Office de la Propriete Canadian CA 2790985 A1 2011/09/01

Intellectuelle Intellectual Property
du Canada Office (21) 2 790 985
g,lnngL%?rri‘fgaena " mfgtfy”%ya‘r’]‘; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
13) A1
(86) Date de depot PCT/PCT Filing Date: 2011/02/25 (51) CLInt./Int.Cl. GO6F 9/44(2006.01)

(87) Date publication PCT/PCT Publication Date: 2011/09/01 (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2012/08/23 SITA INFORMATION NETWORKING COMPUTING

IRELAND LIMITED, |E
(86) N° demande PCT/PCT Application No.: EP 2011/052855
(72) Inventeurs/Inventors:

(87) N° publication PCT/PCT Publication No.: 2011/104367 FINDLAY, DENISE, GB:
(30) Priorités/Priorities: 2010/02/25 (US61/308,208); ATTAR, MICHAEL JOSEPH, US;
2010/06/08 (GB1009606.3) EULER, ERIC WILLIAM, US;

SERRATORE, CORY ALLAN, CA;
ELIAS, LISSY, US;

VALENTE, LEONARDO GRANADO, US;
LESTYAN, GABOR JANOS, CA;
FLENLEY, JOHN MARTIN, GB

(74) Agent: SIM & MCBURNEY

(54) Titre : OUTIL DE DEVELOPPEMENT D'APPLICATION LOGICIELLE
54) Title: SOFTWARE APPLICATION DEVELOPMENT TOOL

180 150 170
Host Business .
ll Abstraction Services Uata Services YL
g 1]]
\ Activities 140
=
150
XOML (WWF)
.
~ 130
XAML Silverlight XAML
<:j A workfiow
120

SITA Platform Services

An acivity

i
Self-Service Channel

Standard Device Access 110
Windows OS 100
.

FIG. 1

(57) Abrégée/Abstract:
A software development tool for use with external systems and services uses a common code base and defines all data ana
messages using XML Schema System components are defined which include a device abstraction layer which handles

SoaoRRE f /[
TR - e St
R S N « w_® .-y
I ALY ""
[N

I*I) . Pen, B N o
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 48 & 7%% 110

- SRR RO S 2 A\-‘
OPIC - CIPO 191 s

CA 2790985 A1 2011/09/01

en 2 790 985
13) A1

(57) Abrege(suite)/Abstract(continued):

Interactions between the application and devices. A host abstraction layer handles interactions between a host system and th
application. A graphical tool models the work flow of the application and includes screens and services defined by Schema. Tt
application Is assembled using the graphical tool, declarative XML rules and customisations of system components without th
user having to generate any coding.

@ O

D

w0 2011/104367 A3 |{WI M0 RF 00)0 O RO AR AR

CA 02790985 2012-08-23

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
1 September 2011 (01.09.2011)

(10) International Publication Number

WO 2011/104367 A3

(51)

(21)

(22)

(25)

(26)
(30)

(71)

(72)
(75)

International Patent Classification:
GO6F 9/44 (2006.01)

International Application Number:
PCT/EP2011/052855

International Filing Date:
25 February 2011 (25.02.2011)

Filing Language: English
Publication Language: English
Priority Data:

61/308,208 25 February 2010 (25.02.2010) US
1009606.3 8 June 2010 (08.06.2010) GB

Applicant (for all designated States except US): SITA
INFORMATION NETWORKING COMPUTING
IRELAND LIMITED [IE/IE]; Building One, Letterken-
ny Office Park, Windyhall, Letterkenny, Ireland Co.
Donegal (IE).

Inventors; and

Inventors/Applicants (for US only): FINDLAY, Denise
|[GB/GB]; 1 London Gate, Blyth Road, Hayes, Middlesex
UB3 I1BW (GB). ATTAR, Michael Joseph [US/US]; 55
Orville Drive Bohemia, Long Island, Islip, New York
(US). EULER, Eric William [US/US]; 55 Orville Drive
Bohemia, Long Island, Islip, New York (US). SERRA-

(74)

(81)

(84)

(534) Title: SOFTWARE APPLICATION DEVELOPMENT TOOL

cation. A g
cation 1s assembled using the g

TORE, Cory Allan [CA/CA]; 777 Walkers Line,
Burlington, Ontario, Toronto L7N 2G1 (CA). ELIAS,
Lissy [US/US]; 3100 Cumberland Boulevard, Atlanta,
Georgia 30339 (US). VALENTE, Leonardo Granado
[US/US]; 55 Orville Drive Bohemia, Long Island, Islip,
New York (US). LESTYAN, Gabor Janos [CA/CA];
777 Walkers Line, Burlington, Ontario, Toronto L7N 2G1
(CA). FLENLEY, John Martin [GB/GB]; 1 London
Gate, Blyth Road, Hayes, Middlesex UB3 1BW (GB).

