(21) International Application Number: PCT/US90/01502
(22) International Filing Date: 23 March 1990 (23.03.90)
(30) Priority data:
349,187 9 May 1989 (09.05.89) US
(71) Applicant: THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, UNITED STATES DEPARTMENT OF COMMERCE [US/US]; 5285 Port Royal Road, Springfield, VA 22161 (US).
(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published
With international search report.

(54) Title: 5-AMINOCARBONYL-5H-DIBENZO[a,d]CYCLOHEPTEN-5,10-IMINES FOR TREATMENT OF EPILEPSY AND COCAINE ADDICTION

(57) Abstract

This invention is in the field of clinical neurology and relates specifically to compounds, compositions and methods for treatment of patients with generalized epilepsy or partial (symptomatic) epilepsy using compounds of formula (I). This invention also relates to compounds, compositions and methods of treatment for drug craving in patients addicted to cocaine.

+ See back of page
DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>ES</th>
<th>Spain</th>
<th>MC</th>
<th>Monaco</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>JP</td>
<td>Japan</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
5-AMINOCARBONYL-5H-DIBENZO[a,d]CYCLOHEPTEN-5,10-IMINES
FOR TREATMENT OF EPILEPSY AND COCAINE ADDICTION

FIELD OF THE INVENTION

This invention is in the field of clinical neurology and relates specifically to compounds, compositions and methods for treatment of patients with generalized epilepsy or partial (symptomatic) epilepsy. This invention also relates to compounds, compositions and methods of treatment for drug craving in patients addicted to cocaine.

BACKGROUND OF THE INVENTION

Epilepsy is a symptom of excessive temporary neuronal discharge, due to intracranial or extracranial causes; it is characterized clinically by discrete episodes, which tend to be recurrent, in which there is a disturbance of movement, behavior, perception and/or consciousness. The precise mechanism involved in the excessive neuronal discharge of epilepsy remains unknown. Nerve tissue is electronically excitable and this excitability is influenced by many factors. The relative tendency individuals to experience excessive neuronal discharge leading to seizures is referred to as the seizure threshold of the brain. In normal individuals possessing a high threshold and never experience abnormal periods of neuronal activity. Individuals with low threshold will periodically experience those episodes associated with epileptic seizures. The causes of the seizures may be from lowered neuronal resting potential due to inherent abnormalities in cellular ion gradients or in excitatory and inhibitory neuronal transmitter systems. Seizure spread may also be potentiated by damage to inhibitory neurons due to traumatic, infective, vascular or neoplastic causes. Hyperexcitability of neurons can also be a chronic effect caused by pyrexia, hypoxia, hypoglycemia, overhydration, alkalosis, withdrawal of barbituates or alcoholism. In addition, seizures may be induced by convulsant drugs, electric shock, auditory or visual stimulus and physical and emotional stress.
Pharmaceutical agents used for the control of epilepsy fall into a variety of chemical classes including, but not limited to, acridines, amphetamines, barbiturates, carbamates, benzodiazepines, butyric acid derivatives, glutamic acid derivatives, valproic acid derivatives, ureas, hydantoins, oxazolidinones, succinimides, sulfonamides and hydrazones [see J.A. Vida, "Anticonvulsants", Academic Press, New York, 1977]. Convulsant seizures have been found to originate locally (at primary foci) in the brain and spread to other regions. The mode of action of most anticonvulsant drugs involves either the suppression of preconvulsant stimulus at the primary focus or inhibition of the spread of the excessive electrical activity to other brain regions [see F. Morrell, W. Bradley and M. Ptashe, Neurology, 9, 492 (1959)]. The majority of clinically useful anticonvulsant have a cyclic ureide structure.

\[
\begin{align*}
\text{cyclic ureide} & = & \text{structure}
\end{align*}
\]

These include the important drugs phenobarbital and diphenylhydantoin (Dilantin). Other clinically important which do not possess the cyclic ureide structure are primadone, benzodiazepines and carbamazepine.

\[
\begin{align*}
\text{primidone} & = & \text{structure} \\
\text{benzodiazepine} & = & \text{structure} \\
\text{carbamazepine} & = & \text{structure}
\end{align*}
\]

Carbamazepine (5-carbamyl-5H-dibenzo[b,f]azepine) is a major anticonvulsant drug for the treatment of complex partial and generalized tonic-clonic seizures. Carbamazepine is often used in patients who have not responded satisfactorily to treatment with other agents. It shows good activity and low acute and motor toxicity. Although it has been implicated in bone
marrow suppression only one case of toxic overdose has been reported. The low toxicity of carbamazepine may be due to its low bioavailability.

