

US008974451B2

(12) United States Patent Smith

(10) Patent No.: US 8,9

US 8,974,451 B2

(45) **Date of Patent:** Mar. 10, 2015

(54) RENAL NERVE ABLATION USING CONDUCTIVE FLUID JET AND RF ENERGY

(75) Inventor: Scott Smith, Chaska, MN (US)

(73) Assignee: Boston Scientific Scimed, Inc., Maple

Grove, MN (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 702 days.

(21) Appl. No.: 13/280,784

(22) Filed: Oct. 25, 2011

(65) **Prior Publication Data**

US 2012/0101490 A1 Apr. 26, 2012

Related U.S. Application Data

(60) Provisional application No. 61/406,304, filed on Oct. 25, 2010.

(51)	Int. Cl.	
	A61B 18/18	(2006.01)
	A61B 17/3203	(2006.01)
	A61B 18/14	(2006.01)
	A61B 17/34	(2006.01)
	A61B 17/00	(2006.01)
	A61B 18/00	(2006.01)

(52) U.S. Cl.

USPC 606/33

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

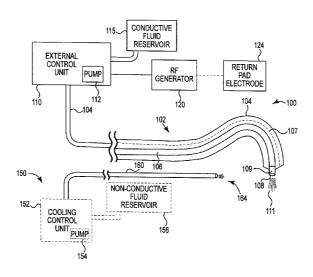
164,184 A 6/1875 Jeeome Kiddee 1,167,014 A 1/1916 O'Brien 2,505,358 A 4/1950 Gusberg et al. (Continued)

FOREIGN PATENT DOCUMENTS

DE 10038737 A1 2/2002 EP 1053720 A1 11/2000 (Continued)

OTHER PUBLICATIONS

CardioVascular Technologies Inc., "Heated Balloon Device Technology," 11 pages, 2008.


(Continued)

Primary Examiner — Brian T Gedeon (74) Attorney, Agent, or Firm — Seager, Tufte & Wickhem, LLC

(57) ABSTRACT

An ablation catheter is dimensioned for advancement through a vessel of the body. The catheter includes a lumen configured to receive a pressurized electrically conductive fluid. A nozzle is fluidly coupled to the distal end of the pressurizable lumen and configured to direct a jet of the pressurized conductive fluid at a wall of a target vessel, such as a renal artery, to create or expand a hole through the target vessel and to fill the hole and at least some of the space adjacent to the hole with the conductive fluid. An electrical conductor extends at least partially along the catheter and terminates proximate or at the distal end of the pressurizable lumen. The electrical conductor is configured to conduct radiofrequency energy to the conductive fluid sufficient to ablate target tissue, such as perivascular renal nerve tissue, proximate the hole.

19 Claims, 8 Drawing Sheets

(56)		Referen	ces Cited	5,330,518			Neilson et al.
	TT	C DATENT	DOCUMENTS	5,333,614 5,342,292			Feiring Nita et al.
	0.	5. IAILNI	DOCUMENTS	5,344,395			Whalen et al.
2,7	701,559 A	2/1955	Cooper	5,364,392			Warner et al.
	108,593 A	10/1963	Glassman	5,365,172			Hrovat et al.
	108,594 A		Glassman	5,368,557 5,368,558			Nita et al. Nita et al.
	540,431 A 952,747 A		Mobin Kimmell	5,380,274			Nita et al.
	996,938 A		Clark, III	5,380,319	A	1/1995	Saito et al.
	046,150 A		Schwartz et al.	5,382,228			Nita et al.
	290,427 A	9/1981		5,383,874 5,383,917	A		Jackson et al. Desai et al.
	102,686 A 183,341 A		Medel Witteles et al.	5,397,301			Pflueger et al.
	574,804 A			5,397,339		3/1995	Desai
	87,975 A		Salo et al.	5,401,272			Perkins et al.
	549,936 A		Ungar et al.	5,403,311 5,405,318			Abele et al. Nita et al.
	582,596 A 709,698 A		Bales et al. Johnston et al.	5,405,346			Grundy et al.
	765,331 A		Petruzzi et al.	5,409,000	Α	4/1995	Imran
	770,653 A		Shturman	5,417,672			Nita et al.
	784,132 A		Fox et al.	5,419,767 5,427,118			Eggers et al. Nita et al.
	784,162 A 785,806 A		Ricks et al. Deckelbaum et al.	5,432,876			Appeldorn et al.
	788,975 A	12/1988	Shturman et al.	5,441,498		8/1995	Perkins et al.
	790,310 A		Ginsburg et al.	5,447,509			Mills et al.
	799,479 A		Spears	5,451,207 5,453,091		9/1995 9/1995	Yock et al. Taylor et al.
	323,791 A 330,003 A		D'Amelio et al. Wolff et al.	5,454,788			Walker et al.
	350,005 A 349,484 A			5,454,809	A	10/1995	
	362,886 A		Clarke et al.	5,455,029			Hartman et al.
	387,605 A		Angelsen et al.	5,456,682 5,457,042			Edwards et al.
	920,979 A		Bullara et al.	5,471,982			Hartman et al. Edwards et al.
	938,766 A 955,377 A		Lennox et al.	5,474,530			Passafaro et al.
	976,711 A		Parins et al.	5,478,351			Meade et al.
	034,010 A		Kittrell et al.	5,496,311			Abele et al.
	052,402 A		Bencini et al.	5,496,312 5,498,261		3/1996	Klicek et al.
	053,033 A 071,424 A		Clarke et al. Reger et al.	5,505,201			Grill et al.
	074,871 A	12/1991	Groshong et al.	5,505,730			Edwards
5,0)98,429 A	3/1992	Sterzer et al.	5,507,744			Tay et al.
	098,431 A			5,522,873 5,531,520			Jackman et al. Grimson et al.
	109,859 A 125,928 A		Parins et al.	5,540,656			Pflueger et al.
	129,396 A		Rosen et al.	5,540,679			Fram et al.
5,1	139,496 A	8/1992		5,540,681			Strul et al.
,	143,836 A		Hartman et al.	5,542,917 5,545,161		8/1996	Nita et al.
	156,610 A 158,564 A		Reger et al. Schnepp-Pesch	5,562,100	Α		Kittrell et al.
	170,802 A			5,571,122			Kelly et al.
	178,620 A		Eggers et al.	5,571,151			Gregory
	178,625 A		Groshong et al.	5,573,531 5,573,533			Gregory et al. Strul
	190,540 A 211,651 A	3/1993 5/1993	Reger et al.	5,584,831		12/1996	
	234,407 A		Teirstein et al.	5,584,872			Lafontaine et al.
	242,441 A		Avitall	5,588,962			Nicholas et al.
	251,634 A 255,679 A		Weinberg et al.	5,599,346 5,601,526			Edwards et al. Chapelon et al.
	263,493 A			5,609,606			O'Boyle et al.
5,2	267,954 A	12/1993	Nita et al.	5,626,576			Janssen
	277,201 A		Stern et al.	5,630,837 5,637,090			Crowley McGee et al.
	282,484 A 286,254 A		Reger et al. Shapland et al.	5,643,255		7/1997	
	295,484 A		Marcus	5,643,297		7/1997	Nordgren et al.
	297,564 A		Love et al.	5,647,847			Lafontaine et al.
,	300,068 A		Rosar et al.	5,649,923 5,651,780			Gregory et al. Jackson et al.
	301,683 A 304,115 A		Durkan Pflueger et al.	5,653,684			Laptewicz et al.
	304,113 A		Sahatjian	5,662,671			Barbut et al.
	304,171 A	4/1994	Gregory et al.	5,665,062			Houser
	304,173 A		Kittrell et al.	5,665,098			Kelly et al.
	306,250 A		March et al.	5,666,964 5,667,490		9/1997	Meilus Keith et al.
	312,328 A 314,466 A		Nita et al. Stern et al.	5,672,174			Gough et al.
	322,064 A		Lundquist	5,676,693			Lafontaine
5,3	324,255 A	6/1994	Passafaro et al.	5,678,296	A	10/1997	Fleischhacker et al.
,	326,341 A		Lew et al.	5,681,282			Eggers et al.
5,3	326,342 A	7/1994	Pflueger et al.	RE35,656	E	11/1997	Feinberg

(56)		R	eferen	ces Cited	5,904,651			Swanson et al.
		II C DA'	FENT	DOCUMENTS	5,904,667 5,904,697			Falwell et al. Gifford et al.
		U.S. 1A	ILINI	DOCUMENTS	5,904,709			Arndt et al.
	5,688,266	A 11	/1997	Edwards et al.	5,906,614	A	5/1999	Stern et al.
	5,693,015		/1997	Walker et al.	5,906,623			Peterson
	5,693,029			Leonhardt et al.	5,906,636			Casscells et al.
	5,693,043			Kittrell et al.	5,916,192 5,916,227		6/1999 6/1999	Nita et al. Keith et al.
	5,693,082 5,695,504			Warner et al. Gifford et al.	5,916,239			Geddes et al.
	5,697,369			Long, Jr. et al.	5,919,219		7/1999	Knowlton et al.
	5,697,909	A 12		Eggers et al.	5,924,424		7/1999	Stevens et al.
	5,702,386			Stern et al.	5,925,038 5,934,284			Panescu et al. Plaia et al.
	5,702,433 5,706,809		/1997	Taylor et al. Littmann et al.	5,935,063			Nguyen
	5,713,942			Stern et al.	5,938,670			Keith et al.
	5,715,819			Svenson et al.	5,947,977		9/1999	Slepian et al.
	5,735,846	A 4		Panescu et al.	5,948,011			Knowlton et al.
	5,741,214			Ouchi et al.	5,951,494 5,951,539			Wang et al. Nita et al.
	5,741,248 5,741,249			Stern et al. Moss et al.	5,954,717			Behl et al.
	5,743,903			Stern et al.	5,957,882			Nita et al.
	5,748,347			Erickson	5,957,941			Ream et al.
	5,749,914			Janssen	5,957,969		9/1999	Warner et al.
	5,755,682			Knudson et al.	5,961,513 5,964,757		10/1999	Swanson et al. Ponzi et al.
	5,755,715 5,755,753			Stern et al. Knowlton et al.	5,967,976			Larsen et al.
	5,769,847			Panescu et al.	5,967,978			Littmann et al.
	5,769,880			Truckai et al.	5,967,984			Chu et al.
	5,775,338			Hastings	5,971,975			Mills et al.
	5,776,174			Van Tassel	5,972,026 5,980,563			Laufer et al. Tu et al.
	5,779,698 5,782,760			Clayman et al. Schaer	5,989,208		11/1999	Nita et al.
	5,785,702			Murphy et al.	5,989,284		11/1999	
	5,797,849			Vesely et al.	5,993,462			Pomeranz et al.
	5,797,903	A 8	/1998	Swanson et al.	5,997,497		12/1999	Nita et al.
	5,800,484			Gough et al.	5,999,678 6,004,269			Murphy et al. Crowley et al.
	5,800,494			Campbell et al.	6,004,316			Laufer et al.
	5,810,802 5,810,803			Panescu et al. Moss et al.	6,007,514		12/1999	
	5,810,810			Tay et al.	6,010,522			Barbut et al.
	5,817,092	A 10	/1998	Behl	6,013,033			Berger et al.
	5,817,113			Gifford et al.	6,014,590 6,022,309			Whayne et al. Celliers et al.
	5,817,144			Gregory et al. Roth et al.	6,024,740			Lesh et al.
	5,823,956 5,827,203			Nita et al.	6,030,611			Gorecki et al.
	5,827,268			Laufer	6,032,675			Rubinsky et al.
	5,829,447			Stevens et al.	6,033,397			Laufer et al.
	5,830,213			Panescu et al.	6,033,398 6,036,687			Farley et al. Laufer et al.
	5,830,222 5,832,228			Makower Holden et al.	6,036,689		3/2000	Tu et al.
	5,833,593			Liprie	6,041,260		3/2000	Stern et al.
	5,836,874			Swanson et al.	6,050,994		4/2000	
	5,840,076	A 11		Swanson et al.	6,056,744	A		Edwards
	5,843,016			Lugnani et al.	6,056,746 6,063,085		5/2000	Goble et al. Tay et al.
	5,846,238 5,846,239			Jackson et al. Swanson et al.	6,066,096		5/2000	
	5,846,245			McCarthy et al.	6,066,139			Ryan et al.
	5,848,969			Panescu et al.	6,068,638			Makower
	5,853,411			Whayne et al.	6,068,653			Lafontaine
	5,855,614			Stevens et al.	6,071,277 6,071,278			Farley et al. Panescu et al.
	5,860,974 5,865,801			Abele Houser	6,078,839		6/2000	
	5,868,735			LaFontaine et al.	6,079,414		6/2000	Roth
	5,868,736		/1999	Swanson et al.	6,080,171			Keith et al.
	5,871,483		/1999	Jackson et al.	6,081,749			Ingle et al.
	5,871,524			Knowlton et al.	6,086,581 6,093,166			Reynolds et al. Knudson et al.
	5,875,782 5,876,369			Ferrari et al. Houser	6,096,021			Helm et al.
	5,876,374		/1999	Alba et al.	6,099,526			Whayne et al.
	5,876,397		/1999	Edelman et al.	6,102,908	A	8/2000	Tu et al.
	5,879,348	A 3	/1999	Owens et al.	6,106,477			Miesel et al.
	5,891,114			Chien et al.	6,110,187			Donlon et al.
	5,891,135		/1999		6,114,311			Parmacek et al.
	5,891,136 5,891,138		/1999 /1999	McGee et al. Tu et al.	6,117,101 6,117,128			Diederich et al. Gregory
	5,895,378		/1999		6,120,476			Fung et al.
	5,897,552		/1999	Edwards et al.	6,120,516		9/2000	Selmon et al.
	5,902,328			Lafontaine et al.	6,121,775			Pearlman