Agent: LLOYD, Patrick Alexander Desmond; Reddie
& Grose, 16 Theobalds Road, London, Greater London
WCI1X 8PL (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AQO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

[Continued on next page]

170
\

(

Data Services

180 150
\ \
) ((
Host Business
Abstraction Services
s I
< K
- Activities
=

XOML (WWF)

I E—

XAML Silverlight

A wogkﬂow
| 1

AN
Self-Service Channel

120
SITA Platform Services
v

—
An activity

Standard Device Access

FIG. 1

(57) Abstract: A software development tool for use with external systems and services uses a common code base and defines all
data and messages using XML Schema System components are defined which mclude a device abstraction layer which handles mn-
teractions between the application and devices. A host abstraction layer handles mteractions between a host system and the appli-

having to generate any coding.

Windows CS | ~100 I
-

raphical tool models the work tlow of the application and includes screens and services defined by Schema. The appli-
raphical tool, declarative XML rules and customisations of system components without the user

CA 02790985 2012-08-23

WO 2011/104367 A3 M0 A0N V10 0 O 0 R

ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (88) Date of publication of the international search report:

GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

17 November 2011

10

15

20

25

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

1
SOFTWARE APPLICATION DEVELOPMENT TOOL

FIELD OF THE INVENTION

This invention relates to the development of software applications systems for use with
systems that communicate with a variety of different external systems.

BACKGROUND TO THE INVENTION

In the airline industry there are many common functions that must be performed by all
airlines such as baggage handling, and check-in. Some of these functions, such a check-in
are gradually being moved to a self-service channel where the action is performed by the
passenger or customer rather than the airline. In the case of check-in, the function may be
performed on-line, at designated self-service kiosks at an airport, or through the traditional
airline check-in desk where the passenger will be checked-in by an airline representative.
It is anticipated that check-in via a mobile phone or other pda will become available in the

near future.

Thus there is a plurality of channels though which a check-in service may be delivered.
The basic function is the same for all airports and airlines aithough every airline and every
airport has its own business requirements and rules and may require enhanced
functionality such as self-bag tagging, and revenue generating opportunities such as

ancillary revenue and targeted marketing.

Over the years individual code bases have been developed by each airline and each
alrport to handle check-in such that there is now an almost one to one relationship between
applications and code bases. This is highly inefficient and requires support and
maintenance and long certification cycles. It is also difficult to enhance and develop
existing systems as the airlines must revert back to the original developers to write
changes to the original code bases. It presents particular problems for airlines as they are
required to use different code streams for different modes of check-in. It also creates
difficulties for airports who have to work with multiple airlines, each of which may have its
own set of code bases. MU further creates difficulties for suppliers who have to provide

support and maintenance for a large variety of incompatible code bases.

This problem is not confined to check-in but is also present in other areas where different

systems have evolved to handle the same tasks, for example, ticketing and baggage

handling.

10

15

20

25

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

2

Although this is a particular problem in the airline industry, it also exists in other fields
where a number of parallel implementations of solutions have evolved over years. For
example, in different modes of travel and in the entertainment and hospitality industry,
particularly in event ticketing and hotel check-in as well as areas such as the financial
industry where devices such as ATM machines are often running on a variety of different
code bases. The financial self-service industry faces similar issues as the airline industry.
There has been a proliferation of channels, and a range of customers from large multi-
national to small regional banks, each of whom seek to differentiate themselves via the self

service channel while iooking for revenue generating opportunities on that channel. The
financial industry also faces issues of legacy back-end systems and industry specific

devices and device interfaces.

SUMMARY OF THE INVENTION

The invention aims to address these problems to enable systems to be integrated,
developed and upgraded in a much more simple and cost effective manner without the

need for the original developer to write new code.

According to the invention there is provided a method of developing a software application
in which a plurality of devices communicate with external systems and services, the
method comprising: providing a common code base; describing data and messages used
by the application using a declarative data description language; defining a library of
system components including a device abstraction layer for interactions between devices
and the application and a host abstraction layer for interactions between a host and the
application; providing a graphical (GUI) tool to model the workflow of the application, the
workflow including screens and services described declaratively by a declarative data
description language; and assembling the application using the graphical tool, declarative
rules and customisations of system components selected from the library.

The invention also provides a software application development tool for assembling
applications in which a plurality of devices communicate with external systems and
services, comprising: data and messages used by the application described using a
declarative data description language; A library of system components including a device
abstraction layer for interactions between devices and the application and a host
abstraction layer for interactions between a host and the application; a graphical (GUI) tool
to model the workflow of the application, the workflow including screens and services
described declaratively by a declarative data description language; and an assembler for

10

15

20

25

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

3

assembling the application using the graphical tool, declarative rules and customisations of

the system components selected from the library.

Embodiments of the invention have the advantage that a developer may use the graphical
tool to drag and drop devices and functionality which will automatically generate the code
for the device or function from a library. This assists the developer in assembling rather
than coding the application so reducing the development time and reducing the skill level

required by the developer.

The use of a declarative data description language such as XML schemas for the data and
messages enables backwards compatibility to be maintained and the data model and / or

messages to be extended simply by updating the schemas.

The data and messages may be retrieved from a library or be generated by the developer

or a combination of both.

Preferably, high level interfaces are provided to external devices which can be accessed by

elements drop and dropped on to pages and having properties set on them.

These pages are preferably specified declaratively and more preferably using an XML

language such as XAML.

