido-6-methyl-1,4-benzoq uinone imine; and 3-[4^-N- (ethylc a ramylme-
thyla mino) phenylureido-6-methyl-1,4-benzoquinone imine.

[0099] These dyes are monochromatic dyes (i.e. comprising only one dye) or poly-
chronomochromatic, for example di- or trichromomochromatic, dyes; the chromophores may be identica l
or different, and from the sa me chemica l family or otherwise. It should be noted that a poly-
chronomochromatic dye comprises two or more radica ls each derived from a molecule that ab-
sorbs in the visible region between 400 and 800 nm. Furthermore, this absorbance of the
dye does not requi re any prior oxidation thereof, or combination with any other chemical s
species.
In the case of polychromophoric dyes, the chromophores are connected together by means of at least one linker, which may be cationic or non-cationic.

Natural dyes

The optional at least one natural dye can be chosen from lawsone, juglone, alizarin, purpurin, carminic acid, kermes acid, purpurogallin, indigo, protocatechaldehyde, anthocyanins, anthocyanidins, curcumin, orceins and apigenidin.

Adjuvants

Suitable adjuvants encompass anionic, cationic, non-ionic, amphoteric or zwitterionic polymers or mixtures thereof; mineral thickeners, for example fillers such as clays or talc; organic thickeners, for instance anionic, cationic, non-ionic and amphoteric polymeric associative thickeners; antioxidants, penetrants, Sequestrants, fragrances; dispersants; film-forming agents; ceramides, preservatives, opacifiers; conditioning agents, for example in combination with cationic polymers. The above adjuvants may general by present in an amount, for each of them, ranging from 0.01 % to 20 % wt.-% relative to the weight of the composition.

COMPOSITIONS

In one preferred embodiment of the present invention the soothing composition is present in a cosmetic formulation (c) in an amount from 0.01 to 20 wt.%, preferably from 0.1 to 10 wt.%, more preferably 0.3 to 5 wt.%, and even more preferably from 0.5 to 3 wt.%.

In another preferred embodiment of the present invention, the at least one oxidizing agent (c-1) is preferably present in an amount from 5 to 95 wt.%. The at least one natural dye (c-5) in an amount from 0.005 to 20 wt.%; alkali (c-6) in an amount from 0.1 to 30 wt.%; adjuvants (c-7) in an amount from 0.01 to 20 wt.%

The cosmetic formulation (c) of the present invention, which is preferably a permanent hair dyeing formulation, possesses comfortable sensory profile as well as good colouring quality and intensity.

Another object of the present invention is a cosmetic formulation (d) comprising a soothing composition of the present invention, wherein the cosmetic formulation (d) comprises (d-1) at least one synthetic direct dye.

In one preferred embodiment of the present invention the above-mentioned cosmetic formulation (d) is a semi-permanent hair dyeing formulation.
SEMIPERMANENT HAIR DYEING

Another colouring method is the semi-permanent dyeing. This method comprises the application of a semi-permanent dyeing formulation, which usually comprises direct dyes, to the keratin fibers. In contrast to the above mentioned permanent hair dyeing, the dyes in such a formulation can only partially penetrate into the hair shaft, while the rest of the dye molecule affinity dyes attach to the surface of the keratin fibers. For this reason, the obtained color will survive repeated washing, typically 4 - 5 shampoos or a few weeks.

Synthetic direct dye

The synthetic direct dyes used in cosmetic formulation (d) of the present invention include all the substances listed under (c-4) Synthetic Direct dyes.

In one preferred embodiment of the present invention the soothing composition of the present invention, wherein the cosmetic formulation (e) further comprises

- at least one alkaline agent, and optionally
- at least one oleaginous material and/or
- at least one additive.

In one preferred embodiment of the present invention the above-mentioned cosmetic formulation (e) is a hair relaxing and/or straightening formulation.

Hair relaxing

In the present invention the term "hair relaxing and/or straightening" means lanthionizing keratin fibers. Relaxing or straightening of hair can be achieved by disrupting the disulfide bonds of the hair fibers with an alkaline agent or a reducing agent. The chemical disruption of disulfide bonds by an alkaline agent is usually combined with mechanical straightening of the hair, such as combing, and straightening generally occurs due to changes of the relative positions of opposite polypeptide chains within the hair fiber. The reaction is generally terminated by rinsing and/or the application of a neutralizing composition.

Alkaline agents

The alkaline agent of the present invention usually functions as a hydroxide ion generator and is preferably chosen from those compositions that produce hydroxide ions appropriate for the lanthionization of hair. As used herein, "hydroxide ion generator" refers to both compounds and compositions that generate hydroxide ions, and compounds and compositions that comprise hydroxide ions. Hydroxide ion generators may, for example, be chosen from traditional "lye" and "no lye" hair relaxer compositions and other soluble or
slightly soluble hydroxide ion sources. "Lye" relaxers contain sodium hydroxide; in "no lye" relaxers the source of active hydroxide is an alkaline agent other than sodium hydroxide, including, for example, other soluble metal hydroxides, for example, alkali metal hydroxides such as lithium and potassium hydroxide, as well as less soluble multivalent metal hydroxides, for example Ca(OH)₂, that are converted, in situ, to soluble active bases, e.g., guanidine hydroxide.