Recent studies have indicated that carbamazepine may possess the ability to restrict cocaine craving in cocaine addicts. In one study 59% of the addicts taking the medication were able to abstain from cocaine for a prescribed period compared to 17% who received a placebo.

Recently, MK-801, a new anticonvulsant of novel structure, has shown potential usefulness for seizures of focal origin and major generalized seizures. MK-801 is essentially free of the usual sedative side effects common to most of the commonly proscribed anticonvulsants [Clineschmidt et al Drug Dev. Res. 2, 123 (1982)]. Psychological disturbances in some of the patients in the clinical trials may be a consequence of the high affinity of the drug for phencyclidine binding sites in the central nervous system.

\[
\text{MK-801}
\]

DESCRIPTION OF THE INVENTION

Control of epileptic seizures and diminishment of drug craving in cocaine addicts is provided by treatment with an effective amount of a compound of the class of 5-aminocarbonyl-5H-dibenzo[a,d]cyclohepten-5,10-imines represented by Formula I:

\[
\text{Formula I}
\]

wherein each of \(R_1\) and \(R_2\) is independently selected from hydrido, linear or branched alkyl groups of from one to about twenty carbon atoms, alkenyl
groups from two to about twenty carbon atoms, alkenyl groups from two to about twenty carbon atoms, cycloalkyl groups of three to about eight carbon atoms, cycloalkenyl groups from three to about eight carbon atoms, and wherein R1 and R2 may be taken together to form a N-containing cyclic structure having two to about eight carbon atoms, any of the said groups being optionally substituted with one or more substituents selected from alkyl, haloalkyl, hydroxyalkyl, alkenyl, oxo, hydroxyl, alkoxy, thio, alkoxyalkyl, amino, halo, cyano or mercapto, and wherein R3 and R4 is independently selected from hydrido, halo, linear or branched alkyl groups of from one to about ten carbon atoms, alkenyl groups from two to about ten carbon atoms, alkynyl groups from two to about ten carbon atoms, hydroxyl, amino, alkylamino, alkoxy, cyano, nitro, haloalkyl and mercapto, and wherein R5 is selected from hydrido, linear or branched alkyl groups of from one to about ten carbon atoms, alkenyl groups from two to about ten carbon atoms, alkynyl groups from two to about ten carbon atoms, hydroxyl, phenyl, haloalkyl, aminoalkyl, 1-phenylethyl, 2-phenylethyl and alkoxy, and wherein R1 and R5 taken together form a cyclic structure containing two nitrogen atoms possessing from two to about six carbon atoms, any of the said groups being optionally substituted by alkyl, oxo, thio, alkoxy, hydroxy, amino, alkylamino, phenyl, haloalkyl and thio; or a pharmaceutically acceptable salt thereof.

A preferred class of compounds within Formula I are those wherein each of R1 and R2 is independently selected from hydrido, alkyl, alkenyl, alkoxy or phenyl; wherein each of R3 and R4 is independently selected from hydrido, alkyl, alkenyl, halo, haloalkyl, hydroxy, alkoxy, nitro, cyano, thio, mercapto, amino, alkylamino, wherein R5 is selected from hydrido, alkyl, alkenyl, haloalkyl, hydroxy, alkoxy, phenyl and aminoalkyl.