The host abstraction layer enables the system to be used with a wide range of external
systems. In one preferred embodiment, the system is a check-in terminal, for example for
an airline. The host abstraction layer enables the system to communicate with a range of
different systems used by airlines to hold flight data. Examples include Amadeus and EDS.
The host abstraction layer transiates messages and protocols from the external system

such that they become system non-specific.

The system components may be complex, generic or specific. Generic components are
reusable for a domain and may be parametised to increase re-usability.

Although particularly suited to travel systems, particularly check-in systems, embodiments
of the invention may be used for many other purposes, for example in the provision of
ticketing and admission to venues, such as sporting or entertainment venues. It may also
be used in the financial services industry, for example in the control of ATM (Automated
Teller Machines) to address problems caused by the large number of code bases used by

different banks for their own ATMs.

10

15

20

25

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

4

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will be now be described, by way of example only, and with

reference to the accompanying drawings, in which:

Figure 1 is a schematic block diagram of a software system embodying the

invention;
Figure 2 shows an example graphical user interface for a workflow designer;

Figure 3 shows the various activities associated with a page and the links to other

activities and pages; and
Figure 4 shows how data values may be accessed by a business service page.

In the following description of a preferred embodiment, a system is described which
assembles applications from re-usable components without any use of programming
language, or coding, by the assembling party. Applications are assembled using a
graphical tool which will be described with declarative rules and customizations. The
applications built may be adapted or customized declaratively without the need for any
coding. This is possible as the applications are built from the same code-base and core
product. All data and messages are described declaratively, preferably using XML or
similar technologies which allow expansion of the data and messages over time without the

need for additional written code.

A preferred embodiment of the invention uses a graphical tool and a schema, preferably an
XML or similar schema. The graphical tool models the flow of the application. Screens
and services are described using schema which are used by the graphical tool to guide the

developer.

XML schemas are used for all data and messages to enable the data model and/or

messages to be extended by the user by a simple update of the schema. This may be
achieved in a backwards compatible way. As an alternative to XML schemas any

declarative data description language may be used. The following description will refer

only to XML for simplicity.

The following description is of a self-service check-in kiosk application but this is exemplary

and other applications of the invention will be discussed.

10

15

20

25

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

5

Referring fo figure 1 a schematic representation of a kiosk client is shown. The
functionality is shown as a number of layers some of which are in the self-service or kiosk
channel and some of which are resident at a mid-tier level. It is to be understood that this
is exemplary only and that some of the software that is resident at the mid-tier level, for
example the XOML layer to be described, could reside on the self-service channel, and
vice-versa. A kiosk client is one that handles self-service check-in at an airport. It is to be
understood that this description is illustrative oniy and that within the check-in environment
other clients such as on-line web based clients or mobile communications clients would
have different platform services, different or no device access layer and a different XAML

Silverlight layer.

Airline check-in kiosks use a common standard calied CUSS (Common Use Self-Service)
which is a standard administered by IATA and seeks to allow multiple airlines to share
kiosks to facilitate check-in while maintaining individual airline branding and functionality.
Another standard known as CUPPS (Common Use Passenger Processing System) has
also been proposed and might be adopted and it is therefore important that the clients can
run on either of these platforms or any other platform proposed. Moreover the client should
be able to run on both platforms for the duration of any migration period. The client
'thereforé- includes a device abstraction layer to protect against platform changes and to

allow for migration.

The proposed CUPPS standard also permits agent devices and so components devejoped
for a kiosk, with this standard, could be used for an agent device. An agent device is one
used by the airline representative or agent to check in a passenger. In the airline industry
agents perform a super-set of the self service tasks. However the host systems and the
devices are the same. This solution is a cross-channel solution that aiso applies to agent
(attended) functions. In the financial industry the same conditions apply and therefore the

solution could apply also to Teller applications. An example of an application in the financial

industry is described later.

In Figure 1 the kiosk includes a standard Windows (RTM) or other operating system 100
and a standard device access layer 110. The abstraction of the platform layer is handled at
layer 120 labelled ‘SITA Platform services’. The abstraction includes abstraction of the
monitor and the application manager of the relevant standard. The platform services layer
provides device access in a simple and intuitive manner via Silverlight (RTM) controls
which can be dragged and propped onto a Silverlight page. The Silverlight layer is

10

13

20

29

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

6

represented in figure 1 by layer 130. Silverlight is a browser plug-in provided by Microsoft
Corporation that facilitates design and development of web based applications and is
cross-platform and cross-device. Silverlight uses XAML (Extensible Application Mark-up
Language). This provides a very simpie and intuitive tool for the application developer.

Silverlight pages are activated as a result of a message from the workflow. The Silverlight
pages comprise two parts: code behind that will communicate with the workflow and may
include a worker thread which can communicate with the device with the data resources,
web services and which may perform some processing; and a screen. The screen is
preferably written in XAML but other declaratory languages such as HTML may be

supported. A suitable tool for the screen is Expression Blend provided by Microsoft

Corporation and which is intended for use with the Silverlight platform.

