woO 2007/117132 A1 |00 0 00RO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 October 2007 (18.10.2007)

lﬂb A0 00T

(10) International Publication Number

WO 2007/117132 Al

(51) International Patent Classification:
GOG6F 17/30 (2006.01)

(21) International Application Number:
PCT/NL2006/050227

(22) International Filing Date:
18 September 2006 (18.09.2006)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
1031541 7 April 2006 (07.04.2006) NL

(71) Applicant (for all designated States except US): MAG-
PRODUCTIONS [NIL/NL]; Pantheon 26, NL-7521 PR
Enschede (NL).

(72) Inventor; and
(75) Inventor/Applicant (for US only): VERHOEVEN, Mar-
tijn [NL/NL]; Pantheon 26, NL.-7521 PR Enschede (NL).

(74) Agent: VAN WESTENBRUGGE, Andries; Nederland-
sch Octrooibureau, Postbus 29720, N1.-2502 L.S Den Haag
(NL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR SYNCHRONIZATION OF DATABASES

202 204
< <
’ 7

(57) Abstract: The invention relates to a
method for synchronization of source data sets

Partner X

Partner X
database

Partner X
internet
server

Partner Y

Partner Y
database

Partner X
internet
server

Partner X XML

Partner XML

Internet

Partner Y XML

™ 206

of a source database stored on a source system
with representative target data sets in a target
database stored on a target system, the source
data sets being of a first type and the target data
sets being of a second type. The source data
sets are compared with the previous source data
sets to obtain difference source data sets of the
first type. The difference source data sets are
transformed into transformed data sets of the
second type and supplied to the target system to
enable updating of the representative target data
sets. Preferably, the transformation is performed
via data sets of a third type, which allows to
implement external business generation. To add
fully transparent a new source of target database
to a business information system using the
method only the conversion from data type of
the new source database to data sets of third type
and/or conversion from data sets of third type to
data type of target database has to be developed.

Vakantiehuisje .nl
database

WO 2007/11:7132 A1 | NI DA 000 0T 0000 0 0

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

1

Method and system for synchronization of databases

Field of the invention

The present invention relates to a method for synchronization of source data sets
of a source database with representative target data sets in a target database stored on a
target system. The invention further relates to a computer program product comprising
computer executable instructions and a computing system for synchronization of source

data sets of a source database with representative target data sets in a target database.

Prior art

Today any company, great or small, has some form of automation. Companies
would like to grow and they seek companionships with other companies in order to
increase their market and profit. Organizations invest in internationalization, spreading
all over the world. Their information technology is asked to follow the growth and
integration of data around the world.

If two large companies merge into one organization and both organizations had
their own information technology system, problems arise with their technology system.
Each company has their own database applications, for example stock control
application, financial application or any other administrative application with a
database connected to it. If the information in those databases had to be shared over the
whole new company, huge problems arise. The application and data are not ready to
exchange data. If each company would like to use their own application, application
interfaces had to be made to enable the exchange of data. Furthermore, the data content
could be different, for example the format or units used. To overcome this
incompatibility of data special interfaces had to be designed to enable the exchange of
data from one database system to another. The incompatibility problems increases
exponentially if a third database application is added to the company. A dedicated
interface to each application has to be made to enable the exchange of data between the
three systems.

Another solution to overcome those problems is to continue the new company
with only one of the two database applications or a new application. However, this has
the disadvantage that at least a part of the employees has to be trained to use the

adopted or new application.

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

2

Nowadays, there is a need to share business information to improve the business
performance. On the internet web-services are available to book your own holiday
accommodation. A customer can select his destination and further requirements, such
as number of persons, arrival and departure date, and perform a search for available
accommodations. Preferably, the accommodation of all the suppliers provide their
information to be available in such a web-service. However, each supplier, in this
example travel agency, has his own database application, with their specific database
format. Each application is running independently, which means that an
accommodation could be booked by the agency in their database application and be
booked via the web-service. This requires that the data in the system stays consistent.
Otherwise, the search result on the web-service could provide accommodations which
are not available anymore.

The above problem could be solved by searching in the database of the agencies
to find available accommodations. However, if the connection between the database
application of the agency and the web-service is temporarily interrupted, the user could
not find any accommodations of said agency. Furthermore, searching via an internet
connection in a non-locally available databases could be relatively slow. Preferably, all
information of all agencies is stored locally in one database. However, the information
in the respective databases could be incompatible.

Generalizing, database applications were designed with specific aims, goals,
means and experiences, resulting in an application fitting to specific company goals.
However, the database applications are not designed for an expanding company. The
applications and data are not ready for exchange and cooperation with other
applications, nor are they compatible. The data is there, but can not easily be
exchanged or integrated with other data or database systems.

In supply chain and value constellation management there is a need to use actual
data from others and to integrate the data in its own database. As each company in the
chain normally has its own designed applications, and cooperates with more then one
company, it is not an option for a company to migrate to the application of another
company or to match its database structure. This will cost a lot of effort and would

result in incompatibility problems with the other companies.

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

Summary of the invention

The present invention seeks to provide an improved method for synchronization
of source data sets of a source database stored on a source system with representative
target data sets in a target database.

According to the present invention, the method comprises:

- (a) retrieving source data sets;

- (b) retrieving previous source data sets from a first memory;

- (¢) comparing the source data sets with the previous source data set to obtain
difference source data sets of the first type;

- (d) replacing in said first memory the previous source data sets with the source data
sets;

- (e) transforming the difference source data sets into transformed data sets of the
second type;

- (f) supplying the transformed data sets to the target system to enable updating of the
representative target data sets.

The invention is based on the recognition that nowadays companies have the
desire to cooperate with each other and share their data with each other, but cannot
exchange their data as each company has their own database system. Furthermore, to
perform fast, secure and reliable access to each others data the data from one system
should be locally available in the other system. As the access to data of the other
system is not dependent on the communication link between the systems, the access is
fast and reliable. However, synchronization of the data is needed to ensure that for
example an accommodation from another company will not be booked twice . To
enable exchange of data an interface has to be developed to transfer data from one
database to another. This means that if data has to be exchanged between two database
systems, two interfaces has to be designed, one interface to exchange data from the first
database to the second database and one to exchange data from the second database to
the third. If a third company with their own database want to join the cooperation
between the two companies, four new interfaces has to be designed. If a fourth
company would like to join the cooperation, six new interfaces have to be designed,
and so on. Thus, the more companies would like to cooperate with each other, the

more interfaces have to be designed, which makes it finally not worthwhile to share the

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

4
data of a new company. Furthermore, to keep the data synchronized is even a more
difficult task.

To overcome this problem a solution is provided that synchronizes content of a
source database with representative content of a target database which can easily be
extended with data from other databases and which provides to one or more target
databases only the necessary data to synchronize to corresponding data in the target
database.

According to the invention firstly, the different data sets of the current source
database with a previous version of the database have been determined. Secondly, only
the different data sets are transformed into a format suitable to update the target
database on a target system. This method reduces the amount of data to be
transformed, transferred and processed on the target system as only the data sets which
are updated, added or deleted have to be processed. Consequently, the time to
synchronize the content of the target database with the content of the source database is
greatly reduced.

In a further embodiment of the invention the method performs repeatedly the
actions above. This feature enables to guarantee that the content of the target data set
representative for the content of the source database will not be outdated.