[001.23] Non-limiting examples of less soluble or insoluble hydroxide ion generators include calcium hydroxide, barium hydroxide, magnesium hydroxide, aluminum hydroxide, cupric hydroxide, strontium hydroxide, molybdenum hydroxide, manganese hydroxide, zinc hydroxide, cobalt hydroxide, and the like. The complexing agents that may be used in the practice of this disclosure include, but are not limited to, mono-, di-, poly- amino-, and hydroxy-carboxylic acids, mono-, di-, poly-, amino- and hydroxy-su llon acids and mono-, di-, poly-, amino- and hydroxy-phosphonic acids. Other suitable complexing agents are chelating agents and sequestering agents. Non-limiting examples of complexing agents include ethylene-diaminetetraacetic acid (EDTA), N-(hydroxyethyl)ethylene diamine triacetic acid, aminotrimethylene phosphonic acid, diethyleneetriamine pentaacetic acid, lauroyl ethylene diamine triacetic acid, nitroacetic acid, imidiscuccinic acid, tartaric acid, citric acid, N-2-hydroxyethyl triamine diacetic acid, and the like. The complexing agents may be used in the form of their corresponding organic and/or inorganic salts, with guanidine salts being exemplary of the corresponding organic salts, and potassium, sodium and/or lithium salts being exemplary of the inorganic salts. US 6,5612,327 is incorporated herein by reference with respect to its disclosure of the activation of multivalent metal hydroxides through the use of a complexing agent. Preferred hydroxide ion generators are strong water-soluble bases, particularly preferred is sodium hydroxide.

[001.24] Oleaginous material

[001.25] The optional at least one oleaginous material of the present invention is such as mineral oil or petrolatum.

[001.26] In one preferred embodiment of the present invention the soothing composition is present in a cosmetic formulation (e) in an amount from 0.01 to 20 wt.%, preferably from 0.1 to 10 wt.%, more preferably 0.3 to 5 wt.%, and even more preferably from 0.5 to 3 wt.%; and (e-1) the at least one alkaline agent is preferably present in an amount from 0.5 to 20 wt.%;

[001.27] In a further preferred embodiment of the present invention the cosmetic formulation (e) further comprises the at least one oleaginous material (e-2) in an amount from 0.0001 to 10 wt.%; and the at least one additive (e-3) in an amount from 0.0005 to 20 wt.%;

[001.28] Another object of the present invention is a cosmetic formulation (f) comprising a soothing composition of the present invention, wherein the cosmetic formulation (f) further comprises

(f-1) at least one monoglyceride having C16 to C22 alkyl ester group, and optionally
(f-2) at least one conditioner surfactant.

[001.29] In one preferred embodiment of the present invention the above-mentioned cosmetic formulation (f) is a hair post-treatment formulation.
[001 30] HAIR POST-TREATMENT

[001 31] The term post-treatment refers to a treatment applied to the hair after the above-mentioned lanthionization process, i.e. applying a post-treatment composition to the lanthionized hair, to make the rough and unconditioned hair after relaxing and/or straightening be felt smooth and soft.

[001 32] Monoglycerides

[001 33] The monoglyceride having C_{16} to C_{22}-alkyl ester group of the present invention preferably has a long chain unsaturated group. More preferably the used monoglyceride is glyceryl monoleate.

[001 34] Conditioning surfactants

[001 35] The optional at least one conditioning surfactant of the present invention are cosmetically acceptable and suitable for topical application to the hair. Preferably the conditioning surfactants are selected from cationic surfactants, used singly or in admixture.

[001 36] Cationic surfactants useful in compositions of the invention contain amino or quaternary ammonium hydrophilic moieties which are positively charged when dissolved in the aqueous composition of the present invention.

[001 37] Examples of suitable cationic surfactants include: quaternary ammonium chlorides, e.g. alkyltri methyla mmmoni m chlorides where n the alkyl group has from about 8 to 22 carbon atoms, for example octyltrimethyla mmmoni m chloride, dodecyltrimethyla mmmonium chloride, hexadecyltri methyla mmmoni m chloride, cetyltrimethyla mmmonium chloride, octyldi methyl benzyla mmmoni m chloride, decyldi methyl benzyla mmmonium chloride, stearyl-dimethylbenzyla mmmonium chloride, didodecyldimethyla mmnoni um chloride, dioctyldi methyla mmnoni um chloride, tallow trimethyla mmmonium chloride, cocotrimethyla mmmoni um chloride, and the corresponding salts the reof, e.g., bromides, hydroxides. Cetylpyridinium m chloride or salts thereof, e.g., chloride Quaternium m-5, Quaternium m-31, Quaternium m-18 and mixtures thereof.

[001 38] The most preferred cationic surfactants for conditioner compositions of the present invention are monoa lky quaternary ammonium compounds in which the alkyl chain length is C8 to C14.

[001 39] Typical monoa lky quaternary ammonium compounds for use in the post-treatment compositions of the invention include (i) lauryl trimethyla mmmoni um chloride; (ii) cocodimethyl benzyl ammonium chloride; (iii) PEG-n lauryl ammonium chloride (where n is the PEG chain length), such as PEG-2 cocomoni um chloride, PEG-2 cocobenzyl ammonium chloride, PEG-5 cocomoni um methosul phate, PEG-15 cocomoni um chloride, compounds like lauryldi methyl hydroxyethyla mmmonium chloride, and mixtures of any of the foregoing cationic surfactants compounds.

[001 40] In one preferred embodiment of the present invention the soothing composition is present in the cosmetic formulation (f) in an amount from 0.01 to 20 wt.%, preferably from 0.1 to 10 wt.%, more preferably 0.3 to 5 wt.%, and even more preferably from 0.5 to 3
wt.%; and (f-1) the at least one monoglyceride is preferably present in an amount from 1 to 10 wt %, more preferably from 3.5 to 7.5 wt %.

[00141] In a further preferred embodiment of the present invention the cosmetic formu-
lation (f) further comprises the at least one conditioning surfactant (f-2) is preferably from 0.01 to 10 wt %, more preferably from 0.1 to 5 wt %, and the weight ratio of the conditioning surfactant (f-2) to monoglyceride (f-1) is preferably from 1:10 to 10:1, more preferably from 1:5 to 5:1, optimally from 1:1 to 1:7, for example 1:3.

