

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199676411 B2
(10) Patent No. 706270

(54) Title
Aqueous dye solutions

(51)⁶ International Patent Classification(s)
C09B 067/36 **D21H 017/09**
D21H 017/07 **D21H 021/28**

(21) Application No: **199676411** (22) Application Date: **1996.12.20**

(30) Priority Data

(31) Number (32) Date (33) Country
3670/95 **1995.12.22** **CH**

(43) Publication Date : **1997.06.26**

(43) Publication Journal Date : **1997.06.26**

(44) Accepted Journal Date : **1999.06.10**

(71) Applicant(s)
Ciba Specialty Chemicals Holding Inc.

(72) Inventor(s)
Alfred Hohener; Roland Frick; Adolf Kaser

(74) Agent/Attorney
SPRUSON and FERGUSON, GPO Box 3898, SYDNEY NSW 2001

B)

- a) at least 5 % by weight, based on the weight of the solution, of a red dye of the formula (1),
- b) formic acid or a C₁-C₄alkylcarboxylic acid,
- c) water and, if appropriate,
- d) further additives, with the condition that the solutions comprise no solubilizing agent and less than 0.1 % by weight of alkali metal halide, based on the total weight of the solution.

22. A process for the preparation of a concentrated aqueous solution of a dye of the formula (1) according to claim 1, which comprises filtering and, if appropriate, desalinating the dye suspension obtained during preparation of the dye, subsequently adding the C₁-C₄alkylcarboxylic acid, the solubilizing agent and, if appropriate, further additives, while stirring, and finally adjusting to the desired concentration with water.

23. The use of a concentrated aqueous dye solution according to claim 1 for dyeing paper.

AUSTRALIA
PATENTS ACT 1990

COMPLETE SPECIFICATION

FOR A STANDARD PATENT

ORIGINAL

Name and Address
of Applicant: ~~Ciba SC Holding AG~~ Ciba Specialty Chemicals Holding, Inc.
Klybeckstrasse 141
CH-4057 Basel
SWITZERLAND

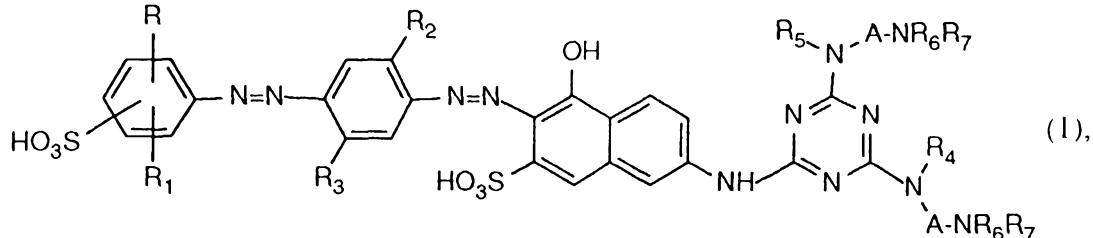
Actual Inventor(s): Alfred Hohener, Roland Frick and Adolf Kaser

Address for Service: Spruson & Ferguson, Patent Attorneys
Level 33 St Martins Tower, 31 Market Street
Sydney, New South Wales, 2000, Australia

Invention Title: Aqueous Dye Solutions

The following statement is a full description of this invention, including the best method of performing it known to me/us:-

Aqueous dye solutions


The present invention relates to aqueous dye solutions of red disazo dyes, processes for their preparation and their use for dyeing paper.

The use of concentrated aqueous solutions of dyes has gained importance in recent years, in particular because of the advantages such solutions have over dyes in powder form. By using solutions, the difficulties associated with dust formation are avoided and the users are freed from the time-consuming and often difficult dissolving of the dye powder in water. The use of concentrated solutions has furthermore been stimulated by the development of continuous dyeing processes for paper, since in these processes it is advantageous to introduce the solution directly into the hollander or to add it at any other suitable point in the papermaking.

For some dyes, for example the dyes of the formula (1) defined below, formulation of concentrated dye solutions presents difficulties, however, since deposits occur in the concentrated solutions during storage, especially at temperatures below room temperature, and these cannot be dissolved again at all or can be dissolved only with an additional expenditure on work. Furthermore, concentrated solutions which are suitable as a commercial form should give clear solutions comprising about 1 to 3 % by weight of dye, without a precipitate, when diluted for preparation of the dyebath, and this should also apply in the widest possible pH range.