In a further embodiment of the invention, the transforming action (¢) comprises:
- (el) converting the difference source data sets into intermediate data sets of a third
type;

- (e2) retrieving data from the intermediate data sets to obtain the transformed data set.

This feature enables easy application of external business generation (EBG).
This means that with relatively little effort the data of another database can be
integrated in an already existing system which synchronizes the content of several
different databases on a target database or to provide the content of said several
different databases to synchronize said content in a new target database. Only one
converter has to be developed to integrate the difference source data sets into the
content of the other database in such a system and to supply the content to any target
database retrieving the content via said system. Furthermore, only one new retrieving
procedure has to be developed to enable supply of the source databases to a new target

database.

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

5

In a further embodiment of the invention the data sets of the third type comprises
data fields for storing a representation of at least a part of the data fields of a data set of
the first type and data fields representative for data fields of a data set of the second
type. This feature allows reducing the amount of data to be stored in the system
performing the method according to the invention. Only data representative of data to
be necessary in the target databases are stored in the data sets. Thus not all data fields
from a source data set have to be stored in the intermediate data set.

In a further embodiment of the invention the data sets of the third type comprise a
data field with content being a copy of content of a data field of the source data set
and/or a data field with content being a representation of said content of said data field
of the source data set. This feature allows optimizing further the amount of data to be
stored in a system performing the method, by storing the data set in a format most
suitable to provide content to target databases to enable synchronization with source
databases.

In a further embodiment of the invention comparing (c¢) comprises:

- (c1) retrieving a new data set of the first type from the source database;

- (c2) searching for a corresponding previous data set stored in a second memory;

- (c3) if a corresponding previous data set is not found in (c2) storing the new data set
from the source database in the second memory;

- (c4) if a corresponding previous data set is found in (c2) perform:

- (c4a) supplying a difference source data set obtained from the new data set if the new
data set differs from the corresponding previous data set; and

- (c4b) removing corresponding previous data set from second memory.

These features allows to perform very efficient comparison of data set from a
huge database, wherein the order in which the data sets will be retrieved is not
predefined but more or less random. Only data sets that have not been found will be in
the second memory. At the end of the comparison, the second memory comprises the
new data sets and the data sets that have been removed from the source database.

In a further embodiment of the invention comparing (¢) comprises
- (¢5) retrieving a previous data set of the first type from the previous source database;
- (c6) searching for a corresponding new data set stored in the second memory;

- (c7) if a corresponding new data set is not found in (c6) storing the corresponding

previous data set from the first in the second memory;

10

15

20

25

WO 2007/117132 PCT/NL2006/050227

6
- (c8) if a corresponding previous data set is found in (¢6) perform:
- (c8a) supplying a difference source data set obtained from the new data set if the new
data set differs from the corresponding previous data set; and
- (c8b) removing corresponding new data set from second memory.

These features in combination with the previous features allows to perform the
retrieving and searching of new data sets and previous data sets independently from
each other. The second memory comprises only the data sets for which a
corresponding data set has not been retrieved. In this way the number of data sets in
the second memory can be reduced, which reduces the time to detect that a specific
data set is retrieved from the source data base with actual data as well as the previous
source data set with corresponding previous data.

In a further embodiment of the invention, the method comprises
- (g) controlling the actions (a) and (b) in dependence of the number of retrieved new
source data sets and the number of retrieved previous source data sets.

This feature allows to reduce further the storage capacity of the second memory.
It has been found that the retrieving order new data sets and previous data sets is not
similar but more or less equivalent. By controlling the number of retrieved data sets
from the source data sets and previous data sets, the storage capacity of the second
memory could be further reduced.

In a further embodiment of the invention, a source data set comprises a static data
part and a dynamic data part, and the actions (a) — (f) being performed independently
for the static data part and the dynamic data part. This feature enables to reduce the
time to perform the method. Static data, such as type of accommodation, number of
beds, pet allowed, varies almost never. Whereas, dynamic data, such as reservations of
said accommodation could vary daily. According to the invention the static data part
of the database could be synchronized for example weekly, whereas the dynamic date
is synchronized at least daily. This allows to process only a part of the content of the

data base and not the full database.

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

7

In a further embodiment of the invention, a difference source data set
corresponding to a dynamic data part comprises a status indication flag, and wherein
transforming (f) of a difference source data set corresponding to a dynamic data part is
performed under control of the status indication flag.

These features allow to reduce the number of difference source data set to be
supplied to the target system. As the dynamic data part of the target database is
updated more frequently then the static data part, a dynamic data part of the data set
could be supplied to the target system before the static part of the data set. The
dynamic data part can only be integrated in the target database when the static data part
is available in the target database. The status indication flag is used to indicate that the
static data part is not yet available in the target database. The dynamic data part of a
data set with status not yet available will be supplied to the target database after new
static data parts have been supplied to the target database. In this way, the amount of
data to be supplied to the target system is reduced, which decrease the throughput time
to perform a synchronization.

The present invention can be implemented using software, hardware, or a
combination of software and hardware. When all or portions of the present invention
are implemented in software, that software can reside on a processor readable storage
medium. Examples of appropriate processor readable storage medium include a floppy
disk, hard disk, CD ROM, memory IC, etc. When the system includes hardware, the
hardware may include an output device (e. g. a monitor, speaker or printer), an input
device (e. g. a keyboard, pointing device and/or a microphone), and a processor in
communication with the output device and processor readable storage medium in
communication with the processor. The processor readable storage medium stores code
capable of programming the processor to perform the actions to implement the present
invention. The process of the present invention can also be implemented on a server
that can be accessed over the telephone lines.

Some of the actions of operation described below are found in prior art enhanced
map generators. However, the prior art enhanced map generators do not use geo-coded

image sequences to obtain the information to enhance a map as described below.

Short description of drawings

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

8

The present invention will be discussed in more detail below, using a number of
exemplary embodiments, with reference to the attached drawings, in which

Fig. 1 is a simplified block diagram of an organization using the invention.

Fig. 2 is an other simplified block diagram of an organization using the invention.

Fig. 3 is a flowchart describing the method according to the invention for
synchronizing static data and dynamic data.

Fig. 4 is a flowchart describing the method according to the invention for
synchronizing static data and dynamic data.

Fig. 5 is a block diagram of an exemplar hardware system for implementing an

the method according to the invention.

Detailed description of exemplary embodiments

Fig. 1 is a simplified block diagram of an organization using method according to
the invention. At a high level, according to the invention the method exchanges data
from one organization to another. For example, partner X, Y and Z would like to share
their database information with each other. Each partner could have his own IT-
infrastructure with partner specific database system. It is even possible that content of
a data field in the database of partner X has to be transformed to representative content
to be stored in a data field in the database of partner Y. For example, a brewer of beer
has in his database a field corresponding to the number of beer crates with 24 bottles on
stock, whereas a supermarket has in his database the number of bottles on stock. If the
brewer and supermarket would like to share this information in their respective
databases, the number of crates has to be transformed into number of bottles and the
number of bottles has to be transformed into number of crates. This transformation is
performed in an adapter 102, 104, 106. Furthermore, the partners X, Y and Z, would
like to have the database information of the partners in their own database system, to
ensure that they can also make use of the database information in the event a system of
the other partner is down or not reachable due to communication problems.
Furthermore, the locally availability of the data of the other partners has the advantage
that the data can obtained very quickly.

