Abstract Title: Glazed roof and method of installation

A glazed roof comprises a beam, an eaves beam 32, rafters 13 extending between the beam and eaves beam and glazing panels glazed to the rafters 13 and the eaves beam 32. The roof may be installed by prior assembly to form a unitary roof structure which is placed on a wall structure 29, the eaves beam 32 is then fastened to the wall structure 29. The eaves beam 32 may be fastened to a lower eaves beam member 30 already attached to the wall structure 29. The beam may be a ridge beam or a hip beam.
GB 2421743 A continuation

(74) Agent and/or Address for Service:
 HLBBshaw Limited
 10th Floor, Metropolitan House,
 1 Hagley Road, Edgbaston, BIRMINGHAM,
 B16 8TG, United Kingdom
UNITARY ROOF STRUCTURES

This application is a divisional application of British patent application number GB 0329031.9, published as GB 2396629.

This invention relates to a method of installing a unitary roof structure and a unitary roof structure.

Typically, roofs are assembled on site. Walls are assembled and the rafters and the other structures are assembled to form a complete roof. This is also true for glazed roofs.

Glazed roofs are used to form various types of roofs, for example Georgian-style, conservatory-style and lean-to roofs. Glazed roofs include plastics or glass panels supported between adjacent rafters, which are usually inclined. The rafters are supported at their upper end by a variety of structures such as a hip beam, a ridge beam, a wall plate or the like. At the opposite end, the rafters are supported by an eaves beam. This is typically a metal beam that has a structure adapted to support the rafter and form a seal at the lower end of the panels. The glazing is designed to prevent air and water ingress.

These roofs are all typically constructed on site because the eaves beam must be attached to a wall header (i.e. usually the top of the wall which is to support the eaves beam) prior to the rafters. The rafters in turn are fastened to the eaves beam with
the glazing panel fastened to the rafters and, say, hip beam. This on-site construction is very labor intensive requiring a great deal of time to ensure that everything is properly installed to prevent the ingress of precipitation and drafts.

Even with relatively small roofs, such as bay window roofs, on-site fabrication is required.

It is an object of the present invention to provide apparatus and associated method which addresses and at least partially overcomes the problems associated with the prior art.

It is a particular but not exclusive object of the invention to provide a construction method which facilitates assembly of a roof structure prior to attaching it to a wall structure. It is a further non-exclusive object of the present invention to provide an eaves beam which is easier to install and allows for pre-assembly of a roof prior to being attached to a wall structure.

It is a yet further non-exclusive object of the present invention to provide such an eaves beam which can be installed by inserting fasteners from the top of the supporting wall instead of from underneath the supporting walls.

A further non-exclusive object of the present invention provides an eaves beam which is suited for a wider range of supporting walls, i.e., wood, masonry and the like than conventional eaves beams.
One or more of objects and advantages of the present invention are provided by a multi-piece eaves beam. A first, lower, portion is adapted to rest on a supporting wall and permits a fastener (e.g. a screw) to be inserted from the top of the first portion therethrough into the wall structure to hold it in position. An upper section of the eaves beam, having one or more side walls, is then placed on the lower section to engage the lower section. The upper section of the eaves beam is then screwed to the lower member through the or each side walls. This improves installation efficiency.

With this construction, the roof can be pre-assembled at the factory with the hip beam or the like, rafters and upper section of the eaves beam all pre-assembled with the glazing panels attached and sealed. The preassembled roof is lowered down onto the lower section of the eaves beam which is attached to the header of a wall on site. This provides the efficiency of factory assembly while at the same time allows for sizing for a particular job. Because these roof sections are so light, a 3.05 x 3.66 m (10’ x 12’) section can be easily placed on a roof by two or three individuals without the use of cranes or the like. Such a pre-assembled roof is well suited to provide a prefabricated roofs to cover bay windows.

The upper member of the eaves beam can have an upper trough member which collects moisture and channels that water to the exterior of the building thus reducing accumulation of moisture inside the walls of the structure. If a particular type of wall such as a masonry wall, requires modification of the eaves beam, only the lower section needs to be changed and the upper section will remain the same. Further, the eaves beam can be formed from more than two sections if desired.
In order that the invention may be more fully understood, it will now be described by way of example only and with reference to the accompanying drawings, in which:

Figure 1 is a perspective view of a roof according to the present invention.

Figure 2 is a cross-sectional view taken at lines 2-2 of Figure 1.

Figure 3 is a cross-sectional view of the eaves beam of the present invention.

Figure 4 is an exploded view of Figure 3.

Figure 5 is a cross-sectional view taken at lines 5-5 of Figure 1.