The presentation logic is divided between run-time and design-time. At design time a tool
is used to create a graphical representation of the application flow using the Activities layer
140 and the workfiow. The workflow is comprised of a number of linked activities as will be
described. This encapsulates the application logic and uses declarative rules to decide the
flow of the applications. Specialised property editors, validity checking and tracking

services may also be provided in this tool.

The tool produces XOML files (shown in layer 150) which are fed to the workflow engine or
compiled into dils (dynamic link libraries). The workflow engine and the workflows are
hosted by a workflow host which resides on the mid-tier. This is not essential and the
workflow host could reside on the client. The Activities in the Workflow communicate with
business services 160 which are resident on the mid-tier via SOAP (Simple Object Access
Protocol) which is an XML based protocol designed to allow web based applications to

exchange information.

Data services 170 also form part of the mid-tier and are resident on it. In the case of a self-
service kiosk, there is only exchange of data to the client from the user and the client can
only read data; it cannot update it. The client can communicate with the data services via
REST (Representational State Transfer) messages although other communications
protocols such as Xpath or related technologies may be used. This simplifies the
programming as the application merely asks for the piece of data it needs. The messages
are lightweight and the mid-tier is very loosely coupled from the client. The data service, as
well as providing traditional airline data may connect to external web-services to provides

other data, such as travel related data including weather reports.

10

15

20

29

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

v

The host abstraction layer is indicated at 180 and gives the application access to airline
systems departure control systems. This layer is important as it makes the application
independent of any particular system. The host abstraction layer hides the complexity of
host protocols from the rest of the system and abstracts the host system so that the same
components can be deployed to different hosts without change. Changes to a host, or the
addition of a new host, do not necessarily imply that there should be a new release of the
host abstraction layer, other than a new connector if it is a new transport protocol. Instead,
the layer acts as an interpreter and uses scripts and/or schemas to manage the different

hosts and protocols.

In use, the software system will be adapted by customers to suit their particular needs.
Business analysts will determine with the customers the particular functionality they
require, the user interface flows and any specific customisation. User interface designers
will design the screens and the branding which are displayed to the user. By providing a
compeonentised architecture, these tasks can be carried out in parallel to reduce the

development time and improve the time {o market greatly.

By capturing complex, generic, behaviour inside component interfaces, customisation can
be greatly facilitated. The application developer can then use these interfaces to assemble
applications and customisations without requiring knowledge of low level details.

The principles of the software architecture will now be described. The architecture divides
the system into three component types: Complex, Generic and Custom. This division aids
in providing a system that can bring a solution rapidly to market. The Complex
components absorb the complexity of the system within high level interfaces. These are
usually developed using low-level system programming skills and in-depth technical
domain knowledge. Examples of Complex components include the host abstraction layer

and the device abstraction layer.

Generic components encapsulate common functions for a particular domain with a focus
on reusability. These are components that any application is likely to want to use and
which can simply be selected by the developer without the need for any coding. In our self-
service kiosk example, a printer function is a good example of a generic component. it will
always be required to print boarding passes and by providing a generic printer function, the
developer can simply select that function to achieve the functionality. Generic components
must be cohesive so that they perform a singie well defined task completely. Thus in the
printer example, the printer function will print the document while informing the user of the

10

15

20

29

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

8

progress of the print. It will then complete the task with a result when the print has finished.
These components may be parameterised or further componentised to enable greater re-
usability. By developing generic components within each domain within a framework, the
high level design will be the same. Once the framework and wizards are developed, new
re-usable components can be created rapidly. Developers of generic components require
mid-level programming and technical skills and some business focussed domain

knowledge. The generic components include screens and application services.

Custom components will be unique to each user and may be developed rapidly in response
to business requirements. Custom components may be produced without creating any
new coding by the developer who is provided with the appropriate tools, frameworks and
reusable components. The main tasks for the business application developer are a

business process model including ruies and the user interface design.

A common data model is used in conjunction with the host abstraction layer. All
parameters to the services are strings which are serialised and de-serialised by the
application using a shared schema. The data is specified using schema and the process of
specifying the data is iterative. In the example of the self-service kiosk, schemas are

provided for:
Access to departure control systems;
Workflow — the schemas that the workflow uses internally;

Workflow session - the schemas for the data set that is used during a session. This is data
that is gathered from the user, form the departure control system and from other web

Services;

Workflow configuration - the workflow configuration data which sets the Workflow
properties and is passed to the workflow when the workflow is started;

SL (Silverlight) Application Data — this data is passed to the SL application when the

transaction workflow is started.
One example of these schemas is:

Workfiow data example: Screen Specification

10

15

20

29

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

9

Workflow session data example: Current flight
Configuration data example: Services Offered
SL application data example: Theme

Thus, all data in the system is specified by schema and where the data is accessed by
objects, those objects should be generated using an automated tool (xsd.exe). The data
model is not created for the system but rather it is built up from the inputs to the system
either from the end-user or from web services. So the data model of the application is the
sum of all the inputs to the application. Therefore the data model is automatically extended

when there is a new input {o the system.

The data schema specifies the data format of the session data. The values of this schema

are set during runtime execution of the workflow. The values are accessed via xpath which

is the path through the schema to the value that is to be set or read. The data schema
encompasses all data returned from the services or supplied by the customer during

execution of the Transaction workflow.