The term hydrido denotes a single hydrogen atom (H) which may be attached, for example, to a carbon atom or to a nitrogen atom to form a primary or secondary amino group. Where the term 'alkyl' is used, either alone or within other terms such as 'haloalkyl' or alkylamino' the term 'alkyl' embraces linear or branched radicals having one to about ten carbon atoms. Preferred alkyl radicals are "lower alkyl" radicals having from one to about five carbon atoms. The term 'cycloalkyl' embraces radicals having from three to about ten carbon atoms, such as cyclopropyl and cyclobutyl. The term "haloalkyl" embraces radicals wherein one or more of the alkyl carbon atoms is substituted with one or more halogens atoms, preferably selected from fluoro, chloro and bromo.
Specifically embraced by the term 'haloalkyl' are monohaloalkyl, dihaloalkyl and polyhaloalkyl groups. Examples of a polyhaloalkyl are trifluoromethyl, 2,2,2-trifluoroethyl and perfluoroethyl. The term 'alkenyl' embraces linear or branched radicals having from two to about ten carbon atoms and containing at least one double bond. The term 'alkynyl' embraces linear or branched radicals having from two to about ten carbon atoms containing at least one carbon-carbon triple bond. The term 'alkoxy' embraces linear or branched oxy-containing radicals having alkyl portions of from one to about ten carbon atoms, such as methoxy group. The alkoxy radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo to provide haloalkoxy groups. The term 'alkylamino' embraces linear or branched nitrogen containing radicals where the nitrogen atom may be substituted with from one to three alkyl radicals of from one to about ten carbon atoms, such as N-methylamino and N,N-dimethylamino.

Specific examples of alkyl groups are methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, neopentyl and n-pentyl. Typical alkenyl groups may have one unsaturated double bond, such as allyl or may have a plurality of double bonds.

Included within the family of compounds of Formula I are the tautomeric forms of the described compounds, isomeric forms such as diastereomers, and the pharmaceutically acceptable salts thereof. Examples of acids which may be employed to form pharmaceutically acceptable acid addition salts include such inorganic acids as hydrochloric acid, sulphuric acid and phosphoric acid and such organic acids as maleic acid, succinic acid and citric acid.

Compounds of Formula I may be prepared in accordance with the following general procedures:
With reference to the foregoing scheme, the known and/or readily accessible racemic or optically active C5-unsubstituted-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imines are converted into their N-tert-butylformamidine derivatives. This is conveniently accomplished by reaction with a commercially available reagent, N'-tert-butyl-N,N-dimethylformamidine at elevated temperatures (110 °C) in the presence of an acid catalyst, generally ammonium sulfate. Secondly, the N-tert-butylformamidine derivatives in an anhydrous ethereal solvent at room temperature or at 5 °C are treated with sec-butyllithium followed by ethyl chloroformate. This results in the formation of the C5-substituted ethyl ester. The next step in the chemical sequence is the removal of the tert-butylformamidine moiety from the nitrogen atom of the parent ring system. This is achieved by heating in ethanolic sulfuric acid, and gives rise to 5-ethoxycarbonyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imines. The final step in the chemical synthesis is the replacement of ester functionality with an amide group. This is accomplished by warming the ester in methanol with the appropriate amine derivative. The presence of a catalytic
amount of sodium cyanide facilitates this reaction. If N-substitution is desired, the secondary amine is allowed to react with the appropriate alkyl halide in the presence of a suitable base (e.g. triethylamine).

Example: Preparation of 5-Aminocarbonyl-10,11-dihydro-5H-dibenz[a,d]cyclohepten-5,10-imine.

A mixture of 10,11-dihydro-5H-dibenz[a,d]cyclohepten-5,10-imine (5.18 g, 25.0 mmol), N'-tert-butyl-N,N-dimethylformamidine (12.84 g, 100.0 mmol) and a few crystals of ammonium sulfate in anhydrous toluene was warmed under reflux for 6 days. Evaporation of the solvent and purification of the crude product by column chromatography employing 7% triethylamine in hexanes as the eluent afforded the N'-tert-butylformamidiny1-10,11-dihydro-5H-dibenz[a,d]cyclohepten-5,10-imine (6.98 g, 24.1 mmol, 96%): mp 63-64°C.