According to the invention a partner supplies at request for synchronization
datasets to an adapter 102, 104, 106. The database system of this partner is regarded to

be a source system with a source database. It is commonly known that items can be

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

9
stored in a database in datasets, wherein a data set comprises data fields. The data sets
have a predefined data structure. The data sets could be transmitted to the adapter in
any suitable data format. Preferably, the data is sent in Extensible Markup Language
(XML), which is used for describing data in a structured text format. In the
embodiments described in this application the data format transmitted to the adapter is
in XML format. The invention is not limited to this data format, for example the data
could be in Comma Separate Value (CSV) data format. The data set could also be
obtained via Web Services. If the source data sets arc not retrieved in XML format, the
source data sets are converted into XML-format. The source data sets in XML format
are supplied to processing unit 108.

Processing unit 108 compares the retrieved source data sets, in XML-format, with
previous source data sets. The previous source data sets were stored in a memory
during the previous request for synchronization. The source data sets which comprise a
difference with the previous data sets are stored as difference source data sets. A
difference could be that a new data sct has been detected in the source data base, the
content of a data field of a source data set has been changed or a source data set has not
been found in the previous source data set. The thus obtained XML file with difference
source data sets could be regarded to be an incremental backup. An incremental
backup is a kind of backup that copies all files which have changed since the date of the
previous backup. According to the invention an incremental XML-file is generated
with data sets which have changed since the data of the previous request for
synchronization.

In the event, partner Z would like to synchronize data sets in his database
representative for datasets in partner X, adaptor 106 retrieves from the incremental
XML file the difference source datasets to supply the data sets to the target database of
partner Z. If the data sets in the incremental XML file comprise data field that could
not be used in the database of partner Z, the adapter 106 could be arranged to supply
only the data fields of the difference source data sets, that could be used in the target
database for synchronization.

The basic idea of the invention is that for synchronization content of a target
database, wherein said content is representative for content of a source database, firstly
the differences of content in the source database are determined, and secondly the

differences are used to update the target database.

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

10

If the format of the datasets of the difference source data sets is such that
comprises the necessary data fields to update the databases of all the partners, this has
the advantage that if a new partner would like to join, only one adapter has to be
developed. One part of the adapter performs the interfacing to add the necessary
incremental information to the difference source data sets. Another part of the adapter
performs the interfacing to retrieve the necessary information from the difference
source data sets to enable synchronization of the content of the database of the new
partner with the content of the databases of the other partners.

Preferably, the processor unit 108 keeps control over the synchronization of the
databases and determines when a synchronization cycle has to performed. A
synchronization cycle comprises basically two stages. In the first stage, firstly, all
databases are requested to supply the datasets in their respective databases to the
corresponding adapter 102, 104, 106. Secondly, all changed datasets after the previous
request are determined and stored in one database, in our case an intermediate XML-
file comprising all the difference source data sets. In the second stage of the
synchronization cycle, the processor unit 108 initiates the adapter 102, 104, 106 to
retrieve the necessary information for the intermediate XML-file and to supply said
information to the corresponding database to enable synchronization of said database
with the corresponding information of the other partner databases. It might be clear,
that by means of this method each of the partners X, Y and Z can increase their overall
business performance by integrating the “almost real-time” business information of the
other partners in their own database or IT-system. Having knowledge of the business
information of a contractor, could be a decisive factor for a new client to go into
business with a company. In that event the business of the company, the business of
the contractor increases and consequently the business of all together partners
increases. This is what we call External Business Generation, enlargement of the own
business by integration of external value chain or value constellation information from
the partners/suppliers network of IT-system.

It should be noted that the format of the data sets in the intermediate file is such
that it gives a total representation of all partner data and is suitable to provide data to all
partners to update their local databases with data from the partners. Therefore, if a new
partner will join, and the partner has some interesting data fields with new type of

information in his data sets which information improves the application of at least one

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

11
partner, the format of the datasets in the intermediate file has to be updated.
Furthermore, as the format of the data sects in the intermediate file is suitable to
represent the relevant data of all partners, the intermediate file can be made as a large
sequence of modifications of all data set of all partners. In an embodiment of the
invention the processing unit 108 retrieves sequentially the source data sets of the
partners and generates a combined intermediate file. From said combined intermediate
file the required data sets are selected to enable synchronization of a partners target
database.

The following example is illustrative how external business can be generated.
Imagine being at work on Friday afternoon, feeling ready for the weekend. Dreaming
about a holiday somewhere in Europe, in some nice place, close to a forest and a
fireplace in the living room. Looking for this place on the internet, you arrive at
www.vakantichuisje.nl.

There is a huge amount of holiday cottages and houses available for rent. You
can look for houses with a fireplace, which have one double bedroom, two single
rooms and two bathrooms, one with a bath. Also, with a click of a button, houses can
be checked for availability, sorted by price. The best part: it can be booked online!

The vakantichuisje.nl site provides all the above facilities. This requires a rather
large and up-to-date databases, easily searchable by a lot of different criteria.
Normally, all these houses where administrated by the people who owned the houses.
However, this limits the number of online houses, since large companies like Wolters
Reisen in Germany, EuroRelais and others have a vast amount of other houses already
available. These companies have their houses stored in their own databases, in their
own systems. By means of the method according to the invention, they provided
vakantichuisje.nl access to all their data, preferably in XML format. The method
scamlessly integrates all these XML data files into a vakantichuisje.nl specific
incremental XML format.

The good thing about the incremental XML format is, that only differences
between the old and new data from the partners are generated. This relieves the system
and greatly decreases the amount of resources required. This incremental
vakantichuisje.nl XML format is again integrated into the local databases. Figure 2

gives a visual representation of this process.

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

12

The invention enables having over a few thousand holiday houses added and
available instantly, continuously and automatically kept up-to-date. With the method
according to the invention, a company can integrate and convert XML from any format
to any other format, allowing seamless integration of systems and data which could not
have been easily possible without the invention.

In figure 2 the source systems of the partners 202, 204 comprises the adapters
102, 104 to convert the information from their respective databases into a partner
specific XML-file. The partner specific XML is transferred via the internet to the
target system of vakantichuisje.nl. The target system comprises a server 208 which
comprises the processor unit 108 of figure 1. The server 208 supplies the incremental
XML file, comprising the necessary data to enable updating of the vakantichuisje.nl
database 210. In figure 2 the systems are connected by means of the internet. It should
be noted that any suitable connection to obtain the partner XML-file could be used.
Examples of a suitable connection are telephone line, cable connection, satellite
connection. Instead of XML, any other commonly used standard format for data
exchange could be used. The server 208 does not necessarily be part of the target
system. The server 208 could supply for example the incremental XML file via the
internet to a target system which comprises only the application for the
vakantichuisje.nl site and the necessary target database. As the target database
comprises the necessary information from the holiday houses of the partners, a search
can be performed quickly and reliable. Quickly, as no request for search has to be
performed on the databases of the partners. Reliable, as no connection has to be made
to a source system of a partner to perform a search. A search can be performed in all
holiday houses of the partners even if there is a connectivity problem with any of the
partners. These two features, enlarge the possibility that a holidaymaker visits the site
of vakantichuisje.nl and books his holiday via vakantichuisje.nl as he probably would
always find a holiday house according to his requirements. The visit at least increases
the chance that the holidaymaker books a holiday house of vakantichuisje.nl or at least
increases the overall business performance of all the partners together, as due to the
huge quantity of holiday houses a holidaymaker would find always a holiday house
according to his requirements.