[00142] In a preferred embodiment the above-mentioned cosmetic formulation (f) com-
prises (f-2) at least one conditioning surfactant, and/or

(f-3) at least one fatty alcohol material and/or
(f-4) at least one cationic polymer and/or
(f-5) at least one oily conditioning agent and/or
(f-6) at least one adjuvant

[00143] Fatty alcohol material

[00144] By "fatty alcohol material" is meant a fatty alcohol, an alkoxylated fatty alcohol, or a mixture thereof. Representative fatty alcohols comprise from 8 to 22 carbon atoms, more preferably from 16 to 20. Examples of suitable fatty alcohols include cetyl alcohol, stearyl alcohol and mixtures thereof. Alkoxylated, (e.g. ethoxylated or propoxylated) fatty alcohols having from about 12 to about 18 carbon atoms in the alkyl chain can be used in place of, or in addition to, the fatty alcohols themselves. Suitable examples include ethylene glycol cetyl ether, polyoxyethylene (2) stearyl ether, polyoxyethylene (4) cetyl ether, and mixtures thereof.

[00145] In a preferred embodiment of the present invention the fatty alcohol materia-
l (f-3) is present in the cosmetic formulation (f) in an amount from 0.1 to 10, and more preferably from 0.1 to 5 wt %. The weight ratio of the conditioning surfactant (f-2) to the fatty alcohol material (f-3) is preferably from 10:1 to 1:10, more preferably from 4:1 to 1:8, and optimally from 1:1 to 1:7, for example 1:3.

[00146] Cationic polymers

[00147] The optional cationic polymer of the present invention may be emulsified droplets of a silicone conditioning agent, for enhancing conditioning performance. The silicone is insoluble in the aqueous matrix of the composition and so is present in an emulsified form, with the silicone present as dispersed droplets. Suitable silicones include polydimethylsiloxanes, in particular polydimethylsiloxanes which have the CTFA designation dimethicone. Also suitable for use are compositions of the invention (particular shampoos and conditioners) are polydimethyl siloxanes having hydroxyl end groups, which have the CTFA designation dimethiconol. Also suitable for use in compositions of the invention are silicone gums having a slight degree of cross-linking, as are described for example in WO 96/31188.

[00148] The viscosity of the emulsified silicone itself (not the emulsion or the final hair conditioning composition) is typically at least 10,000 est. In general it has been found that conditioning performance increases with increased viscosity. Accordingly, the viscosity of the sili-
cone itself is preferably at least 600,000 est, most preferably at least 500,000 est, ideally at least 1,000,000 est. Preferably the viscosity does not exceed 10<9 est for ease of formulation.

[00149] Emulsified silicones for use in the post-treatment compositions of the invention will typically have an average silicone droplet size in the composition of less than 30, preferably less than 20, more preferably less than 10 μm. It has been found that reducing the droplet size generally improves conditioning performance. Most preferably the average silicone droplet size of the emulsified silicone in the composition is less than 2 μm, ideally it ranges from 0.01 to 1 μm. Silicone emulsions having an average silicone droplet size of <=0.15 μm are generally termed microemulsions.

[00150] Suitable silicone emulsions for use in the invention are also commercially available in a pre-emulsified form. Examples of suitable pre-formed emulsions include emulsions DC2-1766, DC2-1784, and microemulsions DC2-1865 and DC2-1870, all available from Dow Corning. These are all emulsions/microemulsions of dimethiconol. Cross-linked silicone gums are also available in a pre-emulsified form, which is advantageous for ease of formulation. A preferred example is the material available from Dow Corning as DC X2-1787, which is an emulsion of cross-linked dimethiconol gum. A further preferred example is the material available from Dow Corning as DC X2-1391, which is a microemulsion of cross-linked dimethiconol gum.

[00151] A further preferred class of silicones for inclusion in the post-treatment compositions of the present invention are amino functional silicones. By "amino functional silicone" is meant a silicone containing at least one primary, secondary or tertiary amine group, or a quaternary ammonium group. Examples of suitable amino functional silicones include (i) polysiloxanes having the CTFA designation "amodimethicone", polysiloxanes termed "trimethylsilylmodimethicone" (iii) quaternary silicone polymers as described in EP-A-0 530 974.

[00152] Amino functional silicones suitable for use in the post-treatment compositions of the present invention will typically have a mole % amino functionality in the range of from about 0.1 to about 8.0 mole %, preferably from about 0.1 to about 5.0 mole %, most preferably from about 0.1 to about 2.0 mole %. In general, the amine concentration should not exceed about 8.0 mole % since it has been found that too high amine concentration can be detrimental to total silicone deposition and therefore conditioning performance. The viscosity of the amino functional silicone is not particularly critical and can suitably range from about 100 to about 500,000 est. Specific examples of amino functional silicones suitable for use in the invention are the aminosilicone oils DC2-8220, DC2-8166, DC2-8466, and DC2-8950-114 (all ex Dow Corning), and GE 1149-75, (ex General Electric silicones).

[00153] Also suitable are emulsions of amino functional silicone oils with non-ionic and/or cationic surfactant.

[00154] Oily conditioning agents

[00155] The optional oily conditioning agent of the present invention is a dispersed, non-volatile, water-insoluble oily agent, which will be dispersed in the composition in the form of droplets and form a separate, discontinuous phase from the aqueous, continuous phase of the composition. In other words, the oily conditioning agent will be present in the cosmetic
composition in the form of an oil-in-water emulsion. By “water-insoluble” is meant that the material is not soluble in water (distilled or equivalent) at a concentration of 0.1% (w/w), at 250 °C. Suitably, the D32 average droplet size of the oily conditioning component is at least 0.4, preferably at least 0.8, and more preferably at least 1 ࠎ. Additional, the D32 average droplet size of the oily conditioning component is preferably no greater than 10, more preferably no greater than 8, more preferably no greater than 5, yet more preferably no greater than 4, and most preferably no greater than 3.5 ࠎ. The oily conditioning agent may suitably be selected from oily or fatty material(s), and mixtures thereof.

[00156] Preferred oily and fatty materials will generally have a viscosity of less than 5 Pa.s, more preferably less than 1 Pa.s, and most preferably less than 0.5 Pa.s, e.g. 0.1 Pa.s and under as measured at 25 °C. With a Brookfield Viscometer (e.g. Brookfield RV) using spindle 3 operating at 100 rpm.

