The invention relates to a process for the preparation of a hardening accelerator composition by reaction of a water-soluble calcium compound with a water-soluble silicate compound, said reaction being effected in the presence of a water-soluble dispersant comprising at least one polyalkylene glycol structural unit with a functional group at one end of the polyalkylene glycol, being able to interact as an anchor group with the surface of cement particles, the hardening accelerator composition and its use.
This application claims priority from U.S. provisional application no. 61/307890, incorporated herein by reference.

Hardening accelerator composition containing dispersants

Description:

The present invention relates to a process for the preparation of a hardening accelerator composition, the hardening accelerator composition and the use of the hardening accelerator composition.

It is known that admixtures in the form of dispersants are often added to aqueous slurries of pulverulent inorganic or organic substances, such as clays, silicate powders, chalks, carbon blacks, powdered rocks and hydraulic binders, for improving their workability, i.e. kneadability, spreadability, sprayability, pumpability or flowability. Such admixtures are capable of breaking up solid agglomerates, dispersing the particles formed and in this way improving the fluidity. This effect is also utilised in a targeted manner in particular in the preparation of building material mixtures which contain hydraulic binders, such as cement, lime, gypsum, calcium sulphate hemihydrate (bassanite), anhydrous calcium sulphate (anhydrite), or latent hydraulic binders, such as fly ash, blast furnace slag or pozzolans.

In order to convert these building material mixtures based on said binders into a ready-to-use, workable form, as a rule substantially more mixing water is required than would be necessary for the subsequent hydration and hardening process. The proportion of cavities which are formed in the concrete body by the excess water which subsequently evaporates leads to significantly poorer mechanical strengths and durabilities.

In order to reduce this excess proportion of water at a predetermined processing consistency and/or to improve the workability at a predetermined water/binder ratio, admixtures which are generally referred to as water-reducer compositions or plasticizers are used. In particular, copolymers which are prepared by free radical copolymerization of acid monomers with polyether macromonomers are used in practice as such compositions. Also dispersants are known which basically show a structure in which a so called anchoring group or several anchor groups, which is able to interact with the surface of cement particles is attached to a polyalkyleneglycol polymer chain. Respective dispersants are for example described in the patent applications US 2003 0181 579 A 1, WO 0104 185 A 1, US 6,451,881 B 1 and US 6,492,461 B 1. Various dispersant chemistries with anchor groups basing on anionic radicals, alkoxy silane radical(s) and polyhydroxy radicals (especially sugar residues) are described. The dispersants are used
in cementitious formulations, like concrete, grouts and mortars.

Furthermore, admixtures for building material mixtures comprising hydraulic binders typically also contain hardening accelerators which shorten the setting time of the hydraulic binder. According to WO 02/070425, calcium silicate hydrate in particular present in dispersed (finely or particularly finely dispersed) form, can be used as such a hardening accelerator. However, commercially available calcium silicate hydrate or corresponding calcium silicate hydrate dispersions may be regarded only as hardening accelerators which have little effect.

The object of the present invention is therefore to provide a composition which acts in particular as a hardening accelerator.

This object is achieved by a process for the preparation of a hardening accelerator composition by reaction of a water-soluble calcium compound with a water-soluble silicate compound, the reaction of the water-soluble calcium compound with the water-soluble silicate compound being effected in the presence of an aqueous solution which contains a water-soluble dispersant comprising at least one polyalkylene glycol structural unit with a functional group at one end of the polyalkylene glycol, said functional group being able to interact as an anchor group with the surface of cement particles. Preferably the process for the preparation of the hardening accelerator composition is done in the absence of cement and preferably the obtained products do not contain cement or any of its hydration products. Preferably the hardening accelerator composition is a stable liquid, aqueous dispersion, which does not segregate or harden in the absence of hydraulic binders like for example cement. This object is also achieved by a process for the preparation of a hardening accelerator by reaction of a calcium compound, preferably a calcium salt, most preferably a water-soluble calcium salt with a silicon dioxide containing component under alkaline conditions, characterized in that the reaction is carried out in the presence of an aqueous solution of a water-soluble dispersant comprising at least one polyalkylene glycol structural unit with a functional group at one end of the polyalkylene glycol, said functional group being able to interact as an anchor group with the surface of cement particles. Preferably the process for the preparation of the hardening accelerator composition is done in the absence of cement and preferably the obtained products do not contain cement or any of its hydration products. Preferably the hardening accelerator composition is a stable liquid, aqueous dispersion, which does not segregate or harden in the absence of hydraulic binders like for example cement. Preferably said dispersant is suitable as a plasticizer for hydraulic binders.

The object is also achieved by a composition, preferably an aqueous hardening accelerator suspension, containing calcium silicate hydrate and a water-soluble dispersant
comprising at least one polyalkyleneglycole structural unit with a functional group at one end of the polyalkyleneglycole, said functional group being able to interact as an anchor group with the surface of cement particles. Also the object of this invention is achieved by the use of said composition as hardening accelerator in building material mixtures containing cement, gypsum, anhydrite, slag, preferably ground granulated blast furnace slag, fly ash, silica dust, metakaolin, natural pozzolans, calcined oil shale, calcium sulpho aluminate cement and/or calcium aluminate cement, preferably in building material mixtures which contain substantially cement as a hydraulic binder.

In principle, only relatively slightly water-soluble compounds are also suitable in each case as water-soluble calcium compounds and water-soluble silicate compounds, although readily water-soluble compounds (which dissolve completely or virtually completely in water) are preferred in each case. However, it must be ensured there is a sufficient reactivity for the reaction in the aqueous environment with the corresponding reactant (either water-soluble calcium compound or water-soluble silicate compound). It is to be assumed that the reaction takes place in aqueous solution but a water-insoluble inorganic compound (calcium silicate hydrate) is usually present as a reaction product.

The water-soluble dispersant comprises at least one polyalkyleneglycole structural unit, preferably one polyalkyleneglycol structural unit, with a functional group at one end of the polyalkyleneglycole, said functional group being able to interact as an anchor group with the surface of cement particles. The dispersant is preferably suitable as a plasticizer for hydraulic binders, more preferably the requirements of the industrial standard EN 934-2 (February 2002) are fulfilled by the plasticizers. It is believed that the dispersants according to this invention are also able to interact with the surface of calcium silicate hydrate particles.

The dispersant of this invention is different from the so-called polycarboxylate ether (PCE) type of dispersants. PCEs are polymers, characterized by a plurality of repeating units carrying a carboxylic acid group in the polymer backbone and a plurality of repeating units carrying side-chains, the side-chains typically comprising polyalkyleneglycole units. The dispersants according to this invention are not a polymeric structure, with the exception of the polyalkyleneglycole part, which can be seen as a polymer. Preferably the dispersant of this invention does not contain other polymeric structures than the polyalkyleneglycole structural unit. In particular the dispersant of this invention is not obtained by a free radical polymerization of ethylenically unsaturated monomers, for example (meth)acrylic acid and esters of (meth)acrylic acid with monohydroxyfunctional polyalkyleneglycoles. The dispersant of this invention is also not obtained by an esterification of a polyacrylic backbone polymer with monohydroxyfunctional polyalkyleneglycoles.
Preferably the polyalkyleneglycole part of the dispersant is a straight chain polyalkyleneglycole. Preferably the polyalkyleneglycole is a C2 to C18 polyalkyleneglycole, more preferably a C2 and/or C3, most preferably a C2 polyalkyleneglycole. Advantage of the C2 polyalkyleneglycole (polyethyleneglycole) is its good solubility in water. The chain length of the polyalkyleneglycole structure is defined by the number of alkyleneoxide repeating units. The polyalkyleneglycole comprises at least 5 alkylene oxide repeating units, preferably from 10 to 500 alkylene oxide repeating units, more preferably from 10 to 200 alkylene oxide repeating units, and contains more than 80 mol-% of ethyleneglycole units, preferably more than 90 mol-% of ethyleneglycole units.

The functional group being able to interact as an anchor group with the surface of cement particles comprises preferably anionic radicals, silane radicals and/or polyhydroxy radicals.

The term "anionic radicals" includes also radicals, which can form under alkaline pH-conditions (as generally present in cementitious systems) anionic radicals (for example from the respective acid form). One or several anionic radicals can be preferably selected from the group of phosphates, phosphonates, phosphinates, hypophosphites, sulphates, sulphonates, sulphinates, borates, boronates and/or carboxylates, including the acid form of said anionic radicals. Preferably the anionic radical comprises phosphonates and/or carboxylates.

