(12)

UK Patent Application .. GB 2426 841 .. A

(43) Date of A Publication 06.12.2006

(21) Application No: 0511438.4 (51)
(22) Date of Filing: 04.06.2005
(62)
(71) Applicant(s):
Hew lett-Packard Development Company (56)
L.P, 20555 S.H.249, Houston, Texas 77070,
United States of America
(58)

(72)

(74)

Inventor(s):

Jorge Antonio Sved
Neil Thomas Hutchon
Anthony James Cole

Agent and/or Address for Service:
Hew lett-Packard Limited

IP Section, Filton Road, Stoke Gifford,
BRISTOL, BS34 8QZ, United Kingdom

INT CL:
GO6F 13/14 (2006.01)

UK CL (Edition X):
G4A AMB

Documents Cited:
US 4394728 A

Field of Search:

UK CL (Edition X) G4A, G4C
INT CL7 GO6F, G11C

Other: Online:WPI,EPODOC

(54)

(57)

Abstract Title: Providing a plurality of copies of program data in memory

A memory controller 11 for accessing a memory module 12 comprising a plurality of memory banks. The
memory controller is operable to write copies of program data to one or more memory banks according
to the size of the program data. The memory controller is additionally operable to read program data, e.g.
in response to an access request, from whichever memory bank is next available for access. The
provision of more than one copy of program data speeds up access and allows more economical use of

memory than providing memory dedicated to program data.

I 17\

10

7

14\
\

—
13 .
ADR—32 ™ Queue [
Buffer
3 , Memory | BANK 2 |/\/13c
CTL » Arbiter Interface
Controller
DAT «-3¢ Write . BANK1 [—13b
1 Queue [
Buffer
BANKO |
16/ ~M—13a
} 12 j
1
FIGURE 2

V Lv89¢v ¢ 99

Original Printed on Recycled Paper

200501635-1

N

11

[

Processor Bus Master Bus Master
Bus
./
7 7d
— BANK3 | A~
BANK 2 ~_— 7¢C
Memory N
Controller BANK1 || 7b

s

BANKO [\

~— 7a

\

v

\s

FIGURE 1
14 17 / 10
15
/
/ 13
Command ~— BANK3
ADR 3a| | Queue > N
Buffer
3b _ Memory BANK 2
CTL » Arbiter Interface
Controller
DAT «-3¢ Write . BANK 1
Queue >
Buffer
BANK 0O
16/

13d

__-13c

~—13b

~—13a

)

FIGURE 2

)

10

15

20

25

2426841

MEMORY CONTROLLER

FIELD OF THE INVENTION
The present invention relates to a memory controller.

BACKGROUND OF THE INVENTION
Figure 1 illustrates the typical layout of a known computer system, in which a
processor 1 and one or more bus masters 2 (e.g. I/O device controllers) are

coupled to a memory system 4 via a bus 3.

The memory system 4 comprises a memory controller 5 and a memory module
6 having a plurality of memory banks 7. Access to the memory module 6 is
shared by the processor 1 and bus masters 2 and is controlled by the memory
controlier 4. The memory controller 4 executes access requests received from
the processor 1 and bus masters 2 over the bus 3, e.g. read data from or write
data to the memory module 6. The memory module 6 stores both program data
(i.e. instructions to be executed by the processor 1) and non-program data.

In one particular configuration, shared access is provided to a memory bank 7a
storing both program data and non-program data. Whilst storing both program
and non-program data in a single memory bank makes efficient use of the
available memory, the configuration has the disadvantage that requests to read
program data by the processor 1 are delayed if the bank 7a is already being

accessed by a bus master 2.

When data stored in a dynamic random access memory (DRAM) bank is

10

15

20

25

30

-2-

accessed, the row of memory cells storing the data is activated (or opened) for
access. The row of cells remains activated until such time as a precharge
signal is received, whereupon the row of cells is deactivated (or closed).
Alternative data stored in an alternative row of cells cannot be accessed until
such time as the previous row of cells has been deactivated. There is therefore
a delay before data can be read from a memory bank that has already been
accessed. Moreover, there may be latency between successive access
requests, i.e. the time between two successive access requests (i.e. the cycle
time) may be greater than the time taken to complete an access request (i.e.
the access time).