All the partners in the examples given above may supply different files at

different intervals with completely different structures and contents. The adapters 102,

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

13
104, 106, are a sort of adaptation layer, which contains partner specific code which in
turn translates the partner data to one common interface format. From this interface
onward, no partner specific code is required. This enhances modularity and ease of
implementation of the invention.

When more partners come into play, a partner specific adaptation module has to
be developed which transforms the partner specific data into the common interface
format.

The partners could have data which is specified in different languages.
Furthermore, the partners could be domiciled in different countries. Therefore, the
common interface allows to have text which has to be presented by different partners to
be stored in different languages.

The process illustrated in figure 2 could also be used for providing web-
application which provide material of comparison of products, such as insurances.
Insurance companies will provide the term of provision of insurance and the
corresponding insurance premium. At the web-site, customers can search for
insurances matching their needs and subsequently request to provided the differences
between the insurances that match. In this way they can compare very easily
insurances and select the most suitable insurance.

In general, partners could supply two types of data: static and dynamic data.
Static data doesn’t change frequently, whereas dynamic data could change very often.
In the example of vakantichuisje.nl, static data is the data related to descriptive
information about a holiday house, such as location, size, number of beds, parking
places, data about countries regions, available rental periods, etc, and dynamic data
comprises for example the availability of the holiday house, the price per period. The
dynamic data of a holiday house changes with each reservation or cancellation. It
should be noted that the static data part and dynamic data part of an object, i.e. a
holiday house, form together one data set.

In an embodiment of the invention these types of data are split while processing
partner data. Splitting relieves the system performing the method according to the
invention of unnecessary resource consumption. Resource consumption could be
processing power, transmission bandwidth, memory usage. As static data hardly ever

changes, static data have to be checked for updates to enable synchronization on the

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

14
target system less frequent then dynamic data. Preferably, the dynamic data is checked
at least one time a day, whereas the static data could be checked once week.

However, there is a problem when handling static data and dynamic data
independently and differently, especially at different times and/or different intervals. A
dynamic data part of a data set is always related to a static part of a data set.

As an example, suppose the static data is processed weekly, while dynamic data
is processed daily. Just after static data has been processed, the data changes at the
database of the partner, for example a new holiday house has been added to his
database. The following days reservations have been made, resulting in a change in the
dynamic data part of said holiday house. This dynamic data part is based on the newly
created corresponding static data part.

When the dynamic data part is parsed the next day, it will contain information to
be used later on to relate to a static data part, which is yet not available in the target
database. Information is provided to the target database which can not be integrated in
the target database.

This dynamic data part may not be dropped, since it may contain information
which has to be used later on to relate to static data. It is also not efficient to request at
the moment a dynamic data part without corresponding static data part is detected in
the target database, to provide first the corresponding static data part, because the
dynamic part has to wait for this. To provide the static data part, the entire static data
parts of the partner database have to be retrieved and processed. This requires quite a
resource consumption.

A solution has been found by setting the dynamic data parts without
corresponding static data part aside. In an embodiment of the invention each dynamic
data part of the difference source data sets has a corresponding data field indicating
whether said dynamic data set is integrated in the target database. If the dynamic data
set is not integrated the indication will be non-committable incremental data. The
resulting set of this non-committable dynamic data part is called “the update pool”.
This construction makes parsing of already parsed data unnecessary.

The only thing that has to be taken care of is the integration of the pool when new
static data comes available. This is not a big problem. After parsing and reintegrating
static data, another job can be started to integrate the update pool by supplying the

difference source data sets marked as non-committable incremental data to the target

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

15
database. Preferable not only the data sets marked as non-committable incremental
data are supplied to the target database but also new difference source data sets which
have never been send to the target database are supplied.

Fig. 3 shows a flowchart describing the method according to the invention for
synchronizing static data and dynamic data. The flowchart comprises two parallel
paths. One path 302 for synchronizing the static data and another path 304 for
synchronizing the dynamic data. In path 302, block 306 represents the retrieval of the
static part of the source data sets. In the present description the source data sets are in
the from of XML data. Block 306 could comprise the conversion from the partners
database format to the XML format. Block 308 represents the retrieval of the previous
source data sets from a first memory. Not shown in the flowchart is the step to store
the source data sets in the first memory to become the previous data sets for the
subsequent synchronization cycle. In 310 the new source data sets and the previous
source data sets are compared. Block 312 represents storing the data sets that differ as
difference source data sets. Furthermore, 312 represents transforming the difference
source data sets into transformed data sets and supplying the transformed source data
sets to the target database to enable the content of the target database with the
determined differences. The transformed source data sets are of a second type, and
comprises those data fields from a data set that are suitable to update data fields of a
data set in the target database. Block 314 represents the integration of the transformed
data sets in the target database for both static data parts and dynamic data parts.

The new source data sets could be of a first type and are converted in block 312
to an intermediate format of a third type prior to storage in a memory. A data sets of
the third type comprises data field for storing a representation of at least a part of the
data field of a data set of the first type. Furthermore, a data set of the third type
comprises data field representative for data field of the second type. For example, the
source database of the first type comprises data fields indicating the number of bunk
beds, double beds and single beds for adults and children respectively. A first target
database needs data about the number of adults and children beds, whereas a second
target database needs to know the number of single beds and double beds. In the
intermediate format the data set could comprise enough fields to store all possible
representations of beds to used in source and target databases. This would make it

possible that the content of fields of a transformed data sets could directly be copied

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

16
from the intermediate data sets. However, to save resources to store the intermediate
data sets it is more efficient to have only those data fields that are representative for
data fields of the target database. This could mean that the content of a data field of a
transformed data set has to be derived from the content of at least one data field of an
intermediate data set. For example, the intermediate data set comprises data field for
the number of bunk beds and double beds, whereas the target data base has a field for
the number of sleeping places for adults. In this case the number of sleeping places is
derived from the number of bunk beds and double beds.

In path 304, block 316 represents the retrieval of the dynamic part of the source
data sets. Block 316 could comprise the conversion from the partners database format
to the XML format. Block 318 represents the retrieval of the dynamic part of previous
source data sets from the first memory. Not shown in the flowchart is the step to store
the source data sets in the first memory to become the previous data sets for the
subsequent synchronization cycle. In 320 the dynamic part of new source data sets and
dynamic part of the previous source data sets are compared. Block 322 represents
storing the dynamic parts of data sets that differ as difference source data sets.
Furthermore, block 322 represents transforming the difference source data sets into
transformed data sets and supplying the transformed source data sets to the target
database to enable the content of the target database with the determined differences.
The transformed source data sets are of a second type, and comprises those data fields
from a data set that are suitable to update data fields of a data set in the target database.
Block 324 represents the integration of the transformed data sets in the target database
for both static data parts and dynamic data parts.

The dotted lines in figure 4 illustrate schematically an embodiment of the
interaction needed to update correctly dynamic data in a target database. The dotted
line between 320 and 310 indicate that for a dynamic part of a new data set has to be
checked whether the static part of said new data set is already parsed to or integrated in
the target database. If not, the dynamic part of said data set is added to a pool of data
sets. This is illustrated by the dotted arrow from 320 to block 324. If true, the dynamic
part is added to the dynamic parts of data sets to be supplied to the target data base.
This is illustrated by the dotted arrow from 320 to block 322. Block 324 represents the
storage of dynamic data sets as non-committed data sets. As soon as the corresponding

static data part of said data set is retrieved from the source data base and is supplied to

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

17
the target database, this is signaled to 324 which takes care that the dynamic part will
be part of the differences of dynamic data sets to be supplied to the target database.
This is illustrated by the dotted arrows between block 306 and block 324, and block
324 and 322 respectively.