As shown in Figure 1, the present invention provides a glazed roof 10 which incorporates a series of panels 12 supported by rafters 13. The drawing is exemplary showing a conservatory-style roof in which the rafters 13 are supported at an upper end by a wall plate or bracket (not shown), a ridge beam 14 or a central support 16 also referred to as a spider. The lower ends 18 of rafters 13 are in turn supported on an eaves beam 20. The panels 12 can be glass, plastic or foil-covered foam panels.

As shown in Figure 2, a seal is formed between the panels 12 and the rafters 13 by an upper sealing cap 22 and a lower sealing cap 24, both of which being attached to a central metal rafter member 26. The sealing caps 22, 24 are designed to prevent ingress of water or air and further to direct any water that does pass through the seal 22 through the channels 28 in the rafter members 26 and thereafter downwardly to the exterior of the room.
The eaves beams 20 in turn are supported by a wall structure 29. The wall structure 29 is exemplary and can be a variety of different wall structures including a masonry structure, 50.8 x 101.6 mm (two by four) wood structure, metal structure, or the like. As shown in Figures 3 and 4, the eaves beam 20 is a two-piece construction which includes a base member 30 and upper member 32. The base member 30 as shown is designed to rest on a wall structure 29.

This base member 30 includes a plurality of feet 34 extended from a base plate 36. It also includes grooves 38 and 40 which are designed to accept complementary mating parts of trim members 96 and 98. Extending upwardly from the base plate 36 are inner and outer side walls 42 and 44. Upper portions 46 and 48 of side walls 42 and 44 are bent inwardly towards each other. The side walls 42, 44 also include a plurality of stiffening ridges 50.

The top member 32 includes an (intended) inner wall 52 and an (intended) outer wall 54. The walls 52 and 54 include lower leg members 56 and 58 which terminate in orthogonal feet portions 86, 88. The feet portions 86, 88, in use and when installed, rest on base plate 36 the leg members 56, 58 being spaced slightly outwardly from the walls 42 and 44 respectively of base member 30. The top member 32 further includes a downwardly sloping wall 60 which extends from inner wall 52 to outer wall 54. Inner wall 52 includes a plurality of members 62 which are adapted (e.g. barbed) to accept and retain plastic trim 94.

The upper surface 64 of top member 32 includes a trough 66 which has a plurality of holes 68 which lead into the central hollow portion 69 of top member 32. The top wall 64 further includes a rafter support channel 70 which has a general C-shaped
configuration. The outer wall 54 includes an upper ledge 72 and a lower channel 74 which are adapted to support either trim or a gutter system (neither of which is shown) if they are desired for the particular application.

The rafter supporting channel 70 supports a pivoting rafter support 78 which allows for angle adjustment or variation for the roof system. A fastener (e.g. a screw) 79 extends through support 78 into channel 70 to establish the desired angle. Alternatively, a fixed angle system can be used. The support 78 further includes a plastic central member 80 which as shown in Fig. 3 is adapted to support the rafters with a lower sealing cap supported on the plastic member 80. A fastener 82 extends through rafter 13 into member 80. As shown, member 80 includes an internally threaded bushing which receives fastener 82. Running between rafters is a sealing channel 84 which provides a seal at the lower surface of panels 12.

As shown in Fig. 5, one edge 102 of the roof is attached to the wall structure 104 of the building using a nailing fin structure 106. The end rafter 108 simply snap-fits onto the nailing fin with a channel of the rafter snapping over a prong portion of the nailing fin. The nailing fin as shown is fastened to the wall and siding (not shown) placed over the nailing fin which then acts as flashing. Additional flashing may be used if desired.

A roof of the present invention can be either assembled on site or more preferably is assembled in the factory. With factory assembly, the roof including the upper member 32 of the eaves beam 20 and everything resting on that structure including the rafters, any ridge beam or hip beam and glazed panels are all pre-assembled.
To install the roof, the base member 30 is placed on the upper surface 31 of the wall 29. As shown, the wall 29 is wood. A plurality of screws 91 are inserted through the base plate 36 into the wall 29. After the base member 30 is fastened onto the wall 29, the assembled roof is lowered onto the walls 29 with the top member 32 placed over the base member 30 so that the bottom edges 86 and 88 of legs 56 and 58 rest on the outer edges of base plate 30. Screws 90 and 92 are then screwed through legs 56 and 58 through walls 42 and 44 fastening the top member 32 in position. Plastic trim can then be used to finish off the inside and outside of the structure.

As shown an upper trim member 94 is engaged with barbed member 62 and a lower trim member 96 is inserted into channel 38. Likewise a similar plastic trim structure 98 is attached to the exterior in channel 40. Other exterior trim or a gutter units can be applied if desired.

