WO 2006/056893 A2 || 0000000 0 000 OO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 June 2006 (01.06.2006)

‘ﬂm A 00 O 0

(10) International Publication Number

WO 2006/056893 A2

(51) International Patent Classification: Not classified (74) Agent: SIEFFERT, Kent, J.; Shumaker & Sieffert, P.A.,
8425 Seasons Parkway, Suite 105, St.paul, MN 55125-
(21) International Application Number: 4393 (US).
PCT/IB2005/004140
(81) Designated States (unless otherwise indicated, for every
(22) International Filing Date: kind of national protection available): AE, AG, AL, AM,
15 November 2005 (15.11.2005) AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
- . CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(25) Filing Language: English GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(26) Publication Language: English KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
(30) Priority Data: NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
10/998,409 29 November 2004 (29.11.2004) US SK, SL, 8M, 8Y, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.
(71) Applicant (for all designated States except US): COG-
NOS INCORPORATED [US/US]; 2051 Killebrew Drive, (84) Designated States (unless otherwise indicated, for every
Suite 400, Bloomington, MN 55425 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(72) Inventor; and 7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
(75) Inventor/Applicant (for US only): WEISS, Andrew, D. European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
[US/US]; 127 Michael Drive, Red Bank, NJ 07701 (US). FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
[Continued on next page]
(54) Title: DE-SERIALIZING DATA OBJECTS ON DEMAND
(57) Abstract: The invention is directed
4 \' to techniques for de-serializing data from
a software system, such as an enterprise
ENTERPRISE software system, upon request. For example,
PLANNING . . .
SYSTEM techniques are described for converting a data
14 description language, such as the extensible
markup language (XML), representation of
NETWORK data from an enterprise software system
18 to an object when requested by a software
application. A computing device connected
COMPUTING DEVICE / to the. ente?rprise softW?Ie system loads
16A multidimensional data via an XML data
- stream. The XML data is de-serialized to
WEB BROWSER create objects as the objects are requested
2 by software applications executing on the
computing device. The remaining XML data
CALCULATION DATA may be stored on the computing device until
EN;;.‘:NE CUBE the corresponding objects are requested by
- 24 the software applications.
USER
124 OBJECT MODEL OBJECT MODEL
INTERFACE > 28
26
y XML STORE
27
' !
PLANNING
APPLICATIONS DE-SERIALIZATION
25 MODULE
29
—_Ar.l -

WO 2006/056893 A2 [N INDVYH) TS 00 KA AR

RO, SE, SI, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, For two-letter codes and other abbreviations, refer to the "Guid-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations" appearing at the begin-
Published: ning of each regular issue of the PCT Gazette.
— without international search report and to be republished
upon receipt of that report

WO 2006/056893 PCT/IB2005/004140

DE-SERIALIZING DATA OBJECTS ON DEMAND

TECHNICAL FIELD
[0001] The invention relates to software systems and, in particular, techniques for

de-serializing a data descriptioni language stream into an object.

BACKGROUND

[0002] Enterprise software systems are typically sophisticated, large-scale systems
that support many, e.g., hundreds or thousands, of concurrent users. Examples of
enterprise software systems include financial planning systems, budget planning
systems, order management systems, inventory management systems, sales force
management systems, business intelligent tools, enterprise reporting tools, project
and resource management systems and other enterprise software systems.

[0003] In a typical computing environment, remove client devices often retrieve
enterprise data from the enterprise software system. However, the enterprise
software system often stores the enterprise data as multidimensional data
comprising complicated object definitions and data types that cannot easily be
transmitted to the user device via most communication protocols, such as the
Transmission Control Protocol/Internet Protocol (TCP/IP). Therefore, the
enterprise planning system may serialize the multidimensional data into a data
description language, such as the extensible markup language (XML), which
expresses the enterprise planning data as plain text for transmission.

[0004] Upon receiving the serialized transmission, the client device de-serializes
the XML stream into objects or, in the case of multi-dimensional data, a hierarchy
of obj‘ects. The representation of multi-dimensional data as objects can include
tens of thousands of object instantiations. Some programming languages, although
optimized for object-oriented programming, begin to slow down during the
creation and especially the deletion of many small objects. In an attempt to
prevent the slow down, the XML representation of the data may be broken into
multiple XML calls. The user device may then retrieve subsets of the XML from
the enterprise software system as needed. For example, the client device may

initially on retrieve the highest levels of the object hierarchy, and retrieve

WO 2006/056893 PCT/IB2005/004140

subsequent levels when requested by the software executing on the client device.
In this way, the client device does not retrieve data from the enterprise system that
is never actually needed by the client device. This process of retrieving data from
the enterprise system as needed is often referred to as “load on demand.”

SUMMARY

[0005] In general, the invention is directed to techniques for de-serializing data
from a software system, such as an enterprise software system, as needed. For
example, techniques are described for de-serializing (i.e., converting) a data
description language, such as the extensible markup language (XML),
representation of data from an enterprise software system to an object when needed
by a software application within the enterprise software system.