Dispersants based on the phosphonate chemistry are described in WO 94/08913 A1. All dispersants based on the phosphonate anchor group chemistry according to said patent application can be used as the dispersant in the process, product and use according to this invention. The disclosure of the phosphonate dispersants in WO 94/08913 A1 is hereby incorporated by reference. Examples for dispersants with one to three anchor groups (phosphonate radicals) are the following structures:

\[
\text{H-O-}
\begin{array}{c}
(C_2H_4O)_{50}\cdot CH_2CH_2-N(\text{Me})\cdot \text{CH}_2\cdot \text{PO(OH)}_2
\end{array}
\quad (1 \text{ phosphonate})
\]

\[
\text{Me-O--}
\begin{array}{c}
(C_2H_4O)_{20}\cdot CH_2CH(ivle)\cdot N-[CH_2\cdot \text{PO(ONa)}]_2
\end{array}
\quad (2 \text{ phosphonates})
\]

\[
\text{H-O-}
\begin{array}{c}
(C_2H_4O)_{50}\cdot CH_2CH_2-N(CH_2\cdot \text{PO(OH)}_2)\cdot CH_2CH_2-N-[CH_2\cdot \text{PO(OH)}_2]_2
\end{array}
\quad (3 \text{ phosphonates})
\]

Especially preferable are phosphonate based dispersants, characterized in that the functional group being able to interact as an anchor group with the surface of cement particles contains two phosphonate radicals and is characterized by the following general structure (I),
(I) R-0-(AO)n-CH₂CH₂-N-[CH₂-PO(OM)₂]₂

whereby
A is the same or different and independently from each other an alkylene with 2 to 18 carbon atoms, preferably ethylene and/or propylene, most preferably ethylene,
n is an integer from 5 to 500, preferably 10 to 200, most preferably 10 to 100,
R is H or a saturated or unsaturated hydrocarbon rest, preferably a C₁ to C₁₅ alkyl radical,
more preferably a C₁ to C₃ alkyl radical, most preferably H,
M is H, an alkali metal, 1/2 earth alkali metal, an amine and/or organic amine rest.

The term organic amine rest comprises also organic amines like primary, secondary,
tertiary and quarternary amines. It is to be understood that the respective (earth) alkali
metals and amines will be mostly present in the form of the respective cations, respectively
as alkali metal cations or ammonium ions and the phosphonate groups in the
deprotonated form. The synthesis of dispersants according to the general formula (I) is
described in detail in the patent application WO94/08913, which is hereby incorporated by
reference. An example for this group of dispersants is the following chemical:

H-O-(C₂H₄O)₅₀-CH₂CH₂-N-[CH₂-PO(OH)₂]₂

Dispersants based on phosphate, phosphinate and hypophosphinate, sulphates,
sulphonates, sulphinates, borates and boronates radicals as anchor groups are described
in WO 01/041 85 A 1.

Carboxylate radicals are especially suitable as anchor groups because of their high affinity
to cement particles. Preferable is a plurality of carboxylate radicals as anchor group, more
preferably at least three carboxylate radicals. Suitable dispersants are disclosed in WO
01/041 85 A 1 (synthesis example 1) as the reaction product (amide formation) of
1,2,3,4,5,6-cyclohexane hexacarboxylic acid with a molar excess of about 10 % of
methoxy polyoxyalkylene amine (Jeffamine M-2070 (XTJ-508)). The reaction product is
supposed to have 5 carboxylic functionalities.

Preferably the dispersant according to this invention is a reaction product of 1,2,3,4,5,6-
cyclohexane hexacarboxylic acid and an alkoxy polyoxyalkylene amine with a number of
alkylene oxide repeating units between 5 and 500, preferably the polyoxyalkylene is
polyoxyethylene. Preferably the structure of the dispersant is according to the following
general formula (II):
A is the same or different and independently from each other an alkylene with 2 to 18 carbon atoms, preferably ethylene and/or propylene, most preferably ethylene,

n is an integer from 5 to 500, preferably 10 to 200, most preferably 10 to 100,

R is H or a saturated or unsaturated hydrocarbon rest, preferably a C1 to C15 alkyl radical, more preferably a C1 to C3 alkyl radical,

R¹ is independently from each other a C1-C18 alkyl radical or a phenyl radical

M is H, an alkali metal, 1/2 earth alkali metal, an amine and/or organic amine rest.

The term organic amine rest comprises also organic amines like primary, secondary, tertiary and quaternary amines. It is to be understood that the respective (earth) alkali metals and amines will be mostly present in the form of the respective cations, respectively as alkali metal cations or ammonium ions and the carboxylic groups in the deprotonated form.

Water-soluble dispersants comprising one polyalkylene glycol structural unit and three carboxylate radicals can be obtained from the following list of tetracarboxylic acids,

2,5-dihydroxy-tetrahydrofuran-2,3,4,5-tetracarboxylic acid,

5-hydroxy-cyclohexane-1,2,3,4-tetracarboxylic acid,

6-hydroxy-tetrahydropyran-2,3,4,5-tetracarboxylic acid,

1,4-dihydroxy-butane-1,1',4,4'-tetracarboxylic acid,

1,3-dihydroxy-propane-1,1',3,3'-tetracarboxylic acid and

2-(4-hydroxyphenyl)-propane-1,1',3,3'-tetracarboxylic acid

by reaction of the respective tetracarboxylic acids with an alkoxy polyoxyalkylene amine with a number of alkylene oxide repeating units between 5 and 500, preferably the polyoxyalkylene is polyoxyethylene.

The synthesis can be done in analogy to the synthesis example 1 in WO 01/04185 A1, by replacement of the respective amount of 1,2,3,4,5,6-cyclohexane hexacarboxylic acid by the respective tetracarboxylic acids. The reaction is an amide formation, which leads mainly to a tricarboxylic end product.

An alternative product can be obtained by reacting one of the polycarboxylic acids mentioned in the before standing text, preferably hexacarboxylic or tetracarboxylic acids, with an amino-functional intermediate urethane product to a water-soluble water-
dispersant having an amide and an urethane unit in its structure. Said reaction is an amide formation between the polycarboxylic acid and the amino-functional intermediate urethane product. Preferable are water-reducers having an amide and an urethane unit in its structure are according to the following general formula (I"):

\[\text{R}-0-(\text{AO})_n-\text{CO-NH-Y-NH-CO-X}, \]

whereby

A is the same or different and independently from each other an alkylene with 2 to 18 carbon atoms, preferably ethylene and/or propylene, most preferably ethylene,

\(n \) is an integer from 5 to 500, preferably 10 to 200, most preferably 10 to 100,

\(R \) is \(H \) or a saturated or unsaturated hydrocarbon rest, preferably a C1 to C15 alkyl radical, more preferably a C1 to C3 alkyl radical,

\(Y \) is the rest of a diisocyanate without the two diisocyanate groups and

\(X \) is the rest of a polycarboxylic acid or its salt without one carboxylic acid group.

\(Y \) can be for example a toluene radical if TDI was used as an unsymmetrical diisocyanate.

\(X \) can be for example a phenyl rest substituted with 5 carboxylic acid groups if 1,2,3,4,5,6-cyclohexane hexacarboxylic was used as the polycarboxylic acid.

The intermediate urethane product mentioned in the before standing text can be obtained in a two step reaction. The first step is the reaction of about equal molar amounts of an alkyl/polyalkyleneglycol with a diisocyanate, preferably a not symmetrical diisocyanate, most preferably toluene diisocyanate, to the respective urethane having one isocyanate group (R-0-(AO)_n-CO-NH-Y-NCO). In the second step the amino-functional intermediate urethane product (R-0-(AO)_n-CO-NH-Y-NH_2) is obtained by hydrolysis of said monoisocyanate (R-0-(AO)_n-CO-NH-Y-NCO).

Further preferable anionic groups are described in the dependent claims. It is believed that the anionic groups can substantially interact with the surface of the basically positively charged surface of the cement particles in aqueous systems. In a similar manner an interaction between calcium silicate hydrate (C-S-H) particles formed during the process according to this invention and the dispersants according to this invention is believed to take place.

Silane radicals are another type of anchor group, which can be used according to this invention. Suitable silane radicals should be able to react with water under alkaline conditions (usual condition in aqueous cementitious systems) to a silanol intermediate
comprising at least one Si-OH structural unit. The Si-OH unit is supposed to be able to react with Si-OH (as is present on the surface of cement particles or calcium silicate hydrate particles) in a condensation.

Preferably the silane radical is selected from the group of mono-, di- and trialkoxy silanes, preferably a C1 to C10 alkoxy silane. More preferable are in each case the trialkoxy silanes. Especially preferable are -Si(OMe)3 and/or -Si(OCH₂CH₃)₃ radicals. Acyloxy silanes, preferably triacyloxy silanes, can also be used. It is preferable that at least 2 silane radicals, the silane radicals being able to react with water under alkaline conditions to a silanol intermediate are present in the dispersant. Examples for the respective dispersants with one or more silane groups can be found in the patent application WO 01/041 85 A 1. All dispersants based on a silane chemistry described in said patent application, are included by reference into the present patent application.

Preferable are dispersants with two trialkoxysilane radicals according to the following general structure (III). The synthesis of a representative of this class of compounds is described in detail in WO 01/04185 A 1 (synthesis example 4).

(III)

\[R-0-(AO)n-CH₂CH₂-0-CO-N\{CH₂NH-CO-NH-(CH₂)₃-Si(OR')₃ \]

whereby

- \(R \) is H, preferably a saturated or unsaturated hydrocarbon rest, more preferably a C1 to C15 alkyl radical, most preferably a C1 to C3 alkyl radical,
- \(A \) is an alkylene group, preferably comprising more than 90 mol-% ethylene groups
- \(n \) is an integer from 5 to 500, preferably from 10 to 200,
- \(R' \) is a C1 to C18 alkyl group, preferably a methyl group.