Accordingly, when access to a memory bank 7a storing program data is shared,
the processor 1 is not able to gain immediate access to the program data if the
memory bank 7a is already being accessed by a bus master 2. Consequently,
in configurations for which shared access is permitted to a memory bank 7a
storing program data, there is an increased latency in reading program data.

The latency of requests to read program data is ideally as short as possible
such that the processor 1 is able to quickly retrieve and execute processor
instructions. Accordingly, in an alternative configuration, a single dedicated
memory bank 7b stores only program data, i.e. access to the memory bank 7b
is not shared but it restricted to access by the processor only 1. Whilst this
provides for shorter access times in reading program data, only a small fraction
of the memory bank 7b is typically used and consequently memory usage is

inefficient.

SUMMARY OF THE INVENTION

In a first aspect, the present invention provides a memory controller for coupling
to a first memory bank and to a second memory bank, each memory bank
storing identical program data, the memory controller being operable to read

program data from whichever memory bank is next available for access.

10

15

20

25

30

-3-

Preferably, the memory controller is operable to: receive a request to read
program data; and read, in response, program data from whichever memory
bank is next available for access.

Conveniently, the first memory bank and the second memory bank store non-
program data and the memory controller is further operable to read non-
program data from the first memory bank and from the second memory bank.

Advantageously, the memory controller is further operable to write non-program
data to the first memory bank and to the second memory bank.

Conveniently, the memory controller is further operable to prioritise requests to

read program data ahead of requests to read or write non-program data.

Preferably, the memory controller is further operable to: receive requests to
access the memory banks; schedule each received request in a queue;
determine, in response to a received request to read program data, which
memory bank is next available for access: and schedule a request to read
program data from the memory bank that is determined as being next available

for access.

More preferably, the request to read program data is scheduled at the head of

the queue.

Advantageously, the memory controller is further operable to: receive a request
to write program data; write the program data to the first memory bank: and
write the program data to the second memory bank.

Conveniently, the memory controller is further operable to: receive a request to
write program data; write the program data to the first memory bank; and write
the program data to the second memory bank if the size of the program data is
not greater than half the size of the first memory bank.

10

15

20

25

30

In a second aspect, the present invention provides a memory controller for
coupling to a first memory bank and a second memory bank, the memory
controller being operable to: receive a request to write program data; write the
program data to the first memory bank; and write the program data to the

second memory bank.

In a third aspect, the present invention provides a memory controller for
coupling to a first memory bank and a second memory bank, the memory
controller being operable to: receive a request to write program data; write the
program data to the first memory bank; and write the program data to the
second memory bank if the size of the program data is not greater than half the

size of the first memory bank.

In a fourth aspect, the present invention provides a memory controller for
coupling to a first memory bank and to a second memory bank, each memory
bank storing identical program data, the memory controller comprising means
for reading program data from whichever memory bank is next available for
access.

In a fifth aspect, the present invention provides a memory controller for coupling
to a first memory bank and a second memory bank, the memory controller
comprising: means for receiving a request to write program data; means for
writing the program data to the first memory bank; and means for writing the
program data to the second memory bank.

In a sixth aspect, the present invention provides a memory controller for
coupling to a first memory bank and a second memory bank, the memory
controller comprising: means for receiving a request to write program data:
means for writing the program data to the first memory bank; and means for
writing the program data to the second memory bank if the size of the program

data is not greater than half the size of the first memory bank.

10

15

20

25

30

In a seventh aspect, the present invention provides a memory module
comprising a first memory bank and a second memory bank, each memory

bank storing identical program data.

Preferably, the size of the program data is not greater than half the size of the
first memory bank or half the size of the second memory bank.

In an eight aspect, the present invention provides a method of accessing a
memory module comprising a first memory bank and a second memory bank,
each memory bank storing identical program data, the method comprising:
receiving a request to read program data: and reading program data from

whichever memory bank is next available for access.

In a ninth aspect, the present invention provides a method of accessing a
memory module comprising a first memory bank and a second memory bank,
the method comprising: receiving a request to write program data; writing the
program data to the first memory bank; and writing the program data to the
second memory bank.

In a tenth aspect, the present invention provides a method of accessing a
memory module comprising a first memory bank and a second memory bank,
the method comprising: receiving a request to write program data; writing the
program data to the first memory bank: and writing the program data to the
second memory bank if the size of the program data is not greater than half the
size of the first memory bank.