(56)	Referei	nces Cited	6,325,797 I 6,325,799 I		Stewart et al. Goble
U.S	S. PATENT	DOCUMENTS	6,328,699	B1 12/2001	Eigler et al.
6,123,679 A	9/2000	Lafaut et al.	6,346,074 I		Roth Daly et al.
6,123,682 A		Knudson et al.	6,350,248	B1 2/2002	Knudson et al.
6,123,702 A 6,123,703 A		Swanson et al. Tu et al.	6,350,276 I 6,353,751 I		Knowlton Swanson et al.
6,123,703 A		Tu et al.	6,355,029	B1 3/2002	Joye et al.
6,129,725 A		Tu et al.	6,357,447 I 6,361,519 I		Swanson et al. Knudson et al.
6,135,997 A 6,142,991 A		Laufer et al. Schatzberger et al.	6,364,840	B1 4/2002	Crowley
6,142,993 A		Whayne et al.	6,371,965 I 6,375,668 I		Gifford, III et al. Gifford et al.
6,149,647 A 6,152,899 A		Tu et al. Farley et al.	6,377,854	B1 4/2002	Knowlton
6,152,912 A	11/2000	Jansen et al.	6,377,855 I 6,379,352 I	B1 4/2002	Knowlton Reynolds et al.
6,156,046 A 6,158,250 A		Passafaro et al. Tibbals et al.	6,379,373	B1 4/2002	Sawhney et al.
6,159,187 A	12/2000	Park et al.	6,381,497		Knowlton Knowlton
6,159,225 A 6,161,048 A		Makower Sluijter et al.	6,381,498 I 6,383,151 I		Diederich et al.
6,162,184 A	12/2000	Swanson et al.	6,387,105		Gifford, III et al.
6,165,163 A 6,165,172 A		Chien et al. Farley et al.	6,387,380 I 6,389,311 I		Knowlton Whayne et al.
6,165,187 A	12/2000	Reger et al.	6,389,314	B2 5/2002	Feiring
6,168,594 B1		Lafontaine et al.	6,391,024 I 6,394,096 I		Sun et al. Constantz
6,171,321 B1 6,179,832 B1		Gifford, III et al. Jones et al.	6,394,956	B1 5/2002	Chandrasekaran et al.
6,179,835 B1		Panescu et al.	6,398,780 I 6,398,782 I		Farley et al. Pecor et al.
6,179,859 B1 6,183,468 B1		Bates et al. Swanson et al.	6,398,792		O'Connor
6,183,486 B1	2/2001	Snow et al.	6,401,720		Stevens et al. Ponzi et al.
6,190,379 B1 6,191,862 B1		Heuser et al. Swanson et al.	6,402,719 I 6,405,090 I		Knowlton
6,197,021 B1	3/2001	Panescu et al.	6,409,723		Edwards
6,200,266 B1 6,203,537 B1		Shokrollahi et al. Adrian	6,413,255 I 6,421,559 I		Stern Pearlman
6,203,561 B1		Ramee et al.	6,423,057	B1 7/2002	He et al.
6,210,406 B1		Webster	6,425,867 I 6,425,912 I		Vaezy et al. Knowlton
6,211,247 B1 6,217,576 B1		Goodman Tu et al.	6,427,118	B1 7/2002	Suzuki
6,219,577 B1		Brown, III et al.	6,428,534 I 6,428,536 I		Joye et al. Panescu et al.
6,228,076 B1 6,228,109 B1		Winston et al. Tu et al.	6,430,446	B1 8/2002	Knowlton
6,231,516 B1		Keilman et al.	6,432,102 I 6,436,056 I		Joye et al. Wang et al.
6,231,587 B1 6,235,044 B1		Makower Root et al.	6,438,424		Knowlton
6,236,883 B1	5/2001	Ciaccio et al.	6,440,125 I 6,442,413 I		Rentrop Silver
6,237,605 B1 6,238,389 B1		Vaska et al. Paddock et al.	6,443,965		Gifford, III et al.
6,238,392 B1	5/2001	Long	6,445,939		Swanson et al.
6,241,666 B1 6,241,753 B1		Pomeranz et al. Knowlton	6,447,505 I 6,447,509 I		McGovern et al. Bonnet et al.
6,245,020 B1	6/2001	Moore et al.	6,451,034	B1 9/2002	Gifford, III et al.
6,245,045 B1 6,248,126 B1		Stratienko Lesser et al.	6,451,044 I 6,453,202 I		Naghavi et al. Knowlton
6,251,128 B1		Knopp et al.	6,454,737	B1 9/2002	Nita et al.
6,258,087 B1 6,273,886 B1		Edwards et al. Edwards et al.	6,454,757 I		Nita et al. Demarais et al.
6,280,466 B1		Kugler et al.	6,458,098	B1 10/2002	Kanesaka
6,283,935 B1		Laufer et al.	6,461,378 I 6,468,276 I		Knowlton McKay
6,283,959 B1 6,284,743 B1		Lalonde et al. Parmacek et al.	6,468,297	B1 10/2002	Williams et al.
6,287,323 B1	9/2001	Hammerslag	6,470,216 I 6,470,219 I	B1 10/2002	Knowlton Edwards et al.
6,290,696 B1 6,292,695 B1		Lafontaine Webster, Jr. et al.	6,471,696		Berube et al.
6,293,942 B1	9/2001	Goble et al.	6,475,213		Whayne et al. Tanrisever
6,293,943 B1 6,296,619 B1		Panescu et al. Brisken et al.	6,475,215 I 6,475,238 I		Fedida et al.
6,298,256 B1	10/2001	Meyer	6,477,426	B1 11/2002	Fenn et al.
6,299,379 B1 6,299,623 B1	10/2001	Lewis Wulfman	6,480,745 I 6,481,704 I		Nelson et al. Koster et al.
6,309,379 B1		Willard et al.	6,482,202		Goble et al.
6,309,399 B1		Barbut et al.	6,484,052		Visuri et al.
6,311,090 B1 6,317,615 B1		Knowlton KenKnight et al.	6,485,489 I 6,488,679 I		Teirstein et al. Swanson et al.
6,319,242 B1	11/2001	Patterson et al.	6,489,307	B1 12/2002	Phillips et al.
6,319,251 B1		Tu et al.	6,491,705 I		Gifford, III et al. Cornish et al.
6,322,559 B1	11/2001	Daulton et al.	0,494,891	D1 12/2002	Cornisn et al.

(56)		Referen	ces Cited	6,682,541			Gifford, III et al.
				6,684,098			Oshio et al.
	U.S	S. PATENT	DOCUMENTS	6,685,732			Kramer
				6,685,733			Dae et al.
	6,497,711 B1		Plaia et al.	6,689,086			Nita et al.
	6,500,172 B1		Panescu et al.	6,689,148 6,690,181			Sawhney et al. Dowdeswell et al.
	6,500,174 B1		Maguire et al.	6,692,490			Edwards
	6,508,765 B2		Suorsa et al.	6,695,830		2/2004	Vigil et al.
	6,508,804 B2		Sarge et al. Strul et al.	6,695,857			Gifford, III et al.
	6,508,815 B1 6,511,478 B1		Burnside et al.	6,699,241			Rappaport et al.
	6,511,496 B1		Huter et al.	6,699,257			Gifford, III et al.
	6,511,500 B1			6,702,748	В1	3/2004	Nita et al.
	6,514,236 B1		Stratienko	6,702,811	B2	3/2004	Stewart et al.
	6,514,245 B1		Williams et al.	6,706,010			Miki et al.
	6,514,248 B1		Eggers et al.	6,706,011			Murphy-Chutorian et al.
	6,517,534 B1	2/2003	McGovern et al.	6,706,037			Zvuloni et al.
	6,517,572 B2		Kugler et al.	6,709,431			Lafontaine
	6,522,913 B2		Panescu et al.	6,711,429			Gilboa et al.
	6,522,926 B1		Kieval et al.	6,712,815 6,714,822			Sampson et al. King et al.
	6,524,299 B1		Tran et al.	6,716,184			Vaezy et al.
	6,527,765 B2		Kelman et al.	6,720,350			Kunz et al.
	6,527,769 B2		Langberg et al.	6,723,043			Kleeman et al.
	6,540,761 B2 6,542,781 B1		Koblish et al.	6,723,064		4/2004	
	6,544,780 B1			6,736,811			Panescu et al.
	6,546,272 B1		MacKinnon et al.	6,743,184		6/2004	Sampson et al.
	6,547,788 B1		Maguire et al.	6,746,401	B2	6/2004	Panescu
	6,549,800 B1		Atalar et al.	6,746,464	В1		Makower
	6,552,796 B2		Magnin et al.	6,746,474		6/2004	
	6,554,780 B1		Sampson et al.	6,748,953			Sherry et al.
	6,558,381 B2	5/2003	Ingle et al.	6,749,607			Edwards et al.
	6,558,382 B2	5/2003	Jahns et al.	6,752,805			Maguire et al.
	6,564,096 B2			6,760,616			Hoey et al.
	6,565,582 B2		Gifford, III et al.	6,763,261 6,764,501		7/2004	Casscells, III et al.
	6,569,109 B2		Sakurai et al.	6,769,433			Zikorus et al.
	6,569,177 B1		Dillard et al.	6,770,070			Balbierz
	6,570,659 B2		Schmitt	6,771,996			Bowe et al.
	6,572,551 B1		Smith et al. Stewart et al.	6,773,433			Stewart et al.
	6,572,612 B2 6,577,902 B1		Laufer et al.	6,786,900			Joye et al.
	6,579,308 B1		Jansen et al.	6,786,901			Joye et al.
	6,579,311 B1		Makower	6,786,904	B2	9/2004	Döscher et al.
	6,582,423 B1		Thapliyal et al.	6,788,977	B2	9/2004	Fenn et al.
	6,589,238 B2		Edwards et al.	6,790,206			Panescu
	6,592,526 B1		Lenker	6,790,222			Kugler et al.
	6,592,567 B1		Levin et al.	6,796,981			Wham et al.
	6,595,959 B1		Stratienko	6,797,933			Mendis et al.
	6,600,956 B2		Maschino et al.	6,797,960			Spartiotis et al. Mische et al.
	6,602,242 B1	8/2003	Fung et al.	6,800,075 6,802,857			Walsh et al.
	6,602,246 B1		Joye et al.	6,807,444		10/2004	
	6,605,084 B2 6,623,452 B2		Acker et al. Chien et al.	6,811,550			Holland et al.
	6,623,452 B2		Guibert et al.	6,813,520			Sampson et al.
	6,632,193 B1		Davison et al.	6,814,730	B2	11/2004	
	6,632,196 B1			6,814,733	B2		Leatham et al.
	6,645,223 B2		Boyle et al.	6,823,205		11/2004	
	6,648,854 B1	11/2003	Patterson et al.	6,824,516			Batten et al.
	6,648,878 B2		Lafontaine	6,827,726		12/2004	
	6,648,879 B2	11/2003	Holland et al.	6,827,926			Robinson et al.
	6,651,672 B2	11/2003		6,829,497		12/2004	
	6,652,513 B2		Panescu et al.	6,830,568 6,837,886			Kesten et al. Collins et al.
	6,652,515 B1		Maguire et al.	6,837,888			Ciarrocca et al.
	6,656,136 B1		Weng et al.	6,845,267			Harrison
	6,658,279 B2 6,659,981 B2		Swanson et al. Stewart et al.	6,847,848			Sterzer
	6,666,858 B2		Lafontaine	6,849,073			Hoey et al.
	6,666,863 B2		Wentzel et al.	6,849,075	B2		Bertolero et al.
	6,669,655 B1		Acker et al.	6,853,425	B2	2/2005	Kim et al.
	6,669,692 B1		Nelson et al.	6,855,123		2/2005	
	6,673,040 B1		Samson et al.	6,855,143	B2	2/2005	Davison
	6,673,064 B1		Rentrop	6,869,431	B2	3/2005	Maguire et al.
	6,673,066 B2		Werneth	6,872,183	B2		Sampson et al.
	6,673,090 B2		Root et al.	6,884,260	B2		Kugler et al.
	6,673,101 B1	1/2004	Fitzgerald et al.	6,889,694	B2	5/2005	Hooven
	6,673,290 B1	1/2004	Whayne et al.	6,893,436			Woodard et al.
	6,676,678 B2		Gifford, III et al.	6,895,077			Karellas et al.
	6,679,268 B2			6,895,265		5/2005	
	6,681,773 B2	1/2004	Murphy et al.	6,898,454	B2	5/2005	Atalar et al.