[00157] Oily and fatty materials with higher viscosities may be used. For example, materials with viscosities as high as 65 Pa.s may be used. The viscosity of such materials (i.e. materials with viscosities of 5 Pa.s and greater) can be measured by means of a glass capillary viscometer as set out further in Dow Corning Corporate Test Method CTM004, Jul. 20, 1970. Suitable oily or fatty materials are selected from hydrocarbons, fatty esters and mixtures thereof.

[00158] Hydrocarbon oils include cyclic hydrocarbons, straight chain aliphatic hydrocarbons (saturated or unsaturated), and branched chain aliphatic hydrocarbons (saturated or unsaturated). Straight chain hydrocarbon oils will preferably contain from about 12 to about 30 carbon atoms. Branched chain hydrocarbon oils can and typically may contain higher numbers of carbon atoms. Also suitable are polymeric hydrocarbon oils of alketyl monomers, such as C2-C6 alketyl monomers. These polymers can be straight or branched chain polymers. The straight chain polymers will typically be relatively short in length, having a total number of carbon atoms as described above for straight chain hydrocarbon oils in general. The branched chain polymers can have substantial higher chain length. The number average molecular weight of such material is can vary widely, but will typically be up to about 2000, preferably from about 200 to about 1000, more preferably from about 300 to about 600.

[00159] Specific examples of suitable hydrocarbon oils include paraffin oil, mineral oil, saturated and unsaturated dodecane, saturated and unsaturated tridecane, saturated and unsaturated tetradecane, saturated and unsaturated pentadecane, and mixtures thereof. Branched-chain isomers of these compounds, as well as of higher chain length hydrocarbons, can also be used. Exemplary branched-chain isomers are highly branched saturated or unsaturated alkanes, such as the permethyl-substituted isomers, e.g., the permethyl-substituted isomers of hexadecane and eicosane, such as 2,2,4,4,6,8,8-di methyl-IO-methylundecane and 2,2,4,4,6,8-dimethyl-8-methyl nonane, sold by Permethyl Corporation. A further example of a hydrocarbon polymer is polybutene, such as the copolymer of isobutylene and butene. A commercially available material of this type is L-14 polybutene from Amoco Chemical Co. (Chicago, Ill., U.S.A.).

[00160] Particularly preferred hydrocarbon oils are the various grades of mineral oils. Mineral oils are clear oily liquids obtained from petroleum oil, from which waxes have been removed, and the more volatile fractions removed by distillation. The fraction distilling between 250°G. to 300°G. is termed mineral oil, and it consists of a mixture of hydrocarbons
ranging from C16H34 to C21H44. Suitable commercially available materials of this type include Sirius M85 and Sirius M125, all available from Silkolene.

[001 61] Suitable fatty esters are characterised by having at least 10 carbon atoms, and include esters with hydrocarbyl chains derived from fatty acids or alcohols, e.g., mono Rboxylic acid esters, polyhydric alcohol esters, and di- and tric Rboxylic acid esters. The hydrocarbyl radicals of the fatty esters thereof can also include or have covalently bonded thereto other compatible functionality, such as amides and alkoxy moieties, such as ethoxy or ether linkages.

[001 62] Mono Rboxylic acid esters include esters of alcohols and/or acids of the form R'COOR in which R' and R independently denote alkyl or alkenyl radicals and the sum of carbon atoms in R' and R is at least 10, preferably at least 20. Specific examples include, for example, alkyl and alkenyl esters of fatty acids having aliphatic chains with from about 10 to about 22 carbon atoms, and alkyl and/or alkenyl fatty alcohol carboxylic acid esters having an alkyl and/or alkenyl alcohol-derived aliphatic chain with about 10 to about 22 carbon atoms, benzoate esters of fatty alcohols having from about 12 to 20 carbon atoms. The mono Rboxylic acid ester need not necessarily contain at least one chain with at least 10 carbon atoms, so long as the total number of aliphatic chain carbon atoms is at least

[001 63] Examples include isopropyl isostearate, hexyl laurate, isoheptyl laurate, isohexyl palmitate, isopropyl palmitate, decyl oleate, isodecyl oleate, hexadecyl stearate, decyl stearate, isopropyl isostearate, dihexadecyl adipate, lauryl lactate, myristyl lactate, cetyl lactate, oleyl stea rate, oleyl oleate, oleyl myristate, lauryl acetate, cetyl propionate, and oleyl adipate.

[001 64] Di- and tri Rkyl and alkenyl esters of carboxylic acids can also be used. These include, for example, esters of C4-C8 dicarboxylic acids such as C1-C22 esters (preferably C1-C6) of succinic acid, glutaric acid, adipic acid, hexanoic acid, heptanoic acid, and octanoic acid. Examples include diisopropyl adipate, diisohexyl adipate, and diisopropyl sebacate. Other specific examples include isocetyl Polyhydric alcohol esters include alkylene glycol esters, for example ethylene glycol mono and di-carboxylic acid esters, diethylene glycol mono- and di-carboxylic acid esters, polyethylene glycol mono- and di-carboxylic acid esters, propylene glycol mono- and di-carboxylic acid esters, propylene glycol mono- and di-carboxylic acid esters, propylene glycol mono- and di-carboxylic acid esters, polyethylene glycol mono- and di-carboxylic acid esters, propylene glycol mono- and di-carboxylic acid esters, propylene glycol mono- and di-carboxylic acid esters, ethoxylated propylene glycol monostearate, polyglycerol poly-fatty acid esters, ethoxylated glyceryl monostearate, 1,3-butylene glycol monostearate, 1,3-butylene glycol distearate, polyoxyethylene polyol fatty acid ester, sorbita n fatty acid esters, polyoxyethylene sorbita n fatty acid esters and mono-, di- and triglycerides.