In an eleventh aspect, the present invention provides a computer program or
suite of computer programs executable by a memory controller to perform any
one of the above-described methods. The computer program or suite of
computer programs may be provided on a computer-readable data storage

medium.

10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS
In order that the present invention may be more readily understood,
embodiments thereof will now be described, by way of example only, with

reference to the accompanying drawings in which:

Figure 1 is a block diagram of a known computer system; and

Figure 2 is a block diagram of a memory system embodying the present
invention.

DETAILED DESCRIPTION

The memory system 10 of Figure 2 comprises a memory controller 11 and a
memory module 12 having a plurality of memory banks 13. The memory
controller 11, which is described in more detail below, executes access

requests to the memory module 12 that are received over a bus.

The bus typically comprises an address bus 3a, a control bus 3b and a data bus
3c, as is known in the art. A processor and one or more bus masters are
coupled to the bus, (similarly to the arrangement of Figure 1), such that the
memory system 10 is accessible concurrently by different bus masters, i.e.
access to the memory system 10 is shared.

The memory module 12 comprises a plurality of memory banks 13. In the
embodiment illustrated in Figure 2 the memory module 12 comprises four
memory banks 13a-13d. The memory module 12 is, for example, a double data
rate (DDR) synchronous dynamic random access memory (SDRAM) module
having four memory banks. However, other memory modules having a plurality
of memory banks may alternatively be used including, but not limited to FPM
DRAM, EDO DRAM, SRAM and RDRAM. Moreover, the memory system 10
may include more than one memory module 12, which may be provided as, for
example, SIMM, DIMM or SO-DIMM. Additionally, the memory module 12 may

10

15

20

25

30

-7-

be removable from the memory system 10, e.g. provided as a memory card or

stick.

The memory controller 11 comprises an arbiter 14, a command-queue buffer

15, a write-queue buffer 16, and a memory-interface controller 17.

The memory controller 11 receives access requests (or commands) over the
bus, such as read data from or write data to the memory module 12. A read-
data request typically comprises a read control-signal received over the control
bus 3b and an address signal received over the address bus 3a, the address
signal providing the address of the memory module 12 from which data is to be
read. The requested data, when retrieved by the memory controller 11 from the
memory module 12, is then delivered over the data bus 3¢ to the bus master
making the read-data request. A write-data request typically comprises a write
control-signal received over the control bus 3b, an address signal received over
the address bus 3a, and a data signal received over the data bus 3c, the
address signal providing the address of the memory module 12 to which the

data is to be written.

The arbiter 14 employs a finite state machine to schedule access requests
received over the bus so as to optimise the available bandwidth. For example,
the arbiter 14 prevents the occurrence of access conflicts. Various arbiter
scheduling algorithms are known and are not therefore described here in any
detail. The arbiter is preferably programmable such that different scheduling
algorithms may be employed according to, for example, the type and size of the
memory module 12, the bandwidths (data rates) of the buses 3a-3c, and the

type and number of bus masters.

The arbiter 14 places the scheduled access requests in a command-queue
buffer 15. The queued requests are then executed in turn by the memory
interface controller 17.

10

15

20

25

30

-8-

When the memory controller 11 receives a write-data request, the arbiter 14
places the data received over the data bus 3c in the write-buffer queue 16. The
data stored in the write-buffer queue 16 is then passed to the memory-interface
controller 17 when the corresponding access request held in the command-

queue buffer 15 reaches the head of the queue.

The write-queue buffer 16, is optional. If the write-queue buffer 16 is omitted,
data to be written to the memory module 12 may be sent in contiguous cycles
until such time as the corresponding access request held in the command-
queue buffer 15 reaches the head of the queue. Additionally, the memory-
interface controller 17 may be operable such that, upon receiving a write-data
request from the command-queue buffer 15, the request is performed only
when the memory-interface controller 17 also receives the data to be written. In
this manner, the data to be written may be sent by a bus master at some stage

after the write-data request has been sent.

When the memory controller 11 receives an access request to read or write
non-program data to the memory module 12, the arbiter 14 places the request
in the command-queue buffer 15 in accordance with the scheduling algorithm
that is employed. As will now be described, the arbiter 14 of the memory
controller 11 departs from known scheduling algorithms when the data to be

read from or written to the memory module 12 is program data.