It is important to note that the base member can be designed if necessary to fit over a masonry structure or basically any other wall structure. It can be designed for either a 50.8 x 101.6 mm (two by four) wall or a 50.8 x 152.4 mm (two by six) wall, or other dimensions if desired. It is simply required that the base member 30 and the upper member 32 mate and are adapted to be fastened to each other to provide for ease of installation of the product.

In addition to utilizing mating upper and base eaves beam members, the present invention particularly the pre-assembled glazed roof could be attached using lower brackets which would attach to the upper beam section. This would work as opposed to a continuous mating lower section 30. Other means to attach the upper
beam section could also be employed as long as the roof could be constructed as a
unitary structure supported at its base by an eaves beam and placed on a wall structure
as a pre-assembled unit.

Further, the present invention provides for drainage of any internal condensation
which runs down the inside of the rafters 13. Such condensation would be collected in
trough 66 and run through holes 68 into the central area of 69. This would then run
down sloped wall 60 and be permitted then to drain to the exterior of the building
through drain holes 100. This prevents water from running down the side walls should
any leak into the building or condense on the panels 12.

In further embodiments, the upper and lower eaves beam members 30, 32 need
not have pairs of walls 42, 44; 52, 54, they may be constructed as L-shaped members
having suitable extension portions for the attachment of trim or other fascia portions

Other fastening means such as adhesives may be used in part or exclusively.

Whilst we have described the invention in relation to conservatory roofs, it will
be appreciated that this invention is suitable for any glazed roof system including
Georgian style, conservatory roofs, lean to roofs and roofs for bay windows.
Claims

1. A method of installing a glazed roof including a plurality of rafters with panels between said rafters, said method comprising:

 connecting a plurality of rafters to an upper eaves beam member,

 glazing said panels to said rafters and said upper eaves beam member to form a unitary roof structure;

 placing said unitary roof structure on a wall structure and fastening said upper eaves beam member to said wall.

2. The method of Claim 1, further comprising attaching a lower eaves beam member to a header of the wall and placing the unitary roof structure on the lower eaves beam member so that said lower eaves beam member and said upper eaves beam member engage with each other, and fastening said lower eaves beam member to said upper eaves beam member.

3. The method of Claim 1 or 2, further comprising attaching the rafters to a hip beam to form said unitary roof structure.

4. The method of Claim 1 or 2, further comprising attaching one end of each rafter to a ridge beam to form said unitary roof structure.

5. A roof structure comprising

 a first eaves beam member (32);
a plurality of rafters (13) extending from said first eaves beam member (32) to a beam (14);

a plurality of panels (12) glazed to said rafters (13), said first eaves beam member (32) and said beam (14) to form a unitary roof structure,

fastener means (30) adapted to attach said first eaves beam member (32) of the unitary roof structure to a wall (29).

The roof structure as claimed in Claim 5, wherein said fastener means (30) comprises a second eaves beam member (30) which is attachable to a header of the wall (29) and wherein said first eaves beam member (32) is attachable to said second eaves beam member (30) after said second eaves beam member (30) is attached to said wall (29).

The roof structure as claimed in Claim 5 or 6, wherein said beam (14) is a ridge beam.

The roof structure as claimed in Claim 5 or 6, wherein said beam (14) is a hip beam.
Application No: GB0604071.1
Examiner: Eleanor Wade
Claims searched: 1-8
Date of search: 17 May 2006

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

<table>
<thead>
<tr>
<th>Category</th>
<th>Relevant to claims</th>
<th>Identity of document and passage or figure of particular relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>5-8</td>
<td>GB2256880 A Thermal Profiles see esp figs</td>
</tr>
<tr>
<td>X</td>
<td>5-8</td>
<td>GB2287493 A Briggs see esp figs</td>
</tr>
<tr>
<td>X</td>
<td>5,6,7</td>
<td>GB2204627 A Frederick Sage Co. see esp figs</td>
</tr>
<tr>
<td>X</td>
<td>5,7</td>
<td>GB2376961 A Synseal Extrusions see esp figs</td>
</tr>
<tr>
<td>X</td>
<td>5,7</td>
<td>GB2347945 A Ultraframe see esp figs</td>
</tr>
</tbody>
</table>

Categories:

- **X** Document indicating lack of novelty or inventive step
- **Y** Document indicating lack of inventive step if combined with one or more other documents of same category
- **&** Member of the same patent family
- **A** Document indicating technological background and/or state of the art.
- **P** Document published on or after the declared priority date but before the filing date of this invention
- **E** Patent document published on or after, but with priority date earlier than, the filing date of this application

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC:

- E1D; E1R

Worldwide search of patent documents classified in the following areas of the IPC:

- E04B; E04D; E06B

The following online and other databases have been used in the preparation of this search report:

- EPODOC, WPI