The workflow path schema specifies the format of the path through the workflow to the
workflow properties. The workflow path is used to point to the properties in the workflow.
The workfiow contains Scenarios, each Scenario being an Activity which contains
Activities. Both Scenarios and Activities can have Properties that can be navigated to
using the path through the Workflow. Activities have unique identifiers within a Scenario.

Screens may preferably be developed in XAML or HTML, although any other presentation
language may be used. The code behind the screen is generic that responds to user
interface (Ul) events from the screens and sends to the workflow. The Ul events may be

from a device. All screens are viewable and editable in Expression Biend.

Each screen has an XML specification. This specification is used by the designer for

presentation and validation.
The schema elements are:
Screen Name (1)

Required Properties — “key=value” (0-*)

10

15

20

25

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

10

Optional Properties — "key=value” (0-*)
Range of Return Values (1-%)

Return Data - "key=value” (0-*)

Pre Conditions (0-")

Post Conditions (}-")

Description of behaviour.

The device is a Silverlight User Control which can be placed on the Silverlight toolbar and
can be dragged and dropped onto the page. The device controls have properties that can

be set at design time or at run time.

The embodiment described provides an approach to creating applications which can be
assembles rather than coded. The workflow of the application is modelled using a
graphical tool and screens and services are described using schema. The tool uses these

schemas to guide the developer.

XML schema are used for all data and messages enabling the data modei and/or the

messages to be extended by the user by updating the schema in a backwards compatible

manner.

High level interfaces are provided to devices which are accessed via user interface

elements. The devices can be drag and dropped onto pages and properties set on them.
Pages are GUI screen representations and are developed using a GUI screen tool. They

may be specified declaratively in an XML language such as XAML.

In the example described of a self-service check-in kiosk, access to external systems, in
this case airline systems, is via a service interface accessed via the GUI tool. This tool and

a service interface can also be used to access other external systems such as targeted

marketing, payments and advertising.

The business rules are also declarative and incorporated into the workflow via the GUI tool.

The entire system may be advantageousiy executed in a development environment on a
PC using host and device simulators. At runtime the behaviour of the application can be

10

15

20

25

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

11

adapted by supplying new configuration parameters. The workflow can accept new

parameters on each occasion with needing to restart the system.

The example described is a self-service check-in kiosk for an airline. Of course the
principles of the invention are not limited to seif-service check-in but extend to other check-
in scenarios such as mobile check-in, agent based check-in and web-based or on-line
check in. Moreover although the check-in described is intended for airline check-in, the
invention is applicable to check-in systems intended for any type of travel and even non-
travel events. An example of the latter is sporis or entertainment events where the user,
having already acquired a ticket, is required to authenticate themselves to gain access to
the event. This may be by supplying a booking reference and a credit card identification
following which an entrance ticket will be printed. This is in effect, very similar to a
boarding card. Embodiments of the invention may also be used for hotel check-in systems.

The invention is also applicable more broadly, for example in the financial industry in
situations where a large number of legacy systems have evolved over years. One example
is Automated Teller Machines (ATMs) which presently are provided by many different

banks, each of which has their own code base.

The invention is suitable for any self service transactional application in many industries.
The financial services also face a proliferation of channels, customers that range from large
multi-national to small regiona! banks, who seek to differentiate themselves via the self
service channel and also are looking for revenue generating opportunities on that
channel.resulting in many application code bases and the problems that result therefrom.

In the financial self service environment the customer uses a self service terminal, similar
to an airline kiosk. Some non-cash self service terminals are kiosks. Others are kiosks with
the addition of a safe which holds cash or other valuable media. The customer is
authenticated via the card reader and encrypting pin pad devices. The user is
authenticated by a financial host system. When authenticated, the customer will be able to
perform transactions on that terminal, including depositing and receiving cash and
documents. These transactions have varied business rules depending upon, for example,
the bank, the location of the terminal, the customer, or the time of day. This variety results
in the need for many different code bases. An embodiment of the present invention applied
to such self service terminals and as described above uses a single code base which could
be assembled and configured into many applications without writing code. A workflow with
declarative rules controls the flow and XAML pages make up the presentation layer. In the

10

19

20

25

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

12

financial industry there are varied host protocols and specialized device interfaces.
Therefore the host abstraction layer and the device abstraction layer are necessary to

absorb this complexity in the same way as they are reguired for the airline example

described above.

In order to understand the manner in which an embodiment of the invention operates, the

workflow designer will now be described in greater detail.

Figure 2 shows the user interface of the workflow designer used to develop the application
for a specific installation. The designer includes a GUI object representation of the
workflows and activities but not the actual activity objects. The designer creates the
workflow programmatically and converts it to an XOML file which is a declarative XML
workflow file. Thus in figure 2 the object ldentify 200 is linked to the object Select Flight
210. That object is in turn linked to the objects Select seat 220, Select bags 230 and
Check in 240. At the right hand side of the screen are displayed the Screens, Business
Services, Activities and Scenarios that are available. When the user clicks on one of them,
the specification, as described by their schema, and help is displayed to the user. The user
can than drag and drop the Screens or Business Services onto a page and the activities
and the Scenarios into the workflow. The user does not need to create any code in these

steps.