[0006] The techniques allow an XML stream of serialized data representing an
object model to be loaded onto a computing device from the enterprise software
system. The XML data is de-serialized to create objects as the objects are
requested by software applications executing on the computing device. The
remaining XML data may be stored on the computing device until the
corresponding objects are requested by the software applications.

[0007] The serialized data received from the enterprise software system may
comprise multi-dimensional data, which can be de-serialized into a hierarchy of
objects. The “de-serialize on demand” techniques discussed herein allow large
object hierarchies to be constructed on an as-needed basis. The techniques may
reduce object instantiation and deletion time by only de-serializing the stored XML
data and creating those objects requested by the software applications.

[0008] In addition, the techniques described herein may be utilized in conjunction
with a “load on demand” process that selectively retrieves the XML data from the
enterprise software system when requested. For example, portions of object
hierarchies may be selectively retrieved from the enterprise software system as
XML data when needed. The retrieved XML data may be buffered and only de-
serialized into particular objects when the specific objects are requested by the
software applications executing on the computing device.

[0009] In one embodiment, a method comprises storing serialized data in

accordance with a data description language to define a hierarchical object model

2

WO 2006/056893 PCT/IB2005/004140

having a plurality of data objects. The method further comprises receiving a
request to access one of the plurality of data objects defined by the stored
serialized data, and processing at least a portion of the serialized data to create the
requested data object in response to the request.

[0010] In another embodiment, a computer comprises a software application
executing within on the computer, and a computer-readable medium storing
serialized data in accordance with a data description language to define a
hierarchical object model having a plurality of data objects. The computer further
comprises de-serialization software executing on the computer to process at least a
portion of the serialized data to create the data objects when the software
application requests access to the data objects.

[0011] In another embodiment, a computer-readable medium comprises instruction
that cause a programmable processor of a computing device to execute a plurality
of software applications on the computing device, store serialized data in
accordance with a data description language to define a hierarchical object model
'having a plurality of data objects, and receive a request from one of the plurality of
software applications to access one of the plurality of data objects defined by the
serialized data. The computer-readable medium further comprises instructions that
identify a portion of the serialized data that corresponds to the requested data
object, and convert the identified portion of the serialized data into the requested
data object.

[0012] The details of one or more embodiments of the invention are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the invention will be apparent from the description and drawings,

and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 is a block diagram illustrating an example computing environment in
which a plurality of users interact with an enterprise planning system that enables
and automates the reconciliation of top-down targets with detailed bottom-up

forecasts.

WO 2006/056893 PCT/IB2005/004140

[0014] FIG. 2 is a block diagram illustrating one embodiment of a remote
computing device for interacting with the enterprise planning system of FIG. 1.
[0015] FIG. 3 illustrates the structure of an object model in further detail.

[0016] FIG. 4 illustrates an exemplary instantiation of objects in an object model.
[0017] FIG. 5 is a flow chart illustrating a process of de-serializing on data objects
on demand.

[0018] FIG. 6 is a flow chart illustrating the de-serialization processes in greater

-detail.

DETAILED DESCRIPTION

[0019] FIG. 1 is a block diagram illustrating an example enterprise 4 having a
computing environment 10 in which a plurality of users 12A-12N (collectively,
“users 12”) interact with an enterprise planning system 14. In the system shown in
FIG. 1, enterprise system 14 is communicatively coupled to a number of
computing devices 16A-16N (collectively, “computing devices 16”) by a network
18. Users 12 interact with their respective computing devices to access enterprise
planning system 14.

[0020] For exemplary purposes, the invention will be described in reference to an
enterprise planning system, such as an enterprise financial or budget planning
system. The techniques described herein may be readily applied to other software
systems, including other large-scale enterprise software systems. Examples of
enterprise software systems include order management systems, inventory
management systems, sales force management systems, business intelligent tools,
enterprise reporting tools, project and resource management systems and other
enterprise software systems.

[0021] In general, enterprise planning system 14 enables and automates the
reconciliation of top-down targets with detailed bottom-up forecasts for an
enterprise. Enterprise planning system 14 implements and manages an enterprise
planning process, which can be divided into three functions: (1) modeling, (2)
contribution, and (3) reconciliation.

[0022] Initially, high-level enterprise managers or executives, referred to as

analysts, define organizational targets, and build planning models for the

4

WO 2006/056893 PCT/IB2005/004140

enterprise. The analysts may include, for example, financial analysts, such as the
chief financial officer, senior financial analysts or product and sales analysts.
More specifically, the analysts develop a model having a number of hierarchically
arranged nodes representing various cost centers within the organization, such as
business units or departments. The analysts specify corporate target data for each
node of the organizational hierarchy. Corporate target data may include financial
data, revemie data, order data, inventory data, and the like, depending on the
particular enterprise planning activity being carried out by the enterprise. The
analysts then assign one or more enterprise users to each node, such as managers,
supervisors, sales representatives, lab managers, or the like, that are responsible for
enterprise plénning for the cost center corresponding to the node. Each enterprise
user may be designated as a contributor that provides planning data to enterprise
planning system 14, a reviewer that accepts or rejects contributions from the
contributors, or both. The contributors and reviewers may be authorized users
within the enterprise or Within other entities coupled to network 18, such as
suppliers or customers.