(56)			Referen	ces Cited	7,112,196 B2		Brosch et al.
		U.S. P	ATENT	DOCUMENTS	7,112,198 B2 7,112,211 B2	9/2006	Gifford, III et al.
					7,122,019 B1		Kesten et al.
	6,899,711			Stewart et al.	7,122,033 B2 7,134,438 B2		Makower et al.
	6,899,718 6,905,494			Gifford, III et al. Yon et al.	7,137,963 B2		Nita et al.
	6.908,462			Joye et al.	7,137,980 B2		Buysse et al.
	6,909,009	B2		Koridze	7,153,315 B2		
	6,911,026			Hall et al.	7,155,271 B2		Halperin et al.
	6,915,806			Pacek et al.	7,157,491 B2 7,157,492 B2		Mewshaw et al. Mewshaw et al.
	6,923,805 6,926,246			LaFontaine et al. Ginggen	7,158,832 B2		Kieval et al.
	6,926,713			Rioux et al.	7,160,296 B2	1/2007	Pearson et al.
	6,926,716			Baker et al.	7,162,303 B2		Levin et al.
	6,929,009			Makower et al.	7,165,551 B2		Edwards et al.
	6,929,632			Nita et al.	7,169,144 B2 7,172,589 B2		Hoey et al. Lafontaine
	6,929,639 6,932,776		8/2005	Lafontaine	7,172,610 B2		Heitzmann et al.
	6,936,047			Nasab et al.	7,181,261 B2		Silver et al.
	6,942,620			Nita et al.	7,184,811 B2		Phan et al.
	6,942,657			Sinofsky et al.	7,184,827 B1		Edwards
	6,942,677			Nita et al.	7,189,227 B2 7,192,427 B2		Lafontaine Chapelon et al.
	6,942,692 6,949,097			Landau et al. Stewart et al.	7,192,586 B2		Bander
	6,949,097			Laguna	7,197,354 B2		
	6,952,615		10/2005		7,198,632 B2		Lim et al.
	6,953,425		10/2005		7,200,445 B1		Dalbec et al.
	6,955,174			Joye et al.	7,201,749 B2 7,203,537 B2		Govari et al. Mower
	6,955,175			Stevens et al.	7,203,337 B2 7,214,234 B2		Rapacki et al.
	6,959,711 6,960,207		11/2005	Murphy et al. Vanney et al.	7,220,233 B2		Nita et al.
	6.962,584			Stone et al.	7,220,239 B2		Wilson et al.
	6,964,660			Maguire et al.	7,220,257 B1		Lafontaine
	6,966,908		11/2005	Maguire et al.	7,220,270 B2 7,232,458 B2		Sawhney et al.
	6,972,015			Joye et al.	7,232,458 B2		Greenberg et al.
	6,972,024 6,974,456			Kilpatrick et al. Edwards et al.	7,238,184 B2		Megerman et al.
	6,978,174			Gelfand et al.	7,241,273 B2	7/2007	Maguire et al.
	6,979,329		12/2005	Burnside et al.	7,241,736 B2		Hunter et al.
	6,979,420		12/2005		7,247,141 B2 7,250,041 B2		Makin et al. Chiu et al.
	6,984,238			Gifford, III et al.	7,250,041 B2 7,250,440 B2		Mewshaw et al.
	6,985,774 6,986,739	B2 B2		Kieval et al. Warren et al.	7,252,664 B2		Nasab et al.
	6,989,009			Lafontaine	7,252,679 B2		Fischell et al.
	6,989,010			Francischelli et al.	7,264,619 B2		Venturelli
	6,991,617			Hektner et al.	7,279,600 B2 7,280,863 B2		Mewshaw et al.
	7,001,378			Yon et al.	7,282,213 B2		Schroeder et al.
	7,006,858 7,022,105			Silver et al. Edwards	7,285,119 B2		Stewart et al.
	7,022,103			Lafontaine	7,285,120 B2	10/2007	Im et al.
	7,025,767		4/2006	Schaefer et al.	7,288,089 B2		Yon et al.
	7,033,322		4/2006		7,288,096 B2		Chin Steinke et al.
	7,033,372			Cahalan	7,291,146 B2 7,293,562 B2		Malecki et al.
	7,041,098 7,050,848			Farley et al. Hoey et al.	7,294,125 B2	11/2007	Phalen et al.
	7,063,670			Sampson et al.	7,294,126 B2		Sampson et al.
	7,063,679			Maguire et al.	7,294,127 B2		Leung et al.
	7,063,719			Jansen et al.	7,297,131 B2 7,297,475 B2		Nita Koiwai et al.
	7,066,895		6/2006		7,300,433 B2		Lane et al.
	7,066,900 7,066,904			Botto et al. Rosenthal et al.	7,301,108 B2		Egitto et al.
	7,072,720	B2	7/2006		7,310,150 B2		Guillermo et al.
	7,074,217	B2	7/2006	Strul et al.	7,313,430 B2		Urquhart et al.
	7,081,112			Joye et al.	7,314,483 B2 7,317,077 B2		Landau et al. Averback et al.
	7,081,114 7,083,614		7/2006 8/2006	Fjield et al.	7,323,006 B2		Andreas et al.
	7,083,014			Vu et al.	7,326,206 B2		Paul et al.
	7,084,270			Callister et al.	7,326,226 B2	2/2008	Root et al.
	7,087,051	B2	8/2006	Bourne et al.	7,326,235 B2		Edwards
	7,087,052			Sampson et al.	7,326,237 B2		DePalma et al.
	7,087,053			Vanney Worthund et al.	7,329,236 B2		Kesten et al.
	7,089,065 7,097,641			Westlund et al. Arless et al.	7,335,180 B2 7,335,192 B2		Nita et al. Keren et al.
	7,097,641			Stevens et al.	7,338,467 B2		
	7,100,014			Lafontaine	7,341,570 B2		Keren et al.
	7,104,983			Grasso, III et al.	7,343,195 B2		Strommer et al.
	7,104,987	B2		Biggs et al.	7,347,857 B2	3/2008	Anderson et al.
	7,108,715	B2	9/2006	Lawrence-Brown et al.	7,348,003 B2	3/2008	Salcedo et al.