A solution of this material (5.80 g, 20.0 mmol) in anhydrous ethyl ether (150 mL) under an atmosphere of nitrogen was treated at 5°C with a 1.25 M solution of sec-butyllithium in cyclohexane (20.0 mL, 25 mmol). The deep red colored solution of the anion was allowed to stir at this temperature for 40 minutes, then was treated with ethyl chloroformate (2.40 mL, 25.0 mmol). The solution color immediately changed to pale yellow, and gas chromatographic analysis of the reaction mixture demonstrated the complete consumption of the starting material. The reaction mixture was treated with ethanol (100 mL) and H₂SO₄ (0.56 mL, 10.0 mmol), and the ether was evaporated under reduced pressure. The ethanolic solution was warmed under reflux for 4 h, then was diluted with 0.5 N HCl (100 mL) and extracted with Et₂O (3 x 100). The aqueous part was made alkaline by addition 1 N NaOH, and extracted with Et₂O (3 x 100). The combined organic part was washed once with H₂O (100 mL), then dried over K₂CO₃ and concentrated to dryness affording 5-ethoxycarbonyl-10,11-dihydro-5H-dibenz[a,d]cyclohepten-5,10-imine (3.37 g, 12.1 mmol, 60%). The hydrogen chloride salt was formed by passing a stream of anhydrous HCl gas through an ethereal solution of the secondary amine: mp 229 - 230°C.

A solution of the preceding amino ester (0.53 g, 1.90 mmol) and sodium cyanide (10 mg) in anhydrous methanol (40 mL) which had been previously saturated at 5°C with ammonia gas was warmed to 60°C in a sealed tube for
40 h. After cooling to 5 °C, the solid which had formed was filtered, washed with H2O, and air-dried affording 5-aminocarbonyl-10,11-dihydro-5H-dibenzo-[a,d)cyclohepten-5,10-imine (0.25 g, 1.0 mmol). The filtrate was extracted with CH2Cl2 (3 x 50), the organic pool was dried (K2CO3) and evaporated under reduced pressure, affording an additional quantity of the title compound (0.19 g, 0.76 mmol). Recrystallization of the combined samples from ethanol then gave the analytically pure material (0.37 g, 1.5 mmol, 78%). mp 235 - 236 °C.

Table I is comprised of a list of 20 specific compounds of most interest within formula I. The preparation of compound 1 in Table I is described in detail in the previous example. Compounds 2 through 20 may likewise be prepared in accordance with the above-described general synthesis procedures.
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
<table>
<thead>
<tr>
<th>Table 1 (cont.)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
BIOLOGICAL EVALUATION

Compound 1 was administered intraperitoneally to male CF-1 type mice (20-25 g) with a saline solution carrier. The dose effect behavior was determined by the administration of six different doses of each compound, treating eight mice at each dose. After a period of fifteen minutes, the mice were subjected to corneal application of electroshock (30 mA at 50 Hz for 0.1 s). The ED50 and the 95% confidence intervals of drug which eliminated the tonic-extensor component of the convulsion in 50% of the animals was calculated by the method of Litchfield and Wilcoxon (J. Pharmacol. Exp. Ther. 1949, 96, 99). Drug induced motor toxicity was examined using the inverted screen test which measures the ability of mice to hold onto a screen which has been turned vertical. Control animals will be able to hold on. Compound 1 showed an ED50 for protection against maximal electroshock induced seizures of 8.9 mg/kg and a TD50 for motor toxicity of 50-55 mg/kg in mice. Thus compound 1 demonstrates a therapeutic index (TI) of 5.6-6.2.

Administration of compounds within Formula I to humans can be by any technique capable of introducing the compounds into the bloodstream of a human patient, including oral administration, and by intravenous, intramuscular and subcutaneous injections.

Compounds indicated by prophylactic therapy will preferably be administered in a daily dose generally in the range of 0.1 mg to 100 mg per kilogram of body weight per day. A more preferred dosage will be in the range of 1.0 to 50 mg per kilogram of body weight. A suitable dose can be administered in suitable subdoses per day.

The active compound is usually administered in a pharmaceutically acceptable formulation, although in some acute-care situations a compound of Formula I may be administered alone. Such formulations may comprise the active compound with one or more pharmaceutically acceptable carriers or diluents. Other therapeutic agents may also be present in the formulation. A pharmaceutically acceptable carrier or diluent provides an appropriate vehicle for delivery of the active compound without undesirable side effects. Delivery of the active compound in such formulations may be by various routes such as
oral, nasal, buccal or sublingual, or by parenteral administration such as subcutaneous, intramuscular, intravenous or intradermal routes. Delivery of the active compound may also be through the use of controlled release formulations in subcutaneous implants.