The present invention was based on the object of providing suitable concentrated solutions for the dyes of the formula (1) defined below. It has now been found that the dye solutions described below meet the requirements imposed in an outstanding manner.

The present invention therefore relates to A) concentrated aqueous dye solutions comprising
a) at least 5 % by weight, based on the weight of the solution, of a red dye of the formula

in which

R and R₁ independently of one another are each hydrogen, Cl, methyl or methoxy,
R₂ and R₃ independently of one another are each hydrogen, methyl or methoxy,
R₄ and R₅ independently of one another are each hydrogen or C₁-C₄alkyl,
A is an unbranched or branched alkylene radical, which can be interrupted by O, and
R₆ and R₇ independently of one another are each hydrogen or C₁-C₆alkyl, or in which
R₆ and R₇, together with the N atom bonded to them, form a substituted or unsubstituted
5-, 6- or 7-membered ring, which can contain further heteroatoms,
b) formic acid or a C₁-C₄alkylcarboxylic acid,
c) a solubilizing agent,
d) water and, if appropriate,
e) further additives, or
B) concentrated aqueous dye solutions comprising
a) at least 5 % by weight, based on the weight of the solution, of a red dye of the formula
(1),
b) formic acid or a C₁-C₄alkylcarboxylic acid,
c) water and, if appropriate,
d) further additives, with the condition that the solutions comprise no solubilizing agent
and less than 0.1 % by weight of alkali metal halide, based on the total weight of the
solution.

The present invention preferably relates to the dye solutions of group A).

In the dyes of the formula (1), R and R₁ are preferably each H, methyl or methoxy, H
being particularly preferred.

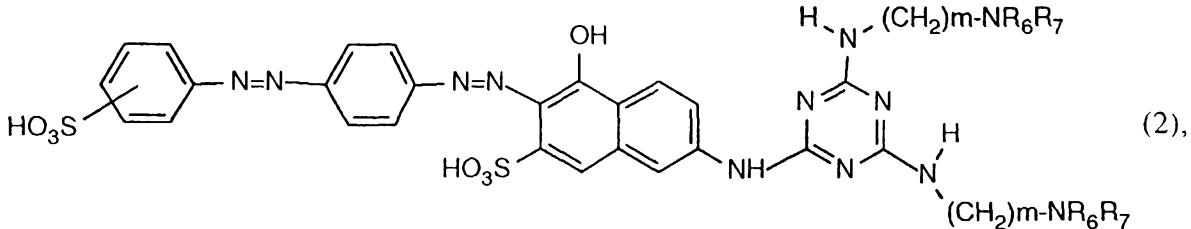
R₂ and R₃ are preferably each H.

R₄ and R₅ are preferably each methyl or, in particular, hydrogen.

Radicals A are, in particular, C₂-C₆alkylene radicals, in which the alkylene chain is
straight or branched or can also be interrupted by bridge members, for example -O-, or in
which the alkylene chain is substituted, for example by OH.

A is preferably a radical of the formula -(CH₂)_n-, in which n is an integer from 2 to 6.

Particularly suitable radicals A are ethylene, n-propylene, iso-propylene or n-butylene. Among these, n-propylene is especially preferred.


R_6 and R_7 independently of one another are each linear or branched unsubstituted C_1 - C_6 alkyl, or C_1 - C_6 alkyl which is substituted, for example by OH or C_1 - C_4 alkoxy. The alkyl chains can also be interrupted, for example by -O-.

Preferably, R_6 and R_7 independently of one another are each unsubstituted C_1 - C_4 alkyl, and in an especially preferred embodiment R_6 and R_7 are identical and are each methyl or ethyl.

A 5-, 6- or 7-membered ring of R_6 and R_7 together with the N atom joining them is, in particular, a pyrrolidine, piperidine, morpholine or piperazine ring. The piperazine radical can be substituted on the N atom which is not bonded to the alkylene chain, for example by alkyl.

In the dyes of the formula (1), the sulfo group is preferably located in the m- or, in particular, in the p-position relative to the azo group.