U.S. PATENT DOCUMENTS 7.58,293 B2 42008 Zeng et al. 7.58,238 B2 122009 Gumm 7.354,072 B2 42008 Vu 7.46,046 B2 122009 Gumm 7.354,073 B2 42008 Kins et al. 7.641,63 B2 12000 Juno et al. 7.651,63 B2 12000 Juno et al. 7.661,64 B2 12000 Juno et al. 7.6	(56) Refere	nces Cited	7,626,015 B2		Feinstein et al.
735.593 B2 4/2008 Zemg et al. 7,635,383 B2 12/2009 Gumm (7354927) B2 4/2008 Kim et al. 7,640,046 B2 12/2009 Passere et al. 7,640,046 B2 12/200 Passere et al. 7,640,046 B2 12/200 Passere et al. 7,645,044 B2 12/2010 Passere et al. 7,645,044 B2 12/2010 Passere et al. 7,645,046 B2 12/2010 Passere et al. 7,445,046 B2 12/2	U.S. PATENT	DOCUMENTS	7,632,268 B2	12/2009	Edwards et al.
7.555,927 82 4/2008 Wim et al. 7.641,633 82 1/2009 Pastore et al. 7.359,738 2 4/2008 Kim et al. 7.641,633 81 1/2010 Joyce et al. 7.359,738 81 1/2010 Joyce et al. 7.359,738 81 1/2010 Joyce et al. 7.641,613 82 1/2010 Joyce et al. 7.651,613 82 1/2010 Joyce et al. 7.661,613 82 1/2010 Joyce et al. 7.6					
7.361,341 82 42008 Sime at al. 7,641,673 B2 12010 Jaufse et al. 7,361,341 B2 42008 Sibilities et al. 7,641,673 B2 12010 Jaufse et al. 7,361,341 B2 12010 Jaufse et al. 7,367,375 B2 52008 Mildecki et al. 7,651,361 B2 12010 Jaufse et al. 7,367,375 B2 52008 Mildecki et al. 7,651,361 B2 12010 Jaufse et al. 7,661,441 B2 12010 Jaufse et al. 7,678,141 B2 12010 Jaufse et al. 7,7678,141 B2 12010 Jaufse et al. 7,7678,141 B2 12010 Jaufse et al. 7,7678,141 B2 12010 Jaufse et al. 7,749,151 B2 12010 Jaufs					
7.361.341 B2					
736/3970 B2 5/2008 Gwarri et al. 7,647,115 B2 1/2010 Levin et al. 7,667,115 B2 1/2010 Deme et al. 607/44 7371,231 B2 5/2008 Risoux et al. 7,653,006 B2 2/2010 Sauvagean et al. 7,631,338 B2 1/2010 Gert et al. 7,631,338 B2 1/2010 Gert et al. 7,601,338 B2 1/2018 Cover et al. 7,661,338 B2 1/2018 Gert et al. 7,601,338 B2 1/2018 Cover et al. 7,670,279 B2 3/2010 Gert et al. 7,601,338 B2 7/2008 Rosen et al. 7,670,379 B2 3/2010 Gert et al. 7,601,338 B2 7/2008 Rosen et al. 7,670,379 B2 3/2010 Gert et al. 7,670,319 B2 7/2008 Rosen et al. 7,670,379 B2 3/2010 Gert et al. 7,670,319 B2 7/2008 Rosen et al. 7,670,319 B2 3/2010 Gert et al. 7,670,319 B2 7/2008 Rosen et al. 7,670,319 B2 3/2010 Gert et al. 7,710,319 B2 3/2010 Gert et al. 7,720,319 B2 3/2010 Gert et al. 7,730,300 B2 3/2010 Gert et al. 7,730,300 B2 3/2010 Gert et al. 7,730,31	7,361,341 B2 4/2008	Salcedo et al.			
7-37(3)-73 B2 5-2008 Maleckie al. 7,653,488 B2* 1/2010 Deem et al					
7-371,231 B2 5/2008 Risux et al. 7.653,006 B2 2/2010 Savuagenue et al. 7-387,126 B2 6/2008 Cox et al. 7.662,14 B2 2/2010 Sept et al. 7.670,379 B2 3/2010 American et al. 7.670,379 B2 3/2010 Keidar al. 7.678,166 B2 3/2010 Keidar al. 7.778,167 B2 3/20					
7.393,338 B. 7.2008 Nin	7,371,231 B2 5/2008				
7-90;3.35 B. 7-2008 Goldman et al. 7,670,279 B2 3,2010 Gertner 7,40;1.15 B2 7-2008 Roseman et al. 7,670,318 B2 3,2010 Movshaw et al. 7,401,312 B2 7,2008 Rosem et al. 7,670,303 B2 3,2010 Movshaw et al. 7,401,324 B2 7,2008 Webler et al. 7,673,108 B2 3,2010 Movshaw et al. 7,401,502 B2 8,2008 Zikons et al. 7,678,108 B2 3,2010 Ecc. 7,401,502 B2 8,2008 Zikons et al. 7,678,108 B2 2,2010 Kedar et al. 7,401,502 B2 8,2008 Zikons et al. 7,678,108 B2 4,2010 Lec. 7,401,502 B2 8,2008 Zikons et al. 7,601,803 B2 4,2010 Lec. 7,401,502 B2 8,2008 Zikons et al. 7,601,803 B2 4,2010 Lec. 7,401,502 B2 8,2008 Kebride et al. 7,601,803 B2 4,2010 Lec. 7,401,502 B2 8,2008 Kebride et al. 7,601,803 B2 4,2010 Lec. 7,401,502 B2 8,2008 Kebride et al. 7,601,803 B2 4,2010 Lec. 7,401,802 B2 8,2008 Kebride et al. 7,704,802 B2 2,2008 Dang et al. 7,704,802 B2 2,2008 Dang et al. 7,715,912 B2 5,2010 Nits 14,143,524 B2 1,2008 Zikons et al. 7,717,909 B2 5,2010 Nits 14,143,524 B2 1,2008 Zikons et al. 7,715,912 B2 5,2010 Zikons et al. 7,725,157 B2 5,2010 Dang et al. 7,735,17 B2 6,2010 Dang et al. 7,735,17					
7.402.151 B2 7.2008 Rosemma et al. 7.670.335 B2 32910 Keckfar 7.402.312 B2 7.7008 Rosen et al. 7.671.048 B2 32910 Mexhaw et al. 7.402.312 B2 7.7008 Rosen et al. 7.678.104 B2 32910 Keckfar 7.406.705 B2 82008 Stirul et al. 7.678.104 B2 32910 Cc. 1.407.705 B2 82008 Stirul et al. 7.678.104 B2 32910 Cc. 1.407.705 B2 82008 Stirul et al. 7.678.104 B2 32910 Cc. 1.407.705 B2 82008 Stirul et al. 7.678.108 B2 42910 Cc. 1.407.705 B2 82008 Stirul et al. 7.691.080 B2 42910 Cc. 1.407.705 B2 82008 Stirul et al. 7.691.080 B2 42910 Cc. 1.407.705 B2 82008 Stirul et al. 7.691.080 B2 42910 Cc. 1.407.705 B2 52910 D2 Cc. 1.407.705					
7,404,824 B1 7,2008 Webber et al. 7,678,106 B2 3,2010 Lec 7,407,502 B2 8,2008 Strul et al. 7,678,108 B2 3,2010 Lec 7,407,501 B2 8,2008 Strul et al. 7,678,108 B2 3,2010 Christian et al. 7,407,501 B2 8,2008 Makower 7,407,671 B2 8,2008 McBride et al. 7,699,808 B2 4,2010 Wewer 7,408,021 B2 8,2008 McBride et al. 7,705,808 B2 4,2010 Wewer 7,408,021 B2 8,2008 McBride et al. 7,715,912 B2 5,2010 Rezai et al. 7,408,021 B2 8,2008 Fulmano et al. 7,715,912 B2 5,2010 Rezai et al. 7,408,021 B2 8,2008 Chang et al. 7,715,912 B2 5,2010 Rezai et al. 7,408,021 B2 9,2008 Danck et al. 7,408,021 B2 9,2008 Chang et al. 7,408,021 B2 12,000 Rezai et al. 7,408,031 B2 1	7,402,151 B2 7/2008				
7,406,970 B2 8,2008 Zikorus et al. 7,678,106 B2 3,2010 Lec					
7407.502 B2 82008 Strul et al. 7,678,108 B2 32010 Christian et al. 7,407.671 B2 82008 Malower 7,691,808 B2 42010 Sweard et al. 7,408,021 B2 82008 McBride et al. 7,708,808 B2 42010 Urmey 7,408,021 B2 82008 Eulimanon et al. 7,708,808 B2 42010 Urmey 7,408,021 B2 82008 Eulimanon et al. 7,708,808 B2 42010 Francischelli et al. 7,408,021 B2 2008 Change et al. 7,717,853 B2 2000 Change et al. 7,717,853 B2 52010 Strul et al. 7,717,948 B2 52010 Strul et al. 7,722,157 B2 52010 Strul et al. 7,722,157 B2 52010 Strul et al. 7,723,157 B2 52010 Strul et al. 7,724,743 B2 12,008 Km et al. 7,723,157 B2 52010 Change et al. 7,724,743 B2 12,008 Km et al. 7,723,157 B2 52010 Change et al. 7,746,348 B2 11,2008 Km et al. 7,736,317 B2 62010 Strul et al. 7,746,348 B2 11,2008 Km et al. 7,736,368 B2 62010 Mody et al. 7,746,348 B2 12,009 Stie et al. 7,736,368 B2 62010 Mody et al. 7,748,738 B2 12,009 Stie et al. 7,736,368 B2 62010 Strul et al. 7,748,738 B2 2009 Stie et al. 7,744,948 B2 2009 Stie et al. 7,745,749 B2 62010 Stone et al. 7,749,488 B2 2009 Stie et al. 7,758,758 B2 7,749,488 B2 2009 Stie et al. 7,758,758 B2 7,749,488 B2 2009 Stone et al. 7,758,758 B2 7,749,758 B2 2009 Stone et al. 7,75			7,678,106 B2	3/2010	Lee
7.407.671 B2 8.2008 McBride et al. 7,699.809 B2 4/2010 Umrey 7.408.021 B2 8/2008 Furmanon et al. 7,715,912 B2 5/2010 Vira 7.410.486 B2 8/2008 Furmanon et al. 7,715,912 B2 5/2010 Vira 7.425,212 B1 9/2008 Danck et al. 7,717,909 B2 5/2010 Simul et al. 7.425,212 B1 9/2008 Danck et al. 7,717,909 B2 5/2010 Simul et al. 7.435,248 B2 10/2008 Taimsto et al. 7,717,948 B2 5/2010 Dumaris et al. 7.445,548 B2 11/2008 Kim et al. 7,721,778 B2 6/2010 Dumaris et al. 7.449.018 B2 11/2008 Kim et al. 7,721,778 B2 6/2010 Umrey 7.449.018 B2 11/2008 Ni et al. 7,736,736 B2 6/2010 Umrey 7.449.018 B2 11/2008 Weber et al. 7,736,736 B2 6/2010 Umrey 7.447,107 B2 1/2009 Weber et al. 7,736,300 B2 6/2010 Umrey 7.449.108 B2 11/2009 Weber et al. 7,736,300 B2 6/2010 Umrey 7.449.108 B2 1/2009 Weber et al. 7,736,300 B2 6/2010 Umrey 7.449.108 B2 1/2009 Weber et al. 7,744,629 B2 6/2010 Umrey 7.449.108 B2 1/2009 Weber et al. 7,744,629 B2 6/2010 Umrey 7.449.108 B2 1/2009 McBer et al. 7,744,629 B2 6/2010 Umrey 7.449.108 B2 1/2009 McBer et al. 7,744,629 B2 6/2010 Sense et al. 7,445,748 B2 1/2009 Weber et al. 7,744,745 B2 6/2010 Umrey 7.449.108 B2 1/2009 McBer et al. 7,744,745 B2 6/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,745,745 B2 6/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,755,810 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,755,810 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,755,810 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,755,810 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,755,810 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,755,810 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,755,810 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,755,810 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,755,810 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,756,83 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,756,83 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,756,83 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,756,83 B2 7/2010 Umrey 7.449.486 B2 1/2009 McBer et al. 7,756,83 B2 7/2010 Umrey	7,407,502 B2 8/2008	Strul et al.			
7,408,021 82 8,2008 Averback et al. 7,706,882 82 4,2010 Francischelli et al.					
7.410,486 B2 8/2008 Fulmanon et al. 7.715,912 B2 52010 Nata 7.425,212 B1 9/2008 Danck et al. 7.717,909 B2 52010 Strul et al. 7.425,212 B1 9/2008 Danck et al. 7.717,909 B2 52010 Danmaris et al. 7.425,212 B1 9/2008 Danck et al. 7.717,909 B2 52010 Danmaris et al. 7.425,318 B2 11/2008 Kim et al. 7.725,359 B2 52010 Danmaris et al. 7.447,453 B2 11/2008 Kim et al. 7.725,359 B2 52010 Danmaris et al. 7.447,453 B2 11/2008 Kim et al. 7.725,317 B2 52010 Danmaris et al. 7.447,530 B2 11/2008 Kim et al. 7.736,317 B2 62010 Danmaris et al. 7.447,530 B2 11/2009 Micro et al. 7.736,317 B2 62010 Danmaris et al. 7.447,530 B2 11/2009 Micro et al. 7.736,306 B2 62010 Wilson et al. 7.736,307 B2 62010 Danmaris et al. 7.736,307 B2 62010 Danmaris et al. 7.736,307 B2 62010 Micro et al. 7.736,308 B2 62010 Micro et al. 7.736,309 B2 702010 Danmaris et al. 7.736,309 B2 702010 Micro et al. 7.736			7,706,882 B2	4/2010	Francischelli et al.
7,475,212 BI 9,2008 Danck et al. 7,717,908 BZ 5/2010 Struct et al. 7,476,009 BZ 9,2008 Casseels, Ill et al. 7,717,948 BZ 5/2010 Carrer et al. 7,474,475 BZ 11,2008 Kim et al. 7,722,5157 BZ 5/2010 Wison et al. 7,474,475 BZ 11,2008 Kim et al. 7,723,5157 BZ 5/2010 Wison et al. 7,474,475 BZ 11,2008 Kim et al. 7,736,361 BZ 6/2010 Wison et al. 7,474,380 BZ 11,2009 Si et al. 7,736,362 BZ 6/2010 Mody et al. 7,474,380 BZ 12,000 Si et al. 7,736,362 BZ 6/2010 Mody et al. 7,474,380 BZ 12,000 Weber et al. 7,736,362 BZ 6/2010 Wison et al. 7,744,579 BZ 12,000 Weber et al. 7,746,629 BZ 6/2010 Feinstein et al. 7,744,579 BZ 2/2009 Kesten et al. 7,744,579 BZ 6/2010 Feinstein et al. 7,744,579 BZ 2/2009 Krattiger 7,742,795 BZ 6/2010 Feinstein et al. 7,744,778 BZ 2/2009 Howen 7,744,795 BZ 6/2010 Yanazaki et al. 7,744,785 BZ 2/2009 Bonner et al. 7,755,583 BZ 7/2010 Danazaki et al. 7,744,488 BZ 2/2009 Mische et al. 7,756,583 BZ 7/2010 Danazaki et al. 7,744,488 BZ 2/2009 Mische et al. 7,755,583 BZ 7/2010 Danazaki et al. 7,744,488 BZ 2/2009 Weber 7,758,520 BZ 7/2010 Danazaki et al. 7,744,488 BZ 2/2009 Wische et al. 7,756,878 BZ 7/2010 Danazaki et al. 7,744,4488 BZ 2/2009 Wische et al. 7,756,878 BZ 7/2010 Danazaki et al. 7,744,488 BZ 2/2009 Wische et al. 7,756,878 BZ 8/2010 Ganders 7,759,315 BZ 8/2010 Via et al. 7,766,878 BZ 8/2010 Via et	7,410,486 B2 8/2008	Fuimaono et al.			
7.476.409 B2 9.2008 Casseells, III et al. 7.717.948 B2 5/2010 Demarais et al. 7.476.348 B2 10/2008 Taimisto et al. 7.272.539 B2 5/2010 Demarais et al. 7.447.453 B2 11/2008 Kamer al. 7.272.178 B2 5/2010 Demarais et al. 7.447.453 B2 11/2008 Kamer al. 7.272.178 B2 5/2010 Demarais et al. 7.473.6360 B2 11/2008 Kamer al. 7.736.360 B2 6/2010 Wilson et al. 7.473.6360 B2 11/2009 Grier et al. 7.736.360 B2 6/2010 Moly et al. 7.476.384 B2 11/2009 Wieber et al. 7.736.360 B2 6/2010 Demarais et al. 7.474.6384 B2 11/2009 Weber et al. 7.736.360 B2 6/2010 Demarais et al. 7.474.6384 B2 11/2009 Weber et al. 7.740.620 B2 6/2010 Fun et al. 7.481.801 B2 1/2009 Kieval 7.741.299 B2 6/2010 Anderson et al. 7.481.801 B2 1/2009 Kieval 7.744.594 B2 6/2010 Fun et al. 7.744.594 B2 7/2010 Demarais et al. 7.744.494 B2 2/2009 Bench et al. 7.755.510 B2 7/2010 DiMateo et al. 7.749.4486 B2 2/2009 Weber 7.758.520 B2 7/2010 DiMateo et al. 7.749.4681 B2 2/2009 Weber 7.758.520 B2 7/2010 Vita et al. 7.749.746 B2 2/2009 Sanders 7.759.315 B2 7/2010 Cuzzocrea et al. 7.749.746 B2 2/2009 Sanders 7.759.315 B2 7/2010 Cuzzocrea et al. 7.749.746 B2 2/2009 Sanders 7.759.315 B2 7/2010 Cuzzocrea et al. 7.749.746 B2 2/2009 Sanders 7.759.315 B2 8/2010 Ce et al. 7.750.816 B2 3/2009 Chapelon et al. 7.766.892 B2 8/2010 Ce et al. 7.750.816 B2 3/2009 Chapelon et al. 7.766.892 B2 8/2010 Ce et al. 7.750.816 B2 3/2009 Sandat 7.766.892 B2 8/2010 Fun et al. 7.776.892 B2 8/2010 Fun et al. 7.777.492 B2 8/2010 Fun et al. 7.750.893 B2 8/2010 Fun et al. 7.777.493 B2 8/2010 Fun et al. 7.750.893 B					