When the memory controller 11 receives an access request to write program
data, the arbiter 14 places two write requests into the command-queue buffer
15. Additionally, the arbiter 14 places two copies of the program data into the
write-queue buffer 16, each copy of the program data corresponding to a write
request placed in the command-queue buffer 15. Each of the write requests
queued by the arbiter 14 includes an address to a different memory bank 13
such that a copy of the program data is written to two different memory banks.
For example, the arbiter 14 may queue a first write request to write program

data to BANK 0 13a and a second write request to write program data to BANK

10

15

20

25

30

1 13b.

If the write-queue buffer 16 is omitted from the memory controller 11, the bus
master responsible for issuing the request to write program data is required to
send the program data over at least two cycles. For example, the program data
may be sent by the bus master in contiguous cycles until such time as both
write requests held in the command-queue buffer 15 have been executed by

the memory-interface controller 17.

Generally speaking, the program data is written to the memory module 12
before the processor 1 starts to execute the program data and before any non-
program data is written to the memory module 12, i.e. the first access to
memory module 12 is generally the writing of program data. There may be
instances, however, in which requests to write program data occur concurrently
with or after requests to read or write non-program data. The arbiter 14 is
therefore preferably operable to place requests to write program data ahead of
any access requests to read or write non-program data. Accordingly, the more
important access requests involving program data are prioritised over non-

program data.

Owing to the size of each memory bank 13, which at present may be as much
as 512 MB, program data generally occupy only a fraction of a memory bank
13. Accordingly, when the memory controller 11 receives an access request to
write non-program data to the memory module 12, the arbiter 14 is operable to
write the non-program data to any of the available memory banks 13a-13d,
including the two memory banks 13a,13b storing program data. In this manner,
efficient use is made of the available memory.

As described below, particular benefits of the present invention are realised
when the program data occupy less than half of a memory bank 13.
Nevertheless, there may be occasions in which the program data occupy more

than half of the memory bank 13. Accordingly, the arbiter 14 is preferably

10

15

20

25

30

-10 -

operable to determine if the program data received from the master 1,2 will
occupy more than half of a memory bank 13. If the arbiter 14 determines that
the program data will indeed occupy more than half of a memory bank 13, the
arbiter 14 places a single write request into the command-queue buffer 15.
Accordingly, the program data are written to a single memory bank 13 only, e.g.
BANK 0 13a. The arbiter 14 then treats this memory bank 13a as a dedicated
memory bank for program data. Consequently, when the memory controller 11
receives a request to write non-program data to the memory module 12, the
arbiter 14 places a request in the command-queue buffer 15 to write the non-
program data to one of the remaining memory banks 13b-13d, i.e. a memory
bank other than that which serves as the dedicated program-data memory bank
13a.

When the memory controller 11 receives an access request to read program
data, the arbiter 14 determines which of the memory banks 13a,13b storing
program data will next be available for access. The arbiter 14 then places on
the command-queue buffer 15 a request to read program data from the memory
bank that will next be available. This request is preferably placed at a position
towards the head of the command queue.

Whilst the request is ideally placed at the very front of the queue, this is not
always the most efficient method of scheduling. For example, consider the
situation in which BANK 0 13a and BANK 1 13b store program data. The first
four requests stored in the command-queue buffer 15 are: (1) read data from
BANK 0, (2) read data from BANK 1, (3) read data from BANK 2, and (4) read
data from BANK 3. The first two commands have been initiated by the
memory-interface controller 17. For example, the memory-interface controller
17 has sent ACTIVATE and READ control signals to BANK 0 13a and an
ACTIVATE signal to BANK 1 13b. The memory controller 11 then receives an
access request to read program data. Since only BANK 0 13a and BANK 1 13b
store program data, and both these memory banks 13a,13b are being

accessed, the memory controller 11 is only able to read program data once

10

15

20

25

30

-11 -

either BANK 0 13a or BANK 1 13b becomes available for access, i.e. at the end
of a bank cycle; in this case BANK 0 will be available first for access. |If the
arbiter 14 were to place at the very front of the command-queue buffer 15 a
request to read program data from BANK 0, the memory-interface controller 17
would have to wait until the BANK 0 had completed its cycle before executing
the next request in the command-queue buffer 15. During this time, however,
access could be initiated by the memory-interface controller 17 to BANK 2 and
BANK 3, i.e. the third and fourth commands could be initiated in the meantime.
Accordingly, in this example, it would have been most efficient for the arbiter 14
to insert the request to read program data from BANK 0 immediately after the
command to write data to BANK 3, i.e. to insert the new request into third place
in the command queue.