Dispersants with one trialkoxysilane radical can be obtained for example by the reaction of 3-(trialkoxysilyl)propyl isocyanates with polyalkylene glycol derivatives such as alkoxy polyoxyalkylene amines or alkoxy polyoxyalkylene alcohols. The reaction between the isocyanate group and the amine/hydroxy group will result in the formation of the respective urea and urethane derivatives.

Polyhydroxy radicals are a further possibility for anchor groups according to this invention. Preferably the polyhydroxy radicals comprise at least three hydroxyl radicals, more preferably at least 5 hydroxy radicals, more preferably the polyhydroxy radicals are derived from a sugar compound, most preferably from a sugar lactone. For example glucoheptonic lactone or gluconic lactone can be reacted with polyalkyleneglycole amines under amide
formation as described in WO 01/04185 A1 (synthesis examples 3 and 5). The dispersants
basing on a chemistry of polyhydroxy radicals described in the patent application WO
01/04185 A1, are included by reference into the present patent application.

Preferable are dispersants according to the following general structure (IV):

(IV)

\[R-0-(AO)_{n}-CH_{2}CH(R^1)-NH-CO-(CH(OH))_{m}-CH_{2}-OH \]

A is the same or different and independently from each other an alkylene with 2 to 18
carbon atoms, preferably ethylene and/or propylene, most preferably ethylene,
n is an integer from 5 to 500, preferably 10 to 200, most preferably 10 to 100,
m is an integer from 4 to 6, preferably 4 or 5, most preferably 5,
R is H or a saturated or unsaturated hydrocarbon rest, preferably a C1 to C15 alkyl radical,
more preferably a C1 to C3 alkyl radical, most preferably a C1 to C15 alkyl radical,
R^1 is a C1 to C18 alkyl group, preferably a methyl group.

Anionic derivatives of polyhydroxy compounds, more preferable anionic derivatives of
sugar derivatives, like for example phosphate esters of sugars can also be used as the
water-soluble dispersant. The compounds can be obtained by phosphation of respective
dispersants comprising a residue originating from a sugar acid (for example the
phosphation of products of synthesis examples 3 and 5 in WO 01/04185 A1).

A preferable process is characterized in that the functional group (in the water-soluble
dispersant) being able to interact as an anchor group with the surface of cement particles,
comprises carboxylate radicals, phosphate radicals, phosphonate radicals, silane radicals
the silane radicals being able to react with water to a silanol compound under alkaline
conditions and/or at least 3 hydroxy radicals, preferably derived from a sugar compound.

The acid forms of the mentioned salts are included. Preferably the functional group being
able to interact as an anchor group with the surface of cement particles comprises only
one type of chemistry, for example only hydroxy radicals, carboxylate radicals, phosphate
radicals, phosphonate radicals or silane radicals.

A preferable process is characterized in that the functional group being able to interact as
an anchor group with the surface of cement particles comprises at least 5 hydroxy
radicals, more preferably at least 6 hydroxy radicals, preferably the hydroxy radicals being
derived from a sugar compound, most preferably a sugar lactone, at least 3 carboxylate
radicals, at least 2 phosphate radicals, at least 2 phosphonate radicals or at least 2 silane
radicals, the silane radicals being able to react with water to a silanol compound under
alkaline conditions. Preferably the functional group being able to interact as an anchor group with the surface of cement particles comprises only one type of chemistry.

Preferably the process is characterized in that the polyalkylene glycol comprises at least 5 alkylene oxide repeating units, preferably from 10 to 500 alkylene oxide repeating units, more preferably from 10 to 200 alkylene oxide repeating units, and contains more than 80 mol-% of ethylene glycol units, preferably more than 90 mol-% of ethylene glycol units. Preferably the polyalkylene glycol is polyethylene glycol.

Preferable is a process in which at the other end of the polyalkylene glycol structural unit, no group is present, which would be substantially able to interact as an anchor group with the surface of cement particles. The groups substantially not able to interact as an anchor group with the surface of cement particles are preferably non-ionic, more preferably not anionic, are not a silane and/or are not a polyhydroxy compound with more than two hydroxy radicals. Groups substantially not able to interact as an anchor group with the surface of cement particles, preferably do not comprise hydroxy radicals, particularly not more than two hydroxy radicals, carboxylate radicals, phosphate radicals, phosphonate radicals or silane radicals. However, it is possible that only one or two hydroxy radicals can be attached, because only one or two hydroxy radicals do not substantially interact with the surface of cement particles. Typical groups that would substantially not interact with the surface of cement particles are saturated or unsaturated hydrocarbons, like for example branched or straight chain aliphatic hydrocarbons (for example methyl radicals), olefins and/or alkynes. Also aromatic compounds would be expected to not substantially interact with the surface of cement particles or to show only a very low interaction.

In principle, the accelerator contains an inorganic and an organic component, the organic component being the water-soluble dispersant as described in the before standing text. The inorganic component may be regarded as modified, finely dispersed calcium silicate hydrate, which may contain foreign ions, such as magnesium and aluminium. The calcium silicate hydrate is prepared in the presence of the water-soluble dispersant of this invention, which is a water-soluble dispersant comprising at least one polyalkylene glycol structural unit with a functional group at one end of the polyalkylene glycol, said functional group being able to interact as an anchor group with the surface of cement particles, said dispersant being preferably suitable as a plasticizer for hydraulic binders. Usually, a suspension containing the calcium silicate hydrate in finely dispersed form is obtained, which suspension effectively accelerates the hardening process of hydraulic binders.

The inorganic component can in most cases be described with regard to its composition by the following empirical formula:
a CaO, SiO₂, b Al₂O₃, c H₂O, d X, e W

X is an alkali metal
W is an alkaline earth metal

0.1 < a < 2...limited. Certain limits however are imposed by the physical state of the system. It is preferable to work in weight-%. The subsequent solution is water-soluble and contains, in addition to silicate and calcium ions, further dissolved ions which are preferably provided in the form of dissolved aluminium salts and/or dissolved magnesium salts. As aluminium salts preferably aluminium halogens, aluminium nitrate, aluminium hydroxide and/or aluminium sulphate can be used. More preferable within the group of aluminium halogens is aluminium chloride. Magnesium salts can be preferably magnesium nitrate, magnesium chloride and/or magnesium sulphate.

Advantage of the aluminium salts and magnesium salts is that defects in the calcium silicate hydrate can be created via the introduction of ions different to calcium and silicon. This leads to an improved hardening acceleration effect. Preferably the molar ratio of aluminium and/or magnesium to calcium and silicon is small. More preferably the molar ratios are selected in a way that in the previous empirical formula the preferable ranges for a, b and e are fulfilled (0.66 ≤ a ≤ 1.8; 0 ≤ b ≤ 0.1; 0 ≤ e ≤ 0.1).

Preferably, in a first step, the water-soluble calcium compound is mixed with the aqueous solution of the dispersant according to this invention, so that a mixture preferably present as a solution is obtained, to which the water-soluble silicate compound is added in a subsequent second step. The water-soluble silicate compound of the second step can also contain the dispersant according to this invention.

The aqueous solution may also contain one or more further solvents (for example alcohols like ethanol and/or isopropanol) in addition to water. Preferably the weight proportion of the solvent other than water to the sum of water and further solvent (e.g. alcohol) is up to 20 weight-%, more preferably less than 10 weight-% and the most preferably less than 5 weight-%. However most preferable are aqueous systems without any solvent. The temperature range in which the process is carried out is not especially limited. Certain limits however are imposed by the physical state of the system. It is preferable to work in...
the range of 0 to 100 °C, more preferable 5 to 80 °C and most preferable 15 to 35 °C. High
temperatures can be reached especially when a milling process is applied. It is preferable
not to exceed 80 °C.

Also the process can be carried out at different pressures, preferably in a range of 1 to 5
bars.

The pH-value depends on the quantity of reactants (water-soluble calcium compound and
water-soluble silicate) and on the solubility of the precipitated calcium silicate hydrate. It is
preferable that the pH value is higher than 8 at the end of the synthesis, preferably in a
range between 8 and 13.5.

Preferably the aqueous solution containing the dispersant according to this invention
furthermore has the water-soluble calcium compound and the water-soluble silicate
compound as components dissolved in it. This means that the reaction of the water-
soluble calcium compound and the water-soluble silicate compound in order to precipitate
calcium silicate hydrate occurs in the presence of an aqueous solution which contains the
dispersant according to this invention.

Preferably the process is characterized in that a solution of a water-soluble calcium
compound and a solution of a water-soluble silicate compound are added preferably
separately to the aqueous solution containing the dispersant according to this invention.
To illustrate how this aspect of the invention can be carried out, for example three
solutions can be prepared separately (solution (I) of a water-soluble calcium compound,
solution (II) of a water-soluble silicate compound and a solution (III) of the dispersant
according to this invention. Solutions (I) and (II) are preferably separately and
simultaneously added to solution (III). Advantage of this preparation method is besides its
good practicability that relatively small particle sizes can be obtained.