Fig. 4 is a flowchart describing another embodiment of the method according to
the invention for synchronizing static data and dynamic data. Different partners
provide multiple different XML files. Some files contain static data, other contain
dynamic data. These are retrieved at a set time, usually right after the partner has
updated them. These files are stored as new data, just after moving the previous new
data to the old data storage.

From this old and new data, for each partner separately a collection of
incremental XML modifications is generated for both the static and dynamic data, only
at different intervals. This data from all partners is merged into one set of
modifications. These modifications are in turn committed into a database in a kind of
like XML to SQL, Structured Query Language, translation.

First the modification set will be explained. After that, an overview of the threads
within the XML Integration Application, or XIA for short, will be given. This is the
application that takes care of the entire integration process.

The set of modifications to be committed is stored in a database. A modification
is an XML string with a marker, indicating whether this modification is:

- “queued”, meaning that it is waiting to be supplied to the target database;

- “committed” meaning integrated in the target database and ready for removal;

- “pooled”, meaning for later commission because some related data is not
available yet in the target database.

According to this embodiment a dynamic part of data set a source data base will
cause the following data processing step in his life cycle. Firstly, a new data set will be
generated in partner application and stored in the source database. During the next
dynamic part update cycle the new dynamic part is retrieve from the source database.
As said dynamic part is new, it will be added to the modification or intermediate data
sets. The marker corresponding to said dynamic part will be set to “queued”. Upon
request all data sets with status queued are supplied to the target database. The
application performing the integration of the content of the data sets in the target

database, will report XIA whether a data set is integrated in the target database or could

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

18
not be integrated due to non-availability of the corresponding static data part in the
target database. XIA will set the marker of an intermediate data set to “committed” if
the data set is integrated and will set the marker to “pooled” if the data set could not be
integrated. When the dynamic part is changed in the source database, the subsequent
update cycle will detect the change in the data set and store the change in the
intermediate database set. Upon request to update the target database, only the
intermediate data sets with a marker queued will be supplied to the target database. As
long as no subsequent update of the static part has been requested, the dynamic parts
with marker pooled not be supplied to the target database. As soon as new
modifications of static parts has been requested and detected, XIA will supply to the
target database the dynamic parts of the intermediate data sets with both marker queued
and pooled. If the application performing the integration detects that a dynamic part
which had the marker “pooled” is integrated in the target database, the application will
report to XIA that the dynamic part is integrated and subsequently XIA will set the
marker to “committed”, otherwise the market of set intermediate database will be
unchanged. The use of the marker enables to reduce to amount of data to be supplied
to a target database.

The XML Integration Application will use threading to support multiple
simultaneous tasks. For each task threads will be started. Because of this, all objects
that could be used by multiple threads at the same time will have locking mechanisms
installed to prevent threads from cluttering each other’s data.

Some threads run forever, others only at certain moments. A short overview of all
the threads. Permanently running threads: XIA which is main thread purely for
handling signals and cleanup afterwards; scheduler for scheduling partner data
handling; modification handler for handling the updates in the modification set.
Temporarily running threads: janitor for cleaning the modification set or intermediate
database; partner data handler for parsing partner data.

The XIA main thread deals with all the management functions surrounding the
XML Integration Application. This includes the following list:

initializing the database connection;

initializing the context for other objects and threads;

initializing the sheriff;

starting up the other threads;

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

19

scheduling the janitor;

handling external signals;

cleaning up on exit.

The XML Integration application can be controlled through a number of signals.
These signals and their function are documented in the following section.

The scheduler thread takes care of starting the temporary threads at set times.
The database is first queried to find all the partners. For each partner, a respective
config script is started so all the partner specific code can schedule itself for later
execution by the scheduler. There is a respective config script for each partner as each
partner generates by means an adaptor 102, 104, 106 a partner specific XML file.

It is further vital for each partner to be able to run some initializations code. This
has two reasons. The first consists of the fact that at an early stage, errors in partner
specific code can be detected at startup; not at a later scheduled time. Second, every
partner specific part of code of the XML Integration Application knows best for itself
when it should be scheduled again. For example the size of the source database
determines the throughput time to perform a synchronization or update cycle.

A sequence of actions within the scheduler starts when a task is scheduled. At
that moment, the newly scheduled task is put in the internal schedule, sorted ascending
by execution time. After that, the delay until the next task is calculated and an alarm
signal for delivery after this delay will be scheduled.

Upon reception of the alarm signal, the internal schedule is checked for tasks
which should have been run or should run now. These tasks are executed in the order of
their scheduled execution time in a separate thread. Executed tasks are deleted from the
schedule.

Finally, the delay between the next task and the current time is checked. If this
delay is small (less than two seconds or negative), the task is run in the same manner as
in the previous paragraph. Otherwise, an alarm to be delivered after the calculated
delay is scheduled again.

The modification handler thread waits for a trigger from the partner data handler
to indicate modification availability. The modification handler then handles all
modifications and marks them either "pooled’ or ‘committed’, depending on the result
of the query. Another possibility is that the modifications are marked "partial', because

they need to be combined with modifications from other files before they are ready to

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

20
be processed. Modifications marked 'partial' are stored with a bit-mask (>0) that, when
AND-ed with all other 'partial' modifications for the same object, combines to 0 (zero)
if all parts are available.

When large amounts of modifications are suddenly enqueued, it is undesirable
that the modification handler causes a high load at a systems processor. That is why, at
a very low level, the modification handler *“takes a break" after handling each
modification. This break is in the form of a short delay or sleep in which the handler
does not require processing time from the system.

When the modification handler starts, it first tries to commit all the queued and if
requested pooled modifications. After that, it will wait for an event. This event can
indicate either that modifications just queued should be processed (a queue event), or
that also the pooled modifications should be processed (a pool event). The latter can
occur when partner data handler integrates modifications on static data which could be
referenced by pooled modifications.

The janitor thread keeps the modification set clean. When modifications have
been committed to the database, they remain in the set, but they are marked as
“committed”. These modifications accumulate over time, which is why the janitor takes
care of this. Committed modifications which have been committed over some time,
p.c. one week, are deleted from the database. It might be clear that this period is
configurable. The marker “committed” is suitable to verify whether the system is
working properly. First, can be verified when a last modification in a source database
has occur and secondly can be verified whether a modification is correctly integrated in
the target database. A partner could require that the “committed” marker is used to
verify the system. If the system is proved to work properly, the “committed” marker
could be regarded to be superfluous.

The partner data handler threads performs some actions which are common for all
partners. They all need to retrieve files and to process the data in said files. Retrieving
files could be done in a partnerParser superclass, with just a URL specification as
source and a destination to store the data. This saves a lot of coding for new partners.

All the threads described above need to be commanded or synchronized in some
way. This is done via events. Every thread registers itself with the Sheriff, a special
object which takes care of broadcasting events. A thread registers itself through a

subscription and through this subscription, the thread notifies the Sheriff which events

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

21
it wants to receive. The actual synchronization takes place through an event object
which implements a basic lock mechanism using semaphores.