[0023] Next, enterprise users 12 that are designated as contributors interact with
enterprise planning system 14 to input detailed forecasts in the form of
contribution data. As described above, enterprise users 12 may provide detailed
financial forecasts, revenue forecasts, order forecasts, inventory forecasts,
estimated resource requirements, and the like, depending on the particular
enterprise planning activity being carried out by the enterprise.

[0024] Enterprise planning system 14 automates the reconciliation of the forecast
data with the corporate target data provided by the analysts. In particular,
enterprise planning system 14 operates in accordance with a defined model, i.e.,
the enterprise planning model created by the analysts, to provide a hierarchical
planning process having multiple reconciliation levels. As each of the contributors
provides his or her contribution data, enterprise planning system 14 automatically
aggregates the contribution data across the enterprise in real-time, and provides
access to the aggregated data to enterprise users 12 designated as reviewers
associated with higher levels of the enterprise. In particular, upon receiving

contribution data from the contributors, enterprise planning system 14 identifies all

WO 2006/056893 PCT/IB2005/004140

higher levels of the organizational model affected by the newly received
contribution data, and calculates new aggregate totals at each level in real-time.
[0025] Consequently, the reviewers view aggregated data across the enterprise in
real-time during the enterprise planning session. At each level, enterprise planning
system 14 ensures that the reviewers, as defined by the nodes of the enterprise
model, reconcile the target data with the forecast data. Each of the reviewers may,
for example, reject or accept the contribution data in view of corporate targets
provided by the analysts. This process continues until the contribution data is
ultimately approved by the highest level of the organizational hierarchy, thereby
ensuring that the contribution data from the contributors reconciles with corporate
targets provided by the analysts.

[0026] In this manner, enterprise planning system 14 may provide more accurate
enterprise planning than with conventional techniques. For example, enterprise
planning system 14 may improve the accuracy and predictability of enterprise
planning by enabling organizations to reconcile corporate models and
organizational targets with detailed forecasts. The techniques may provide a
platform that delivers collaborative, real-time planning capabilities, without
requiring offline consolidation and aggregation of forecasts. Because enterprise
planning system 14 can aggregate contribution data in real-time, all users 12 can be
presented with an accurate, up-to-date view of the numbers. Further, the
architecture of enterprise planning system 14 can readily scale to thousands of
users, and may be designed around best planning practices. In addition, the
techniques enabling high participation by enterprise users 12, i.e., the contributors
and reviewers, allowing accurate planning cycles to be reduced

[0027] Enterprise users 12 may use a variety of computing devices to interact with
enterprise planning system 14 via network 18. For example, an enterprise user
may interact with enterprise planning system 14 using a laptop computer, desktop
computer, or the like, running a web browser, such as Internet Explorer™ from
Microsoft Corporation of Redmond, Washington. Alternatively, an enterprise user
may use a personal digital assistant (PDA), such as a Palm™ organizer from Palm

Inc. of Santa Clara, California, a web-enabled cellular phone, or similar device.

WO 2006/056893 PCT/IB2005/004140

[0028] Network 18 represents any communication network, such as a packet-based
digital network like the Internet. In this manner, system 10 can readily scale to suit
large enterprises. Enterprise users 12 may directly access enterprise planning
system 14 via a local area network, or may remotely access enterprise planning
system 14 via a virtual private network, remote dial-up, or similar remote access
communication mechanism.

[0029] Enterprise planning system 14 may utilize a “cut-down” process by which
the multidimensional data store is “sliced” for each user 12 in accordance with the
defined enterprise model. During this process, enterprise planning system 14
identifies areas of the defined model to which users 12 are assigned, either as
contributors or reviewers, and “slices” the data store based on the assignments.
When a given user 12 logs in and proceeds with an enterprise planning activity,
enterprise planning system 14 communicates the respective data slice to the
respective computing device 16 for display to the user via the extended spreadsheet
application. In this fashion, enterprise planning system 14 need not communicate
the entire model to each of users 12, thereby reducing communication time as well
as resource requirements. Instead, each user 12 receives only relevant information.
Users 12 interact with computing devices 16 to capture contribution data, and to
reconcile the contribution data with organizational targets.

[0030] The multidimensional data received from enterprise planning system 14
often comprises complicated object definitions. For this reason, enterprise
planning system 14 serializes the multidimensional data into a data description
language, such as the extensible markup language (XML), which expresses the
data as plain text for transmission to computing devices 16.