In a further preferred mode of implementation of the invention the previous standing
embodiment can be modified in that the solution of a water soluble calcium compound
and/or the solution of a water-soluble silicate compound contain a dispersant according to
this invention. In this case the method is carried out in principle in the same way as
described in the previous embodiment), but solution (I) and/or solution (II) preferably
contain also the dispersant according to this invention. In this case the person skilled in the
art will understand that the dispersant according to this invention is distributed to at least
two or three solutions. It is advantageous that 1 to 50 %, preferably 10 to 25 % of the total
of the dispersant according to this invention are contained in the calcium compound
solution (e.g. solution (I)) and/or silicate compound solution (e.g. solution (II)). This
preparation method has the advantage that the dispersant according to this invention is
present also in the solution of the water-soluble calcium compound and/or the solution of the water-soluble silicate compound.

In a further preferred embodiment of the invention the previous embodiment can be modified in that the aqueous solution containing a dispersant according to this invention contains a water-soluble calcium compound or a water-soluble silicate compound. In this case the method is carried out in principle in the same way as described in the previous embodiment, but solution (III) would contain a water-soluble calcium compound or a water-soluble silicate compound. In this case the person skilled in the art will understand that the water-soluble calcium compound or the water-soluble silicate compound is distributed to at least two solutions.

In general, the components are used in the following ratios:

1) 0.01 to 75, preferably 0.01 to 51, most preferably 0.01 to 15 % by weight of water-soluble calcium compound,
2) 0.01 to 75, preferably 0.01 to 55, most preferably 0.01 to 10 % by weight of water-soluble silicate compound,
3) 0.001 to 60, preferably 0.1 to 30, most preferably 0.1 to 10 % by weight of the dispersant according to this invention,
4) 24 to 99, preferably 50 to 99, most preferably 70 to 99 % by weight of water.

Preferably the hardening accelerator composition is dosed at 0.01 to 10 weight-%, most preferably at 0.1 to 2 weight-% of the solids content with respect to the hydraulic binder, preferably cement. The solids content is determined in an oven at 60 °C until a constant weight of the sample is reached.

Often, the water-soluble calcium compound is present as calcium chloride, calcium nitrate, calcium formate, calcium acetate, calcium bicarbonate, calcium bromide, calcium carbonate, calcium citrate, calcium chloride, calcium fluoride, calcium gluconate, calcium hydroxide, calcium hypochloride, calcium iodate, calcium iodide, calcium lactate, calcium nitrate, calcium oxalate, calcium phosphate, calcium propionate, calcium silicate, calcium stearate, calcium sulphate, calcium sulphate hemihydrate, calcium sulphate dihydrate, calcium sulphide, calcium tartrate calcium aluminate, tricalcium silicate and/or dicalcium silicate. Preferably the water-soluble calcium compound is not a calcium silicate. The silicates calcium silicate, dicalcium silicate and/or tricalcium silicate are less preferred because of low solubility (especially in the case of calcium silicate) and for economic reasons (price) (especially in case of dicalcium silicate and tricalcium silicate).

The water-soluble calcium compound is preferably present as calcium citrate, calcium
tartrate, calcium formate and/or calcium sulphate. Advantage of these calcium compounds is their non-corrosiveness. Calcium citrate and/or calcium tartrate are preferably used in combination with other calcium sources because of the possible retarding effect of these anions when used in high concentrations.

Preferably the calcium compound is present as calcium chloride and/or calcium nitrate. Advantage of these calcium compounds is their good solubility in water, low price and good availability.

Often, the water-soluble silicate compound is present as sodium silicate, potassium silicate, waterglass, aluminium silicate, tricalcium silicate, dicalcium silicate, calcium silicate, silicic acid, sodium metasilicate and/or potassium metasilicate.

The water-soluble silicate compound is preferably present as sodium metasilicate, potassium metasilicate and/or waterglass. Advantage of these silicate compounds is their extremely good solubility in water.

Preferably species of different types are used as the water-soluble silicate compound and as the water-soluble calcium compound.

In a preferable process water-soluble alkali metal ions (for example lithium, sodium, potassium...) are removed from the hardening accelerator composition by cation exchangers and/or water-soluble nitrate and/or chloride ions are removed from the hardening accelerator composition by anion exchangers. Preferably the removal of said cations and/or anions is carried out in a second process step after the preparation of the hardening accelerator composition by the use of the ion exchangers. Acid ion exchangers suitable as cation exchanger are for example based on sodium polystyrene sulfonate or poly-2-acrylamido-2-methylpropane sulfonic acid (poly AMPS). Basic ion exchangers are for example based on amino groups, like for example poly (acrylamido-N-propyltrimethylammonium chloride) (poly APTAC).

The invention concerns also a process for the preparation of a hardening accelerator composition by reaction of a calcium compound, preferably a calcium salt, most preferably a water-soluble calcium salt with a silicon dioxide containing component under alkaline conditions characterized in that the reaction is carried out in the presence of an aqueous solution which contains a water-soluble dispersant comprising at least one polyalkylene glycol structural unit with a functional group at one end of the polyalkylene glycol, said functional group being able to interact as an anchor group with the surface of cement particles, said dispersant being preferably suitable as a plasticizer for hydraulic binders.
Typically the calcium compounds are calcium salts (e.g. calcium salts of carboxylic acids). The calcium salt can be for example calcium chloride, calcium nitrate, calcium formate, calcium acetate, calcium bicarbonate, calcium bromide, calcium carbonate, calcium citrate, calcium chlorate, calcium fluoride, calcium gluconate, calcium hydroxide, calcium oxide, calcium hypochloride, calcium iodate, calcium iodide, calcium lactate, calcium nitrite, calcium oxalate, calcium phosphate, calcium propionate, calcium silicate, calcium stearate, calcium sulphate, calcium sulphate hemihydrate, calcium sulphate dihydrate, calcium sulphide, calcium tartrate, calcium aluminate, tricalcium silicate and/or dicalcium silicate.

Preferable are calcium hydroxide and/or calcium oxide because of their strong alkaline properties. Preferably the water-soluble calcium compound is not a calcium silicate. The silicates calcium silicate, dicalcium silicate and/or tricalcium silicate are less preferred because of low solubility (especially in the case of calcium silicate) and for economic reasons (price) (especially in case of dicalcium silicate and tricalcium silicate). Less preferable are also not so good soluble calcium salts like for example calcium carbonate and also calcium salts with retarding anions (e.g. citrate, gluconate, tartrate can retard the hardening of hydraulic binders). In the case of neutral or acid calcium salts (e.g. calcium chloride or calcium nitrate) it is preferable to use a suitable base to adjust the pH-value to alkaline conditions (e.g. lithium hydroxide, sodium hydroxide, potassium hydroxide, ammonia, magnesium hydroxide or any other earth alkali hydroxide). Preferable is a pH-value higher than 8, more preferable higher than 9 and most preferable higher than 11. The pH-value is measured preferably at 25 °C and with a solid content of the suspension of 1 weight-%.

It is possible to use any material which contains silicon dioxide, for example microsilica, pyrogenic silica, precipitated silica, blast furnace slag and/or quartz sand. Small particle sizes of the silicon dioxide containing material are preferable, especially particle sizes below 1 µm. Further it is possible to use compounds which are able to react in an aqueous alkaline environment to silicon dioxide like for example tetraalkoxy silicon compounds of the general formula Si(OR)4. R can be the same or different and can be for example selected from a branched or non-branched C1 to C10 alkyl group. Preferably R is methyl, especially preferably ethyl.

In a preferred embodiment the silicon dioxide containing compound is selected from the group of microsilica, pyrogenic silica, precipitated silica, blast furnace slag and/or quartz sand. Preferable are microsilica, pyrogenic silica and/or precipitated silica, especially precipitated and/or pyrogenic silica. The types of silica, which are listed above are defined in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Release 2009, 7th Edition, DOI 10.1002/14356007.a23_583.pub3.
It is preferable to apply mechanical energy, preferably by milling, to the reaction mixture in order to activate and/or accelerate the reaction of the calcium salt with the usually low water-soluble silicon dioxide containing component. The mechanical energy is also advantageous in order to reach the desired small particle sizes of the calcium silicate hydrates. The wording "milling" means in this patent application any process in which high shear forces are exerted on the reaction mixture in order to accelerate the reaction and to obtain a suitable particle size. For example milling can be carried out in a planet ball mill in a continuous or batch operation mode. Alternatively an ultradisperser, preferably with a number of revolutions higher than 5,000 r.p.m. can be used. Also it is possible to apply a so-called shaker equipment in which small grinding bodies, preferably smaller than 1 mm in diameter are put together with the reaction mixture into a receptacle and are shaken. The respective shaker equipment is for example available from the company Skandex.

Typically the pH-value of the process for the preparation of a hardening accelerator is higher than 9.