[001 65] Particularly preferred fatty esters are mono-, di- and triglycerides, more specifically the mono-, di-, and tri-esters of glycerol and long chain carboxylic acids such as C1-C22 carboxylic acids. A variety of these types of materia ls can be obtained from vegetable and animal fats and oils, such as coconut oil, castor oil, safflower oil, sunflower oil, cottonseed oil, corn oil, olive oil, cod liver oil, almond oil, avocado oil, palm oil, sesame oil, peanut oil, lanolin and soybean oil. Synthetic oils include triolein and tristearin glyceryl dilaurate. Specific examples of preferred materia ls include cocoa butter, palm stearin, sunflower oil, soybean oil and coconut oil.
In one preferred embodiment of the present invention the oily conditioning agent (f-5) present in the cosmetic formulation (f) is preferably present in an amount from 0.05 to 10 wt. %, more preferably from 0.2 to 5 wt. %, more preferably from about 0.5 to 3 wt. %.

The above mentioned cosmetic formulation of the present invention (f) may be provided as a multicomponent kit comprising at least two separate components. A first component of the kit contains comprises at least one composition for generating hydroxide ions to relax the hair. The second component comprises at least one composition comprising at least one basic amino acid.

When the above mentioned cosmetic formulations comprising a soothing composition of the present invention, which are preferably permanent hair dyeing formulation, semi-permanent hair dyeing formulation, hair relaxing and/or straightening formulation and hair post-treatment formulation respectively, are used, intensively improved scalp sensation is observed and the storage stability as well as the dispersion property of these formulations of the present invention would be improved, while their intrinsic characters were not be depressed.

METHOD

Another object of the present invention is a method of permanent hair dyeing, comprising the following steps:

(i-1) mixing a soothing composition of the present invention with a permanent hair dyeing product, and applying the obtained mixture onto the hair; or

(i-2) applying a cosmetic formulation (c) of the present invention onto the hair;

(ii) leaving the mixture of step (i-1) or (i-2) on the hair for a definite time; then

(iii) rinsing the hair.

Another object of the present invention is a method of semi-permanent hair dyeing, comprising the following steps:

(i-1) mixing a soothing composition of the present invention with a semi-permanent hair dyeing product, and applying the obtained mixture onto the hair; or

(i-2) applying a cosmetic formulation (d) of the present invention onto the hair;

(ii) leaving the mixture of step (i-1) or (i-2) on the hair for a definite time; then

(iii) rinsing the hair.

The preferable permanent hair dyeing product and semi-permanent hair dyeing product, which could be used in the present invention, are all commercially available products for permanent and semi-permanent hair colouring, such as for example:
Permanent:

- L'Oréal Excellence Creme
- L'Oreal Garnier Nutrisse
- L'Oreal Preference
- L'Oreal Prodigy
- Schwarzkopf Perfect Mousse
- Schwarzkopf Nectra Colour
- Schwarzkopf Palette
- Schwarzkopf Igora
- Revlon ColourSilk
- Softsheen Carson Dark & Lovely

Semi-permanent (non-oxidative, no ammonia)

- L'Oreal Dedicace
- L'Oreal Garnier Herbashi
- Procter & Gamble Clairol Natural Instincts

Another object of the present invention is a method of hair relaxing comprising the following steps:

(i-1) mixing a soothing composition of the present invention with a hair relaxing product, and applying the obtained mixture onto the hair; or
(ii) leaving the mixture of step (i-1) or (i-2) on the hair for a definite time; then
(iii) rinsing the hair.

The preferable hair relaxing product, which could be used in the present invention, are described in publications including US 4,324,263, US 4,390,033, US 5,476,650, US 5,849,277, US 2003/0175233, for example:

- Softsheen Carson Dark & Lovely No-Lye Relaxer
- Africa n Pride Olive Miracle Conditioner Anti-Breakage Hair Relaxer
- Dr. Miracle's "Feel It" Formula Therma Icuteca I Intensive No-Lye Hair Relaxer Kit
- Softsheen Carson Optimum Care Salon Collection Optim um Care Anti-Brea kage No-Lye Relaxer System, Regular
Another object of the present invention is a method of hair post-treatment, comprising the following steps:

(i-1) mixing a soothing composition of the present invention with a hair post-treatment product, and applying the obtained mixture onto the hair; or

(i-2) applying a cosmetic formulation (f) of the present invention onto the hair;

(ii) leaving the mixture of step (i-1) or (i-2) on the hair for a define time; then

(iii) rinsing the hair.

The preferable hair post-treatment product, which could be used in the present invention, are all commercial available products for hair post-treatment, such as those sold in the kit of the following relaxing kits:

- Softsheen Carson Dark & Lovely No-Lye Relaxer
- African Pride Olive Miracle Conditioning Anti-Breakage Hair Relaxer
- Dr. Miracle's "Feel It" Formula Thermalceutical Intensive No-Lye Hair Relaxer Kit
- Softsheen Carson Optimum Care Salon Collection Optimum Care Anti-Breakage No-Lye Relaxer System, Regular

Another object of the present invention is the use of a soothing composition of the present invention for the manufacture of cosmetic formulations with an alkaline pH between 6.5 to 12.

The cosmetic formulations with an alkaline pH between 6.5 to 12 is selected for example from hair colouring formulation, hair relaxing and/or straightening formulation, hair post-treatment formulation, toothpastes, shaving foams, sun care, deodorants or any emulsion with a pH between 6.5 to 12.

Another object of the present invention is the use of a soothing composition of the present invention for depressing uncomfortable sensation on skin and/or scalp during the application of alkaline cosmetic formulations, wherein the cosmetic formulations are preferably hair colouring formulations, hair relaxing and/or straightening formulations, perms, depilatories and soaps, toothpastes, shaving foams, sun care, deodorants or any emulsion with a pH between 6.5 to 12.

The uncomfortable sensation on skin and/or scalp generally includes stinging, burning, tingling, tickling and skin tightness.

Finally, another object of the present invention is the use of menthol compounds according to formula (II) and/or (III)

as soothing agent.
EXAMPLES

[00185] Evaluation Study

Samples and Subjects

[00186] The soothing compositions applied in the study comprise 100 wt.% Frescolat MGA and 0 wt.% carrier ingredient and evaluated in a simple blind and intra-individual study, which was done on 2 parallel groups of 24 subjects; each subject was her own control. The criteria of the subjects are listed in Table 1.