In order to maximise scheduling efficiency whilst at the same time prioritising
requests to read program data, the arbiter 14 preferably places requests to read
program data at a position within the command-queue buffer 15 such that the
request is the next command executed by the memory-interface controller 17
once the relevant memory bank (e.g. BANK 0 13a) becomes available for
access. Moreover, the arbiter 14 places the request in the queue at a position
that does not unnecessarily hinder access to memory banks storing only non-
program data (e.g. BANKS 13c,13d).

By providing shared access to a memory bank 13a that stores program data,
the memory system 10 makes efficient use of the available memory. Moreover,
by storing identical program data in two different memory banks 13a,13b, a
processor 1 is able to access more readily the program data in comparison to
memory systems for which the program data is stored in a single, shared
memory bank, i.e. the memory system 10 provides a decrease in the latency of

access requests to read program data.

Additionally, since program data generally occupy only a small fraction of a

memory bank, the memory system 10 makes more efficient use of memory in

10

15

20

25

30

-12-

comparison to known memory systems which employ a dedicated (i.e. non-
shared) memory bank to store only program data. This particular benefit of the
memory system 10 is realised only when the program data occupy no more
than half of a memory bank 13. Should the program data occupy more than
half of a memory bank 13, it is then more memory-efficient to employ a single
dedicated memory bank to store program data only. As described above, the
arbiter 14 is preferably operable to determine if the program data will occupy
more than half of a memory bank 13 and to store either one copy of the
program data in a dedicated memory bank should the program data be greater
than half a memory bank, or two copies of the program data in two different
memory banks should the program data be less than or equal to half a memory
bank.

Whilst reference has thus far been made to writing copies of the program data
to one or two memory banks according to the size of the program data, the
arbiter 14 may be operable to write copies of the program data to any number
of memory banks. For example, if the program data occupies no more than a
third of a memory bank, identical copies of the program data may be written to
three different memory banks. This would then further decrease the latency of
access requests to read program data. Whilst writing program code to an
increasing number of memory banks will introduce some additional latency,
program code is generally resident in the memory module 12 for a significant
length of time. Accordingly, any initial increases in the latency of the memory
system 10 may be offset by later reductions in latency in reading program data.
The number of memory banks 13 to which the program data are written will
depend upon, among other things, the size of the program data and the number
of available memory banks. Preferably, the maximum number of memory banks
(N) to which copies of the program data may be written is equal to the integer
division of the size of each memory bank (M) divided by the size of the program
data (P),i.e. N=M\PorN =int (M/P).

In embodiments of the memory system 10 in which a copy of the program data

10

15

20

-13-

is stored in each available memory bank 13, the request to read program data,
which is inserted into the command-queue buffer 15 by the arbiter 14, may
always be placed at the very front of the command queue.

The memory controller 11, and in particular the arbiter 14, may be hardware-
configured to operate in the manner described above. Alternatively, the
memory controller 11, and in particular the arbiter 14, may be programmable
and include a computer program or suite of computer programs, which when
executed, cause the memory controller 11, or arbiter 14, to operate in the
manner described above.

When used in this specification and claims, the terms "comprises" and
"comprising" and variations thereof mean that the specified features, steps or
integers are included. The terms are not to be interpreted to exclude the

presence of other features, steps or components.

The features disclosed in the foregoing description, or the following claims, or
the accompanying drawings, expressed in their specific forms or in terms of a
means for performing the disclosed function, or a method or process for
attaining the disclosed result, as appropriate, may, separately, or in any
combination of such features, be utilised for realising the invention in diverse

forms thereof.

5

10

15

20

25

30

-14 -

CLAIMS

1. A memory controller for coupling to a first memory bank and to a second
memory bank, each memory bank storing substantially identical program data,
the memory controller being operable to read program data from whichever
memory bank is next available for access.

2. A memory controller according to claim 1, wherein the memory controlier
is operable to:

receive a request to read program data; and

read, in response, program data from whichever memory bank is next

available for access.

3. A memory controller according to either claim 1 or 2, wherein the first
memory bank and the second memory bank store non-program data and the
memory controller is further operable to read non-program data from the first
memory bank and from the second memory bank.