The Workflow contains Scenarios, Pages and Activities. As can be seen from figure 3,
page is a composite activity. Figure 3 is a UML object model showing the relationship
between activities. Pages are joined by connectors 310 which consist of a link and a
destination page. Thus in figure three the page bar 300 has associated activities A to G.
The page contains a navigation bar 320 (activity G) which contains the links. The links
(Activity E) have a condition property, which is evaluated and if true flow continues to the
destination page of the connector. The links are evaluated from left to right across the
Navigation bar. Pages that communicate with the client are impiemented using a Call
External Method Activity 330 (Activity C). An Event Handler activity 340 (activity D)
receives the event from the client application. When the event is received the link

conditions will be evaluated. These pages are client pages.

Pages that communicate with the services are implemented using an Invoke Web Service
Activity. When the Web Service returns the link condition will be evaluated. These pages

are Service Pages. A specialised lterator Activity iterates over a list and a Set Value

Activity sets a value of the Session data.

10

15

20

25

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

13

On the client page the designer has a menu option ‘Add Screen’ which navigates the user
to an XAML file for the screen. The designer leads the user through the necessary steps
to add the additional information required such as Pre Conditions, Post Conditions and
Return Data Path. The designer then generates the appropriate XML document using the
Screen Schema. The Client page sends a message to the client application as specified
by the Message Schema. The message contains the name of the screen to show and any
properties to set on that screen. The client page will receive an event from the client

containing the result and any returned data.

The services page contains a Business Service. The designer has a menu option ‘add
service’ which navigates the user to a WSDL file for the Business Service. The user then
provides the necessary additional information including Pre Conditions, Post Conditions
and Return Data Path and the designer can then generate an XML document using the
Service Schema A pre-condition refers to the data that must be set, that is obtained and
validated before the activity can be performed. A post-condition is the data that will be set

when the activity completes successfully.

Pre and post conditions allow a flow to be validated, that is it can be determined at design
time that an activity will only be activated if its’ precondifions are met.

Scenarios are composite Activities and can be invoked from the top level workflow at
runtime. Scenarios may contain other scenarios and deliver large grained pieces of
functionality such as ‘Seat Map', ‘Payment’ and ‘Join Frequent Flyer'. Scenarios can have
properties which can be accessed by contained Activities and have Navigation Bars with

L.inks.

The purpose of Scenarios is to simplify the display of large applications into manageable
chunks and to provide reusable pieces of functionality which can be imported into other

projects.

Scenarios are analogous fo function calls in coding and so a change to a scenario in one
part of the application will be propagated to the same scenario elsewhere. As it is
desirable to improve reusability scenarios can be parameterised with properties which can

be referenced by the internal Activities and Scenarios.

The elements of session data can be accessed by using xpath expressions. Xpath is used
to navigate through elements and attributes in an XML document. A specialised Activity

Set Value can be used to set values within the Session data.

10

15

20

29

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

14

A Page Property is set within xpath to send Session Data values to the client or business
service. An example Is to send a selected seat to a Change Seat business service. The
Change Seat interface is result Change Seat (string passenger, string flight Number, string
seat Number). The properties could then be set as follows:

‘passenger’ = “Session Data/Current Selection/Current Passenger”
“flight Number” = "Session Data/Current Selection/Selected Seat”

‘seat Number" = “Session Data/Current Selection/Selected Seat”

The Session data can be updated if the workflow Is receiving data from the client or
business. For example the presentation page named Seat Selection links to the Select
Seat screen on the client and the Select Seat screen returns “Seat=4G". The designer has
provided a “Seat” property from reading the xmi for the Select Seat screen and updates
that property with “4G". For all return values there is an option of using a specialised editor
which enables the developer to navigate the session schema and connect the Seat
Selection schema element to the Seat property of the Seat Selection Activity. Thus, the

session data is updated when the Sear property is set to “4G".

Referring now to figure 4, the accessing of data values will be explained. The Service
Page 400 has a Property. This Property 410 is automatically added to the Page by the
Designer when a Business Service is dragged and dropped onto the page. The Property
matches a parameter in the service call. To help rapid development the name of the
Property matches an element of the Session Data and the Designer automatically sets the
value of the Property to the path in the data schema. This default behaviour can be
overridden by the Designer by entering a string value for the Property and using a Property
Editor GUI 420 to navigate to the appropriate place in the Session Data 450. The Property
Editor 430 uses a schema navigator 440 to navigate the Session Data 450. It is also
possible to select from a list using a Selection Criteria GUI 460. This GUI enable the

Developer to navigate to other properties in the workflow.

\When a Screen or Business Service is dropped onto a page, the designer will automatically
insert Return Data properties according to the schema. For services the return data is a
string but the schema that the designer uses extends the WSDL to map the return data to a

path in the Session Data.

10

15

20

25

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

15

To aid the developer the Return Data property value is automatically set to the path
specified. The return data may be a compiex type but the data schema type is made
compatible with the services schema type to avoid the need for internal mapping. If an
internal mapping is required the mapping will be contained in the services schema for that
Business Service. The type compatibility will be validated as part of design time validation.