[0031] As described herein, computing devices 16 apply techniques for de-
serializing the data description language stream into data objects when specifically
needed by enterprise planning software executing on the computing devices.
Specifically, each of computing devices 16 includes an application programming
interface (API) for receiving data requests from a software application executing
on computing device 16 and returning the de-serialized data to the software

application.

WO 2006/056893 PCT/IB2005/004140

[0032] The data slices may comprise multi-dimensional data. The representation
of the multi-dimensional data as objects can include tens of thousands of object
instantiations. N

[0033] For example, computing devices 16 load XML representations of the
multidimensional data (i.e., the respective slices associated with users 12) from
enterprise software system 14. When a software application executing on one of
computing devices 16 requests access to an object associated with the
multidimensional data, an object model interface of the respective computing
device 16 directs a de-serialization module to convert (i.e., de-serialize) a
respective portion of the XML data into the requested data object.

[0034] Often the XML data represents a hierarchy of data objects comprising
parent objects and child objects. As a result, the parent objects are de-serialized
when specifically requested by the enterprise planning software, and the child
objects lower in the hierarchy remain stored as XML data until requested by the
software application.

[0035] In this fashion, an object hierarchy may be constructed from the XML data
in a top-down fashion as needed. As a result, the “de-serialize on demand”
techniques reduces object instantiation and deletion time associated with the object
hierarchy by only de-serializing and instantiating those objects that are actually
requested by a software application.

[0036] In addition, a “load on demand” process may used in conjunction with the
“de-serialize on demand” process described herein. Client device 16A, for
example, may selectively retrieve portions of object hierarchies from enterprise
software system 14 as XML data when needed. The retrieved XML data may be
buffered and only de-serialized into particular objects when the specific objects are
requested by the software applications executing on the computing device.

[0037] FIG. 2 is a block diagram illustrating one embodiment of a computing
device 16A for interacting with enterprise planning system 14. In the exemplary
embodiment, computing device 16A includes a web browser 20, one or more
planning applications 25, an object model interface 26, an object model 28, and a
de-serialization module 29. Calculation engine 22 and data cube 24 are installed

within web browser 20 for use during the enterprise planning session. Computing

WO 2006/056893 PCT/IB2005/004140

device 16A include computer-readable media to store executable instructions for
causing programmable processors to carry out the methods described herein.
[0038] In one embodiment, calculation engine 22 comprises a forward calculation
engine 22 wrapped in an Active X object built in an array-based language. In the
example of enterprise planning, user 12A may interact with web browser 20 to
enter and manipulate enterprise planning data, such as budget or forecast data.
Data cube 24 contains planning data, which may include top-down targets, and
bottom-up contribution data, and allows all calculations for an enterprise planning
session to be performed locally by computing device 16A. Therefore, in this
example, a contributor can modify his or her respective contribution data, and
perform calculations necessary for the enterprise planning process without .
necessarily accessing enterprise planning system 14. In other words, calculation
engine 22 and data cube 24 may be maintained locally (e.g., as ActiveX
components) via computing device 16A. User 12A may save the planning data
locally, and submit the planning data to enterprise planning system 14 for
aggregation with the planning data from other users 12. l

[0039] Enterprise planning system 14 automatically aggregates the contribution
data across enterprise 4 in real-time, and provides access to the aggregated data to
reviewers associated with higher levels of the enterprise. This process continues
until the contribution data is ultimately approved by the reviewers associated with
the highest level of the organizational hierarchy, thereby ensuring that the
contribution data from the contributors reconciles with corporate targets. In other
embodiments, calculation engine 22 and data cube 24 may be maintained only at
enterprise planning system 14 and installed locally upon computing devices 16.
[0040] Planning applications 25 represent software applications executing on
computing device 16A. For example, planning applications 25 may include
reporting tools, modeling tools, spreadsheet applications, data collection templates,
business intelligence tools, or other types of enterprise planning applications.
[0041] Object model interface 26 comprises an application programming interface
API that exposes object model 28. For example, object model 28 may be a

metadata model for data cube 24.

WO 2006/056893 PCT/IB2005/004140

[0042] In general, object model 28 represents any hierarchy of data objects, and
may comprise a series of collections and objects within the collections. In other
words, object model 28 may comprises a hierarchy of objects, each of which
contains a collection which in turn provides access to one or more objects. Object
model 28 may be wrapped to protect the objects within the collections. In this
way, user 12A and planning applications 25 cannot alter the data within object
model 28. Instead, planning applications 25 retrieve the objects from object model
28 via object model interface 26. In particular, object model interface 26 receives
data requests from planning applications 25 and returns the requested de-serialized
data to planning applications 25.