Preferred concentrated solutions according to the invention comprise a dye of the formula

in which

m is 2, 4 or, in particular, 3, and

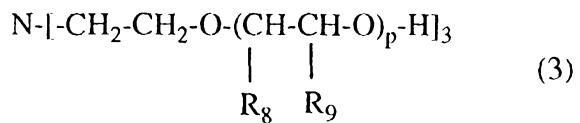
R_6 and R_7 are each C_1 - C_2 alkyl.

The concentration of the dye can vary within wide limits and is at least 5 % by weight, preferably 6 to 15 % by weight, in particular 8 to 10 % by weight, based on the weight of the concentrated solution.

The alkylcarboxylic acid is, for example, acetic acid, propionic acid, butyric acid or

valeric acid. Propionic acid and, in particular, acetic acid are preferred.

Suitable solubilizing agents are, for example, compounds of the following groups:


- I) alkali metal or ammonium salts of C₁-C₄alkylcarboxylic acids,
- II) low molecular weight acid amides,
- III) low molecular weight lactams or lactones,
- IV) alkanolamines or reaction products of ethylene oxide and/or propylene oxide with alkanolamines.

The solubilizing agents of group I) are, in particular, the sodium, potassium, lithium or ammonium salts of acetic acid or propionic acid. Sodium and ammonium acetate are particularly preferred. The solubilizing agents of group I) do not of course have to be employed in the form of the salts mentioned, but can also be prepared in the solutions from the corresponding bases and acids by neutralization.

Low molecular weight acid amides are, in particular, formamide, and especially urea.

Suitable solubilizing agents of group III) are, for example, γ -butyrolactam or ϵ -caprolactone, but in particular γ -butyrolactone, or especially ϵ -caprolactam.

The solubilizing agents of group IV) are, for example, diethanolamine or triethanolamine, but in particular reaction products of 1 to 6 mol of ethylene oxide and/or propylene oxide with 1 mol of diethanolamine or triethanolamine. Particularly preferred compounds are those of the formula

in which

p is an integer from 1 to 6 and of the substituents

R₈ and R₉, one is hydrogen and the other is hydrogen or methyl.

Preferably, in the compounds of the formula (3), p is 1.

The solubilizing agents of group I) are preferably present in an amount of 1 to 6 % by

weight, in particular 1 to 3 % by weight, based on the weight of the solution.

The solubilizing agents of groups II), III) and IV) are preferably present in an amount of 3 to 20 % by weight, in particular 6 to 15 % by weight, based on the weight of the solution.

It is also possible to employ mixtures of solubilizing agents of one group or mixtures of solubilizing agents of different groups, for example mixtures of ammonium acetate and urea.

The C_1 - C_4 alkylcarboxylic acid is preferably employed in an amount of 3 to 20 % by weight, in particular 6 to 15 % by weight, based on the weight of the solution.

Further additives which can be present in the concentrated solutions according to the invention are organic solvents, for example dimethylsulfoxide, N-methylpyrrolidone, ethylene glycol, propylene glycol or glycerol, and boric acid.

The concentrated aqueous solutions of group A) according to the invention can be prepared, for example, by filtering the dye solution obtained during preparation of the dye, subsequently adding the C_1 - C_4 alkylcarboxylic acid, the solubilizing agent and, if appropriate, further additives, while stirring, and finally adjusting the desired concentration with water.

The concentrated aqueous solutions according to the invention of group B) comprise no solubilizing agents and may therefore comprise only little alkali metal halide, since otherwise highly viscous solutions or those having an inadequate storage stability are obtained. As a result of the synthesis of the dyes of the formula (1) which is usually carried out by reaction of cyanuric chloride with the corresponding amines at an alkaline pH, however, the dye solutions usually comprise considerable amounts of alkali metal halide and must therefore be brought to an alkali metal halide content of less than 0.1 % by weight, based on the total weight of the solution, by a suitable process.