The Designer checks for errors from the Web Service and set the Status accordingly. In
the case of error the session data does not get updated. Values within the Session Data
can also be updated by the developer using the Set value Activity. This Activity allows the
developer to override any value within the Session Data with an alternative value.

The validator ensures that all required properties are set and that all return values cause a
transition. It validates before a Service Page or Client Page is activated and its specified

preconditions have been met.

The values of the workflow dependency properties can be edited by the configuration tool.
The tool creates a dictionary object (path=value) which will be passed to the workflow
runtime when the workflow is executed. This will dynamically set Workflow properties.
Workflows are developed with default properties which can be updated at runtime by the

dictionary configuration object.

To create these Configuration files the developer will edit the properties of the workfiow.
This is done by choosing a menu item ‘New....Configuration” and associating the
Configuration with a workflow. The configuration tool opens a designer window containing
the workflow and the designer constrains updates to only dependency property updates.
The developer then edits the workflow properties to create a new configuration. The
developer can use the schema navigator tool to set values to Session Data properties and
can edit the condition property (rules). The configuration tool creates a path=value pairs for
the dictionary configuration object Workflow.Scenario.Property. Attribute=string.

The tool will automatically import WSDLs and enable the application to connect to any web-
service without coding. The screens on the client are specified using XML schema and are
analogous to the WSDLs, the tool will automatically import the screen specification and
enable the screen to be shown at any point in the workflow. The tool provides for
declarative business rules and the tool will automatically extend the application data mode.

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

16

In these ways the tool can integrate web-services, screens and extend the data model.

modify or add business rules without writing code.

Various modifications to the embodiments described are possible and will occur to those
5 skilled in the art without departing from the invention which is defined by the following

claims.

10

15

20

25

30

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

17

Claims
1. A method of developing a software application in which a plurality of devices

communicate with external systems and services, the method comprising:

providing a common code base,;
describing data and messages used by the application using a declarative data

description language;
defining a library of system components including a device abstraction layer for
interactions between devices and the appilication and a host abstraction layer for

interactions between a host and the application;
providing a graphical (GUI) tcol to model the workflow of the application, the

workflow including screens and services described declaratively by a declarative data

description language; and
assembling the application using the graphical tool, declarative rules and

customisations of system components selected from the library.

2. A method according to claim 1, comprising defining user interface elements for
accessing devices, whereby devices can be dragged and dropped onto pages of composite

activities using the graphical tool.

3. A method according to claim 2, wherein the pages are screen representations and

are specified deciaratively.

4. A method according to claim 1, wherein the graphical tool provides access to

external systems.

5. A method according to claim 1, wherein husiness rules are incorporated into the

workflow using the graphical tool.

6. A method according to claim 1, wherein the library of system components comprise

complex, generic and custom components.

7. A method according to claim 1, wherein at least one of the data and messages,

and the screens and services used by the application are described using XML schemas.

10

15

20

25

30

35

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

18

8. A method according to claim 1, wherein data and messages described using a

declarative data description language are at least partially provided from a library of data

and messages.

9. A method according to claim 6, wherein generic components comprise re-usable
components for a domain and comprising parameterising at least one generic component

to increase re-usability.

10. A method according to claim 6, wherein custom components are created without

coding by the developer.

11. A method according to claim 1, comprising defining a common data model, the data

model having data specified using schemas.

12. A method according to claim 11, wherein the data schemas specify the data format
of session data and the values of the schemas are set during runtime execution of the

workflow.
13. A method according to claim 1, wherein the application is a check-in client.

14, A method according to claim 13, wherein the check-in client is a self-service check-

in client.

15. A method according to claim 14, wherein the seif-service check-in client is a kiosk.

16. A method according to claim 14, wherein the self-service check-in client is a web

based application.

17, A method according to claim 14, wherein the self-service check-in client is a mobile

communications device.

18. A method according to claim 13, wherein the host abstraction layer provides access

for the application to airline systems.

19. A method according to claim 1, wherein the application is a ticketing client.

10

15

20

25

30

35

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

19

20. A software application development tool for assembling applications in which a
plurality of devices communicate with external systems and services, comprising:

data and messages used by the application described using a declarative data
description lfanguage; A library of system components including a device abstraction layer
for interactions between devices and the application and a host abstraction layer for

interactions between a host and the application:
a graphical (GUI) tool to model the workflow of the application, the workflow

including screens and services described declaratively by a declarative data description
language; and
an assembler for assembling the application using the graphical tool, declarative

rules and customisations of the system components selected from the library.

21. A software application development tool according to claim 20, comprising user
interface elements for accessing devices, whereby devices can be dragged and dropped

onto pages of composite activities within the graphical tool.

22. A software application development tool according to claim 21, wherein the pages

are screen representations and are specified declaratively.

23. A software application development tool according to claim 22, wherein the pages

are specified in an XML language.

24. A software application development tool according to claim 20, wherein the

graphical tool provides access to external systems.

