(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 101871720 B
(45) 授权公告日 2011.11.30

(21) 申请号 201010198611.3
(22) 申请日 2010.06.11
(73) 专利权人 上海东富龙科技股份有限公司
地址 201109 上海市闵行区长留路2199号
(72) 发明人 郑敏东
(74) 专利代理机构 上海申汇专利代理有限公司
代理人 翁若莹

(51) Int. Cl.
F26B 5/06 (2006.01)

(56) 对比文件
CN 101059303 A, 2007.10.24,
CN 101403562 A, 2009.04.08,
CN 201138106 Y, 2008.10.22,
US 6895774 B1, 2005.05.24,
SU 966453 A1, 1982.10.15,
US 5820641 A, 1998.10.13,

(54) 发明名称
液氮冻干机直膨冷阱

(57) 摘要
本发明公开了一种液氮冻干机直膨冷阱，所述冷阱箱体制上设置有抽真空口、中隔阀、液氮入口、氮气出口，所述箱体内设置有盘管固定架和盘管，其中，所述箱体内还设置汇集腔、列管和汇集管，所述列管下部与汇集管相连，上部与汇集腔相连，所述盘管分为上盘管和下盘管，所述上盘管入口直接与汇集腔连接，所述下盘管入口与列管上的套管连接，所述汇集管和液氮入口相连，上下盘管中部引出和氮气出口相连的氮气排放管。本发明提供的液氮冻干机直膨冷阱，扩大冷冻的温度范围，并提高冷阱的温度均匀性和换热效率。
1. 一种液氮冻干机直膨冷阱，冷阱箱体 (1) 上设置有抽真空口 (5)、中隔阀 (10)、液氮入口 (13)、氮气出口 (16)，所述箱体 (1) 内设置有盘管固定架 (17) 和盘管 (14)，其特征在于，所述箱体 (1) 内还设置有汇集管 (7)、列管 (9) 和汇集管 (12)，所述列管 (9) 下部与汇集管 (12) 相连，上部与汇集管 (7) 相连，所述盘管 (14) 分为上盘管 (141) 和下盘管 (142)，所述上盘管 (141) 入口直接与汇集管 (7) 连接，所述下盘管 (142) 入口与列管 (9) 上的套管连接，所述汇集管 (12) 和液氮入口 (13) 相连，上下盘管中部引出和氮气出口 (16) 相连的氮气排放管。

2. 如权利要求 1 所述的液氮冻干机直膨冷阱，其特征在于，所述上盘管 (141) 和下盘管 (142) 分别由若干盘管组成，其周围设置有分流板 (19)。

3. 如权利要求 1 或 2 所述的液氮冻干机直膨冷阱，其特征在于，所述汇集管 (7) 处设置有微压安全阀 (6) 和用于安装压力变送器的第一压力连接口 (8)，所述汇集管 (12) 处设置用于安装压力变送器第二压力连接口 (11)。

4. 如权利要求 1 或 2 所述的液氮冻干机直膨冷阱，其特征在于，所述盘管 (14) 和列管 (9) 内设置有翅片 (21)。
液氨冻干机直膨冷阱

技术领域
[0001] 本发明涉及一种冻干机冷阱，尤其涉及一种液氨冻干机直膨冷阱。

背景技术
[0002] 真空冷冻干燥机（简称冻干机）的箱体分为冻干箱和冷阱两部分。冻干箱内有板层等部件，主要是放置冻干制品；冷阱中有盘管等部件，主要是将制品中升华出的溶媒再次冻结。
[0003] 冷干机冷阱制冷方式主要分为直接制冷和间接制冷。直接制冷主要是氟利昂液体进入盘管中汽化，吸收热量。这种方法使得冷阱中盘管前后段的温度温度梯度十分明显，盘管的温度不均使得升华过来的溶媒再次冻结时也分布不均，盘管的使用寿命因面积减少。采用氟利昂直接制冷冷阱，冷阱极限温度大于等于 -75℃，并且此时压缩机超工况运行十分不稳定，温度无法将有机溶媒冻干。间接制冷主要是氟利昂或液氨先在外部的换热器中汽化将载冷剂（硅油）制冷，硅油再进入盘管中，将盘管和冷阱降温。间接制冷因为利用载冷剂将冷却传至冷阱中，在冷阱内不存在相变，所以温度均匀性好，但因使得系统效率降低，能耗增大，同时冷阱极限温度受到导热油性质限制。目前适合冻干机使用的导热油极限温度为 -80℃，所以此方法无法将有机溶媒冻干。