[0043] As illustrated in FIG. 2, object model 28 includes an XML store 27 such
that an XML representation of enterprise data required during the planning session
may be loaded from enterprise planning system 14 before de-serialization into
object model 28. XML store 27 may include an XML stream for an entire slice
associated with user 12A. In other cases, XML store 27 may include a subset of
the slice; the remaining portion of the slice is loaded from enterprise planning
system 14 when needed by planning applications 25 using a load on demand
process.

[0044] When one of planning applications 25 requests access to object model 28,
object model interface 26 determines whether the requested object has already
been instantiated. If an instantiation for the desired object does not exist in object
model 28, object model interface 26 identifies the corresponding XML data within
XML store 27. Object model interface 26 then directs de-serialization module 29
to de-serialize the XML that represents the requested data into an object in object
model 28. Object model interface 26 may then return the de-serialized data object
(or a handle to the object) to the requesting one of planning applications 25. The
remaining data objects of object model 28 (i.e., the lower level child objects)
remain stored in XML store 27 in XML form until requested by one of planning
applications 25.

[0045] In some situations, planning applications 25 may request information about
data objects stored in XML store 27. For example, one of planning applications 25

may issue a request to count the data objects within a given collection. In that

10

WO 2006/056893 PCT/IB2005/004140

case, object model interface 26 need not instantiate and directly access the
particular data objects. As a result, object model interface 26 may return the
requested information without de-serializing and instantiating the associated
objects.

[0046] The following XML listing illustrates exemplary serialized data that may
be provided by enterprise planning system 14 and stored within XML store 27. In
this example, the serialized data defines an object hierarchy having four
dimensions: submissions, company, accounts and periods. For each dimension, the

XML defines one or more items, and each item has one or more attributes.

<?XML version="1.0" encoding="utf-8" ?>
<response>
<dimension dimnm="Submissions" dimid="Submissions"
dimtype="Submission">
<item inm="2004 ACTUAL" iid="2004ACTUAL">
<att nm="Calc" val="0" dt="B" />
<att nm="Repair" val="0" dt="B" />
<att nm="Lock" val="0" dt="B" />
</item>
<item inm="2003 ACTUAL" iid="2003ACTUAL">
<att nm="Calc" val="0" dt="B" />
<att nm="Repair" val="0" dt="B" />
<att nm="Lock" val="1" dt="B" />
</item>
</dimension>

<dimension dimnm="Company" dimid="Company"
dimtype="Component" >
<item inm="XYZ Mining" iid="Col">
<att nm="Type" val="Type 4" dt="S" />
<att nm="Class" val="Class #01" dt="s" />
</item>
<item inm="Widgets Corp" iid="Co2">
<att nm="Type" val="Type 1" dt="S" />
<att nm="Class" val="Class #01" dt="S" />
</item>
</dimension>

<dimension dimnm="Accounts" dimid="Accounts"
dimtype="Account">
<item inm="PETTY CASH" iid="100XX">
<att nm="DecPrec" val="2" dt="N" />
<att nm="Type" val="1" dt="N" />
<att nm="Round" val="1" dt="N" />
<att nm="Basis" val="0" dt="N" />
<att nm="Color" val="1l" dt="B" />
</item>
<item inm="CASH ON HAND" iid="101XX">
<att nm="DecPrec" val="2" dt="N" />
<att nm="Type" val="1" dt="N" />
<att nm="Round" val="1" dt="N" />
<att nm="Basis" val="0" dt="N" />
<att nm="Color" wval="1" dt="B" />

11

WO 2006/056893 PCT/IB2005/004140

</item>
<item inm="CASH IN BANK" iid="103XX">
<att nm="DecPrec" val="2" dt="N" />
<att nm="Type" val="1" dt="N" />
<att nm="Round" val="1" dt="N" />
<att nm="Basis" val="0" dt="N" />
<att nm="Color" val="1" dt="B" />
</item>
</dimension>
<dimension dimnm="Periods" dimid="Periods"
dimtype="Period" >
<item inm="January" iid="Jan">
<att nm="Text" val="0" dt="B" />
<att nm="Calc" val="0" dt="B" />
<att nm="Pointer" wval="0" dt="B" />
</item>
<item inm="February" iid="Feb">
<att nm="Text" val="0" dt="B" />
<att nm="Calc" val="0" dt="B" />
<att nm="Pointer" wval="0" dt="B" />
</item>
<item inm="March" iid="Mar">
<att nm="Text" val="0" dt="B" />
<att nm="Calc" val="0" dt="B" />
<att nm="Pointer" val="0" dt="B" />
</item>
</dimension>
</response>

[0047] FIG. 3 illustrates exemplary structure of one embodiment of object model
28 in further detail. In this example embodiment, object model 28 comprises a
hierarchy of objects, each of which contains a collection which in turn provides
access to one or more objects. The exemplary structure may be particularly useful
in representing a dimension of multidimensional data.