25. A software application development tool according to claim 20, comprising business
rules specified declaratively and available for incorporation into the workflow using the

graphical tool.

26. A software application development tool according to claim 20, wherein the library

of system components comprise compiex, generic and custom components.

27 A method according to claim 20, wherein at least one of the data and messages,
and the screens and services used by the application are described using XML schemas.

10

15

20

25

30

35

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

20

28. A method according to claim 20, wherein data and messages described using a
declarative data description language are at least partially provided from a library of data

and messages.

29. A software application development tool according to claim 26, generic components

comprise re-usable components for a domain and wherein at least one generic component

is parametered {o increase re-usability.

30. A software application development tool according to claim 26, wherein custom

components are created without coding by the developer.

31. A software application development tool according to claim 20, comprising a

common data model, the data model having data specified using schemas.

32. A software application development tool according to claim 31, wherein the data
schemas specify the data format of session data, and the values of the schemas are set

during runtime execution of the workflow.

33. A software application development tool according to claim 32, wherein the
graphical tool provides a gui object representation of workflow and activities which are

converted to a declarative XML workflow by a workflow designer.

34. A software application development tool according to claim 20, wherein the

application is a check-in client.

35. A software application development tool according to claim 34, wherein the check-in

client is a self-service check-in client.

36. A software application development tool according to claim 35, wherein the self-

service check-in client is a kiosk.

37. A software application development tool according to claim 36, wherein the self-

service check-in client is a web based application.

38. A software application development tool according to claim 35, wherein the self-

service check-in client is a mobile communications device.

10

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

21

39. A software application development tool according to claim 34, wherein the host
abstraction layer provides access for the application to airline systems.

40. A software application development tool according to claim 20, wherein the
application is a ticketing client.

41. A software application developed according to the method of any of claims 1 to 19.

CA 02790985 2012-08-23

PCT/EP2011/052855

WO 2011/104367

1/4

9

m SS920V 32IA3(] PJEPUE)S

RJIANOE Uy
S9OIAJ9S WIoReld VLIS
0cl
L
MOYYJOM ¥/ ﬂv
VX WOIRAIS TNVX
0€) ﬁ
(4MM) TNOX
— 0G1
] — SOIAIIY

Ovl

T

S90IAJSS BlEeQ

_ - X

ssauisng

0L1 051 08l

S30INBS UoNoRASqY

}SOH

JouuBRy) 99IAI8S-)|9S

131 -PIN

SUBSTITUTE SHEET (RULE 26)

CA 02790985 2012-08-23

WO 2011/104367

214
(U
200
Identify
Q-
210
SelectFlight
_
290 A R 230)
SelectSeat SelectBags
240 B
Checkln

‘] \

FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/EP2011/052855

Screens

PrintBoardingPass
InsertCard
PleaseWalit

Business Services

GetPassengerPersonalisation
|dentifyUsingCardDetalls

ldentifyUsingFlightAndName
UpdateSeatNumber

Activities

BackButton
Cancel

| Default

f-Else

terator

Link
NavigationBar
Page

Parallel

l Scenarios

APIS
ChooseSeat
JoinFrequentFlier

Properties

>

KKk K >K

CA 02790985 2012-08-23

WO 2011/104367 PCT/EP2011/052855

3/4

320

pkgRoot |

310

NavigationBar

B A:Link <>— Connector
@] A:Link

Page #G

&1 D:MS_Activity

@] C:Page

I
'

@] Nextpage:Page

2 () #C () #Nextpage
Page 300
@1 B:SelfServiceActivity
@] E:Link
@1 F:.Connector

&1 A:MS_Activity
&1 C:CallExternalMethod

@1 D:EventHandler
&1 G:NavigationBar
<A
4D e ¥ 9w
MS_Activity CallExternalMethod SalfServicoActiviiy
T --
-
-
#D

EventHandler 340

FIG. 3

SUBSTITUTE SHEET (RULE 26)

CA 02790985 2012-08-23

PCT/EP2011/052855

WO 2011/104367

4/4

BLIS)IINUOND318S:}03[3S &

|NDBUSIIYUONIIISS

097

10)ip3Apadoid:aniep @
IN9I0)p3Auadoid

0CY

<<ISN>>

aNfeA 8

aWeN [© 1squInNIybI 44

Ol

-

&

VOl

J99I9GH# | eLIoIINUO0I)09}9S

<<ISN>>

INEA#

Joip3Auadold

1%

<<ISN>>

< Aladoid:JaquunNIub)

4 (¢

abe4921A183SssaUISNg

Obv

lo0ebineNewayos

<<9SMN>>

B1e(JuOISSS <<3aSN>>

012y

0GY

EleqINX (&

BWayoSeleq @

oo

SUBSTITUTE SHEET (RULE 26)

180 150 170

g
4

(
.
Host Business | —
Abstraction Services Data Services
XML
: — 1]
i —J
N Activities 140 <::| —
=
150 -
XOML (WWF)
\
i ~—130
XAML Silverlight YAML
<j A workfiow
120 O

SITA Platform Services \
An activity
Standard Device Access 110

Windows OS 100

FIG. 1

A
Self-Service Channel

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - abstract drawing