 Preferably the molar ratio of calcium from the calcium compound to silicon from the silicon dioxide containing component is from 0.6 to 2, preferably 1.1 to 1.8.

Typically the weight ratio of water to the sum of calcium compound and silicon dioxide containing component is from 0.2 to 50, preferably 2 to 10, most preferably 4 to 6.

In this context water means the water in the reaction mixture, in which the process is carried out. It is preferable to carry out the process at relatively low water contents in order to increase the output of the process. Also it is possible to obtain relatively conveniently dry products from the wet products because not so much water has to be removed. A ratio of 2 to 10, respectively 4 to 6 is especially preferred because a paste like consistency of the products can be obtained, which is preferable for the milling process.

It is preferred that the process according to this invention is carried out at a site of concrete production (for example a ready-mix concrete, precast concrete plant or any other plant where mortar, concrete or any other cementitious products are produced), characterized in that the obtained hardening accelerator composition is used as the batching water. The obtained hardening accelerator composition is an aqueous system and can be used directly as the batching water, especially when designing the hardening accelerators according to the specific needs of a job-site.

Batching water in this context is the water, which is used in concrete production or production of similar cementitious materials. Typically the batching water is mixed with cement and for examples aggregates at a ready mix concrete plant or precast concrete plant, at a construction site or any other place where concrete or other cementitious
17

materials are produced. Usually the batching water can contain a wide range of additives
like for example plasticizers, hardening accelerators, retarders, shrinkage reducing
additives, air entrainers and/or defoamers. It is advantageous to produce the hardening
accelerators according to this invention in the batching water intended for production of
cement or similar materials, because there is no need to transport the respective
admixtures.

A further preferred embodiment of the invention, preferably carried out at a site of concrete
production (for example a ready mix concrete or precast concrete plant) is characterized in
that the weight ratio of the sum of water-soluble calcium compound, water-soluble silicate
compound and dispersant according to this invention to water, preferably batching water,
is between 1/1000 and 1/10, more preferably between 1/500 and 1/100. A high dilution of
the suspensions is advantageous for the efficiency of the hardening accelerators.

In a further embodiment of the invention the reaction is carried out completely or partially
in the presence of an aqueous solution containing a viscosity enhancer polymer, selected
from the group of polysaccharide derivatives and/or (co)polymers with an average
molecular weight \(M_w \) higher than 500,000 g/mol, more preferably higher than 1,000,000
g/mol, the (co)polymers containing structural units derived (preferably by free radical
polymerization) from non-ionic (meth)acrylamide monomer derivatives and/or sulphonlic
acid monomer derivatives. It is possible that the viscosity enhancer polymer is added at
the beginning, during the process or at the end of the process. For example it can be
added to the aqueous solution of the comb polymer, to the calcium compound and/or the
silicate compound. The viscosity enhancer polymer can also be used during the process of
preparing a hardening accelerator composition by reaction of a calcium compound,
preferably a calcium salt, most preferably a water-soluble calcium salt with a silicon
dioxide containing component. Preferably the viscosity enhancer polymer is added at the
end of the reaction (at the end of the reactants addition) in order to prevent any particles to
be destabilized and to keep the best stability. The viscosity enhancer has a stabilizing
function in that segregation (aggregation and sedimentation) of for example calcium
silicate hydrate) can be prevented. Preferably the viscosity enhancers are used at a
dosage from 0.001 to 10 weight-%, more preferably 0.001 to 1 weight-% with respect to
the weight of the hardening accelerator suspension. The viscosity enhancer polymer
preferably should be dosed in a way that a plastic viscosity of the hardening accelerator
suspensions higher than 80 mPa·s is obtained.

As polysaccharide derivative preference is given to cellulose ethers, for example
alkylcelluloses such as methylcellulose, ethylcellulose, propylcellulose and
methylthethylcellulose, hydroxyalkylcelluloses such as hydroxyethylcellulose (HEC),
hydroxypropylcellulose (HPC) and hydroxyethylhydroxypropylcellulose,
18

alkylhydroxyalkylcelluloses such as methylhydroxyethylcellulose (MHEC), methylhydroxypropylcellulose (MHPC) and propylhydroxypropylcellulose. Preference is given to the cellulose ether derivatives methylcellulose (MC), hydroxypropylcellulose (HPC), hydroxyethylcellulose (HEC) and ethylhydroxyethylcellulose (EHEC), and particular preference is given to methylhydroxyethylcellulose (MHEC) and methylhydroxypropylcellulose (MHPC). The abovementioned cellulose ether derivatives, which can in each case be obtained by appropriate alkylation or alkoxylation of cellulose, are preferably present as non ionic structures, however it would be possible to use for example also carboxymethylcellulose (CMC). In addition, preference is also given to using non ionic starch ether derivatives such as hydroxypropylstarch, hydroxyethylstarch and methylhydroxypropylstarch. Preference is given to hydroxypropylstarch. Preferable are also microbially produced polysaccharides such as welan gum and/or xanthans and naturally occurring polysaccharides such as alginates, carageenans and galactomannans. These can be obtained from appropriate natural products by extractive processes, for example in the case of alginates and carageenans from algae, in the case of galactomannans from carob seeds.

The viscosity enhancer (co)polymers with a weight average molecular weight \(M_w \) higher than 500,000 g/mol, more preferably higher than 1,000,000 g/mol can be produced (preferably by free radical polymerization) from non-ionic (meth)acrylamide monomer derivatives and/or sulphonic acid monomer derivatives. The respective monomers can be selected for example from the group of acrylamide, preferably acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide, N,N-dimethylacrylamide, N-ethylacrylamide, N,N—diethylacrylamide, N-cyclohexylacrylamide, N-benzylacrylamide, N,N-dimethylaminopropylacrylamide, N,N-dimethylaminoethylacrylamide and/or N-tert-butylacrylamide and/or sulphonic acid monomer derivatives selected from the group of styrene sulphonic acid, 2-acrylamido-2-methylpropanesulphonic acid, 2-methacrylamido-2-methylpropanesulphonic acid, 2-acrylamidobutanesulphonic acid, and/or 2-acrylamido-2,4,4-trimethylpentanesulphonic acid or the salts of the acids mentioned. It is preferable that the viscosity enhancer contains more than 50 mol-%, more preferably more than 70 mol-% of structural units derived from non-ionic (meth)acrylamide monomer derivatives and/or sulphonlic acid monomer derivatives. Other structural units preferably being contained in the copolymers can be derived from for example the monomers (meth)acrylic acid, esters of (meth)acrylic acid with branched or non-branched C1 to C10 alcohols, vinyl acetate, vinyl proprionate and/or styrene.

Preferably the viscosity enhancer polymer is a polysaccharide derivative selected from the group of methylcellulose, hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), methylhydroxyethylcellulose (MHEC), methylhydroxypropylcellulose (MHPC) and/or (co)polymers with an average molecular weight \(M_w \) higher than 500,000 g/mol, more
preferably higher than 1.000.000 g/mol, the (co)polymers containing structural units derived (preferably by free radical polymerization) from non-ionic (meth)acrylamide monomer derivatives selected from the group of acrylamide, preferably acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide, N,N-dimethylacrylamide, N-ethylacrylamide, N,N—diethylacrylamide, N-cyclohexylacrylamide, N-benzylacrylamide, N,N-dimethylaminopropylacrylamide, N,N-dimethylaminoethylacrylamide and/or N-tert-butylacrylamide and/or sulphonic acid monomer derivatives selected from the group of 2-acrylamido-2-methylpropanesulphonic acid, 2-methacrylamido-2-methylpropanesulphonic acid, 2-acrylamidobutanesulphonic acid, and/or 2-acrylamido-2,4,4-trimethylpentane-sulphonic acid or the salts of the acids mentioned.

Within the group of non-ionic (meth)acrylamide monomer derivatives preference is given to methylacrylamide, N,N-dimethylacrylamide and/or methacrylamide, and particular preference is given to acrylamide. Within the group of sulphonic acid monomers 2-acrylamido-2-methylpropanesulphonic acid (AMPS) and its salts are preferable. The amines can be added at the beginning of the process or at any other time.

In a further embodiment of the invention the reaction is carried out completely or partially in the presence of an aqueous solution containing hardening accelerators selected from the group of alkanolamines, preferably triisopropanolamine and/or tetrahydroxyethyl ethylene diamine (THEED). Preferably the alkanolamines are used at a dosage from 0.01 to 2.5 weight-% with respect to the weight of hydraulic binder, preferably cement. Synergistic effects could be found when using amines, especially triisopropanolamine and tetrahydroxyethyl ethylene diamine, with respect to the early strength development of hydraulic binder systems, especially cementitious systems. Preferably the amine is added at the end of the reaction.