[00187] Table 1
Specific criteria for the subjects

<table>
<thead>
<tr>
<th>Sex:</th>
<th>female.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>between 25 and 40.</td>
</tr>
<tr>
<td>Phototype:</td>
<td>at least IV according to Fitzpatrick.</td>
</tr>
<tr>
<td>Subject</td>
<td>having a sensitive scalp.</td>
</tr>
<tr>
<td>Subject</td>
<td>being accustomed to colour her hair (at home or hairdressing salon).</td>
</tr>
<tr>
<td>Subject</td>
<td>agreeing to have her hair coloured by the hairdresser at the laboratory.</td>
</tr>
</tbody>
</table>

[00188] Procedure of the Evaluation Study

[00189] The evaluation study was carried out by a hairdresser at a laboratory in successive steps comprising:

[00190] Preparing the hair colouring mixture by mixing all the content of L’Oreal Excellence Creme 4.15 Marron Frappe Colouring cream enriched with pro-keratine (FILC33956/1) (tube 48ml) in the Revealing cream (FILC13169/25) (plastic bottle 72ml) a colouring tube with a developer bottle

[00191] Applying on dry hair. Applying the L’Oreal Excellence Creme 4.15 Marron Frappe Protective serum Pre-colouration with Ceramide (Plastic tube 12 ml) (FIL51515/1) on damaged parts of the hair especially on the ends. Do not wash out. (iv) Parting the hair with the nozzle of the tube and applying the mixture of (i) in sections, gently massaging and letting it rest for 30 minutes;

(v) Rinsing the hair;

(vi) Applying the L’Oreal Excellence Creme 4.15 Marron Frappe Conditioner Post-colouration (plastic bottle 44 ml) (FIL C52825/1)
[00192] Evaluation Criteria

[00193] Evaluation of the protective effect of the soothing compositions comprising Frescolat MGA was tested by the assessment with 5-point scales of cutaneous signs, including tightness, stinging, itching/pruritus, warm/burning sensation, discomfort and so on, felt by the subjects during hair colouring, in comparison with the placebo (hair colouring single).

[00194] This evaluation occurred at 3 kinetics times: during the application (T1, maximum intensity will be retained); at the end of the hair colouring application (T2, before the waiting time); and after the 30-minute-waiting time (T3, before rinsing). The confrontation of these results, in comparison with the placebo, was used to conclude the protective effect of the studied ingredient (see Table 3 and Table 4).

[00195] After hair colouring, the hairdresser evaluated the influence of the ingredient on the shade obtained, including shade intensity and respect of the attempted shade. For each parameter assessed by the hairdresser, the same method described above was used (see Table 5).

[00196] A questionnaire was filled by the subjects after application of the product to subjectively evaluate the efficacy of the ingredient (see Table 6).

[00197] Data Analysis

[00198] For each parameter, the descriptive statistics for quantitative data (number of valid values, number of missing values, mean, median, and standard deviation, standard error of the mean, minimum and maximum values) were computed and tabulated by product and by time point.

[00199] For each time point, a one way ANOVA (with factor product as fixed) was fitted to raw data. The contrasts of interest were built to compare each combination with the colouring hair applied alone.

[00200] The underlying assumptions of the model were checked (Gaussian distribution and homoscedasticity of residuals). In case of strong deviation, a non-parametric approach was used.

[00201] For all analyses, the type I error was set at $\alpha=0.05$ in a two tailed approach when applicable.

[00202] Evaluation Results

[00203] The comparisons between the sample comprising the soothing composition of the present invention and Placebo (control) are listed in the following tables.

[00204] Table 2 shows the results of the number and percentage of subjects presenting an uncomfortable reaction at three evaluating times (T1-3).
Under the mentioned study conditions it is obvious observed, that in comparison with the application of Placebo, when the sample comprising Frescolat MGA the amount of subjects having uncomfortable sensations at three evaluating time decreased respectively from 5 to 3, from 12 to 4, and from 9 to 3. In summary the percent of subjects with uncomfortable sensation decreased intensively from 50% to 29%.

The sample comprising Frescolat MGA according to the invention better relieved the subjects of the uncomfortable cutaneous signs compared to placebo.

Table 3 shows the intensity of the studied parameters at each assessment kinetic.
Table 3

<table>
<thead>
<tr>
<th>cutaneous signs</th>
<th>Intensity of the sensation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
</tr>
<tr>
<td>Sample</td>
<td></td>
</tr>
<tr>
<td>Tightness</td>
<td>0.00</td>
</tr>
<tr>
<td>Stinging</td>
<td>0.17</td>
</tr>
<tr>
<td>Itching/Pruritus</td>
<td>0.00</td>
</tr>
<tr>
<td>Warm/Burning</td>
<td>0.08</td>
</tr>
<tr>
<td>Discomfort</td>
<td>0.00</td>
</tr>
<tr>
<td>Others</td>
<td>0.00</td>
</tr>
<tr>
<td>Sum of felt sensation</td>
<td>0.25</td>
</tr>
<tr>
<td>Placebo</td>
<td></td>
</tr>
<tr>
<td>Tightness</td>
<td>0.00</td>
</tr>
<tr>
<td>Stinging</td>
<td>0.29</td>
</tr>
<tr>
<td>Itching/Pruritus</td>
<td>0.13</td>
</tr>
<tr>
<td>Warm/Burning</td>
<td>0.17</td>
</tr>
<tr>
<td>Discomfort</td>
<td>0.00</td>
</tr>
<tr>
<td>Others</td>
<td>0.17</td>
</tr>
<tr>
<td>Sum of felt sensation</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Intensity of sensation
0 = none
1 = very slight
2 = slight
3 = moderate
4 = severe

Under these study conditions, it is obvious observed, that the sample comprising Frescolat MGA according to the invention presented a significant protective effect in comparison with the placebo: the felt intensity of the uncomfortable sensation (sum of stinging, burning and itching) at different time respectively from 0.75, 1.21 and 0.79 decreased to 0.25, 0.33 and 0.21.