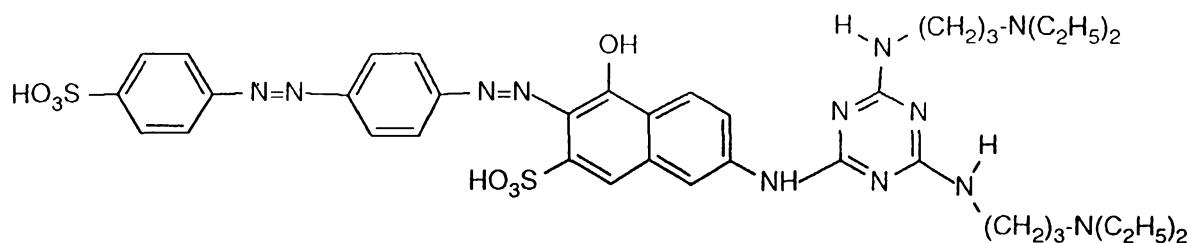
This is achieved in a manner known per se, for example by reverse osmosis, ultrafiltration or dialysis. Such desalination processes are known, for example from EP-A 0 059 782. The membranes used in these processes are also known, for example from EP-A 0 061 424.

The process conditions of this desalination are chosen such that dye solutions which

comprise less than 0.1 % by weight, preferably less than 0.07 % by weight, based on the total weight of the solution, of alkali metal halides are obtained.

Alkali metal halide in this Application is to be understood as meaning the fluoride, chloride, bromide or iodide of lithium, sodium or potassium.

The concentrated aqueous solutions according to the invention of group B) can thus be prepared, for example, by filtering and desalinating the dye solution obtained during preparation of the dye, subsequently adding the C₁-C₄alkylcarboxylic acid and, if appropriate, further additives, while stirring, and finally adjusting the desired concentration with water.


The concentrated aqueous dye solutions according to the invention are stable for several weeks at storage temperatures of between 60° and -20°C and are suitable for dyeing paper, on which they produce attractive red colour shades of high light-fastness with or without the use of a sizing agent and/or filler.

The dye solutions can be used by all the processes customary for substantive dyes in the paper industry, in particular in pulp and in surface dyeing of paper for sized and nonsized grades, starting from bleached or unbleached cellulose of varying origin, such as softwood or hardwood sulfite and/or sulfate cellulose, mechanical wood pulp or mixtures thereof with cellulose.

The dyes of the formulae (1) and (2) are known, for example from JP-A-075 924, or can be obtained analogously to the preparation procedure described therein.

In the following examples, parts are parts by weight and the temperatures are stated in degrees Celsius.

Example 1: 120 parts of glacial acetic acid are added dropwise to 780 parts of an aqueous solution comprising 96 parts of the dye of the formula

in the course of 50 minutes, while stirring. 120 parts of urea are added to the resulting thinly liquid solution in the course of 10 minutes, while stirring, and the mixture is stirred for a further 20 minutes. After addition of 180 parts of water, the mixture is stirred for a further 30 minutes.

A thinly liquid dye solution which is stable to storage for several months both at room temperature and at 4°, at -20° and at 60°C is obtained.

This solution can be diluted as desired with water without precipitates occurring. A dyeing liquor which contains 2 % of the above dye solution is stable to storage for several days at room temperature.

Example 2: 120 parts of glacial acetic acid are added dropwise to 780 parts of an aqueous solution comprising 96 parts of the dye from Example 1 in the course of 50 minutes, while stirring. 24 parts of ammonium acetate are added to the resulting thinly liquid solution in the course of 10 minutes, while stirring, and the mixture is stirred for a further 20 minutes. After addition of 276 parts of water, the mixture is stirred for a further 30 minutes.

A thinly liquid dye solution which is stable to storage for several months both at room temperature and at 4°, at -20° and at 60°C is obtained.

This solution can be diluted with water as desired, without precipitates occurring. A dyeing liquor which contains 2 % of the above dye solution is stable to storage for several days at room temperature.

Example 3: 120 parts of glacial acetic acid are added dropwise to 780 parts of an aqueous solution comprising 96 parts of the dye from Example 1 in the course of 40 minutes, while stirring. 84 parts of the reaction product of 3 mol of propylene oxide with 1 mol of triethanolamine are added to the resulting thinly liquid solution in the course of 10 minutes, while stirring, and the mixture is stirred for a further 20 minutes. After

addition of 240 parts of water, the mixture is stirred for a further 30 minutes.