[0048] In particular, a dimension of multidimensional data generally is defined as
a hierarchy of parent “nodes” and child “subnodes.” The dimension hierarchy may
be represented by the object hierarchy within object model 28. In other words,
each object within object model 28 represents a node within the dimension and
provides access to the multidimensional data associated with the respective node.
[0049] In the illustrated embodiment, object model 28 includes a dimension
collection 32, which contains dimension objects 33A and 33B. In other
embodiments, dimension collections 32 may contain any number of dimension
objects 33. In some cases, object model interface 26 may direct de-serialization
module 29 to create all objects within dimension collection 32 when one of
planning applications 25 attempts to access either of dimension objects 33A or

33B. In other cases, object model interface 26 may direct de-serialization module

12

WO 2006/056893 PCT/IB2005/004140

29 to only create the requested object. In either case, object model 28 stores the
XML data that describes each of dimension objects 33, and only de-serializes the
stored XML data when one or planning applications 25 requests multidimensional
data represented by the objects.

[0050] As further illustrated, each of dimension objects 33 may include an item
collection. FIG. 3 illustrates an expansion of item collection 34 within dimension
object 33B. In this example, item collection 34 contains item object 35A and item
object 35B. Item object 35B is shown to include an attribute collection 36, which
contains attribute objects 37A and 37B.

[0051] FIG. 3 illustrates only a portion of object model 28. Although not
illustrated, object model 28 may have any number of hierarchical levels
(collections), and each level may include any number of objects. For enterprise
planning systems, object model 28 may contain tens of thousands of objects
representing the multidimensional enterprise data.

[0052] FIG. 4 illustrates an exemplary instantiation of objects in object model 28
of computing device 16A. For purposes of illustration, object model 28 is shown
to include a hierarchy of collections and objects as described in reference to FIG.
3. Although FIG. 4 illustrates only one object within each (‘:ollection, any number
of objects may be contained within each collection.

[0053] When one of planning applications 25 requests data associated with a
dimension object 42 within a dimension collection 40, object model interface 26
directs de-serialization module 29 to access XML store 27, convert the
corresponding XML data and instantiate dimension object 42.

[0054] Once dimension object 42 is instantiated, object model interface 26 passes
dimension object 42 the XML data associated with the dimension object.
Dimension object 42 uses attributes specified in the XML data to prepare
properties of the object. Dimension object 42 stores the XML data within
dimension node store 41 for use as needed to create its child objects, i.e., object of
item collection 44 in this example.

[0055] In similar fashion, when one of planning applications 25 requests
multidimensional data associated with an item object 46 within item collection 44,

object model interface 26 directs de-serialization module 29 to convert the

13

WO 2006/056893 PCT/IB2005/004140

corresponding XML data stored in dimension node store 41 and instantiate the
item object. Once item object 46 is instantiated, object model interface 26 passes
item object 46 its corresponding XML data. Item object 46 uses attributes
included in the XML data to prepare properties of the object, and stores the XML
data within item node store 45 for use as needed to create child objects from
attribute collection 48. ‘

[0056] When one of planning applications 25 requests data associated with an
attribute object 50 within attribute collection 48, object model interface 26 directs
de-serialization module 29 to convert the corresponding XML data stored in item
node store 45. Again, once attribute object 50 is instantiated, object model
interface 26 passes attribute object 50 its respective XML data. Attribute object 50
uses attributes included in the XML data to prepare properties of the object. If
attribute object 50 has any child objects defined within the XML data, the attribute
object stores its XML data within attribute node store 49.

[0057] In this manner, once instantiated, the objects at each level of object model
28 store their respective XML data, and utilize the XML data to instantiate child
objects as needed.

(0058] FIG. 5 is a flow chart illustrating example implementation of the de-
serialize on demand process described herein. The de-serialize on demand process
may be performed, for example, by computing device 16A illustrated in FIG. 2
when user 12A takes part in an enterprise planning session.

[0059] Initially, object model interface 26 loads an XML representation of
multidimensional data from enterprise planning system 14 into XML store 27 (60).
In some embodiments, an XML stream representing all of the planning data
associated with user 12A (i.e. a “slice”) may be loaded into XML store 27. In
other embodiments, a load on demand processes may be utilized to load only a
subset of the needed multidimensional data with the remaining data being loaded
upon request by any of planning applications 25.

[0060] Upon loading the XML representation, object model interface 26 may de-
serialize and instantiate an initial portion of object model 28 (61). For example,
object model interface 26 may de-serialize and instantiate dimension collection 42

shown in the example of FIG. 4. During this process, object model interface 26

14

WO 2006/056893 PCT/IB2005/004140

access XML store 27 to retrieve the corresponding XML data, de-serialize the
corresponding XML data and instantiate dimension object 42. Object model
interface 26 passes dimension object 42 the XML data associated with the
dimension object for initialization of attributes subsequent use if needed to create
child objects.

[0061] Next, any of planning applications 25 may issue requests via object model
interface 26 to access object model 28 (62). For example, planning applications 25
may issue requests to access properties of the instantiated portion of object model
48, e.g., dimension collection 42 in this example. In this case, object model
interface 26 returns the proper values without de-serializing additional XML data
as the attributes have already been loaded.