7.435.248 B2 10.2008 Taimisto et al. 7.722,5157 B2 5/2010 Carrer et al. 7.447.4518 B2 11.2008 Kim et al. 7.725,157 B2 5/2010 Wilson et al. 7.449.018 B2 11.2008 Kim et al. 7.736,317 B2 6/2010 Wilson et al. 7.435.85 B2 11.2009 Si et al. 7.736,317 B2 6/2010 Mody et al. 7.473,809 B2 1.2009 Si et al. 7.736,360 B2 6/2010 Mody et al. 7.746,384 B2 1.2009 Si et al. 7.736,360 B2 6/2010 Mody et al. 7.746,384 B2 1.2009 Weber et al. 7.746,629 B2 6/2010 Peint et al. 7.746,629 B2 1.2009 Weber et al. 7.746,629 B2 6/2010 Vin et al. 7.746,629 B2 6/2010 Moderson et al. 7.485,104 B2 2.2009 Kesten et al. 7.744,299 B2 6/2010 Feinstein et al. 7.445,786 B2 2.2009 Krattiger 7.742,795 B2 6/2010 Vin et al. 7.445,786 B2 2.2009 Hoven 7.744,795 B2 2.2009 Hoven 7.744,795 B2 2.2009 Hoven 7.744,795 B2 2.2009 Wische et al. 7.755,538 B2 7.2010 Mische et al. 7.756,838 B2 8.2010 Keen et al. 7.756,838 B2 7.2010 Mische et al. 7.756,838 B2 7.2010 Mis			7,717,948 B2		
11/2008 11/2008 11/2008 11/2008 11/2008 11/2008 11/2009 11/2	7,435,248 B2 10/2008	Taimisto et al.			
7,482,538 B2 11/2008 Nict atl					
7,473,89 B2 1/2009 Niet al. 7,736,360 B2 62010 Mody et al. 7,473,89 B2 1/2009 Niet al. 7,736,360 B2 62010 Mody et al. 7,479,157 B2 1/2009 Niet al. 7,736,360 B2 62010 Yun et al. 7,479,157 B2 1/2009 Kesten et al. 7,740,629 B2 62010 Yun et al. 7,481,040 B2 2/2009 Kesten et al. 7,740,629 B2 62010 Feinstein et al. 7,485,104 B2 2/2009 Kertiger 7,742,995 B2 62010 Feinstein et al. 7,485,780 B2 2/2009 Kertiger 7,742,995 B2 62010 Yunazaki et al. 7,485,780 B2 2/2009 Honoven 7,744,594 B2 62010 Yunazaki et al. 7,493,145 B2 2/2009 Honoven 7,744,594 B2 7,2010 Minateo et al. 7,755,581 B2 7,2010 Minateo et al. 7,494,485 B2 2/2009 Minateo et al. 7,755,581 B2 7,2010 Griffin et al. 7,494,485 B2 2/2009 Minateo et al. 7,755,581 B2 7,2010 Griffin et al. 7,494,485 B2 2/2009 Minateo et al. 7,766,878 B2 2/2000 Minateo et al. 7,766,878 B2 2/2000					
1,200 Weber et al.	7,473,890 B2 1/2009	Grier et al.			
7,498,103 12,009 Resten et al. 7,740,629 82 6/2010 Anderson et al. 7,448,5104 82 22009 Resten et al. 7,742,795 82 6/2010 Stone et al. 7,448,5104 82 22009 Rattiger 7,742,795 82 6/2010 Stone et al. 7,448,748 82 22009 Boner et al. 7,744,594 82 7,2010 DiMartice et al. 7,494,485 82 22009 Mische et al. 7,756,588 82 7,2010 DiMartice et al. 7,494,485 82 22009 Mische et al. 7,758,588 82 7,2010 DiMartice et al. 7,494,488 82 22009 Mische et al. 7,758,208 82 7,2010 DiMartice et al. 7,494,488 82 22009 Mische et al. 7,758,208 82 7,2010 DiMartice et al. 7,494,648 82 22009 Mische et al. 7,758,208 82 7,2010 DiMartice et al. 7,494,488 82 22009 Mische et al. 7,758,208 82 7,2010 DiMartice et al. 7,494,488 82 22009 Mische et al. 7,766,833 82 7,2010 DiMartice et al. 7,494,488 82 22009 Mische et al. 7,766,833 82 7,2010 Cluzzocrea et al. 7,494,488 82 2,2009 Chapelon et al. 7,766,833 82 8,2010 Cuzzocrea et al. 7,203,488 82 2,2009 Chapelon et al. 7,766,838 82 2,2010 Cuzzocrea et al. 7,203,484 82 2,2010 Reren et al. 7,203,484 82 2,2010 Rere					
7.485.104 Bg 2 2009 Kieval 7.741,299 Bg 6:2010 Feinstein et al. 7.486,780 Bg 2 2009 Hooven 7,744,594 Bg 6:2010 Yamazaki et al. 7.487,780 Bg 2 2009 Bonner et al. 7,734,594 Bg 6:2010 Dimatro et al. 7.494,485 Bg 2 2009 Boek et al. 7,758,583 Bg 7:2010 Dimatro et al. 7.494,488 Bg 2 2009 Mische et al. 7,758,530 Bg 7:2010 Wita et al. 7.494,488 Bg 2 2009 Weber 7,759,315 Bg 7:2010 Unzzoerea et al. 7.494,661 Bg 2 2009 Wiggins 7,766,833 Bg 82010 Lee et al. 7.495,439 Bg 2 2009 Viggins 7,766,883 Bg 82010 Lee et al. 7,509,815 Bg 2 3009 Stadat 7,767,844 Bg 82010 Keren et al. 7,505,816 Bg 2 32009 Schmeling et al. 7,771,372 Bg 82010 Keren et al. 7,507,235 Bg 3 2009 Schmeling et al. 7,771,372 Bg 82010 Stewart et al. <	.,,				
7,487,780 B2 22009 Howen 1,744,594 B2 6,2010 Yamazaki et al.	7,485,104 B2 2/2009	Kieval			
7,493,194 B2 2/2009 Bonner et al. 7,753,907 B2 7/2010 DiMatteo et al. 7,494,488 B2 2/2009 Mische et al. 7,758,588 B2 7/2010 Dimatrais et al. 7,494,488 B2 2/2009 Mische et al. 7,758,510 B2 7/2010 Dimatrais et al. 7,494,488 B2 2/2009 Mische et al. 7,758,510 B2 7/2010 Gifflin et al. 7,494,488 B2 2/2009 Mische et al. 7,758,520 B2 7/2010 Cirzzocrea et al. 7,494,5439 B2 2/2009 Mische et al. 7,766,878 B2 3/2009 Cirzocrea et al. 7,766,878 B2 3/2009 Cirzocrea et al. 7,766,878 B2 3/2009 Circocrea et al. 7,769,477 B2 8/2010 Circocrea et al. 7,771,472 B2 8/2010 Circocrea et al. 7,769,477 B2 8/2010 Circocrea et al. 7,771,472 B2 8/2010 Circocrea et al. 7,769,477 B2 8/2010 Circocrea et al. 7,769,477 B2 8/2010 Circocrea et al. 7,771,478 B2 8/2010 Circocrea et al. 7,771,478 B2 8/2010 Circocrea et al. 7,771,478 B2 8/2010 Circocrea et al. 7,789,678 B2 8/2010 Circocrea et al. 7,789,678 B2 8/2010 Circocrea et al. 7,789,769 B2 8/2010 Circocrea et al. 7,789,769 B2 8/2010 Circocrea et al. 7,789,876 B2 9/2010 Circocrea et al. 7,789,676 B2 9/2010 Circocrea					
7,494,485 B2 2/2009 Meck et al. 7,786,583 B2 7/2010 Nita et al. 7,494,468 B2 2/2009 Weber 7,788,510 B2 7/2010 Nita et al. 7,494,468 B2 2/2009 Weber 7,759,315 B2 7/2010 Nita et al. 7,494,468 B2 2/2009 Weber 7,759,315 B2 7/2010 Curzocrea et al. 7,494,661 B2 2/2009 Weber 7,759,315 B2 7/2010 Curzocrea et al. 7,494,643 B2 2/2009 Weber 7,759,315 B2 7/2010 Curzocrea et al. 7,494,643 B2 3/2009 Littup et al. 7,766,878 B2 8/2010 Lee et al. 7,494,748 B2 3/2009 Littup et al. 7,766,878 B2 8/2010 Lee et al. 7,509,985 B2 3/2009 Littup et al. 7,766,892 B2 8/2010 Keren et al. 8/2010 Saadat 7,767,844 B2 8/2010 Saadat 7,767,844 B2 8/2010 Sebmeling et al. 7,771,372 B2 8/2010 Shachar 8/2072,33 B2 3/2009 Sebmeling et al. 7,771,372 B2 8/2010 Shachar 7,507,233 B2 3/2009 Littup et al. 7,771,471 B2 8/2010 Shachar 8/2072,33 B2 3/2009 Wedeen 7,759,769,769 B2 8/2010 Hargreaves et al. 7,774,945 B2 8/2010 Hargreaves et al. 7,774,945 B2 8/2010 Hargreaves et al. 7,789,660 B2 8/2010 B2			7,753,907 B2		
7,494,488 B2 2/2009 Weber 7,758,250 B2 7/2010 Griffin et al. 7,494,661 B2 2/2009 Wiggins 7,766,833 B2 8/2010 Lee et al. 7,766,833 B2 7/2010 Wiggins 7,766,833 B2 8/2010 Lee et al. 7,497,858 B2 3/2009 Littrup et al. 7,766,829 B2 8/2010 Keren et al. 7,509,455 B2 3/2009 Sandar 7,507,68,820 B2 8/2010 Keren et al. 7,509,455 B2 3/2009 Sandar 7,505,812 B1 3/2009 Sandar 7,505,816 B2 3/2009 Sandar 7,771,372 B2 8/2010 Keren et al. 7,505,816 B2 3/2009 Schmeling et al. 7,771,372 B2 8/2010 Wilson 7,507,233 B2 3/2009 Keren et al. 7,771,421 B2 8/2010 Wilson 7,507,235 B2 3/2009 Wedeen 7,777,486 B2 8/2010 Wilson 7,511,494 B2 3/2009 Wedeen 7,777,486 B2 8/2010 Hargreaves et al. 7,527,643 B2 5/2009 Case et al. 7,780,660 B2 8/2010 Hargreaves et al. 7,529,589 B2 5/2009 Williams et al. 7,789,676 B2 9/2010 Zikorus et al. 7,540,855 B2 6/2009 Nita et al. 7,799,021 B2 9/2010 Zikorus et al. 7,556,624 B2 7/2009 Laufer et al. 7,808,671 B2 10/2010 Hird et al. 7,556,624 B2 7/2009 Laufer et al. 7,811,248 B2 7/2009 Laufer et al. 7,811,248 B2 10/2010 Hering et al. 7,556,631 B2 7/2009 McAuley et al. 7,811,248 B1 10/2010 Hering et al. 7,589,376 B2 9/2010 Gifford et al. 7,556,631 B2 7/2009 McAuley et al. 7,811,248 B1 10/2010 Hering et al. 7,589,376 B2 9/2009 McAuley et al. 7,811,248 B1 10/2010 Kawashima et al. 7,589,376 B2 9/2009 Krolik et al. 7,811,265 B2 10/2010 Hering et al. 7,589,383 B2 9/2009 Hill et al. 7,811,266 B2 10/2010 Hering et al. 7,589,398 B2 9/2009 Hill et al. 7,811,266 B2 10/2010 Hering et al. 7,589,398 B2 9/2009 Hill et al. 7,813,332 B2 11/2010 Mon et al. 7,589,398 B2 9/2009 Hill et al. 7,839,376 B2 11/2010 Mon et al. 7,589,308 B2 10/2009 Hartori et al. 7,839,376 B2 11/2010 Mon et al. 7,589,338 B2 11/2010 Hargreaves et al. 7,839,379 B2 11/2010 Mon et al. 7,589,338 B2 11/2010 Hargreaves et al. 7,839,379 B2 11/2010 Mon et al. 7,589,338 B2 11/2010	7,494,485 B2 2/2009	Beck et al.			
7,494,661 B2 2/2009 Sanders 7,759,315 B2 7/2010 Cuzzocrea et al. 7,494,463 B2 2/2009 Wiggins 7,766,833 B2 8/2010 Leet al. 7,766,837 B2 8/2010 Leet al. 7,766,837 B2 8/2010 Leet al. 7,766,838 B2 3/2009 Chapelon et al. 7,766,878 B2 8/2010 Leet al. 7,769,978 B2 3/2009 Sandat 7,767,844 B2 8/2010 Leet al. 7,709,427 B2 8/2010 Leet al. 7,505,812 B1 3/2009 Eggers et al. 7,769,427 B2 8/2010 Shachar 7,505,816 B2 3/2009 Schmeling et al. 7,771,372 B2 8/2010 Shachar 7,507,233 B2 3/2009 Chemeling et al. 7,771,372 B2 8/2010 Stewart et al. 7,507,233 B2 3/2009 Littrup et al. 7,771,472 B2 8/2010 Stewart et al. 7,507,233 B2 3/2009 Chemeling et al. 7,771,472 B2 8/2010 Stewart et al. 7,507,233 B2 3/2009 Wedgen 7,774,486 B2 8/2010 Hargreaves et al. 7,780,660 B2 8/2010 Stewart et al. 7,512,445 B2 3/2009 Wedgen 7,774,486 B2 8/2010 Bourne et al. 7,520,543 B2 5/2009 Case et al. 7,789,876 B2 9/2010 Zhorus et al. 7,520,543 B2 5/2009 Williams et al. 7,792,568 B2 9/2010 Zhorus et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Gifford et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Gifford et al. 7,566,624 B2 7/2009 Levin et al. 7,811,281 B1 10/2010 Hering et al. 7,566,319 B2 7/2009 Levin et al. 7,811,281 B1 10/2010 Kawashima et al. 7,566,319 B2 7/2009 McAuley et al. 7,811,313 B2 10/2010 Kawashima et al. 7,584,004 B2 9/2009 William et al. 7,816,511 B2 10/2010 Kawashima et al. 7,591,906 B2 9/2009 Hill et al. 7,812,460 B2 10/2010 Kawashima et al. 7,591,906 B2 9/2009 Hill et al. 7,822,460 B2 10/2010 Kawashima et al. 7,591,906 B2 10/2009 Hardroi et al. 7,833,200 B2 11/2010 Mon et al. 7,591,906 B2 10/2009 Hardroi et al. 7,833,200 B2 11/2010 Gertner 7,598,208 B2 10/2009 Hardroi et al. 7,833,200 B2 11/2010 Mon et al. 7,591,906 B2 10/2009 Hardroi et al. 7,833,200 B2 11/2010 Mon et al. 7,844,616 B2 10/2009 Hardroi et al. 7,844,616 B2 10/2010 Hardroi et al. 7,844,616 B2 10/2010 Hardroi et al. 7,844,616 B2 10/2010 Mon et al. 7,844,616 B2 10/2009 Coleman 7,846,178 B2 11/2010 Mon et al. 7,844,616 B2 10/2009 Coleman 7,846,178 B2 11/2010 Mon et al					
7,495,439 B2 2/2009 Wiggins 7,766,833 B2 8,2010 Lee et al. 7,497,858 B2 3/2009 Chapelon et al. 7,766,878 B2 8/2010 Tremaglio, Jr. et al. 7,760,878 B2 3/2009 Littrup et al. 7,766,878 B2 8/2010 Keren et al. 8/2010 Shachar 7,505,812 B1 3/2009 Eggers et al. 7,769,427 B2 8/2010 Shachar 7,505,816 B2 3/2009 Schmeling et al. 7,771,421 B2 8/2010 Shachar 7,505,816 B2 3/2009 Keoph et al. 7,771,421 B2 8/2010 Shachar 8/2010 Shachar 7,507,233 B2 3/2009 Keoph et al. 7,771,421 B2 8/2010 Shachar 8/2010 Shachar 7,507,235 B2 3/2009 Wedeen 7,777,466 B2 8/2010 Hargreaves et al. 7,511,494 B2 3/2009 Wedeen 7,777,466 B2 8/2010 Hargreaves et al. 7,527,643 B2 5/2009 Wedeen 7,778,666 B2 8/2010 Bourne et al. 7,527,643 B2 5/2009 Williams et al. 7,780,866 B2 8/2010 Bourne et al. 7,527,643 B2 5/2009 Williams et al. 7,792,568 B2 9/2010 Zikorus et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Clong et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Leung et al. 7,556,624 B2 7/2009 Laufer et al. 7,811,265 B2 10/2010 Li et al. 7,556,624 B2 7/2009 Laufer et al. 7,811,265 B2 10/2010 Li et al. 7,566,319 B2 7/2009 Maquire et al. 7,811,281 B1 10/2010 Mon et al. 7,560,952 B2 8/2009 Phan et al. 7,811,313 B2 10/2010 Mon et al. 7,580,952 B2 8/2009 Phan et al. 7,816,531 B2 10/2010 Mon et al. 7,585,663 B2 7/2009 Krolik et al. 7,818,053 B2 10/2010 Kawashima et al. 7,585,9052 B2 8/2009 Phan et al. 7,818,053 B2 10/2010 Mon et al. 7,585,835 B2 9/2009 Krolik et al. 7,822,460 B2 10/2010 Mon et al. 7,585,835 B2 9/2009 Frazier et al. 7,832,376 B2 11/2010 Mon et al. 7,599,790 B2 10/2009 Frazier et al. 7,832,476 B2 11/2010 Mon et al. 7,599,790 B2 10/2009 Frazier et al. 7,832,476 B2 11/2010 Mon et al. 7,599,828 B2 10/2009 Frazier et al. 7,834,616 B2 11/2010 Mon et al. 7,834,616 B2 11/2010 Mon et al. 7,846,610 B2 11/2010 Mon et al. 7,846,61			7,759,315 B2	7/2010	Cuzzocrea et al.