发明内容
[0004] 本发明所要解决的技术问题是提供一种液氨冻干机直膨冷阱，扩大冷阱的温度范围，并提高冷阱的温度均匀性和换热效率。
[0005] 本发明为解决上述技术问题而采用的技术方案是提供一种液氨冻干机直膨冷阱，所述冷阱箱体上设置有抽真空口、中隔阀、液氨入口、氯气出口，所述箱体内设置有盘管固定架和盘管，其中，所述箱体内还设置有集气室、列管和汇集管，所述列管下部与汇集管相连，上部与汇集腔相连，所述盘管分为上盘管和下盘管，所述上盘管入口直接与汇集腔连接，所述下盘管入口与列管上的套管连接，所述汇集管和液氨入口相连，上下盘管中部引出和氯气出口相连的氮气排放管。[0006] 上述液氨冻干机直膨冷阱，其中，所述上盘管和下盘管分别由若干盘管组成，其周围设置有分流板。
[0007] 上述液氨冻干机直膨冷阱，其中，所述汇集腔处设置有微压安全阀和用于安装压力变送器的第一压力连接口，所述汇集管处设置有用于安装压力变送器第二压力连接口。
[0008] 上述液氨冻干机直膨冷阱，其中，所述盘管和列管内设置有翅片。
[0009] 本发明对比现有技术有如下的有益效果：本发明提供的液氨冻干机直膨冷阱，通过设置汇集腔、列管和汇集管，并将盘管分为上盘管和下盘管，使得液氨在列管中汽化后分配至盘管后排至盘管后排出，扩大冷阱的温度范围，并提高冷阱的温度均匀性和换热效率。此外，本发明提供的液氨冻干机直膨冷阱通过设置分流板，在盘管和列管内设置有翅片，进一步提高了温度均匀性和换热效率。
附图说明
[0010] 图 1 是本发明的液氮冻干机直膨冷阱结构示意图；
[0011] 图 2 是本发明的液氮冻干机直膨冷阱的盘管和列管放大示意图。
[0012] 图中：
[0013] 1 箱体 2 保温层 3 吊耳
[0014] 4 检修口 5 真空口 6 微压安全阀
[0015] 7 汇集腔 8 第一压力连接口 9 列管
[0016] 10 中隔阀 11 第二压力连接口 12 汇集管
[0017] 13 液氮入口 14 盘管 15 放水口
[0018] 16 氮气出口 17 盘管固定架 18 支脚
[0019] 19 分流板 21 翅片 141 上盘管
[0020] 142 下盘管