Table 4 shows the evaluation by the hairdresser in comparison with placebo.
Table 4
Evaluation by hairdresser

<table>
<thead>
<tr>
<th>Evaluated Criteria</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shade Intensity</td>
<td>9.5</td>
</tr>
<tr>
<td>Respect of attempted shade</td>
<td>9.7</td>
</tr>
<tr>
<td>Shade Intensity</td>
<td>9.0</td>
</tr>
<tr>
<td>Respect of attempted shade</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Shade Intensity
0 = none
10 = very slight
Respect of the attempted shade
0 = not at all
10 = exacted

Under these study conditions, it is obvious observed, that the sample comprising Frescolat MGA according to the invention can not only relieve the uncomfortable sensation on the scalp, but also slight improved the colouring property of the hair colouring formulation. The results of the questionnaire were listed in Table 5:

Table 5
Product evaluation

<table>
<thead>
<tr>
<th>Evaluation of the tested product</th>
<th>% of subjects (agree / agree somewhat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calms, eliminates itching usually felt</td>
<td>Sample 100</td>
</tr>
<tr>
<td>Anti-burning</td>
<td>Sample 96</td>
</tr>
<tr>
<td>Reduces stinging</td>
<td>Sample 96</td>
</tr>
<tr>
<td>Reduces itching</td>
<td>Sample 100</td>
</tr>
<tr>
<td>Removes tightness sensation</td>
<td>Sample 100</td>
</tr>
<tr>
<td>Refreshes the scalp</td>
<td>Sample 96</td>
</tr>
<tr>
<td>Soothes the scalp</td>
<td>Sample 96</td>
</tr>
<tr>
<td>Provides an immediate relief</td>
<td>Sample 92</td>
</tr>
<tr>
<td>A long-lasting anti-irritating effect</td>
<td>Sample 100</td>
</tr>
<tr>
<td>Diffuse an infinite relaxation</td>
<td>Sample 91</td>
</tr>
<tr>
<td>Increase the comfort of the scalp during the colouring</td>
<td>Sample 92</td>
</tr>
<tr>
<td>Increase the tolerance of the scalp</td>
<td>Sample 96</td>
</tr>
<tr>
<td>Appears to act as a protective shield</td>
<td>Sample 100</td>
</tr>
</tbody>
</table>
[00215] From the listed results from the questionnaire it can be concluded, the by adding Frescolat MGA in the hair colouring formulation, its property has been improved the subjects prefer the effect realized by the formulation according to the invention.

[00216] In conclusion, the sample comprising Frescolat MGA according to the invention:

• reduced the number of subjects with cutaneous signs compared to placebo (7 against 12);
• presented a significant protective effect in comparison with the placebo;
• presented a good intensity of the hair colouring and respected the attempted shade;
• improved slightly the colouring property;
• was appreciated by the subjects for its efficacy, for its soothing effect and for its properties/qualities.
1. A soothing composition, comprising
(a) menthol compounds corresponding to formulas (I), (II) and/or (III)

\[
\begin{align*}
(I) & \quad (II) & \quad (III) \\
\end{align*}
\]

in which \(X \) represents \(-Y\) or \(-COZ\) and \(Y \) represents the following groups:

(i) a linear or branched alkyi or hydroxyl alkyi radical containing 1 to 6 carbon atoms or an allyl radical;
(ii) a hydroxy or dihydroxyalkyl radical containing 1 to 6 carbon atoms;
(iii) a radical \(-OCR^1\);
(iv) a radical \(-OCO(M)OH\);
(v) a radical \(-OCO-S\)
(vi) a radical \(-OC(CH_2)_nCOR^2\)

wherein

\(M \) represents a linear or branched alkyi and/or alkenyl radical containing 1 to 10, preferably, 1 to 4 carbon atoms;

\(S \) represents a carbohydrate radical containing 5 to 12 carbon atoms, preferably, a fructose, a glucose or a sucrose radical;

\(n \) stands for 0 or for numbers of 1 to 6, preferably, of 2 to 3;

\(R^1 \) represents a linear or branched alkyi- or hydroxyl alkyi radical containing 1 to 6, preferably, 1 to 2 carbon atoms or an allyl radical;

\(R^2 \) represents a hydroxyl radical or a radical \(-NR^3R^4\);

\(R^3 \) and \(R^4 \), independently of one another, represent hydrogen or a linear or branched alkyi or hydroxyl alkyi radical containing 1 to 6, preferably, 1 to 2 carbon atoms,

while \(Z \) represents the following groups:

(vii) a radical \(NR^5R^6 \) or
(viii) a radical \(NHR^7 \)

wherein
R5 and R6, independently of one another, represent hydrogen or a linear or branched alkyl or hydroxyl alkyl radical containing 1 to 6, preferably, 1 to 2 carbon atoms, a phenyl radical or an alkoxyphenyl radical containing 1 to 6, preferably, 1 to 2 carbon atoms in the alkoxy radical;

R7 represents a radical -(CH\textsubscript{2})nCOOR8;

R8 represents a linear or branched alkyl or hydroxy alkyl radical containing 1 to 6, preferably, 1 to 2 carbon atoms, and

n stands for 0 or for numbers of 1 to 10, preferably, of 1 to 4, and

(b) a cosmetically acceptable carrier.

2. A soothing composition of claim 1, wherein the menthol compounds are present in the composition in an amount from 5 to 65 wt-%.