7,499,745 B2 3/2009 Sandat 7,766,892 B2 8/2010 Keren et al. 7,500,985 B2 3/2009 Sandat 7,767,844 B2 8/2010 Lee et al. 7,505,816 B2 3/2009 Schmeling et al. 7,771,372 B2 8/2010 Shachar 7,505,816 B2 3/2009 Schmeling et al. 7,771,372 B2 8/2010 Stewart et al. 7,507,233 B2 3/2009 Littrup et al. 7,771,472 B2 8/2010 Stewart et al. 7,507,235 B2 3/2009 Wedeen 7,777,486 B2 8/2010 Stewart et al. 7,511,494 B2 3/2009 Wedeen 7,777,486 B2 8/2010 Bourne et al. 7,511,494 B2 3/2009 Wedeen 7,777,486 B2 8/2010 Bourne et al. 7,527,643 B2 5/2009 Williams et al. 7,789,876 B2 9/2010 Zikorus et al. 7,527,643 B2 5/2009 Williams et al. 7,799,2568 B2 9/2010 Zikorus et al. 7,529,589 B2 5/2009 Williams et al. 7,799,2568 B2 9/2010 Zikorus et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Gifford et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Lie tal. 10/2010 Lie tal. 10/2010	7,495,439 B2 2/2009	Wiggins			
7,500,985 B2 3/2009 Saadat 7,767,844 B2 8/2010 Lee et al. 7,505,812 B1 3/2009 Eggers et al. 7,769,427 B2 8/2010 Wilson 7,505,812 B1 3/2009 Eggers et al. 7,771,372 B2 8/2010 Wilson 7,507,233 B2 3/2009 Littrup et al. 7,771,421 B2 8/2010 Every et al. 7,507,233 B2 3/2009 Littrup et al. 7,771,421 B2 8/2010 Perry et al. 7,507,233 B2 3/2009 Wedeen 7,777,486 B2 8/2010 Perry et al. 7,511,494 B2 3/2009 Wedeen 7,777,486 B2 8/2010 Perry et al. 7,512,445 B2 3/2009 Truckai et al. 7,780,660 B2 8/2010 Derry et al. 7,527,643 B2 5/2009 Case et al. 7,789,676 B2 9/2010 Zikorus et al. 7,529,589 B2 5/2009 Williams et al. 7,799,2568 B2 9/2010 Leung et al. 7,540,852 B2 6/2009 Williams et al. 7,799,2568 B2 9/2010 Leung et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Leung et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Leung et al. 7,556,624 B2 7/2009 Leurle et al. 7,811,256 B2 10/2010 Herring et al. 7,556,624 B2 7/2009 Levin et al. 7,811,256 B2 10/2010 Herring et al. 7,556,624 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,563,247 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,569,052 B2 8/2009 Phan et al. 7,818,053 B2 10/2010 Mon et al. 7,888,335 B2 9/2009 Krolik et al. 7,818,053 B2 10/2010 Helperin et al. 7,881,343 B2 10/2010 Mon et al. 7,588,335 B2 9/2009 Phan et al. 7,822,460 B2 10/2010 Helperin et al. 7,597,704 B2 10/2009 Frazier et al. 7,833,220 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Frazier et al. 7,833,220 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Hunter et al. 7,837,720 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Hunter et al. 7,834,616 B2 12/2010 Payne et al. 7,604,633 B2 10/2009 Prazier et al. 7,834,616 B2 12/2010 Mon et al. 7,604,608 B2 10/2009 Prazier et al. 7,846,610 B2 12/2010 Makower et al. 7,615,012 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Makower et al. 7,615,012 B2 11/2009 Demarais et al. 7,854,34 B2 12/2010 Demarais et al. 7,85					
7,505,816 B1 3/2009 Eggers et al. 7,769,427 B2 8/2010 Shachar 7,505,816 B2 3/2009 Schmeling et al. 7,771,372 B2 8/2010 Wilson 7,507,233 B2 3/2009 Littrup et al. 7,771,421 B2 8/2010 Stewart et al. 7,507,235 B2 3/2009 Keogh et al. 7,776,967 B2 8/2010 Perry et al. 8/2010 Perry et al. 7,512,445 B2 3/2009 Truckai et al. 7,780,660 B2 8/2010 Bourne et al. 7,527,643 B2 5/2009 Case et al. 7,780,660 B2 8/2010 Bourne et al. 7,527,643 B2 5/2009 Williams et al. 7,789,876 B2 9/2010 Zhong et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Gifford et al. 7,804,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Gifford et al. 7,556,624 B2 7/2009 Laufer et al. 7,804,871 B2 10/2010 Lie tal. 7,556,624 B2 7/2009 Laufer et al. 7,811,265 B2 10/2010 Hering et al. 7,566,319 B2 7/2009 Maguire et al. 7,811,265 B2 10/2010 Mon et al. 7,566,319 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,566,319 B2 7/2009 Maguire et al. 7,816,511 B2 10/2010 Rentrop 7,582,111 B2 9/2009 Krolik et al. 7,818,33 B2 10/2010 Mon et al. 7,881,33 B2 10/2010 Kawashima et al. 7,881,33 B2 10/2010 Kawashima et al. 7,881,33 B2 10/2010 Kawashima et al. 7,881,340 B2 9/2009 Krolik et al. 7,882,460 B2 10/2010 Bednarek 7,597,704 B2 10/2009 Hwang et al. 7,883,200 B2 11/2010 Mon et al. 7,897,704 B2 10/2009 Hwang et al. 7,883,200 B2 11/2010 Mon et al. 7,897,704 B2 10/2009 Hattori et al. 7,881,415 B2 11/2010 Mon et al. 7,897,704 B2 10/2009 Hattori et al. 7,881,415 B2 11/2010 Mon et al. 7,897,704 B2 10/2009 Hunter et al. 7,881,415 B2 11/2010 Mon et al. 7,897,704 B2 11/2009 Mita et al. 7,881,416 B2 11/2010 Mon et al. 7,897,704 B2 11/2009 Prazier et al. 7,881,415 B2 11/2010 Mon et al. 7,897,704 B2 11/2009 Prazier et al. 7,881,415 B2 11/2010 Mon et al. 7,897,704 B2 11/2009 Prazier et al. 7,881,416 B2 11/2010 Mon et al. 7,898,685 B2 11/2010 Mon et al. 7,898,685 B2 11/2010 Makower et al. 7,846,150 B2 11/2009 Demarais et al. 7,884,6150 B2 11/2010 Demarais et al. 7,884,434 B2 11/2010 Biggs et al.			7,767,844 B2	8/2010	Lee et al.
7,507,233 B2 3/2009 Littrup et al. 7,771,421 B2 8/2010 Stewart et al. 7,507,235 B2 3/2009 Keogh et al. 7,776,967 B2 8/2010 Hargreaves et al. 8/2011 Hargreaves et al. 7,512,445 B2 3/2009 Truckai et al. 7,780,660 B2 8/2010 Bourne et al. 7,512,445 B2 3/2009 Case et al. 7,780,660 B2 8/2010 Bourne et al. 7,527,643 B2 5/2009 Williams et al. 7,792,568 B2 9/2010 Zhong et al. 7,529,589 B2 5/2009 Williams et al. 7,799,021 B2 9/2010 Zhong et al. 7,540,852 B2 6/2009 Nita et al. 7,799,021 B2 9/2010 Leung et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Gifford et al. 8,740,863 E 7/2009 Tay et al. 7,806,871 B2 10/2010 Lie al. 1,7556,624 B2 7/2009 Laufer et al. 7,811,265 B2 10/2010 Hering et al. 7,556,624 B2 7/2009 Laufer et al. 7,811,265 B2 10/2010 Hering et al. 7,566,324 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,566,324 B2 7/2009 McAuley et al. 7,811,313 B2 10/2010 Mon et al. 7,566,319 B2 7/2009 McAuley et al. 7,816,511 B2 10/2010 Kawashima et al. 7,566,319 B2 7/2009 McAuley et al. 7,818,053 B2 10/2010 Mon et al. 7,584,004 B2 9/2009 Krolik et al. 7,818,053 B2 10/2010 Bednarek 7,584,004 B2 9/2009 Krolik et al. 7,822,466 B2 10/2010 Halperin et al. 7,583,335 B2 9/2009 Hill et al. 7,832,407 B2 11/2010 Khoury 7,591,996 B2 9/2009 Hwang et al. 7,832,407 B2 11/2010 Gertner 7,597,704 B2 10/2009 Hattori et al. 7,832,407 B2 11/2010 Mon et al. 7,837,704 B2 10/2009 Hattori et al. 7,837,706 B2 11/2010 Mon et al. 7,837,708 B2 11/2010 Mon et al. 7,837,708 B2 10/2009 Hunter et al. 7,837,708 B2 11/2010 Mon et al. 7,837,708 B2 11/2010 Mon et al. 7,846,157 B2 11/2010 Mon et al. 7,84	7,505,812 B1 3/2009	Eggers et al.			
7,507,235 B2 3/2009 Keogh et al. 7,776,967 B2 8/2010 Perry et al. 7,511,494 B2 3/2009 Wedeen 7,777,486 B2 8/2010 Bourne et al. 7,511,494 B2 3/2009 Truckai et al. 7,780,660 B2 8/2010 Bourne et al. 7,527,643 B2 5/2009 Case et al. 7,780,876 B2 9/2010 Zikorus et al. 7,529,589 B2 5/2009 Williams et al. 7,799,568 B2 9/2010 Zikorus et al. 7,540,870 B2 6/2009 Williams et al. 7,799,568 B2 9/2010 Zikorus et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Citieng et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Citieng et al. 7,556,624 B2 7/2009 Tay et al. 7,811,265 B2 10/2010 Li et al. 7,558,625 B2 7/2009 Levin et al. 7,811,265 B2 10/2010 Rentrop 7,563,247 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,569,052 B2 8/2009 Phan et al. 7,816,511 B2 10/2010 Kawashima et al. 7,589,052 B2 8/2009 Phan et al. 7,818,053 B2 10/2010 Mon et al. 7,582,111 B2 9/2009 Krolik et al. 7,818,053 B2 10/2010 Mon et al. 7,585,835 B2 9/2009 Hill et al. 7,828,837 B2 11/2010 Mon et al. 7,597,04 B2 10/2009 Hattori et al. 7,833,202 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Hattori et al. 7,837,676 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Hattori et al. 7,841,978 B2 11/2010 Mon et al. 7,604,608 B2 10/2009 Rockscells, III et al. 7,841,978 B2 11/2010 Mon et al. 7,604,603 B2 10/2009 Rockscells, III et al. 7,846,167 B2 11/2010 Mon et al. 7,615,072 B2 11/2009 Pumarais et al. 7,854,734 B2 12/2010 Makower et al. 7,617,005 B2 11/2009 Demarais et al. 7,854,734 B2 12/2010 Biggs et al. 7,620,451 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al. 7,620,451 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al. 7,620,451 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al. 7,620,451 B2 11/2009 Nita et al. 7,854,734 B2 12/201		e e e e e e e e e e e e e e e e e e e			
7,511,494 B2 3/2009 Wedeen 7,780,660 B2 8/2010 Bourne et al. 7,7512,445 B2 5/2009 Case et al. 7,789,876 B2 9/2010 Zikorus et al. 7,529,589 B2 5/2009 Williams et al. 7,792,568 B2 9/2010 Zhong et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Gifford et al. 8,240,863 E 7/2009 Tay et al. 7,806,871 B2 10/2010 Lie tal. 10/2010 Lie tal. 7,556,624 B2 7/2009 Laufer et al. 7,811,265 B2 10/2010 Hering et al. 7,556,624 B2 7/2009 Levin et al. 7,811,281 B1 10/2010 Rentrop Maguire et al. 7,811,281 B1 10/2010 Rentrop Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,563,247 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,566,319 B2 7/2009 McAuley et al. 7,816,511 B2 10/2010 Kawashima et al. 7,566,319 B2 7/2009 McAuley et al. 7,818,053 B2 10/2010 Mon et al. 7,818,053 B2 10/2010 Kawashima et al. 7,881,118 B2 9/2009 Krolik et al. 7,818,866 B2 10/2010 Bednarek 1,583,358 B2 9/2009 Krolik et al. 7,818,866 B2 10/2010 Gerther 1,583,240 B2 9/2009 Hwang et al. 7,822,460 B2 10/2010 Gerther 1,597,704 B2 10/2009 Frazier et al. 7,833,220 B2 11/2010 Gerther 1,597,704 B2 10/2009 Hatper et al. 7,833,220 B2 11/2010 Gerther 1,597,704 B2 10/2009 Hatper et al. 7,833,220 B2 11/2010 Gerther 1,597,704 B2 10/2009 Casscells, III et al. 7,837,768 B2 11/2010 Gerther 1,597,704 B2 10/2009 Hattori et al. 7,837,708 B2 11/2010 Gerther 1,597,704 B2 10/2009 Round 1,837,720 B2 11/2010 Mon et al. 7,837,709 B2 11/2010 Mon et al. 7,837,709 B2 11/2010 Mon et al. 7,846,157 B2 12/2010 Mon et al. 7,846,157 B2 12/2010 Mon et al. 7,846,157 B2 12/2010 Makower 1,846,157 B2 12/2010 Makower 1,846,150 B2 11/2009 Pemarais et al. 7,846,160 B2 12/2010 Makower et al. 7,846,150 B2 12/2010 Makower et al. 7,846,150 B2 12/2010 Makower et al. 7,846,150 B2 12/2010 Makower et al. 7,850,451			7,776,967 B2	8/2010	Perry et al.
7,527,643 B2 5/2009 Case et al. 7,789,876 B2 9/2010 Zikorus et al. 7,529,589 B2 5/2009 Williams et al. 7,799,021 B2 9/2010 Leung et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Cleung et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Cleung et al. 7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Cleung et al. 7,556,624 B2 7/2009 Tay et al. 7,811,265 B2 10/2010 Hering et al. 7,556,624 B2 7/2009 Levin et al. 7,811,281 B1 10/2010 Rentrop Levin et al. 7,811,281 B1 10/2010 Rentrop Phane et al. 7,866,319 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,566,319 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,566,319 B2 7/2009 Phan et al. 7,816,511 B2 10/2010 Kawashima et al. 7,866,319 B2 7/2009 Phan et al. 7,818,053 B2 10/2010 Kawashima et al. 7,881,111 B2 9/2009 Krolik et al. 7,819,866 B2 10/2010 Bednarek 7,584,004 B2 9/2009 Caparso et al. 7,822,460 B2 10/2010 Khoury Phill et al. 7,832,407 B2 11/2010 Gertner 7,597,704 B2 10/2009 Hwang et al. 7,832,200 B2 11/2010 Mon et al. 7,598,228 B2 10/2009 Frazier et al. 7,837,676 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Casscells, III et al. 7,837,720 B2 11/2010 Mon et al. 7,804,608 B2 10/2009 Casscells, III et al. 7,841,978 B2 11/2010 Gertner 7,604,608 B2 10/2009 Rust et al. 7,846,167 B2 12/2010 Makower et al. 7,815,072 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower et al. 7,849,860 B2 12/2010 Makower et al. 7,851,072 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais et al. 7,851,092 B2 11/2000 Demarais et al. 7,851,092 B2 11/2000 Demarais et al. 7,854,734 B2 12/2010 Demarais et al. 7,854,193 B2 12/2010		Wedeen			