具体实施方式
[0021] 下面结合附图和实施例对本发明作进一步的描述。
[0022] 图 1 是本发明的液氮冻干机直膨冷阱结构示意图，图 2 是本发明的液氮冻干机直膨冷阱的盘管和列管放大示意图。
[0023] 请参见图 1 和 2，本发明的液氮冻干机直膨冷阱包括冷阱箱体 1，上设置有抽真空口 5，中隔阀 10，液氮入口 13 和氮气出口 16，所述箱体 1 内设置有盘管固定架 17 和盘管 14，所述箱体 1 内还设置汇集腔 7 的列管 9 和汇集管 12，所述列管 9 下部与汇集管 12 相连，上部与汇集腔 7 相连，所述盘管 14 分为上盘管 141 和下盘管 142，所述上盘管 141 入口直接与汇集腔 7 连接，所述下盘管 142 入口与列管 9 上的套管连接，所述汇集管 12 和液氮入口 13 相连，上下盘管中部引出和氮气出口 16 相连的氮气排放管。
[0024] 上述冷阱通过液氮直接进入箱体内蒸发制冷，在列管 9 中化气后的低温氮气在汇集腔 7 中再次汇集，然后均匀分至盘管 14 中，盘管长度可以低至 -130℃ 以下。本发明的液氮冻干机直膨冷阱使得液氮在列管 9 中化气后分配至盘管 14 后排出，低温的盘管和列管将流过其表面的蒸汽捕成冰或霜，并将盘管 14 分为上下两部分，减小了盘管长度，并且上盘管 141 由汇集腔 7 直接引入低温氮气，下盘管 142 通过列管上的夹套引入低温氮气，确保了盘管入口氮气温度相同，最终确保了盘管的温度均匀性。
[0025] 上述液氮冻干机直膨冷阱，其中，所述上盘管 141 和下盘管 142 分别由若干盘管组成，其周围可以进一步设置有分流板 19。分流板 19 将气流均匀分至各处盘管，并通过真空泵在箱体中心部位建立局部低压，使得各处盘管结霜同时且均匀。
[0026] 上述液氮冻干机直膨冷阱，其中，所述汇集腔 7 处还可以设置有微压安全阀 6 和用于安装压力变送器的第一压力连接口 8，所述汇集管 7 处设置有用于安装压力变送器第二压力连接口 11。在盘管发生泄漏时关闭供氮阀，微压安全阀确保箱内无正压，从而可保证冷阱的安全。
[0027] 上述的液氮冻干机直膨冷阱，真空口 5 连接至真空泵，通过真空泵将箱体内的不凝性气体抽出，并在箱体中心位置形成低压点，确保气流的流动方向。中隔阀 10 将与冻干
箱连接，通过中隔阀 10 的开关控制冻干箱与冷阱的联通与断开。当中隔阀 10 打开时，冻干箱内的水蒸气通过压差流入冷阱中。水蒸气在流中隔阀 10 后，由分流板 9 将水汽均匀分配到各个方位，然后水汽在经过列管 9 和盘管 14 时被凝华成冰或霜，不凝性气体到达中部低压点被真空泵抽出。

[0028] 为了在内部盘管出现故障时方便维修，箱体 1 可以设置检修口 4 和视镜。此外，箱体 1 可设置有保温层 2、吊耳 3、放水口 15、支架 18。在列管 9 上还可以安装有压力变送器、液位计和温度探头。以方便 PLC 或其他上位机提供反馈信号处理冷阱中的温度。在箱体内列管处温度最低，用于液氮温度。盘管内温度可控制在允许温度范围内的任一值。

[0029] 本发明的液氮冻干机直膨冷阱具体安装如下：首先将螺旋盘管 14 固定于盘管固定架 17 上，螺旋盘管 14 分为上下两组，分别为上盘管 141 和下盘管 142。上下盘管均由若干盘管组成，图 2 中上下盘管均为 5 根盘管组成，上盘管 141 内的低温氮气从上部进入，由下部汇入氮气排放管排出，上盘管 142 内的低温氮气从下部进入，由上部汇入氮气排放管排出。氮气排放管由上下盘管中部引出，最后延伸出箱体底部，氮气出口采用法兰连接。

[0030] 在盘管外，下部固定好汇集管 12，汇集管 12 上均匀分布若干列管 9，多根列管采用夹套的方式相连，汇集管 12 下的上部与液氮入口 13 相连。所有的盘管 14 和列管 9 中均安装有增强换热的翅片 21。液氮从入口流入后在汇集管 12 中均匀分配至列管 9 中，在列管 9 中吸收热量汽化。

[0031] 盘管组件组装好，并检验合格后再安装入箱体 1 内。同时箱体上其余部件也安装就位。盘管组件放入箱体 1 后将列管 9 与汇集腔 7 连接，上盘管 141 入口直接与汇集腔 7 连接，下盘管 142 入口与列管 9 上的套管连接。在列管中汽化后的低温氮气在汇集腔 7 中再次汇集，然后均匀分至盘管 14 中。上盘管 141 直接由与之相连的入口引入低温氮气，下盘管 142 因为引入氮气距离较远，其中又经过热负荷区，所以通过列管 9 上的套管引至下盘管入口。因为列管内存在液氮，能对流经的氮气继续降温，所以上述结构能使上下盘管的入口温度基本一致，确保盘管处的温度均匀性。

[0032] 虽然本发明已以较佳实施例揭示如上，然其并非用以限定本发明，任何本领域技术人员，在不脱离本发明的精神和范围内，当可作些许的修改和完善，因此本发明的保护范围当以权利要求书所界定的为准。
图 1