Once events occur, the Sheriff sends all the threads that have subscribed to this
event a notification. A list of events with their description:

“alarm” used only for the scheduler to run the next task;

“dump” only for the scheduler to dump its schedule to a file;

“finished” used by threads to say that they have finished;

“pooled” new pool data has become available;

“queued” new queue data has become available;

“quit” terminate gracefully as soon as possible;

“reread” reload the configuration data;

“reschedule” reschedule the next alarm in the scheduler thread;

“threaddone” notification for threads that another thread has finished;

“warp” run the next task right now.

In view of the description above, the person skilled in the art knows how and
when to use each of the events.

The invention is used to synchronize very large databases. Size of some giga
bytes are not exceptional. It is commonly known that when the content of a large
database has to be transferred from one system to another system, the order in which
data sets will be transferred will vary. This is due to modifications in the content of the
database, such as modification, addition or deletion of data sets. Therefore, a data set
which was transferred during a previous transfer of the database at the beginning, could
be transferred at the end of the transfer of a subsequent transfer of said database. The
differences are clear after processing both the previous data sets and the new data sets.
The order of the data sets is globally the same, but a percentage of data sets is
transferred completely out of the previous order. Furthermore, it can only be decided
that a data set has been removed from the database after all data sets from the source
database have been processed. Furthermore, it can only be decided that a data set is a
new data set when said data set is compared against all the old or previous source data
sets. This process can be implemented straightforward this could mean that first all the
previous source data sets of a target database are read in a data memory and
subsequently in said memory is searched for a previous data set which corresponds to a

newly received data set. It could happen that the newly received data set is found at the

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

22
end of the data memory. Therefore, if the compare process is implemented
straightforward, this will require a data memory with a size between the expected
maximum size of the database and twice the expected maximum size. Furthermore, the
searching will require a lot of processing power, as all the data sets in the data memory
has to be verified to concluded that a data set could be regarded to be new.

To perform the comparing of databases more efficiently, a new approach has
been implemented. The approach takes into account that the order in which the data
sets are retrieved from the source database is globally the same. The implementation of
the approach requires less resources to perform the comparison, such as computing
power and data memory.

The tables in Figure 5 are used to illustrates the principle of the approach to
perform the comparing of databases according to the invention. Each row in fig. 5
illustrates the actions performed upon reception of a data set from either the source
database or the previous source database. Data sets from the source database are new
data sets and data sets from the previous source database are old data sets. The
numbers in the first column 502 represent the total number of data sets received. The
letters in second column 504 represent the retrieval of an old data set or previous data
set from the previous source database and the letters in the third column 506 represent
the retrieval of a new data set from the previous source database. The fourth and fifth
column 508, 510 represent the action performed on a memory regarding a
corresponding data set, after reception of a data set. The data in the sixth column 512
represents an indication stored in the memory identifying the origin of a data set stored
in the memory. The numbers in the seventh column 514 indicate the number of data
sets stored in the memory after processing of a retrieved data set. The letters in the
eighth column 516 represent the data sets stored in the intermediate or difference
source data set and the indication in the last column indicate the action to be performed
on the target database after receiving the corresponding difference source data set.

First is retrieved an old data set A of a first type from the previous source
database. The previous source data base is stored on a data storage medium accessible
by the processor performing the method of comparing databases. Subsequently, the
memory, which is initially empty, is searched whether a corresponding new data set is
stored in the memory. As the memory is empty the corresponding new data set is not

found and data set A is added to the memory together with an indication that data set A

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

23
originates from the previous source database. The number of data sets stored in the
memory is now 1. The second row discloses the actions performed after receiving the
second data set. The data set B originates again from the previous source database.
The corresponding new data set is not found in the memory and consequently data set
B is added to the memory with the corresponding indication of origin. Now, the
number of data sets is 2 in the memory. Subsequently, a data set C is retrieved from
the previous source data base, not found and stored in the memory. The memory
comprises now three data sets. The fourth data set is data set A from the source
database. The corresponding data set A from the previous source database is found in
the memory. As during an synchronization or update cycle a data set is read from a
database only once, as soon as a corresponding data set is found in the memory, it can
be concluded that the content of the data set has been changed or not. Therefore, data
set A originating from the previous source database is deleted from the memory, as a
corresponding data set will not be read from the source data set or previous source data
set. The number of data sets is reduced to two.

Subsequently, new data set F’ is retrieved. The accent sign indicates that the
content of the data set has been changed. The corresponding data set F has not yet been
read from the previous source data base and therefore the new data set F’ is added to
the memory. Subsequently, previous data set D, new data set J, previous data set E and
new data set H have been retrieved and added to the memory. At this stage the number
of data sets stored in the memory is seven.

Then previous data set F is retrieved from the previous source database. The
corresponding data set F’ is found in the memory. The content of the data sets F and F’
differs and therefore the data set retrieved from the source data set is supplied as a
difference source data set and stored in an intermediate database. Furthermore, the
corresponding data set stored in the memory, in the present case F’ is deleted from the
memory. In an embodiment, each data set in the difference database comprises an
indication 518 indicating that the content of the data set is updated. Other indications
could be that the data set should be added or deleted in the target database. The
indication will be used to perform the corresponding actions on the target database
when the content of the intermediate database is supplied to a target system to enable
updating of the target database. If the intermediate database is in the form of an XML

file or the like, the data sets could be grouped together on the action to be performed.

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

24
A header preceding the data of a group indicates then the action to be performed on the
target database .

Then new data set D is retrieved. The corresponding data set D will be found in
the memory and does not differ from the already stored corresponding data set.
Therefore, the data set D is deleted from the memory.

Next new data set C’ is retrieved from the source database. The corresponding
data set C is found in the memory. The content of the data sets C and C’ differs and
therefore the data set retrieved from the source data set is supplied as a difference
source data set and stored in the intermediate database. Furthermore, the corresponding
data set stored in the memory, in the present case C is deleted from the memory.

Subsequently previous data set G is retrieved from the previous source database.
No corresponding data set will be found in the memory, and consequently data set G is
added to the memory. Then new data set B’ is retrieved from the source database.
Corresponding data set B will be found. As the content of data set B’ differs from data
set B, new data set B’ is added to the intermediate database to gather with the update
indication, and data set B is deleted from the memory. Similarly after retrieving new
data set G’, new data set G’ is added to the intermediate database to gather with the
update indication, and data set G is deleted from the memory. Currently, three data sets
are still stored in the memory, namely J, E and H.

Finally the last data set H is retrieved from the previous database. Corresponding
data set H is found. As the content is similar, data set H is deleted from the memory.
As all data set are retrieved from both the previous database and new database, the data
sets still available didn’t have a corresponding data set in neither the previous source
database nor the new source database. The data sets originating from the new source
database having the indicator “new” will be added to the intermediate database with the
indication “Add” and the data set originating from the previous database will be added
to the intermediate database with the indication 518 “Delete”.

The example above already makes clear that the method of comparing databases
needs less memory then reading first one of the databases completely in memory and
subsequently comparing with the other database. It has been found that when
retrieving large databases the order of retrieval of the data sets varies, but not to much.

Generally it could be said that for most data sets the sequence number of retrieval

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

25
varies with a value corresponding to 10% of the total number of data sets in the
database.

Figure 6 illustrates a high level block diagram of a computer system which can be
used to implement the method according to the invention.