In another embodiment the reaction is carried out completely or partially in the presence of an aqueous solution containing setting retarders selected from the group of citric acid, tartaric acid, gluconic acid, phosphonic acid, amino-trimethylenephosphonic acid, ethylenediaminotetra(methylenephosphonic) acid, diethylenetriaminopenta(methylenephosphonic) acid, in each case including the respective salts of the acids, pyrophosphates, pentaborates, metabolates and/or sugars (e.g. glucose, molasses). The advantage of the addition of setting retarders is that the open time can be controlled and in particular if necessary can be prolonged. The term "open-time" is understood by the person skilled in the art as the time interval after preparing the hydraulic binder mixture until the point of time at which the fluidity is considered as not sufficient anymore to allow a proper workability and the placement of the hydraulic binder mixture. The open-time depends on the specific requirements at the job site and on the type of application. As a rule the precast industry requires between 30 and 45 minutes and the ready-mix concrete industry
requires about 90 minutes of open-time. Preferably the setting retarders are used at a
dosage from 0.01 to 0.5 weight-% with respect to the weight of hydraulic binder, preferably
cement. The retarders can be added at the beginning of the process or at any other time.

In a preferred embodiment the hardening accelerator composition obtained according to
any of the above mentioned embodiments is dried, preferably by a spray drying process.
The drying method is not especially limited, another possible drying method is for example
the use of a fluid bed dryer. It is generally known that water, also if only in low quantities, is
detrimental to many binders, especially cement, because of undesired premature
hydration processes. Powder products with their typically very low content of water are
advantageous compared to aqueous systems because it is possible to mix them into
cement and/or other binders like gypsum, calcium sulphate hemihydrate (bassanite),
anhydrous calcium sulphate, slags, preferably ground granulated blast furnace slag, fly
ash, silica dust, metakaolin, natural pozzolan, calcined oil shale, calcium sulphaaluminate
cement and/or calcium aluminate cement.

The invention furthermore relates to a hardening accelerator composition which is
obtainable by the process described above.

According to another aspect of the invention a composition, preferably aqueous hardening
accelerator suspension, containing calcium silicate hydrate and a water-soluble dispersant
comprising at least one polyalkyleneglycole structural unit with a functional group at one
end of the polyalkyleneglycole, said functional group being able to interact as an anchor
group with the surface of cement particles, said dispersant being preferably suitable as a
plasticizer for hydraulic binders, is concerned.

In a further embodiment of the invention the composition is characterized in that the
particle diameter of the calcium silicate hydrate is smaller than 1.000 nm, more preferably
smaller than 500 nm, the particle size of the calcium silicate hydrate being measured by
analytical ultracentrifugation.

Preferably the composition is free of hydraulic binders, especially free of cement.
Preferably no cement is used during the production process of the hardening accelerators
according to this invention.

Preferably the particle diameter of the calcium silicate hydrate is smaller than 1.000 nm,
preferably smaller than 300 nm, the particle size of the calcium silicate hydrate being
measured by light scattering with a MasterSizer® 2000 from the company Malvern.

In the composition containing calcium silicate hydrate and a water-soluble dispersant the
functional group in the dispersant being able to interact as an anchor group with the surface of cement particles comprises preferably carboxylate radicals, phosphate radicals, phosphonate radicals, silane radicals, the silane radicals being able to react with water to a silanol compound under alkaline conditions and/or at least 3 hydroxy radicals, preferably derived from a sugar compound. The acid forms of the before standing salts are included. Preferably the functional group being able to interact as an anchor group with the surface of cement particles comprises only one type of chemistry, for example only hydroxy radicals, carboxylate radicals, phosphate radicals, phosphonate radicals or silane radicals. Examples for each type of dispersant were given in the before standing text.

Preferable is furthermore that the functional group being able to interact as an anchor group with the surface of cement particles comprises at least 5 hydroxy radicals, more preferably at least 6 hydroxy radicals, preferably the hydroxy radicals being derived from a sugar compound, most preferably a sugar lactone, at least 3 carboxylate radicals, at least 2 phosphate radicals, at least 2 phosphonate radicals or at least 2 silane radicals. Preferably the functional group being able to interact as an anchor group with the surface of cement particles comprises only one type of chemistry, for example only hydroxy radicals, carboxylate radicals, phosphate radicals, phosphonate radicals or silane radicals. Examples for each type of dispersant were given in the before standing text.

Preferable is that the functional group being able to interact as an anchor group with the surface of cement particles contains at least 2 phosphonate radicals and is characterized by the following general structure (I),

(I) \(R-0-(AO)_n-\text{CH}_2\text{CH}_2-N-[\text{CH}_2-\text{PO}(\text{OM})_2]_2 \)

whereby

R, A, n and M have the same meaning as described in detail in the before standing text for the general structure (I).

Preferable is that the polyalkyleneglycole comprises at least 5 repeating units, preferably from 10 repeating units to 500 repeating units, more preferably from 10 to 200 repeating units, and contains more than 80 mol-% of ethyleneglycole units, preferably more than 90 mol-% of ethyleneglycole units. More preferably the polyalkyleneglycole is polyethyleneglycole.

Preferable is that at the other end of the polyalkyleneglycole structural unit, no group is present, which would be substantially able to interact as an anchor group with the surface of cement particles. The groups substantially not able to interact as an anchor group with the surface of cement particles were mentioned in the before standing text.
Preferably the aqueous hardening accelerator composition contains

\[\text{i) 0.1 to 75, preferably 0.1 to 50, the most preferably 0.1 to 10 \% by weight of calcium silicate hydrate,} \]

\[\text{ii) 0.001 to 60, preferably 0.1 to 30, most preferably 0.1 to 10 \% by weight of dispersant according to this invention,} \]

\[\text{iii) 24 to 99, more preferably 50 to 99, most preferably 70 to 99 \% by weight of water.} \]

Typically the calcium silicate hydrate in the composition, preferably aqueous hardening accelerator suspension, is foshagite, hillebrandite, xonotlite, nekoite, clinobermorite, 9Å-tobermorite (riversiderite), 11Å-tobermorite, 14Å-tobermorite (plombierite), jennite, metajennite, calcium chondrodite, afwillite, a - C2SH, delaita, jaffeite, rosenhahnite, killalaita and/or suolunite.

More preferably the calcium silicate hydrate in the composition, preferably aqueous hardening accelerator suspension, is xonotlite, 9Å - tobermorite (riversiderite), 11Å-tobermorite, 14Å - tobermorite (plombierite), jennite, metajennite, afwillite and/or jaffeite.

In a preferred embodiment of the invention the molar ratio of calcium to silicon in the calcium silicate hydrate in the composition, preferably aqueous hardening accelerator suspension, is from 0.6 to 2, preferably 1.1 to 1.8.

Preferably the molar ratio of calcium to water in the calcium silicate hydrate is from 0.6 to 6, preferably 0.6 to 2, more preferably 0.8 to 2. Said ranges are similar to those found for example in calcium silicate hydrate phases, which are formed during the hydration of cement. Advantage is a good acceleration effect for hydraulic binders.

Preferably the hardening accelerator suspension contains a viscosity enhancer polymer, selected from the group of polysaccharide derivatives and/or (co)polymers with an average molecular weight \(M_w \) higher than 500,000 g/mol, more preferably higher than 1,000,000 g/mol the (co)polymers containing structural units derived (preferably by free radical polymerization) from non-ionic (meth)acrylamide monomer derivatives and/or sulphonic acid monomer derivatives. Preferably the viscosity enhancers are used at a dosage from 0.001 to 10 weight-%, more preferably 0.001 to 1 weight-% with respect to the weight of the hardening accelerator suspension. The viscosity enhancer polymer preferably should be dosed in a way that a plastic viscosity of the hardening accelerator suspensions higher than 80 mPa·s is obtained. Details of the viscosity enhancer polymers are given in the previous text (in the description of the process), which is incorporated here.
It is particularly advantageous to use the hardening accelerators according to this invention in combination with cements containing a relatively high content of soluble sulphates (from 0.1 to 5 weight-% with respect to the cement). Such cements are commercially available or the water-soluble sulphate salt can be added to the cement. Said cement is preferably rich in anhydrous aluminates phases. Preferably the water-soluble sulphate is selected from sodium and/or potassium sulphate. Combining the soluble sulphates and hardening accelerators according to this invention results into a synergetic hardening acceleration effect of cement.

The composition, preferably hardening accelerator suspension, contains preferably hardening accelerators selected from the group of alkanolamines, preferably triisopropanolamine and/or tetrahydroxyethyl ethylene diamine (THEED). Preferably the alkanolamines are used at a dosage from 0.01 to 2.5 weight-% with respect to the weight of hydraulic binder, preferably cement. Synergistic effects could be found when using amines, especially triisopropanolamine and tetrahydroxyethyl ethylene diamine, with respect to the early strength development of hydraulic binder systems, especially cementitious systems.

The composition, preferably aqueous hardening accelerator suspension, contains preferably setting retarders selected from the group of citric acid, tartaric acid, gluconic acid, phosphonic acid, amino-trimethylenephosphonic acid, ethyldiaminotetra(methylene phosphonic) acid, diethylenetriaminopenta(methylene phosphonic) acid, in each case including the respective salts of the acids, pyrophosphates, pentaborates, metaborates and/or sugars (e.g. glucose, molasses). The advantage of the addition of setting retarders is that the open-time can be controlled and in particular if necessary can be prolonged. Preferably the setting retarders are used at a dosage from 0.01 to 0.5 weight-% with respect to the weight of hydraulic binder, preferably cement.