3. A soothing composition wherein the menthol compounds are menthone glycerin acetal (FEMA GRAS 3807) and/or menthone glycerin ketal (FEMA GRAS 3808). FEMA GRAS 3807

4. A cosmetic formulation (c) comprising a soothing composition of any of the preceding claims 1 to 3, wherein the cosmetic formulation (c) further comprises

(c-1) at least one separately provided oxidizing agent, and

(c-2) at least one oxidation base, and optionally

(c-3) at least one coupler and/or

(c-4) at least one synthetic dye and/or

(c-5) at least one natural dye and/or

(c-6) an alkali

(c-7) adjuvants

5. A cosmetic formulation (d) comprising a soothing composition of any of the preceding claims 1 to 3, wherein the cosmetic formulation (d) further comprises (d-1) at least one synthetic direct dye.

6. A cosmetic formulation (e) comprising a soothing composition of any of the preceding claims 1 to 3, wherein the cosmetic formulation (e) further comprises

(e-1) at least one alkaline agent, and optionally

(e-2) at least one oleaginous material and/or

(e-3) at least one additive.
7. A cosmetic formulation (f) comprising a soothing composition of any of the preceding claims 1 to 3, wherein the cosmetic formulation (f) further comprises

(f-1) at least one monoglyceride having C16 to C22 alkyl ester group,
and optionally

(f-2) at least one conditioning surfactant.
(f-3) at least one fatty alcohol material and/or
(f-4) at least one cationic polymer and/or
(f-5) at least one oily conditioning agent and/or
(f-6) at least one adjuvant

8. A cosmetic formulation of any of the preceding claims 4-7, wherein the soothing composition are present in the formulation in an amount from 0.01 to 20 wt. %.

9. A method of permanent hair dyeing, comprising the following steps

(i-1) mixing a soothing composition of any of the preceding claims 1 to 3 with a permanent hair dyeing product, and applying the obtained mixture onto the hair; or

(i-2) mixing the oxidizing agent of the cosmetic formulation (c) of claim 4 with all the other components of said cosmetic formulation and applying the obtained mixture onto the hair;

(ii) leaving the mixture of step (i-1) or (i-2) on the hair for a define time; then

(iii) rinsing the hair.

10. A method of semi-permanent hair dyeing, comprising the following steps

(i-1) mixing a soothing composition of any of the preceding claims 1 to 3 with a semi-permanent hair dyeing product, and applying the obtained mixture onto the hair; or

(i-2) applying a cosmetic formulation (d) of claim 5 onto the hair;

(ii) leaving the mixture of step (i-1) or (i-2) on the hair; then

(iii) rinsing the hair.

11. A method of hair relaxing and/or straightening, comprising the following steps

(i-1) mixing a soothing composition of any of the preceding claims 1 to 3 with a hair relaxing and/or straightening product, and applying the obtained mixture onto the hair; or

(i-2) applying a cosmetic formulation (e) of claim 6 onto the hair;

(ii) leaving the mixture of step (i-1) or (i-2) on the hair for a define time; then

(iii) rinsing the hair.
12. A method of hair post-treatment, comprising the following steps
 (i-1) mixing a soothing composition of any of the preceding claims 1 to 3 with a hair post-treatment product, and applying the obtained mixture onto the hair; or
 (i-2) applying a cosmetic formulation (f) of claim 7 onto the hair;
 (ii) leaving the mixture of step (i-1) or (i-2) on the hair for a define time; then
 (iii) rinsing the hair.

13. Use of a soothing composition of any of the preceding claims 1 to 3 for the manufacture of cosmetic formulations with an alkaline pH between 6.5 and 12.

14. Use of a soothing composition of any of the preceding claims 1 to 3 for depressing uncomfortable sensation on skin and/or on scalp during the application or after the application of alkaline cosmetic formulations.

15. Use of menthol compounds according to formula (II) and/or (III) as soothing agents.
INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/053394

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K8/49 A61K8/34 A61K8/37 A61Q5/04 A61Q5/10

A61Q5/08 A61Q5/12

ADD. According to International Patent Classification (IPC) and/or both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- A61K
- A61Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- EPO-Internal
- WPI Data
- CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 2 620 137 A1 (SYMRISE AG [DE]) 31 July 2013 (2013-07-31) pages 34-36, claims 1,2,6,7 pages 4-7 paragraph [0113] ; table e 3 page 28; example es 7-9; table e 4</td>
<td>1-3,6,8</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 332 772 A2 (INT FLAVORS & FRAGRANCES INC [US]) 6 August 2003 (2003-08-06) cited in the application pages 11-12; claims 1,4-8, 11,20</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* "A" document member of the same patent family

Date of the actual completion of the international search: 17 March 2016

Date of mailing of the international search report: 06/04/2016

Authorized officer: Bader, Karl Gunther
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>pages 2-4</td>
<td>1-15</td>
</tr>
<tr>
<td></td>
<td>pages 6-7 ; claims 1, 8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 0 080 148 AI (TAKASAGO PERFUMERY CO LTD [JP]) 1 June 1983 (1983-06-01)</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>pages 2-5</td>
<td>1-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 2620137</td>
<td>31-07-2013</td>
<td>CN 10322931 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2620137 Al</td>
</tr>
<tr>
<td>JP 2013189623</td>
<td>26-09-2013</td>
<td>KR 20130088057 A</td>
</tr>
<tr>
<td>US 2013195773 Al</td>
<td>01-08-2013</td>
<td></td>
</tr>
<tr>
<td>Wo 2014023640 A2</td>
<td>13-02-2014</td>
<td>CN 104661633 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2695597 Al</td>
</tr>
<tr>
<td>US 2015190326 Al</td>
<td>09-07-2015</td>
<td>Wo 2014023640 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1332772</td>
<td>06-08-2003</td>
<td>BR 0204271 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1436520 A</td>
</tr>
<tr>
<td>EP 1332772 A2</td>
<td>06-08-2003</td>
<td></td>
</tr>
<tr>
<td>US 2003161802 Al</td>
<td>28-08-2003</td>
<td>US 2004086476 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 653999 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2064918 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 4110973 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59202585 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 0507190 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0507190 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2073205 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 921084 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H05125073 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5266592 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 0080148</td>
<td>01-06-1983</td>
<td>DE 3263430 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0080148 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S5888334 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4459425 A</td>
</tr>
</tbody>
</table>