A thinly liquid dye solution which is stable to storage for several months both at room temperature and at 4°, at -20° and at 60°C is obtained.

This solution can be diluted with water as desired, without precipitates occurring. A dyeing liquor which contains 2 % of the above dye solution is stable to storage for several days at room temperature.

Example 4: 1 part of 48 % acetic acid is added dropwise to 2.6 parts of an aqueous solution comprising 0.32 part of the dye from Example 1. 0.1 part of sodium acetate is added to the resulting thinly liquid solution. After addition of 0.3 part of water, the mixture is shaken thoroughly.

A thinly liquid dye solution which is stable to storage for several months both at room temperature and at 4°, at -20° and at 60°C is obtained.

This solution can be diluted with water as desired without precipitates occurring. A dyeing liquor which contains 2 % of the above dye solution is stable to storage for several days at room temperature.

Example 5: 1 part of 40 % propionic acid is added to 2.6 parts of an aqueous solution comprising 0.32 part of the dye from Example 1. 0.3 part of urea is added to the resulting thinly liquid solution. After addition of 0.1 part of water, the mixture is shaken vigorously.

A thinly liquid dye solution which is stable to storage for several months both at room temperature and at 4°, at -20° and at 60°C is obtained.

This solution can be diluted with water as desired without precipitates occurring. A dyeing liquor which contains 2 % of the above dye solution is stable to storage for several days at room temperature.

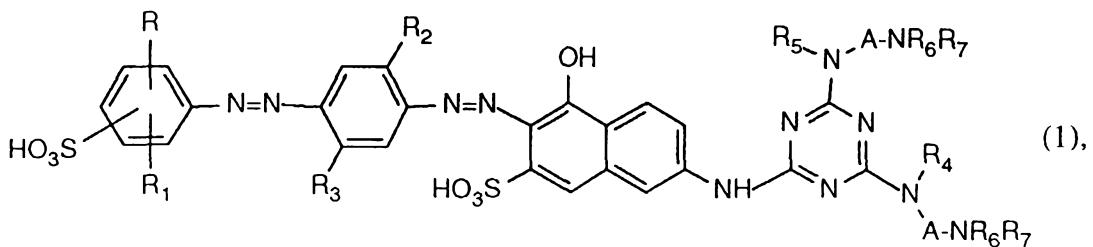
Example 6: 2662 parts of an aqueous solution of pH 9.7 comprising 256 parts of the dye described in Example 1, 40 parts of NaCl and 26 parts of diethylaminopropylamine is brought to a pH of 12 by addition of 40 % NaOH and then desalinated on a laboratory reverse osmosis unit under the following conditions: MPT 30 (MPS) membrane (polyethyleneimine); about 50°C; feed 12 l/minute; 25 bar; initial flow rate 1425 l/m²d. After 6 hours, 1234 parts of solution comprising 20.75 % of dye and 0.04 % of NaCl are

obtained. The solution no longer contains diethylaminopropylamine. It is brought to a pH of 3.7 and a dye content of 10 % by dropwise addition of glacial acetic acid and addition of water.

A thinly liquid dye solution which is stable to storage for several months both at room temperature and at 4°, at -20° and at 60°C is obtained.

This solution can be diluted with water as desired without precipitates occurring. A dyeing liquor which contains 2 % of the above dye solution is stable to storage for several days at room temperature.

Example 7: 70 parts of chemically bleached sulfite cellulose (from softwood) and 30 parts of chemically bleached sulfite cellulose (from birchwood) are beaten in 2000 parts of water in a hollander. 2.5 parts of the dye solution described in Example 1 are added to this pulp. After a mixing time of 20 minutes, paper is produced from this pulp. The absorbent paper obtained in this manner is red in colour. The dyeing shows a high fastness to light. The waste water is practically colourless.


Example 8: 3.0 parts of the dye solution from Example 6 are dissolved in 100 parts of water and the solution is added to 100 parts of chemically bleached sulfite cellulose, which have been beaten with 2000 parts of water in a hollander. After thorough mixing for 15 minutes, the pulp is sized with rosin size and aluminium sulfate in the customary manner. Paper produced from this pulp has a red shade with good wet-fastness properties and good fastness to light.