The compositions, preferably aqueous hardening accelerator suspensions can also contain any formulation component typically used in the field of construction chemicals, preferably defoamers, air entrainers, retarders, shrinkage reducers, redispersible powders, other hardening accelerators, anti-freezing agents and/or anti-efflorescence agents.

It is possible to partially replace the dispersants of this invention by other dispersants, which are well known as water-reducers for hydraulic binders, particularly cement. Those dispersants can be selected from the group of polycarboxylate ethers (PCEs), lignosulphonates, naphthalene sulphonates, phosphated polycondensation products as described in the unpublished patent application according to the PCT (PCT/EP2009/061545) and/or melamine formaldehyde sulphonates.
In a preferred embodiment of the invention the composition is in powder form. The powder product can be obtained from the aqueous product by for example spray drying or drying in a fluid bed dryer.

The invention comprises the use of a hardening accelerator composition obtainable according to any of the processes of the present invention or of a composition according to this invention, preferably an aqueous hardening accelerator suspension, in building material mixtures containing cement, gypsum, anhydrite, slag, preferably ground granulated blast furnace slag, fly ash, silica dust, metakaolin, natural pozzolans, calcined oil shale, calcium sulfoaluminate cement and/or calcium aluminate cement, preferably in building material mixtures which contain substantially cement as a hydraulic binder. Gypsum comprises in this context all possible calcium sulphate carriers with different amounts of crystal water molecules, like for example also calcium sulphate hemihydrate.

In an embodiment of the invention building material mixtures are concerned, which contain a composition, preferably an aqueous hardening accelerator suspension, according to this invention and cement, gypsum, anhydrite, slag, preferably ground granulated blast furnace slag, fly ash, silica dust, metakaolin, natural pozzolans, calcined oil shale, calcium sulfoaluminate cement and/or calcium aluminate cement. Preferably the building material mixtures contain substantially cement as a hydraulic binder. The hardening accelerator composition is contained in the building material mixture preferably at a dosage of 0.05 weight-% to 5 weight-% with respect to the clinker weight.

For illustration the term building material mixtures can mean mixtures in dry or aqueous form and in the hardened or plastic state. Dry building material mixtures could be for example mixtures of said binders, preferably cement and the hardening accelerator compositions (preferably in powder form) according to this invention. Mixtures in aqueous form, usually in the form of slurries, pastes, fresh mortar or fresh concrete are produced by the addition of water to the binder component(s) and the hardening accelerator composition, they transform then from the plastic to the hardened state.

Examples

Preparation of the hardening accelerator compositions

It is possible to prepare the hardening accelerator compositions according to the processes described in WO2010/026155, replacing the polycarboxylate ethers by the dispersants of this invention. Here Optima®100, which is a commercial dispersant for cementitious compositions obtainable from the company Chryso, was used. Optima®100 is a 29.9 weight % solution of a polyethylene glycol structure with a diphosphonate anchor.
5 Table 1: preparation of hardening accelerators 1, 2 and 3

<table>
<thead>
<tr>
<th>ID</th>
<th>Solution 1</th>
<th>Solution 2</th>
<th>Solution 3</th>
<th>Mixing Procedure with feeding rates</th>
<th>Temp.</th>
<th>Stirring rate (rpm)</th>
<th>Total solid content (weight %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc1</td>
<td>51.95 g of CN51</td>
<td>20.83 g of Metso + 21.74 g water</td>
<td>25.5 g of Optima®10 0 + 880 g water</td>
<td>1 in 3 at 41.56 ml/h 2 in 3 at 38.12 ml/h</td>
<td>20°C</td>
<td>400</td>
<td>4.68%</td>
</tr>
<tr>
<td>Acc2</td>
<td>51.74 g of CN51</td>
<td>20.75 g of Metso + 21.66 g water</td>
<td>38.11 g of Optima®10 0 + 867.7 g water</td>
<td>1 in 3 at 41.40 ml/h 2 in 3 at 38 ml/h</td>
<td>20°C</td>
<td>400</td>
<td>5.25%</td>
</tr>
<tr>
<td>Acc3</td>
<td>51.46 g of CN51</td>
<td>20.67 g of Metso + 21.58 g water</td>
<td>50.6 g of Optima®10 0 + 856 g water</td>
<td>1 in 3 at 41.25 ml/h 2 in 3 at 37.8 ml/h</td>
<td>20°C</td>
<td>400</td>
<td>5.63%</td>
</tr>
</tbody>
</table>

CN 51 is a 51 weight % calcium nitrate solution, Metso is sodium metasilicate pentahydrate powder from PQ corporation. Optima®100 was used as a 29.9 weight solution of the dispersant.

Solutions 1, 2 and 3 are prepared before starting the reaction by dissolving the water-soluble salts and mixing Optima®100 in water at room temperature until the complete dissolution. The reaction is started by feeding the respective solutions according to the mixing procedure indications in table 1 at the given addition rates under mechanical stirring. The stirring rate(s) and the temperature are controlled during the whole synthesis. After the addition of the reactants, the suspension is further mixed for 30 minutes and afterwards collected and stored. The solid content of the suspension is measured by drying 3g +/- 0.1g of the suspension in a crucible in porcelain 24 hours in an oven at 60°C. The solid content is given in the table 1.

Calorimetric Measurements

The influence of the hardening accelerators was tested on the cement Bernburg 42.5 R by the measurement of the heat released in heat flow calorimetrical measurements. The
accelerator suspension was mixed with the batching water and the resulting suspension mixed with 25 g of the cement. The water to cement (w/c) ratio was set to 0.5. The dosage of the accelerators to be tested is expressed as weight percentage of solid content with respect to the cement weight. The dosage in weight % of solid content was 1.0 weight % for Acc1, 1.10 weight % for Acc 2 and 1.14 weight % for Acc 3. For each trial, the dosage in "actives" is about 0.35 weight % with respect to the cement. "Actives" means here the solid content of the samples minus the portion of the dispersant Optima®100, in other words the inorganic part of the solids content.

Figure 1: Calorimetric Measurements

The addition of the hardening accelerator described in the invention accelerates the acceleration period, which is defined in H. F. W. Taylor (1997): Cement Chemistry, 2nd edition, p. 212ff. The comparison example without accelerator shows the lower heat development of samples without accelerator. The accelerators Acc1, Acc2 and Acc 3 of this invention are superior to the comparison example. Samples of hardening accelerators prepared in the absence of the dispersant Optima®100 resulted in basically no accelerating effect in calorimetric measurements and also in measurements of early strength as respective comparative results in WO20 10/026155 show.
Patent Claims:

1. Process for the preparation of a hardening accelerator composition by reaction of a water-soluble calcium compound with a water-soluble silicate compound, the reaction of the water-soluble calcium compound with the water-soluble silicate compound being effected in the presence of an aqueous solution which contains a water-soluble dispersant comprising at least one polyalkylene glycole structural unit with a functional group at one end of the polyalkylene glycole, said functional group being able to interact as an anchor group with the surface of cement particles.

2. Process according to Claim 1, characterized in that the components are used in the following ratios:

 i) 0.01 to 75, preferably 0.01 to 51, most preferably 0.01 to 15 % by weight of water-soluble calcium compound,
 ii) 0.01 to 75, preferably 0.01 to 55, most preferably 0.1 to 10 % by weight of water-soluble silicate compound,
 iii) 0.001 to 60, preferably 0.1 to 30, most preferably 0.1 to 10 % by weight of water-soluble dispersant,
 iv) 24 to 99, preferably 50 to 99, most preferably 70 to 99 % by weight of water.

3. Process according to Claim 1 or 2, characterized in that the water-soluble calcium compound is present as calcium chloride, calcium nitrate, calcium formate, calcium acetate, calcium bicarbonate, calcium bromide, calcium carbonate, calcium citrate, calcium chlorate, calcium fluoride, calcium gluconate, calcium hydroxide, calcium oxide, calcium hypochloride, calcium iodate, calcium iodide, calcium lactate, calcium nitrite, calcium oxalate, calcium phosphate, calcium propionate, calcium silicate, calcium stearate, calcium sulphate, calcium sulphate hemihydrate, calcium sulphate dihydrate, calcium sulphide, calcium tartrate calcium aluminate, tricalcium silicate and/or dicalcium silicate.

4. Process according to any of Claims 1 to 3, characterized in that the water-soluble silicate compound is present as sodium silicate, potassium silicate, waterglass, aluminium silicate, tricalcium silicate, dicalcium silicate, calcium silicate, silicic acid, sodium metasilicate and/or potassium metasilicate.

5. Process for the preparation of a hardening accelerator composition by reaction of a calcium compound, preferably a calcium salt, most preferably a water-soluble calcium salt with a silicon dioxide containing component under alkaline conditions, characterized in that the reaction is carried out in the presence of an aqueous solution of a water-soluble dispersant comprising at least one polyalkylene glycole structural unit with
28

a functional group at one end of the polyalkyleneglycole, said functional group being able to interact as an anchor group with the surface of cement particles.