The computer system of Figure 6 includes a processor unit 612 and main memory
614. Processor unit 612 may contain a single microprocessor, or may contain a
plurality of microprocessors for configuring the computer system as a multi-processor
system. Main memory 614 stores, in part, instructions and data for execution by
processor unit 612. If the method of the present invention is wholly or partially
implemented in software, main memory 614 stores the executable code when in
operation. Main memory 614 may include banks of dynamic random access memory
(DRAM) as well as high speed cache memory.

The system of Figure 6 further includes a mass storage device 616, peripheral
device(s) 618, input device(s) 620, portable storage medium drive(s) 622., a graphics
subsystem 624 and an output display 626. For purposes of simplicity, the components
shown in Figure 6 are depicted as being connected via a single bus 628. However, the
components may be connected through one or more data transport means. For
example, processor unit 612 and main memory 614 may be connected via a local
microprocessor bus, and the mass storage device 616, peripheral device(s) 618,
portable storage medium drive(s) 622, and graphics subsystem 624 may be connected
via one or more input/output (I/O) buses. Mass storage device 616, which may be
implemented with a magnetic disk drive or an optical disk drive, is a non-volatile
storage device for storing data, such as the previous source data sets, the different
source data, transformed data set, intermediate data sets, and instructions for use by
processor unit 612. In one embodiment, mass storage device 616 stores the system
software for implementing the present invention for purposes of loading to main
memory 614.

Portable storage medium drive 622 operates in conjunction with a portable non-
volatile storage medium, such as a floppy disk, micro drive and flash memory, to input
and output data and code to and from the computer system of Figure 6. In one
embodiment, the system software for implementing the present invention is stored on
such a portable medium, and is input to the computer system via the portable storage

medium drive 622. Peripheral device(s) 618 may include any type of computer support

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

26
device, such as an input/output (I/O) interface, to add additional functionality to the
computer system. For example, peripheral device(s) 618 may include a network
interface card for interfacing computer system to a network, a modem, etc.

Input device(s) 620 provide a portion of a user interface. Input device(s) 620 may
include an alpha-numeric keypad for inputting alpha-numeric and other key
information, or a pointing device, such as a mouse, a trackball, stylus, or cursor
direction keys. In order to display textual and graphical information, the computer
system of Figure 6 includes graphics subsystem 624 and output display 626.

Output display 626 may include a cathode ray tube (CRT) display, liquid crystal
display (LCD) or other suitable display device. Graphics subsystem 624 receives
textual and graphical information, and processes the information for output to display
626. Output display 626 can be used to report the results of the processing power
needed to perform the method according to the invention, display confirming
information indicating which databases are currently being processed and/or display
other information that is part of a user interface. The system of Figure 4 also includes
an audio system 728, which includes a microphone. In one embodiment, audio system
728 includes a sound card that receives audio signals from the microphone.
Additionally, the system of Figure 6 includes output devices 632. Examples of suitable
output devices include speakers, printers, etc.

The components contained in the computer system of Figure 6 are those typically
found in general purpose computer systems, and are intended to represent a broad
category of such computer components that are well known in the art.

Thus, the computer system of Figure 6 can be a personal computer, workstation,
minicomputer, mainframe computer, etc. The computer can also include different bus
configurations, networked platforms, multi-processor platforms, etc. Various operating
systems can be used including UNIX, Linux, Solaris, Windows, Macintosh OS, and
other suitable operating systems.

The method according to the invention enables to merge a diversity of data and
solves at least the following problems:

- different partners deliver different number of XML files, representing the

content of their respective database;

- different partners supply different structures within their XML files, due to

the different content in the database;

10

WO 2007/117132 PCT/NL2006/050227

27

- different types of information from each partner;

- information in different languages;

- data to be shared is considerably large in size;

- data from a partner has to be combined with data already available;

- static and dynamic data are closely related.

The foregoing detailed description of the invention has been presented for
purposes of illustration and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed, and obviously many modifications and
variations are possible in light of the above teaching. The described embodiments were
chosen in order to best explain the principles of the invention and its practical
application to thereby enable others skilled in the art to best utilize the invention in
various embodiments and with various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the claims

appended hereto.

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

28

CLAIMS

1. Method for synchronization of source data sets of a source database stored on a
source system with representative target data sets in a target database stored on a target
system, the source data sets being of a first type and the target data sets being of a
second type, the method comprising:

- (a) retrieving source data sets;

- (b) retrieving previous source data sets from a first memory;

- (¢) comparing the source data sets with the previous source data sets to obtain
difference source data sets of the first type;

- (d) replacing in said first memory the previous source data sets with the source data
sets;

- (e) transforming the difference source data sets into transformed data sets of the
second type;

- (f) supplying the transformed data sets to the target system to enable updating of the

representative target data sets.

2. Method according to claim 1, wherein the method further comprises repeatedly

performing the actions.

3. Method according to claim 1, wherein the transforming action (e) comprises:
- (el) converting the difference source data sets into intermediate data sets of a third

type;

- (e2) retrieving data from the intermediate data sets to obtain the transformed data set.

4. Method according to claim 3, wherein the data sets of the third type comprises
data fields for storing a representation of at least a part of the data fields of a data set of

the first type and data fields representative for data fields of a data set of the second
type.

10

15

20

25

30

WO 2007/117132 PCT/NL2006/050227

29
5. Method according to claim 3 or 4, wherein the data sets of the third type
comprises a data field with content being a copy of content of a data field of the source
data set and a data field with content being a representation of said content of said data

field of the source data set.

6. Method according to claim 1, wherein comparing (c) comprises:

- (c1) retrieving a new data set of the first type from the source database;

- (c2) searching for a corresponding previous data set stored in a second memory;

- (c3) if a corresponding previous data set is not found in (c2) storing the new data set
from the source database in the second memory;

- (c4) if a corresponding previous data set is found in (c2) perform:

- (c4a) supplying a difference source data set obtained from the new data set if the new
data set differs from the corresponding previous data set; and

- (c4b) removing corresponding previous data set from second memory.

7. Method according to claim 6, wherein comparing (c) comprises

- (¢5) retrieving a previous data set of the first type from the previous source database;
- (c6) searching for a corresponding new data set stored in the second memory;

- (c7) if a corresponding new data set is not found in (c6) storing the corresponding
previous data set from the first in the second memory;

- (c8) if a corresponding previous data set is found in (¢6) perform:

- (c8a) supplying a difference source data set obtained from the new data set if the new
data set differs from the corresponding previous data set; and

- (c8b) removing corresponding new data set from second memory.

8. Method according to claim 1 comprising
- (g) controlling the actions (a) and (b) in dependence of the number of retrieved new

source data sets and the number of retrieved previous source data sets.

9. Method according to claim 1, wherein a source data set comprises a static data
part and a dynamic data part, and the actions (a) — (f) being performed independently
for the static data part and the dynamic data part.

10

15

WO 2007/117132 PCT/NL2006/050227

30
10. Method as claimed in claim 9, wherein a difference source data set corresponding
to a dynamic data part comprises a status indication flag, wherein transforming (f) of a
difference source data set corresponding to a dynamic data part is performed under

control of the status indication flag.

11. A computer program product comprising computer executable instructions which
instructions when executed on at least one processor perform the method according to

any one of the claims 1 to 10.