4. A memory controller according to any one of the preceding claims,
wherein the memory controller is further operable to write non-program data to

the first memory bank and to the second memory bank.

5. A memory controller according to claim 4, wherein the memory controller
is further operable to prioritise requests to read program data ahead of requests

to read or write non-program data.

6. A memory controller according to any one of the preceding claims,
wherein the memory controller is further operable to:
receive requests to access the memory banks;

schedule each received request in a queue;

10

15

20

25

30

JUo

-15.-

determine, in response to a received request to read program data,
which memory bank is next available for access: and
schedule a request to read program data from the memory bank that is

determined as being next available for access.

7. A memory controller according to claim 6, wherein the request to read

program data is scheduled at the head of the queue.

8. A memory controller according to any one of the preceding claims,
wherein the memory controller is further operable to:

receive a request to write program data;

write the program data to the first memory bank; and

write the program data to the second memory bank.

9. A memory controller according to any one of claims 1 to 7, wherein the
memory controller is further operable to:

receive a request to write program data;

write the program data to the first memory bank; and

write the program data to the second memory bank if the size of the
program data is not greater than half the size of the first memory bank.

10. A memory controller for coupling to a first memory bank and a second
memory bank, the memory controller being operable to:

receive a request to write program data;

write the program data to the first memory bank; and

write the program data to the second memory bank.

11. A memory controller for coupling to a first memory bank and a second
memory bank, the memory controller being operable to:

receive a request to write program data;

write the program data to the first memory bank; and

write the program data to the second memory bank if the size of the

10

15

20

25

30

-16 -

program data is not greater than half the size of the first memory bank.

12. A memory controller for coupling to a first memory bank and to a second
memory bank, each memory bank storing identical program data, the memory
controller comprising means for reading program data from whichever memory
bank is next available for access.

13. A memory controller for coupling to a first memory bank and a second
memory bank, the memory controller comprising:

means for receiving a request to write program data;

means for writing the program data to the first memory bank; and

means for writing the program data to the second memory bank.

14. A memory controller for coupling to a first memory bank and a second
memory bank, the memory controller comprising:

means for receiving a request to write program data;

means for writing the program data to the first memory bank; and

means for writing the program data to the second memory bank if the
size of the program data is not greater than half the size of the first memory
bank.

15. A memory module comprising a first memory bank and a second

memory bank, each memory bank storing substantially identical program data.

16. A memory module according to claim 15, wherein the size of the program
data is not greater than half the size of the first memory bank or half the size of

the second memory bank.

17. A method of accessing a memory module comprising a first memory
bank and a second memory bank, each memory bank storing substantially
identical program data, the method comprising:

receiving a request to read program data; and

10

15

20

-17 -

reading program data from whichever memory bank is next available for

access.

18. A method of accessing a memory module comprising a first memory
bank and a second memory bank, the method comprising:

receiving a request to write program data:

writing the program data to the first memory bank; and

writing the program data to the second memory bank.

19. A method of accessing a memory module comprising a first memory
bank and a second memory bank, the method comprising:

receiving a request to write program data;

writing the program data to the first memory bank; and

writing the program data to the second memory bank if the size of the

program data is not greater than half the size of the first memory bank.

20. A computer program or suite of computer programs executable by a
memory controller to perform a method according to any one of claims 17 to 19.

21. A computer-readable data storage medium storing a computer program

or suite of computer programs according to claim 20.

Application No:

Claims searched:

gﬁ'ﬁs . DE@/'} -
Qé The QI&) / {‘ ‘N
Q 2] ‘y
2 Office =
'3%, @fi INVESTOR IN PEOPLE
OIY] N T\{py
GB0511438.4 Examiner: David Midgley
1-21 Date of search: 18 July 2005

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
A 1,10- 1 US4394728 A
15,17-19 | GTE AUTOMATIC ELECTRIC LAB INC
Categories:
X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category
& Member of the same patent famuly E

Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

| G4A; G4C

Worldwide search of patent documents classified in the following areas of the 1pC”’

| GO6F; G11C

The following online and other databases have been used in the preparation of this search report

| Online: WPLEPODOC]

An Executive Agency of the Department of Trade and Industry

	Abstract
	Bibliographic
	Drawings
	Description
	Claims
	Search_Report