Formulations for oral administration may be in the form of capsules containing the active compound dispersed in a binder such as gelatin or hydroxypropylmethyl cellulose, together with one or more of a lubricant, preservative, surface acting or dispersing agent. Such capsules or tablets may contain controlled release formulation as may be provided in a disposition of active compound in hydroxypropylmethyl cellulose.

Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions or suspensions may be prepared from sterile powders or granules having one or more of the carriers or diluents mentioned for use in the formulations for oral administration.

Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations. Various equivalents, changes and modifications may be made without departing from the spirit or scope of this invention, and it is understood that such equivalent embodiments are part of this invention.
WHAT IS CLAIMED IS:

1. A compound of the formula

\[\text{NR}_1 \text{R}_2 \]

\[\text{NR}_5 \]

\[\text{R}_3 \]

\[\text{R}_4 \]

wherein each of \(R_1 \) and \(R_2 \) is independently selected from hydrido, linear or branched alkyl groups of from one to about twenty carbon atoms, alkenyl groups from two to about twenty carbon atoms, alkynyl groups from two to about twenty carbon atoms, cycloalkyl groups of three to about eight carbon atoms, cycloalkenyl groups from three to about eight carbon atoms, and wherein \(R_1 \) and \(R_2 \) may be taken together to form a \(N \)-containing cyclic structure having two to about eight carbon atoms, any of the said groups being optionally substituted with one or more substituents selected from alkyl, haloalkyl, hydroxyalkyl, alkenyl, oxo, hydroxyl, alkoxy, thio, alkoxyalkyl, amino, halo, cyano or mercapto, and wherein \(R_3 \) and \(R_4 \) is independently selected from hydrido, halo, linear or branched alkyl groups of from one to about ten carbon atoms, alkenyl groups from two to about ten carbon atoms, alkynyl groups from two to about ten carbon atoms, hydroxyl, amino, alkylamino, alkoxy, cyano, nitro, haloalkyl and mercapto, and wherein \(R_5 \) is selected from hydrido, linear or branched alkyl groups of from one to about ten carbon atoms, alkenyl groups from two to about ten carbon atoms, alkynyl groups from two to about ten carbon atoms, hydroxyl, phenyl, haloalkyl, aminoalkyl, 1-phenylmethyl, 2-phenylethyl and alkoxy, and wherein \(R_1 \) and \(R_5 \) taken together form a cyclic structure containing two nitrogen atoms possessing from two to about six carbon atoms, any of the said groups being optionally substituted by alkyl, oxo, thio, alkoxy, hydroxy, amino, alkylamino, phenyl, haloalkyl and thio; or a pharmaceutically acceptable salt thereof.

2. A compound of Claim 1 wherein each of \(R_1 \) and \(R_2 \) is independently selected from hydrido, alkyl, alkenyl, alkoxy or phenyl; wherein each of \(R_3 \) and \(R_4 \) is independently selected from hydrido, alkyl, alkenyl, halo, haloalkyl, hydroxy,
alkoxy, nitro, cyano, thio, mercapto, amino, alkylamino, wherein R5 is selected from hydrido, alkyl, alkenyl, haloalkyl, hydroxy, alkoxy, phenyl and aminoalkyl.

3. A compound of Claim 2 wherein each of R1 and R2 is independently selected from hydrido, alkyl, alkenyl, and phenyl; wherein each of R3 and R4 is independently selected from hydrido, alkyl, halo, haloalkyl, hydroxy, alkoxy, nitro, amino and alkylamino, wherein R5 is selected from hydrido, alkyl, alkenyl, haloalkyl, hydroxy, alkoxy, phenyl and aminoalkyl.