12. A computing system for synchronization of source data sets of a source database
with representative target data sets in a target database, the computing system
comprising:

- input means (302) for receiving source data sets from a source system;

- at least one processor (318) for generating a transformed data sets;

- a processor readable storage medium (312) comprising executable instructions which
instructions when executed on said at least one processor perform the method
according to any one of the claims 1 to 10;

- output means (308) for supplying the transformed data sets to a target system to

enable updating of the representative target data sets.

WO 2007/117132 PCT/NL2006/050227

1/6
Partner X Partner Y
Partner X Partner Y
XML format XML format
adapter adapter
102 g 9P Pler ~_104
08| MAGXia
adapter 1——106
Partner Z
XML format

Partner Z

WO 2007/117132 PCT/NL2006/050227

2/6
202 204
< <
! Partner X Partner Y
Partner X Partner Y
database database
Partner X Partner X
internet internet
oo| Sserver oo| Server

Partner X XML Partner Y XML

Internet

Partner XML

208\

server ~/ 206

[o]o]

Incremental XML

p—
210 — Nl Vakantiehuisje .nl
database

WO 2007/117132 PCT/NL2006/050227

3/6

314

Database

static data

|
| , i ' pool

| 312v_[dlffer ences] | ’[{differences)]
| \

|

|

|

dynamic data

322

~

|

|

|

|

|

~ |

____{___\\:\\\Q)_@t_SZ_:::n:::: 320 I

\ ANN |

partner XML data N, \\\H i
| |

308"\{ old J [new J i} [old] [new Ji

| 1 |

| _—— __________2 _____ I _____ i___ ______(l___l

302;(306 318 &74 316

WO 2007/117132 PCT/NL2006/050227

4/6
/ partner_1 / / partner 2 / / partner N /
multiple multiple multiple

XML XML XML

files files files
get get get get get get
p 1 p 1 p 2 p 2 p_ N p_ N
static dyn. static dyn. static dyn.
data data data data data data
old new new old new
p 1 p 1 p 2 p 2 p_ N p_ N
data data data data data data

generate generate generate

Trigger Trigger Trigger
new i
Modifications }
|
|
queued I
|
I
pooled }
|
I
committed I
|
|
New modiﬁcatl}ions
available |
Modifications KM L |
fo -
SQL

MAG database

WO 2007/117132 PCT/NL2006/050227
5/6
Fig 5
Old New memory | # Intermediate
17 A Add | A Old | 1
2 | B Add | B Old | 2
3 | C Add | C Old | 3
4 A Del | A Old | 2
5 F' Add | F' | New]| 3
6 Add | D Old | 4
7 J Add | J New | 5
8 | E Add | E Od | 6
9 H Add | H New | 7
10 | F Del | FF |New| 6 F' | Upd
11 D Del | D Old | 5
12 C’ Del | C Old | 4 C' | Upd
13| G Add | G Od | 5
14 B’ Del | B Old | 4 B' | Upd
15 G' Del | G Old | 3 G' | Upd
16 | H Del | H New | 2
J | Add
., , ,), g , IS E | Del,
502S 504 506 508 510 512 514 516 518

WO 2007/117132 PCT/NL2006/050227

6/6

Output
Devices 632
Audio 1628

614 L[

Memory

Input 1620
devices

612 L

™~ Processor

Portable 4622
Storage

616 ~ 1

™ Mass
Storage 624 T 626
3] ,

Graphics Output
Subsystem Display

618 N peripherals

L~ 628

Internationat application No

PCT/NL2006/050227

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

V. GOBF17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum decumentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation 1o the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2002/194207 Al (BARTLETT TROY L [US] ET 1-12
AL) 19 December 2002 (2002-12-19)
paragraph [0006] - paragraph [0007]
paragraph [0036] - paragraph [0044]
paragraph [0060] - paragraph [0077]
claims 1-11

X WO 20047021185 A (SAP AG [DE]) 1-12
11 March 2004 (2004-03-11)
abstract

page 14, line 2 - page 14, line 10
page 16, line 7 - page 22, line 4
page 28, line 10 - page 28, line 20
page 19, line 24 - page 22, line 4

e e

See patent family annex.

Further documents are listed in the continuation of Box C,

* Special categories of cited documents :
pecial categories of cited do "T" tater document published aiter the intermnational flling date

"A" document defining the general state of the art which is not
cansidered to be of particular relevance

"E" earlier document but published on or after the International
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the International filing date but
later than the priority date claimed

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention

cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular retevance; the claimed invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such dogu-
,metﬁts, |L::‘uch combination being obvious ta a person skilled
inthe art,

"&" document member of the same patent family

Date of the actual completion of the international search

19 March 2007

Date of mailing of the international search report

2 5. 05. 2007

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Zubrzycki, Wojciech

Form PCTASA/210 (sacond sheet) {Aprit 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

international application No

PCT/NL2006,/050227

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 6 708 221 B1 (MENDEZ DANIEL J [US] ET
AL) 16 March 2004 (2004-03-16)

column 5, line 45 - column 6, line 62
column 9, line 4 - column 9, line 45
column 10, Tine 64 - column 12, line 3
column 14, line 44 - column 15, Tine 40
BALASUBRAMANIAM S ET AL: "WHAT IS A FILE
SYNCHRONIZER?"

MOBICOM '98. PROCEEDINGS OF THE 4TH ANNUAL
ACM/IEEE INTERNATIONAL CONFERENCE ON
MOBILE COMPUTING AND NETWORKING. DALLAS,
TX, OCT. 25 - 30, 1998, ANNUAL ACM/IEEE
INTERNATIONAL CONFERENCE ON MOBILE
COMPUTING AND NETWORKING, NEW YORK, NY :
ACM, US, 25 October 1998 (1998-10-25),
pages 98-108, XPDO0O850260

ISBN: 1-58113-035-X

page 98, right-hand column, paragraph 3 -
page 99, left-hand column, last paragraph
page 100, right-hand column, paragraph 1 -
page 101, left-hand column, paragraph 4
WO 98/54662 A (ARKONA INC [US])

3 December 1998 (1998-12-03)

abstract

page 2, line 34 - page 4, line 36

page 10, line 18 - page 11, line 22

page 12, line 18 - page 17, line 22

EP 1 130 513 A (FUSIONONE INC [US])

5 September 2001 (2001-09-05)

paragraph [0029] - paragraph [0033%
paragraph [0052] - paragraph [0061
paragraph [0068]

paragraph [0083] - paragraph [0087]
paragraph [0093]

1-12

1-12

1-12

1-12

Form PCT/ISA/210 {continuaiion of second sheet) [April 2005}

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/NL2006/050227
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2002194207 Al 19-12-2002 NONE
WO 2004021185 A 11-03-2004 AU 2003270113 Al 19-03-2004
US 6708221 Bl 16-03-2664 NONE
WO 9854662 A 03-12-1998 AU 7598498 A'v 30-12-1998
CA 2291717 Al 03-12-1998
EP 1016004 Al 05-07-2000
us 6321236 Bl 20-11-2001
us 5999947 A 07-12-1999
EP 1136513 A 05-09-2001L EP 1130511 A2 05-09-2001
EP 1130512 A2 05-09-2001

e T Gt 0 Gt B R e v Aot b b o et ey e e S v el g b bt A et R A Mt e v e TR P e e S et A R e e B A b

Form PCTASA/210 (patent family annex) {April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report
	Page 41 - wo-search-report