The claims defining the invention are as follows:
WHAT IS CLAIMED IS:

1. A concentrated aqueous dye solution comprising

A)

a) at least 5 % by weight, based on the weight of the solution, of a red dye of the formula

in which

R and R₁ independently of one another are each hydrogen, Cl, methyl or methoxy,

R₂ and R₃ independently of one another are each hydrogen, methyl or methoxy,

R₄ and R₅ independently of one another are each hydrogen or C₁-C₄alkyl,

A is an unbranched or branched alkylene radical, which can be interrupted by O, and

R₆ and R₇ independently of one another are each hydrogen or C₁-C₆alkyl, or in which

R₆ and R₇, together with the N atom bonded to them, form a substituted or unsubstituted 5-, 6- or 7-membered ring, which can contain further heteroatoms,

b) formic acid or a C₁-C₄alkylcarboxylic acid,

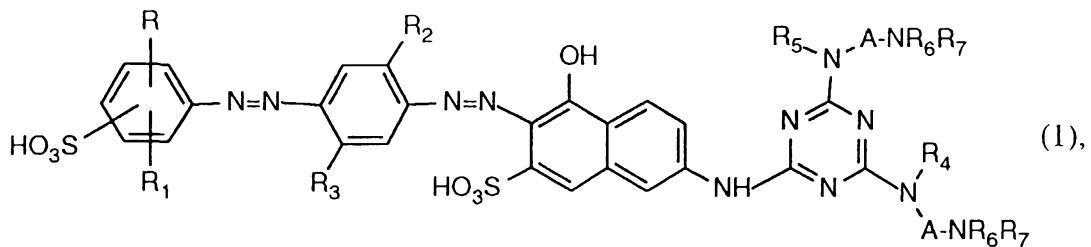
c) a solubilizing agent,

d) water and, if appropriate,

e) further additives, or

B)

a) at least 5 % by weight, based on the weight of the solution, of a red dye of the formula (1),


b) formic acid or a C₁-C₄alkylcarboxylic acid,

c) water and, if appropriate,

d) further additives, with the condition that the solutions comprise no solubilizing agent and less than 0.1 % by weight of alkali metal halide, based on the total weight of the solution.

2. A concentrated aqueous dye solution according to claim 1, comprising

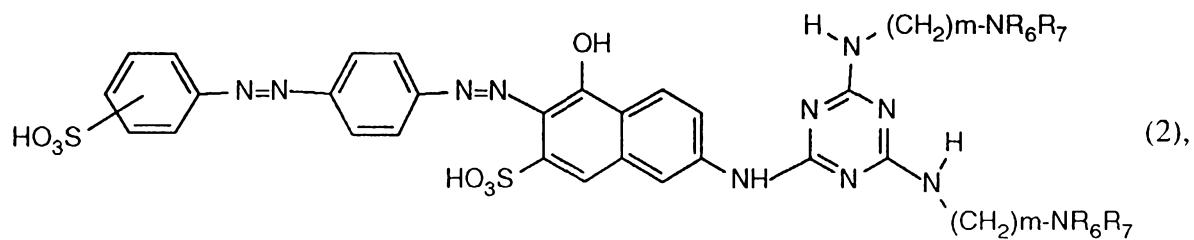
a) at least 5 % by weight, based on the weight of the solution, of a red dye of the formula

in which

R and R₁ independently of one another are each hydrogen, Cl, methyl or methoxy,
R₂ and R₃ independently of one another are each hydrogen, methyl or methoxy,
R₄ and R₅ independently of one another are each hydrogen or C₁-C₄alkyl,
A is an unbranched or branched alkylene radical, which can be interrupted by O, and
R₆ and R₇ independently of one another are each hydrogen or C₁-C₆alkyl, or in which
R₆ and R₇, together with the N atom bonded to them, form a substituted or unsubstituted
5-, 6- or 7-membered ring, which can contain further heteroatoms,
b) formic acid or a C₁-C₄alkylcarboxylic acid,
c) a solubilizing agent,
d) water and, if appropriate,
e) further additives.