4. A compound of Claim 3 which is 5-aminocarbonyl-5H-dibenzo[a,d]cyclohepten-5,10-imine.

5. A pharmaceutical composition comprising a therapeutically effective amount of a compound to treat or prevent epileptic seizures and a pharmaceutically-acceptable carrier or diluent, said compound selected from a family of compounds of the formula

![Chemical Structure](attachment:image)

wherein each of R1 and R2 is independently selected from hydrido, linear or branched alkyl groups of from one to about twenty carbon atoms, alkenyl groups from two to about twenty carbon atoms, alkynyl groups from two to about twenty carbon atoms, cycloalkyl groups of three to about eight carbon atoms, cycloalkenyl groups from three to about eight carbon atoms, and wherein R1 and R2 may be taken together to form a N-containing cyclic structure having two to about eight carbon atoms, any of the said groups being optionally substituted with one or more substituents selected from alkyl, haloalkyl, hydroxyalkyl, alkenyl, oxo, hydroxyl, alkoxy, thio, alkoxyalkyl, amino, halo, cyano or mercapto, and wherein R3 and R4 is independently selected from hydrido, halo, linear or branched alkyl groups of from one to about ten carbon atoms, alkenyl groups from two to about ten carbon atoms, alkynyl groups from two to about ten carbon atoms, hydroxyl, amino, alkylamino, alkoxy, cyano, nitro, haloalkyl and
mercapto, and wherein R₅ is selected from hydrido, linear or branched alkyl
groups of from one to about ten carbon atoms, alkenyl groups from two to about
ten carbon atoms, alkynyl groups from two to about ten carbon atoms, hydroxyl,
phenyl, haloalkyl, aminoalkyl, 1-phenylmethyl, 2-phenylethyl and alkoxy, and
wherein R₁ and R₅ taken together form a cyclic structure containing two
nitrogen atoms possessing from two to about six carbon atoms, any of the said
groups being optionally substituted by alkyl, oxo, thio, alkoxy, hydroxy, amino,
alkylamino, phenyl, haloalkyl and thio; or a pharmaceutically acceptable salt
thereof.

6. A composition of Claim 5 wherein each of R₁ and R₂ is independently
selected from hydrido, alkyl, alkenyl, alkoxy or phenyl; wherein each of R₃ and
R₄ is independently selected from hydrido, alkyl, alkenyl, halo, haloalkyl,
hydroxy, alkoxy, nitro, cyano, thio, mercapto, amino, alkylamino, wherein R₅ is
selected from hydrido, alkyl, alkenyl, haloalkyl, hydroxy, alkoxy, phenyl and
aminoalkyl.

7. A composition of Claim 6 wherein each of R₁ and R₂ is independently
selected from hydrido, alkyl, alkenyl, and phenyl; wherein each of R₃ and R₄ is
independently selected from hydrido, alkyl, halo, haloalkyl, hydroxy, alkoxy,
nitro, amino and alkylamino, wherein R₅ is selected from hydrido, alkyl,
alkenyl, haloalkyl, hydroxy, alkoxy, phenyl and aminoalkyl.

8. A composition of Claim 8 which is 5-aminocarbonyl-5H-
dibenzo[a,d]cyclohepten-5,10-imine.

9. A composition of Claim 5 wherein said compound is selected for the
treatment of drug craving due to cocaine addiction.

10. A composition of Claim 6 wherein said compound is selected for the
treatment of drug craving due to cocaine addiction.

11. A composition of Claim 7 wherein said compound is selected for the
treatment of drug craving due to cocaine addiction.
12. A composition of Claim 8 wherein said compound is selected for the treatment of drug craving due to cocaine addiction.

13. A method to treat and control epileptic seizures in mammals, which method comprises treating a mammal susceptible to epileptic seizures with an effective amount of a compound of the formula

\[
\begin{align*}
\text{O} & \quad \text{NR}_1\text{R}_2 \\
\text{R}_3 & \quad \text{NR}_5 \\
\text{R}_4 & \quad \text{NR}_5
\end{align*}
\]