6. Process according to Claim 5, characterized in that the molar ratio of calcium from the calcium compound to silicon from the silicon dioxide containing component is from 0.6 to 2, preferably 1.1 to 1.8.

7. Process according to any of claims 1 to 6, characterized in that the functional group being able to interact as an anchor group with the surface of cement particles comprises carboxylate radicals, phosphate radicals, phosphonate radicals, silane radicals, the silane radicals being able to react with water to a silanol compound under alkaline conditions and/or at least 3 hydroxy radicals, preferably derived from a sugar compound.

8. Process according to any of Claims 1 to 7, characterized in that the functional group being able to interact as an anchor group with the surface of cement particles comprises at least 5 hydroxy radicals, at least 3 carboxylate radicals, at least 2 phosphonate radicals or at least 2 silane radicals, the silane radicals being able to react with water to a silanol compound under alkaline conditions.

9. Process according to any of claims 1 to 8, characterized in that the functional group being able to interact as an anchor group with the surface of cement particles contains two phosphonate radicals and is characterized by the following general structure (I),

(I) \[R-O-(AO)nCH_2CH_2-N-[CH_2-P(O)(OM)]2 \]

whereby

A is the same or different and independently from each other an alkylene with two to 18 carbon atoms, preferably ethylene and/or propylene, most preferably ethylene,

n is an integer from 5 to 500, preferably 10 to 200, most preferably 10 to 100 and

M is H, an alkali metal, 1/2 earth alkali metal and/or an amine,

R is H or a saturated or unsaturated hydrocarbon rest, preferably a C1 to C15 alkyl radical.

10. Process according to any of claims 1 to 9, characterized in that the polyalkyleneglycole comprises at least 5 repeating units, preferably from 10 repeating units to 500 repeating units, more preferably from 10 to 200 repeating units, and contains more than 80 mol-% of ethyleneglycole units, preferably more than 90 mol-% of ethyleneglycole units.
11. Process according to any of Claims 1 to 10, characterized in that at the other end of the polyalkyleneglycole structural unit, no group is present, which would be substantially able to interact as an anchor group with the surface of cement particles.

12. Process according to any of Claims 1 to 11, characterized in that the reaction is carried out completely or partially in the presence of an aqueous solution containing a viscosity enhancer polymer, selected from the group of polysaccharide derivatives and/or (co)polymers with an average molecular weight \(M_w \) higher than 500,000 g/mol, more preferably higher than 1,000,000 g/mol, the (co)polymers containing structural units derived (preferably by free radical polymerization) from non-ionic (meth)acrylamide monomer derivatives and/or sulphonic acid monomer derivatives.

13. Composition, preferably aqueous hardening accelerator suspension, containing calcium silicate hydrate and a water-soluble dispersant comprising at least one polyalkyleneglycole structural unit with a functional group at one end of the polyalkyleneglycole, said functional group being able to interact as an anchor group with the surface of cement particles.

14. Composition according to claim 13, preferably aqueous hardening accelerator suspension, characterized in that the particle diameter of the calcium silicate hydrate is smaller than 1,000 nm, measured by light scattering with a MasterSizer®2000 from the company Malvern.

15. Composition, preferably aqueous hardening accelerator suspension, according to Claim 13 or 14, in which the molar ratio of calcium to silicon in the calcium silicate hydrate is from 0.6 to 2, preferably 1.1 to 1.8.

16. Composition according to any of Claims 13 to 15, characterized in that the functional group being able to interact as an anchor group with the surface of cement particles comprises carboxylate radicals, phosphate radicals, phosphonate radicals, silane radicals, the silane radicals being able to react with water to a silanol compound under alkaline conditions and/or at least 3 hydroxy radicals, preferably derived from a sugar compound.

17. Composition, preferably aqueous hardening accelerator suspension, according to any of Claims 13 to 16, which contains a viscosity enhancer polymer, selected from the group of polysaccharide derivatives and/or (co)polymers with an average molecular weight \(M_w \) higher than 500,000 g/mol, more preferably higher than 1,000,000 g/mol, the (co)polymers containing structural units derived (preferably by free radical polymerization) from non-ionic (meth)acrylamide monomer derivatives and/or sulphonic acid monomer derivatives.

18. Composition according to any of Claims 13 to 17, which is in powder form.
19. Use of a composition according to any of Claims 13 to 18 in building material mixtures containing cement, gypsum, anhydrite, slag, preferably ground granulated blast furnace slag, fly ash, silica dust, metakaolin, natural pozzolans, calcined oil shale, calcium sulfo aluminate cement and/or calcium aluminate cement, preferably in building material mixtures which contain substantially cement as a hydraulic binder.

20. Building material mixtures containing a hardening accelerator composition according to any of Claims 13 to 18 and cement, gypsum, anhydrite, slag, preferably ground granulated blast furnace slag, fly ash, silica dust, metakaolin, natural pozzolans, calcined oil shale, calcium sulfo aluminate cement and/or calcium aluminate cement.
A. CLASSIFICATION OF SUBJECT MATTER

INV. C04B28/02 C04B40/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 94/08913 AI (CHRYSO SA [FR]; GUICQUERO JEAN PI ERRE [FR]; MOSQUET MARTIN [FR]; CHEVA) 28 April 1994 (1994-04-28) cited in the application on pages 13-15 examples 1,2</td>
<td>1,3-5, 7-9, 19, 20</td>
</tr>
<tr>
<td>X</td>
<td>WO 01/04185 AI (MBT HOLDING AG [CH]) 18 January 2001 (2001-01-18) cited in the application on the whole document</td>
<td>1,3-5, 7-9, 19, 20</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" later document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "S" document member of the same patent family

Date of the actual completion of the international search:

8 July 2011

Date of mailing of the international search report:

19/07/2011

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer:

Gattinenger, Irene
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2001 058863 A (TAIHEIYO CEMENT CORP) 6 March 2001 (2001-03-06) abstract</td>
<td>5, 19, 20</td>
</tr>
<tr>
<td>X</td>
<td>FR 2 866 330 AI (EIFFAGE TP [FR]) 19 August 2005 (2005-08-19) the whole document</td>
<td>5, 19, 20</td>
</tr>
<tr>
<td>X, P</td>
<td>WO 2010/026155 AI (CONSTR RES & TECH GMBH [DE]; NICOLEAU LUC [DE]; JETZLSPERGER EVA [DE]) 11 March 2010 (2010-03-11) cited in the application the whole document</td>
<td>1-8, 10-20</td>
</tr>
</tbody>
</table>
Patent Document Publication

Patent Family Publication

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 677610 B2</td>
<td>01-05-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5179393 A</td>
<td>09-05-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9307228 A</td>
<td>25-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2146863 Al</td>
<td>28-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69311731 Dl</td>
<td>24-07-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69311731 T2</td>
<td>08-01-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 663892 T3</td>
<td>26-01-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0663892 Al</td>
<td>26-07-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2103495 T3</td>
<td>16-09-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2696736 Al</td>
<td>15-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3024719 T3</td>
<td>31-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8505082 T</td>
<td>04-06-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 951361 A</td>
<td>06-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5879445 A</td>
<td>09-03-1999</td>
</tr>
<tr>
<td>wo 0104185</td>
<td>18-01-2001</td>
<td>AT 338082 T</td>
<td>15-09-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6155500 A</td>
<td>30-01-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60030448 T2</td>
<td>30-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1203046 Al</td>
<td>08-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2270856 T3</td>
<td>16-04-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4611587 B2</td>
<td>12-01-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003504294 A</td>
<td>04-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6133347 A</td>
<td>17-10-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6492461 Bl</td>
<td>10-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6451881 Bl</td>
<td>17-09-2002</td>
</tr>
<tr>
<td>us 5571319</td>
<td>05-11-1996</td>
<td>AU 700882 B2</td>
<td>14-01-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6217196 A</td>
<td>20-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2185638 Al</td>
<td>19-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2305429 A</td>
<td>09-04-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9118552 A</td>
<td>06-03-1997</td>
</tr>
<tr>
<td>JP 2001058863</td>
<td>06-03-2001</td>
<td>JP 4323016 B2</td>
<td>02-09-2009</td>
</tr>
<tr>
<td>fr 2866330</td>
<td>19-08-2005</td>
<td>AU 2005212878 Al</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0507638 A</td>
<td>10-07-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2555590 Al</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1934052 A</td>
<td>21-03-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1713740 A2</td>
<td>25-10-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2005077857 A2</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007522072 A</td>
<td>09-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MA 28349 Al</td>
<td>01-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2359936 C2</td>
<td>27-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007163470 Al</td>
<td>19-07-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200607632 A</td>
<td>25-03-2009</td>
</tr>
<tr>
<td>wo 2010026155</td>
<td>11-03-2010</td>
<td>AU 2009289267 Al</td>
<td>11-03-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2735705 Al</td>
<td>11-03-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 20200917741 Ul</td>
<td>20-05-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2321235 Al</td>
<td>18-05-2011</td>
</tr>
</tbody>
</table>

Form PCT/ISA210 (patent family annex) (April 2005)