3. A concentrated aqueous dye solution according to claim 1 or 2, in which R and R₁ are each H, methyl or methoxy.
4. A concentrated aqueous dye solution according to claim 3, in which R and R₁ are each H.
5. A concentrated aqueous dye solution according to any one of claims 1 to 4, in which R₂ and R₃ are each H.
6. A concentrated aqueous dye solution according to any one of claims 1 to 5, in which R₄ and R₅ are each methyl or hydrogen.
7. A concentrated aqueous dye solution according to any one of claims 1 to 6, in which A is a radical of the formula -(CH₂)_n-, in which n is an integer from 2 to 6.
8. A concentrated aqueous dye solution according to claim 7, in which A is ethylene, n-propylene, iso-propylene or n-butylene.

9. A concentrated aqueous dye solution according to any one of claims 1 to 8, in which R₆ and R₇ independently of one another are each unsubstituted C₁- to C₄alkyl.


10. A concentrated aqueous dye solution according to claim 9, in which R₆ and R₇ are identical and are each methyl or ethyl.

11. A concentrated aqueous dye solution according to any one of claims 1 to 10, in which the sulfo group is located in the m- or in the p-position relative to the azo group.

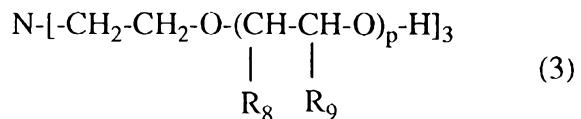
12. A concentrated aqueous dye solution according to any one of claims 1 to 11, comprising 6 to 20 % by weight of dye, based on the weight of the solution.

13. A concentrated aqueous dye solution according to claim 12, comprising 8 to 10 % by weight of dye, based on the weight of the solution.

14. A concentrated aqueous dye solution according to any one of claims 1 to 13, comprising a dye of the formula

in which

m is 2, 3 or 4, and


R_6 and R_7 are each C_1 - C_2 alkyl.

15. A concentrated aqueous dye solution according to any one of claims 1 to 14, comprising, as the solubilizing agent, a compound of one of the following groups:

- I) alkali metal or ammonium salts of C₁-C₄alkylcarboxylic acids,
- II) low molecular weight acid amides,
- III) low molecular weight lactams or lactones,
- IV) alkanolamines or reaction products of ethylene oxide and/or propylene oxide with

alkanolamines.

16. A concentrated aqueous dye solution according to claim 15, comprising, as the solubilizing agent, sodium acetate or ammonium acetate, formamide, urea, ϵ -caprolactam or a compound of the formula

in which

p is an integer from 1 to 6 and of the substituents

R_8 and R_9 , one is hydrogen and the other is hydrogen or methyl.

17. A concentrated aqueous dye solution according to claim 16, in which p is 1.

18. A concentrated aqueous dye solution according to any one of claims 1 to 17, comprising a solubilizing agent of group I) in an amount of 1 to 5 % by weight, based on the weight of the solution, or a solubilizing agent of groups II), III) or IV) in an amount of 3 to 20 % by weight, based on the weight of the solution.

19. A concentrated aqueous dye solution according to claim 18, comprising a solubilizing agent of group I) in an amount of 1 to 3 % by weight, based on the weight of the solution, or a solubilizing agent of groups II), III) or IV) in an amount of 6 to 15 % by weight, based on the weight of the solution.

20. A concentrated aqueous dye solution according to any one of claims 1 to 17, comprising a $\text{C}_1\text{-C}_4$ alkylcarboxylic acid in an amount of 3 to 20 % by weight, based on the weight of the solution.

21. A concentrated aqueous dye solution according to claim 20, comprising a $\text{C}_1\text{-C}_4$ alkylcarboxylic acid in an amount of 6 to 15 % by weight, based on the weight of the solution.

22. A process for the preparation of a concentrated aqueous solution of a dye of the formula (1) according to claim 1, which comprises filtering and, if appropriate, desalinating the dye suspension obtained during preparation of the dye, subsequently

adding the C₁-C₄alkylcarboxylic acid, the solubilizing agent and, if appropriate, further additives, while stirring, and finally adjusting to the desired concentration with water.

23. The use of a concentrated aqueous dye solution according to claim 1 for dyeing paper.

5 24. A concentrated aqueous dye solution, substantially as hereinbefore described with reference to any one of the examples.