[0062] However, planning application 25 may issue requests that require access to
a child object (66). For example, planning application 25 may attempt to index a
child object, iterate on the child objects or access an attribute associated with a
child object.

[0063] In this case, object model interface 26 accesses object model 28 to
determine whether the requested data object has already been instantiated within
the object model (64, 66). If the data object does already exists (yes branch of 66),
object model interface 26 access the requested child data object in accordance with
the request. Object model interface 26 may, for example, return a handle to the
child data object, return an attribute associated with the child data object, return a
count of the child data objects or return some other parameter (68).

[0064] If, however, the requested child data object does not exist in object model
28 (no branch of 66), the parent data object de-serializes the requested child data
object based on the stored XML data (70) and accesses the child data object in
accordance with the original request (68). If the XML data store of the parent data
object does not include the XML necessary to de-serialize the requested data
object, the parent data object raises an error (72).

[0065] FIG. 6 is a flow chart illustrating the de-serialization processes in greater
detail. Upon determining that a child data object needs to be instantiated, the
parent data object retrieves the XML data for the child data object from its XML

data store (80). The parent data object may, for example, maintain a temporary

15

WO 2006/056893 PCT/IB2005/004140

variable (e.g., a string variable) to store XML data associated with its child objects.
The parent object then invokes de-serialization module 29 to create the child object
based on its corresponding XML data (81).
[0066] The parent data object then passes the newly instantiated child object its
corresponding XML data corresponding to (82), as described in FIG. 4. The newly
created object then uses attributes included in the XML node to prepare its
properties (84). In the event the XML defines lower-level child objects, the newly
created object stores the XML data for later use to create the child objects when
requested by one of planning applications 25 (86). The child object then initializes
one or more flags or other marker indicating that its child objects have not yet been
converted into objects (88).
[0067] Finally, after the child object has been instantiated and initialized, the
parent object may delete the XML data used in creating the child node in order to

" conserve memory (90).
[0068] Various embodiments of the invention have been described. Although
described in reference to an enterprise planning system, such as an enterprise
financial or budget planning system, the caching techniques may be readily applied
to other software systems, including other large-scale enterprise software systems.
Examples of other enterprise software systems include order management systems,
inventory management systems, sales force management systems, business
intelligent tools, enterprise reporting tools, project and resource management
systems and other enterprise software systems. Moreover, the techniques may be
implemented on any type of computing device, including client devices, servers or
other devices. These and other embodiments are within the scope of the following

claims.

16

WO 2006/056893 PCT/IB2005/004140

CLAIMS:

1. A method comprising:

storing serialized data in accordance with a data description language to
define a hierarchical object model having a plurality of data objects;

receiving a request to access one of the plurality of data objects defined by
the stored serialized data; and

processing at least a portion of the serialized data to create the requested

data object in response to the request.

2. The method of claim 1, wherein processing at least a portion of the
serialized data comprises:
‘ receiving the request from a software applications;
identifying the portion of the serialized data that defines the requested data
object; and '
processing the identified portion of the serialized data to create the

requested data object.

3. The method of claim 2, preparing properties of the created data object in

accordance with the identified portion of the serialized data.

4. The method of claim 2,

storing the identified portion of the serialized data within the created data
object;

receiving a subsequent request to access a child data object of the created
data object; and

processing the serialized data stored within the created data object to create

the child data object in response to the subsequent request.

5. The method of claim 2, wherein the created data object comprises a parent
data object, the method further comprising setting a flag within the parent data

object to indicate that one or more child data objects have not been created.

17

WO 2006/056893 PCT/IB2005/004140

6. The method of claim 1, further comprising:

receiving a request from a software application for information related to
the child data objects; and ’

returning the information to software application from the parent data

object without processing the serialized data to create the child data objects.

7. The method of claim 1, wherein the hierarchical object model represents
multidimensional data, and the objects represents nodes and sub-nodes of the

dimension.

8. The method of claim 1, further comprising retrieving the serialized data
from an enterprise system, wherein the serialized data comprises a slice of

multidimensional enterprise data associated with a user.

9. The method of claim 1, wherein the data description language comprises

the extensible markup language (XML).

10. A computer-implemented system comprising:

a software application executing within the computer;

a computer-readable medium storing serialized data in accordance with a
data description language to define a hierarchical object model having a plurality
of data objects; and

de-serialization software executing on the computer to process at least a
portion of the serialized data to create the data objects when the software

application requests access to the data objects.
11. The system of claim 10, further comprising an object model interface that

provides an interface by which the software applications issue requests to access

the data objects defined by the serialized data.

18

WO 2006/056893 PCT/IB2005/004140

12. The system of claim 11, wherein the de-serialization software loads

properties of the created data objects in accordance with the serialized data.