wherein each of R₁ and R₂ is independently selected from hydrido, linear or branched alkyl groups of from one to about twenty carbon atoms, alkenyl groups from two to about twenty carbon atoms, alkynyl groups from two to about twenty carbon atoms, cycloalkyl groups of three to about eight carbon atoms, cycloalkenyl groups from three to about eight carbon atoms, and wherein R₁ and R₂ may be taken together to form a N-containing cyclic structure having two to about eight carbon atoms, any of the said groups being optionally substituted with one or more substituents selected from alkyl, haloalkyl, hydroxyalkyl, alkenyl, oxo, hydroxyl, alkoxy, thio, alkoxyalkyl, amino, halo, cyano or mercapto, and wherein R₃ and R₄ is independently selected from hydrido, halo, linear or branched alkyl groups of from one to about ten carbon atoms, alkenyl groups from two to about ten carbon atoms, alkynyl groups from two to about ten carbon atoms, hydroxyl, amino, alkylamino, alkoxy, cyano, nitro, haloalkyl and mercapto, and wherein R₅ is selected from hydrido, linear or branched alkyl groups of from one to about ten carbon atoms, alkenyl groups from two to about ten carbon atoms, alkynyl groups from two to about ten carbon atoms, hydroxyl, phenyl, haloalkyl, aminoalkyl, 1-phenylmethyl, 2-phenylethyl and alkoxy, and wherein R₁ and R₅ taken together form a cyclic structure containing two nitrogen atoms possessing from two to about six carbon atoms, any of the said groups being optionally substituted by alkyl, oxo, thio, alkoxy, hydroxy, amino, alkylamino, phenyl, haloalkyl and thio; or a pharmaceutically acceptable salt thereof.
14. A composition of Claim 13 wherein each of R₁ and R₂ is independently selected from hydrido, alkyl, alkenyl, alkoxy or phenyl; wherein each of R₃ and R₄ is independently selected from hydrido, alkyl, alkenyl, halo, haloalkyl, hydroxy, alkoxy, nitro, cyano, thio, mercapto, amino, alkylamino, wherein R₅ is selected from hydrido, alkyl, alkenyl, haloalkyl, hydroxy, alkoxy, phenyl and aminoalkyl.

15. A composition of Claim 14 wherein each of R₁ and R₂ is independently selected from hydrido, alkyl, alkenyl, and phenyl; wherein each of R₃ and R₄ is independently selected from hydrido, alkyl, halo, haloalkyl, hydroxy, alkoxy, nitro, amino and alkylamino, wherein R₅ is selected from hydrido, alkyl, alkenyl, haloalkyl, hydroxy, alkoxy, phenyl and aminoalkyl.

16. A composition of Claim 15 which is 5-aminocarbonyl-5H-dibenzo[a,d]cyclohepten-5,10-imine.

17. The method of Claim 13 for the treatment of drug craving due to cocaine addiction.

18. The method of Claim 14 for the treatment of drug craving due to cocaine addiction.

INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

- **IPC(5):** 461K/1 31/55, 31/465, 31/44; 037G 467/00 401/00, 223/04, 241/36 401/00, 221/22
- **US CL.:** 514/211, 219, 250, 278, 281, 289; 540/399, 340; 546/18.51, 72; 540/461, 481, 492, 607

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>514/211, 219, 250, 278, 281, 289; 544/339, 340; 540/461, 481, 492, 607</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched.

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 16 with indication, where appropriate, of the relevant passages 17</th>
<th>Relevant to Claim No. 1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4,399,141 Anderson, et al. 16 August 1983 See entire document</td>
<td>1 to 20</td>
</tr>
<tr>
<td>A</td>
<td>Cline Schmidt et al Drug Dev. Res. 1982 2(2)123-34 Chemical Abstracts Volume 97, 1982 Abstract 16955d</td>
<td>1 to 20</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 13
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search 1
09 August 1990

Date of Mailing of this International Search Report 2
2 AUG 1990

International Searching Authority 4
ISA/US

Signature of Authorized Office 10
Edward C. Ward

Form PCT/ISA/210 (second sheet) (May 1986)
V. \(\square \) OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. \(\square \) Claim numbers ..., because they relate to subject matter not required to be searched by this Authority, namely:

2. \(\square \) Claim numbers 21, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

No specific method of synthesis has been recited in claim 21.

3. \(\square \) Claim numbers ..., because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VI. \(\square \) OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This International Searching Authority found multiple inventions in this international application as follows:

Claims 1 to 4 and 21 5-amidodibenzo[cycloheptenimine.

Claims 1 to 12 and 17 derivates to a method of treating cocaine addiction.

Claims 5 to 8 and 13 to 16 method of treating epilepsy.

1. \(\square \) As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. \(\square \) As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. \(\square \) No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. \(\square \) As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

- The additional search fees were accompanied by applicant's protest.
- No protest accompanied the payment of additional search fees.