7,52,589 B2 5/2009 Williams et al. 7,792,568 B2 9/2010 Zhong et al. 7,540,852 B2 6/2009 Nita et al. 7,799,021 B2 9/2010 Leung et al. 7,540,852 B2 6/2009 Babaev 7,803,168 B2 9/2010 Gifford et al. PE40,863 E 7/2009 Tay et al. 7,806,871 B2 10/2010 Leung et al. 7,556,624 B2 7/2009 Tay et al. 7,811,265 B2 10/2010 Hering et al. 7,556,624 B2 7/2009 Levin et al. 7,811,265 B2 10/2010 Rentrop Rentrop 7,563,247 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,566,319 B2 7/2009 McAuley et al. 7,816,511 B2 10/2010 Kawashima et al. 7,566,319 B2 7/2009 McAuley et al. 7,818,053 B2 10/2010 Kawashima et al. 7,569,052 B2 8/2009 Phan et al. 7,818,053 B2 10/2010 Kassab 7,582,111 B2 9/2009 Krolik et al. 7,818,053 B2 10/2010 Bednarek 7,584,004 B2 9/2009 Caparso et al. 7,822,460 B2 10/2010 Halperin et al. 7,858,353 B2 9/2009 Hill et al. 7,822,460 B2 10/2010 Halperin et al. 7,591,996 B2 9/2009 Hwang et al. 7,832,407 B2 11/2010 Gertner 7,597,704 B2 10/2009 Frazier et al. 7,833,220 B2 11/2010 Mon et al. 7,598,228 B2 10/2009 Hattori et al. 7,833,7676 B2 11/2010 Sinelnikov et al. 7,599,730 B2 10/2009 Hattori et al. 7,837,700 B2 11/2010 Mon 7,603,166 B2 10/2009 Casscells, III et al. 7,846,157 B2 11/2010 Gertner 7,604,608 B2 10/2009 Truckai et al. 7,846,157 B2 12/2010 Makower 7,615,072 B2 11/2009 Rust et al. 7,846,157 B2 12/2010 Makower 7,615,072 B2 11/2009 Demarais et al. 7,859,333 B2 12/2010 Makower et al. 7,617,005 B2 11/2009 Demarais et al. 7,859,333 B2 12/2010 Biggs et al.				9/2010	Zikorus et al.
7,540,870 B2 6/2009 Babaev 7,803,168 B2 9/2010 Gifford et al. RE40,863 E 7/2009 Tay et al. 7,806,871 B2 10/2010 Li et al. 7,556,624 B2 7/2009 Levine et al. 7,811,265 B2 10/2010 Rentrop 7,558,625 B2 7/2009 Maguire et al. 7,811,281 B1 10/2010 Rentrop 7,563,247 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,566,319 B2 7/2009 McAuley et al. 7,816,511 B2 10/2010 Kawashima et al. 7,569,052 B2 8/2009 Phan et al. 7,818,053 B2 10/2010 Bednarek 7,582,111 B2 9/2009 Krolik et al. 7,818,866 B2 10/2010 Bednarek 7,584,004 B2 9/2009 Caparso et al. 7,822,460 B2 10/2010 Bednarek 7,591,906 B2 9/2009 Hill et al. 7,832,407 B2 11/2010 Gertner 7,597,704 B2 10/2009 Frazier et al. 7,833,220 B2 11/2010 Mon et al. 7,598,228 B2 10/2009 Hattori et al. 7,833,200 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Hunter et al. 7,837,720 B2 11/2010 Mon 7,603,166 B2 10/2009 Nita et al. 7,841,978 B2 11/2010 Kozel 7,604,633 B2 10/2009 Truckai et al. 7,846,160 B2 12/2010 Makower 7,615,015 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower 7,615,075 B2 11/2009 Demarais et al. 7,859,685 B2 12/2010 Demarais 7,620,451 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Demarais et al. 7,854,734 B2 12/2010 Begs et al.	7,529,589 B2 5/2009		7,792,568 B2	9/2010	Zhong et al.
RE40,863 E 7/2009 Tay et al. 7,806,871 B2 10/2010 Li et al. 7,556,624 B2 7/2009 Laufer et al. 7,811,265 B2 10/2010 Hering et al. 7,558,625 B2 7/2009 Levin et al. 7,811,281 B1 10/2010 Rentrop 7,563,247 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,566,319 B2 7/2009 McAuley et al. 7,816,511 B2 10/2010 Kawashima et al. 7,569,052 B2 8/2009 Phan et al. 7,818,053 B2 10/2010 Kassab 7,582,111 B2 9/2009 Krolik et al. 7,818,866 B2 10/2010 Halperin et al. 7,818,335 B2 10/2010 Halperin et al. 7,828,837 B2 11/2010 Khoury 7,591,996 B2 9/2009 Hill et al. 7,828,837 B2 11/2010 Khoury 7,591,996 B2 9/2009 Hwang et al. 7,832,407 B2 11/2010 Gertner 7,597,704 B2 10/2009 Frazier et al. 7,833,220 B2 11/2010 Mon et al. 7,598,228 B2 10/2009 Hunter et al. 7,837,676 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Casscells, III et al. 7,841,978 B2 11/2010 Gertner 7,604,608 B2 10/2009 Casscells, III et al. 7,846,157 B2 12/2010 Mon 7,615,072 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower et al. 7,849,860 B2 12/2010 Makower et al. 7,849,860 B2 12/2010 Makower 7,615,072 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais et al. 7,854,734 B2 12/2010 Demarais et al. 7,854,734 B2 12/2010 Demarais et al.					
7,556,624 B2 7/2009 Levin et al. 7,811,265 B2 10/2010 Hering et al. 7,558,625 B2 7/2009 Levin et al. 7,811,281 B1 10/2010 Mon et al. 7,563,247 B2 7/2009 Maguire et al. 7,811,313 B2 10/2010 Mon et al. 7,566,319 B2 7/2009 McAuley et al. 7,816,511 B2 10/2010 Kawashima et al. 7,569,052 B2 8/2009 Phan et al. 7,819,866 B2 10/2010 Bednarek 7,584,004 B2 9/2009 Krolik et al. 7,822,460 B2 10/2010 Halperin et al. 7,584,004 B2 9/2009 Hill et al. 7,822,460 B2 10/2010 Khoury 7,591,996 B2 9/2009 Hwang et al. 7,832,407 B2 11/2010 Khoury 7,597,704 B2 10/2009 Frazier et al. 7,833,220 B2 11/2010 Mon et al. 7,598,228 B2 10/2009 Hunter et al. 7,837,720 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Casscells, III et al. 7,837,720 B2 11/2010 Mon 7,604,608 B2 10/2009 Nita et al. 7,846,157 B2 12/2010 Mon 7,615,072 B2 11/2009 Coleman 7,846,157 B2 12/2010 Makower 7,615,072 B2 11/2009 Demarais et al. 7,859,685 B2 12/2010 Makower et al.					
7,563,247 B2 7/2009 McAuley et al. 7,811,313 B2 10/2010 Mon et al. 7,566,319 B2 7/2009 McAuley et al. 7,816,511 B2 10/2010 Kawashima et al. 7,569,052 B2 8/2009 Phan et al. 7,818,053 B2 10/2010 Kassab 10/2010 Raysab Phan et al. 7,819,866 B2 10/2010 Raysab Phan et al. 7,828,837 B2 11/2010 Raysab Phan et al. 7,828,837 B2 11/2010 Raysab Phan et al. 7,832,407 B2 11/2010 Raysab Phan et al. 7,833,407 B2 11/2010 Raysab Phan et al. 7,846,157 B2 11/2010 Raysab Phan et al. 7,846,157 B2 12/2010 Makower Phan Phan Phan Phan Phan Phan Phan Phan	7,556,624 B2 7/2009	Laufer et al.			
7,566,319 B2 7/2009 McAuley et al. 7,816,511 B2 10/2010 Kawashima et al. 7,569,052 B2 8/2009 Phan et al. 7,818,053 B2 10/2010 Bednarek 7,582,111 B2 9/2009 Krolik et al. 7,818,066 B2 10/2010 Halperin et al. 7,818,065 B2 10/2010 Halperin et al. 7,824,004 B2 9/2009 Hill et al. 7,822,460 B2 10/2010 Halperin et al. 7,585,835 B2 9/2009 Hill et al. 7,828,837 B2 11/2010 Khoury 7,591,996 B2 9/2009 Hwang et al. 7,832,407 B2 11/2010 Gertner 7,597,704 B2 10/2009 Frazier et al. 7,833,220 B2 11/2010 Mon et al. 7,598,228 B2 10/2009 Haltori et al. 7,837,676 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Hunter et al. 7,837,720 B2 11/2010 Mon 7,603,166 B2 10/2009 Casscells, III et al. 7,846,157 B2 11/2010 Gertner 7,604,608 B2 10/2009 Nita et al. 7,846,157 B2 12/2010 Kozel 7,604,633 B2 10/2009 Truckai et al. 7,846,157 B2 12/2010 Makower 7,615,072 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower 7,615,072 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Makower et al. 7,850,685 B2 12/2010 Makower et al. 7,850,685 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.					
7,569,052 B2 8/2009 Phan et al. 7,818,053 B2 10/2010 Bednarek 7,582,111 B2 9/2009 Krolik et al. 7,818,066 B2 10/2010 Halperin et al. 7,584,004 B2 9/2009 Hill et al. 7,822,460 B2 10/2010 Halperin et al. 7,585,835 B2 9/2009 Hill et al. 7,828,837 B2 11/2010 Gertner 7,591,996 B2 9/2009 Hwang et al. 7,832,407 B2 11/2010 Gertner 7,597,704 B2 10/2009 Frazier et al. 7,833,220 B2 11/2010 Mon et al. 7,598,228 B2 10/2009 Hunter et al. 7,837,676 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Casscells, III et al. 7,837,720 B2 11/2010 Gertner 7,603,166 B2 10/2009 Casscells, III et al. 7,846,157 B2 11/2010 Gertner 7,604,608 B2 10/2009 Nita et al. 7,846,157 B2 12/2010 Kozel 7,604,633 B2 10/2009 Truckai et al. 7,846,160 B2 12/2010 Payne et al. 7,615,015 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower 7,615,072 B2 11/2009 Rust et al. 7,849,860 B2 12/2010 Makower 7,615,070 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Makower 7,620,451 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.					
7,584,004 B2 9/2009 Caparso et al. 7,822,460 B2 10/2010 Halperin et al. 7,585,835 B2 9/2009 Hill et al. 7,832,407 B2 11/2010 Gertner 7,597,704 B2 10/2009 Frazier et al. 7,832,407 B2 11/2010 Mon et al. 7,598,228 B2 10/2009 Hattori et al. 7,837,676 B2 11/2010 Sinelnikov et al. 7,599,730 B2 10/2009 Hunter et al. 7,837,720 B2 11/2010 Mon 7,603,166 B2 10/2009 Casscells, III et al. 7,841,978 B2 11/2010 Gertner 7,604,608 B2 10/2009 Nita et al. 7,846,157 B2 12/2010 Kozel 7,604,633 B2 10/2009 Truckai et al. 7,846,157 B2 12/2010 Kozel 7,615,015 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower et al. 7,617,005 B2 11/2009 Demarais et al. 7,849,860 B2 12/2010 Makower et al. 7,617,005 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Makower et al. 7,620,451 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.	7,569,052 B2 8/2009	Phan et al.			
7,585,835 B2 9/2009 Hill et al. 7,828,837 B2 11/2010 Khoury 7,591,996 B2 9/2009 Hwang et al. 7,832,407 B2 11/2010 Gertner 7,597,704 B2 10/2009 Frazier et al. 7,833,220 B2 11/2010 Mon et al. 7,598,228 B2 10/2009 Hattori et al. 7,837,676 B2 11/2010 Mon et al. 7,599,730 B2 10/2009 Hunter et al. 7,837,720 B2 11/2010 Mon 7,603,166 B2 10/2009 Casscells, III et al. 7,841,978 B2 11/2010 Gertner 7,604,608 B2 10/2009 Nita et al. 7,846,157 B2 12/2010 Kozel 7,604,633 B2 10/2009 Truckai et al. 7,846,160 B2 12/2010 Kozel 7,615,015 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower 7,615,072 B2 11/2009 Rust et al. 7,849,860 B2 12/2010 Makower 7,617,005 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Makower et al. 7,620,451 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.					
7,591,996 B2 9/2009 Hwang et al. 7,832,407 B2 11/2010 Gertner 7,597,704 B2 10/2009 Frazier et al. 7,833,220 B2 11/2010 Mon et al. 11/2010 Sinelnikov et al. 7,598,228 B2 10/2009 Hattori et al. 7,837,676 B2 11/2010 Mon et al. 11/2010 Mon et al. 7,599,730 B2 10/2009 Hunter et al. 7,837,720 B2 11/2010 Mon 11/2010 Mon 11/2010 Gertner 7,603,166 B2 10/2009 Casscells, III et al. 7,841,978 B2 11/2010 Gertner 7,604,608 B2 10/2009 Nita et al. 7,846,157 B2 12/2010 Kozel 7,604,633 B2 10/2009 Truckai et al. 7,846,160 B2 12/2010 Payne et al. 7,615,015 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower 7,615,072 B2 11/2009 Rust et al. 7,849,860 B2 12/2010 Makower et al. 7,617,005 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Makower et al. 7,620,451 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.					
7,598,228 B2 10/2009 Hattori et al. 7,837,676 B2 11/2010 Sinelnikov et al. 7,599,730 B2 10/2009 Hunter et al. 7,837,720 B2 11/2010 Mon 7,603,166 B2 10/2009 Casscells, III et al. 7,841,978 B2 11/2010 Gertner 7,604,608 B2 10/2009 Nita et al. 7,846,157 B2 12/2010 Kozel 7,604,633 B2 10/2009 Truckai et al. 7,846,160 B2 12/2010 Payne et al. 7,615,015 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower 7,615,072 B2 11/2009 Rust et al. 7,849,860 B2 12/2010 Makower 8,849,860 B2 12/2010 Makower 9,7617,005 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Kunis et al. 7,620,451 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.	7,591,996 B2 9/2009	Hwang et al.	7,832,407 B2		
7,599,730 B2 10/2009 Hunter et al. 7,837,720 B2 11/2010 Mon 7,603,166 B2 10/2009 Casscells, III et al. 7,841,978 B2 11/2010 Gertner 7,604,608 B2 10/2009 Nita et al. 7,846,157 B2 12/2010 Kozel 7,604,633 B2 10/2009 Truckai et al. 7,846,160 B2 12/2010 Payne et al. 7,615,015 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower 7,615,072 B2 11/2009 Rust et al. 7,849,860 B2 12/2010 Makower 7,617,005 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Kozel 7,620,451 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.					
7,603,166 B2 10/2009 Casscells, III et al. 7,841,978 B2 11/2010 Gertner 7,604,608 B2 10/2009 Nita et al. 7,846,157 B2 12/2010 Kozel 7,604,633 B2 10/2009 Truckai et al. 7,846,160 B2 12/2010 Payne et al. 7,615,015 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower 7,615,072 B2 11/2009 Rust et al. 7,849,860 B2 12/2010 Makower 7,617,005 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Kunis et al. 7,620,451 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.					
7,604,633 B2 10/2009 Truckai et al. 7,846,160 B2 12/2010 Payne et al. 7,615,015 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower 7,615,072 B2 11/2009 Rust et al. 7,849,860 B2 12/2010 Makower et al. 7,617,005 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Kunis et al. 7,620,451 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.	7,603,166 B2 10/2009	Casscells, III et al.		11/2010	Gertner
7,615,015 B2 11/2009 Coleman 7,846,172 B2 12/2010 Makower 7,615,072 B2 11/2009 Rust et al. 7,849,860 B2 12/2010 Makower et al. 7,617,005 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Kunis et al. 7,620,451 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.					
7,615,072 B2 11/2009 Rust et al. 7,849,860 B2 12/2010 Makower et al. 7,617,005 B2 11/2009 Demarais et al. 7,850,685 B2 12/2010 Kunis et al. 7,620,451 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.					
7,620,451 B2 11/2009 Demarais et al. 7,853,333 B2 12/2010 Demarais 7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.	7,615,072 B2 11/2009	Rust et al.	7,849,860 B2	12/2010	Makower et al.
7,621,902 B2 11/2009 Nita et al. 7,854,734 B2 12/2010 Biggs et al.					