13 The system of claim 11,

wherein the data objects include parent data objects and child data objects,
and

wherein when created, the parent data objects store portions of the

serialized data associated with the respective child data objects not yet created.

14. The system of claim 11, wherein the parent data objects invoke the de-
serialization software to create the child data objects when the software application

requests access to the child data objects.

15. The system of claim 11, wherein the parent data objects pass the respective
portions of the serialized data to the child data objects when the child data objects

are created.
16. The system of claim 13, wherein the parent data objects remove the

respective portions of the serialized data from a memory of the computer upon

creating the child data objects.

19

WO 2006/056893 PCT/IB2005/004140

17. A method comprising:

storing modeling data on an enterprise planning system, wherein the
modeling data defines a plurality of nodes of an enterprise;

storing enterprise planning data associated within the nodes, wherein the
enterprise planning data defines one or more data cubes storing multidimensional
data;

communicating the enterprise planning data to a client device as serialized
data;

executing a software application with the client device to perform an
enterprise planning session in accordance with the modeling data; and

processing at least a portion of the serialized data to create data objects
representing the multidimensional enterprise data of the data cubes as the data
objects are requested by the software application during the enterprise planning

session.

18. A computer readable medium comprising instructions that cause a
programmable processor of a computing device to:

execute a plurality of software applications on the computing device;

store serialized data in accordance with a data description language to
define a hierarchical object model having a plurality of data objects;

receive a request from one of the plurality of software applications to
access one of the plurality of data objects defined by the serialized data;

identify a portion of the serialized data that corresponds to the requested
data object; and

convert the identified portion of the serialized data into the requested data

object.

20

WO 2006/056893 PCT/IB2005/004140

1/6

'

ENTERPRISE
’/- 10
USER USER
A A
000
\ 4 \ 4
COMPUTING COMPUTING COMPUTING
DEVICE DEVICE DEVICE
16A 16B 16N
ENTERPRISE
NETWORK PLANNING
18 SYSTEM
14

FIG. 1

WO 2006/056893

2/6

PCT/IB2005/004140

ENTERPRISE
PLANNING
SYSTEM
14
NETWORK
18
COMPUTING DEVICE
16A
WEB BROWSER
20
onguanon | oy
20 CUBE
= 24
USER
-
12A OBJECT MODEL OBJECT MODEL
INTERFACE |[«—»] 28
26
XML STORE
l 2
PLANNING I
APPLICATIONS DE-SERIALIZATION
25 MODULE
_ 29

FIG. 2

PCT/IB2005/004140

WO 2006/056893

3/6

gi¢
103rgo 31NngiRiLllv

vie
103rg0 31NnaiyLlLy

/l\um\%

€ 'Old

NOILD3 110D
3LNgINLLY
A
g6¢ P
123rg0 Wall h _
ve
Ve) NOILD3 110D WLl
123rgo Wall b
g€t %
123rg0 NOISN3InIa €
NOLLD3 110D
vee NOISN3IWIQ
123rg0 NOISN3INIA 4
8C
73AOW 123rg0

WO 2006/056893 PCT/IB2005/004140

4/6
XML STORE
27
T
|
b DIMENSION COLLECTION
: 40
H DIMENSION OBJECT
i 42
DIMENSION NODE STORE
a1
T
{
i ITEM COLLECTION
| 44
i ITEM OBJECT
ITEM NODE STORE
45
T
!
| ATTRIBUTE COLLECTION
: 48
| ATTRIBUTE OBJECT
} 50
4
ATTRIBUTE NODE STORE
49

FIG. 4

PCT/IB2005/004140

WO 2006/056893

5/6

103180 viva 3ivayd
Ol TAX 3ZITVI¥3s-3a

0L
S3IA

NOILVOI'lddV ONINNY1d ONILSINDIN OL
N¥N.13d ANV 103180 v.iva d1iHO SS320V

fww

S3A

¢S1SIX3 1L03rg0

¢TAX <

ON

O3 3SIVY

1

-z

ON viva aiHo

99

103rgo viva aiHo
$S3D0V O1 1S3NDIY 3AIZOI

29

A

T3CQ0N
103180 40 NOILYOd TVILINI 3LVILNVLSNI

19

-

09

FUOLS TWX OLNI WVIAULS TAX AVOTT

S "Old

WO 2006/056893 PCT/IB2005/004140

6/6

RETRIEVE XML DATA FOR THE CHILD DATA OBJECT j

A

CREATE A CHILD OBJECT FROM XML DATA V
| 82
PASS XML DATA TO CHILD OBJECT j
] 84
LOAD ATTRIBUTES OF OBJECT BASED ON XML DATA j

STORE XML DATA WITHIN CHILD OBJECT }J

INITIALIZE FLAGS THAT LOWER-LEVEL CHILD OBJECTS J
HAVE NOT BEEN INSTANTIATED

i 90

DELETE XML DATA FROM PARENT OBJECT j

FIG. 6

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