25. A process for the preparation of a concentrated aqueous solution of a dye, substantially as hereinbefore described with reference to any one of the examples.

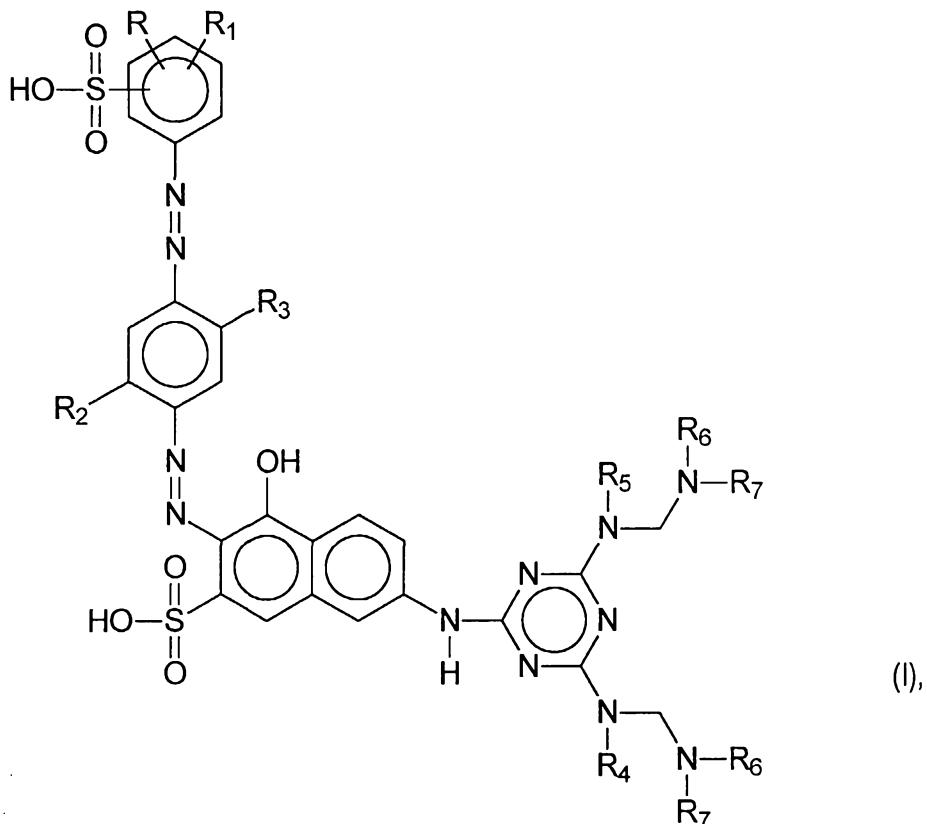
26. Paper dyed with the solution of any one of claims 1 to 21 or 24.

10

Dated 18 December, 1996

~~Ciba SC Holding AG~~
Ciba Specialty Chemicals Holding, Inc.

Patent Attorneys for the Applicant/Nominated Person
SPRUSON & FERGUSON



Aqueous dye solutions

Abstract

The aqueous dye solutions comprising

A) a) at least 5% by weight, based on the weight of the solution, of a red dye of the formula

5

in which

R and R₁ independently of one another are each hydrogen, C₁, methyl or methoxy,

R₂ and R₃ independently of one another are each hydrogen, methyl or methoxy,

R₄ and R₅ independently of one another are each hydrogen or C₁-C₄alkyl,

10 A is an unbranched or branched alkylene radical, which can be interrupted by O, and

R₆ and R₇ independently of one another are each hydrogen or C₁-C₆alkyl, or in which

R_6 and R_7 , together with the N atom bonded to them, form a substituted or unsubstituted 5-, 6- or 7-membered ring, which can contain further heteroatoms,

- b) formic acid or a C₁-C₄alkylcarboxylic acid,
- c) a solubilizing agent,
- d) water and, if appropriate,
- e) further additives, or

B) a) at least 5% by weight, based on the weight of the solution, of a red dye of the formula (I),
b) formic acid or a C₁-C₄alkylcarboxylic acid,
20 c) water and, if appropriate,
d) further additives, with the condition that the solutions comprise no solubilizing agent and
less than 0.1% by weight of alkali metal halide, based on the total weight of the solution.