(56)			Referen	ces Cited	8,260,397			Ruff et al.	
			n	D 0 01 D 100 100	8,263,104			Ho et al.	
		U.S.	PATENT	DOCUMENTS	8,273,023 8,277,379		9/2012		
= 0.0		D.A	1/0011	T1	8,287,524		10/2012	Lau et al.	
	52,565			Eder et al.	8,287,532	B2		Carroll et al.	
	53,897			Slocum, Jr. et al. Shachar et al.	8,292,881	B2		Brannan et al.	
	59,854 73,417			Demarais et al.	8,293,703			Averback et al.	
	37,538			Bleich et al.	8,295,902		10/2012	Salahieh et al.	
	94,905			Pless et al.	8,295,912		10/2012		
	96,873			Hiller et al.	8,308,722			Ormsby et al.	
7,90	01,400	B2	3/2011	Wham et al.	8,317,776			Ferren et al.	
	01,402			Jones et al.	8,317,810			Stangenes et al.	
	01,420		3/2011		8,329,179 8,336,705		12/2012	Okahisa	
7,90	05,862	B2		Sampson	8,343,031			Gertner	
	18,850			Govari et al. Webler et al.	8,343,145			Brannan	
	27,370 37,143			Demarais et al.	8,347,891			Demarais et al.	
	38,830			Saadat et al.	8,353,945	B2	1/2013	Andreas et al.	
	12,874			Eder et al.	8,364,237			Stone et al.	
	12,928			Webler et al.	8,366,615			Razavi	
7,94	16,976	B2	5/2011	Gertner	8,382,697			Brenneman et al.	
	50,397			Thapliyal et al.	8,388,680 8,396,548			Starksen et al.	
	55,293			Nita et al.	8,398,629			Perry et al. Thistle	
	56,613		6/2011		8,401,667			Gustus et al.	
	59,627 52,854			Utley et al. Vance et al.	8,403,881			Ferren et al.	
	52,854 57,782			Laufer et al.	8,406,877			Smith et al.	
7,96	57,808	B2		Fitzgerald et al.	8,409,172			Moll et al.	
	72,327			Eberl et al.	8,409,193			Young et al.	
	72,330			Alejandro et al.	8,409,195		4/2013		
	33,751		7/2011	Zdeblick et al.	8,418,362			Zerfas et al.	
	01,976			Gertner	8,452,988		5/2013		
	07,440			Magnin et al.	8,454,594			Demarais et al.	
	12,147			Lafontaine	8,460,358 8,465,452			Andreas et al. Kassab	
8,01	19,435	B2		Hastings et al.	8,469,919			Ingle et al.	
	21,362 21,413			Deem et al. Dierking et al.	8,473,067		6/2013	Hastings et al.	
	25,661			Arnold et al.	8,480,663			Ingle et al.	
	27,718			Spinner et al.	8,485,992			Griffin et al.	
	31,927			Karl et al.	8,486,060			Kotmel et al.	
	33,284			Porter et al.	8,486,063			Werneth et al.	
8,04	18,144	B2	11/2011	Thistle et al.	8,488,591			Miali et al.	
8,05	52,636	B2		Moll et al.	2001/0007070			Stewart et al.	
8,05	52,700	B2	11/2011		2001/0039419 2002/0022864			Francischelli et al. Mahvi et al.	
	52,289		11/2011		2002/0042639			Murphy-Chutorian et al.	
8,07	75,580 80,006	BZ D2		Makower Lafontaine et al.	2002/0045811			Kittrell et al.	
8.08	38,127	B2		Mayse et al.	2002/0045890			Celliers et al.	
	16,883			Williams et al.	2002/0062146	A1		Makower et al.	
	19,183			O'Donoghue et al.	2002/0065542			Lax et al.	
	20,518			Jang et al.	2002/0087151			Mody et al.	
	23,741			Marrouche et al.	2002/0095197			Lardo et al.	
	28,617			Bencini et al.	2002/0107536			Hussein	
	31,371			Demarals et al.	2002/0147480			Mamayek Mest et al.	
	31,372			Levin et al.	2002/0169444 2002/0183738		12/2002	Chee et al 60	06/41
	31,382		3/2012		2002/0198520			Coen et al.	JU/ 71
	37,274 40,170			Weng et al. Rezai et al.	2003/0065317			Rudie et al.	
	43,316		3/2012		2003/0092995			Thompson	
	45,316			Deem et al.	2003/0139689		7/2003	Shturman et al.	
	15,317			Demarais et al.	2003/0195501		10/2003		
	50,518			Levin et al.	2003/0199747			Michlitsch et al.	
8,15	50,519	B2	4/2012	Demarais et al.	2004/0006336			Swanson 60	06/41
	50,520			Demarais et al.	2004/0010118			Zerhusen et al.	
	52,830		4/2012		2004/0019348 2004/0024371			Stevens et al. Plicchi et al.	
	52,933			Francischelli et al.	2004/0024371			Griffiths et al.	
	75,711			Demarais et al.	2004/0064090			Keren et al.	
	37,261 90,238			Watson Moll et al.	2004/0073206			Foley et al.	
	92,053			Owen et al.	2004/0088002			Boyle et al.	
	98,611			LaFontaine et al.	2004/0093055			Bartorelli et al.	
	14,056			Hoffer et al.	2004/0106871			Hunyor et al.	
	21,407			Phan et al.	2004/0117032		6/2004		
	26,637		7/2012		2004/0147915			Hasebe	
	31,617		7/2012		2004/0162555		8/2004	Farley et al.	
8,24	11,217	B2		Chiang et al.	2004/0167506	A1	8/2004	Chen	
	57,724			Cromack et al.	2004/0186356			O'Malley et al.	
8,25	57,725	B2	9/2012	Cromack et al.	2004/0187875	A1	9/2004	He et al.	

(56)	Referer	nces Cited		2006/0195139 2006/0206150			Gertner
II C	DATENIT	DOCUMENTS	DOCI IMENITO				Demarais et al. Demarais et al.
0.5	PAIENI	DOCUMENTS		2006/0212076 2006/0212078			Demarais et al.
2004/0193211 A1	9/2004	Voegele et al.		2006/0224153			Fischell et al.
2004/0220556 A1	11/2004			2006/0239921			Mangat et al.
2004/0243022 A1	12/2004			2006/0240070			Cromack et al.
2004/0253304 A1	12/2004			2006/0247266 2006/0247760			Yamada et al. Ganesan et al.
2004/0267250 A1 2005/0010095 A1	12/2004 1/2005	Yon et al. Stewart et al.		2006/0247700			Demopulos et al.
2005/0010095 A1 2005/0015125 A1		Mioduski et al.		2006/0265014			Demarais et al.
2005/0049583 A1*			5/32	2006/0265015			Demarais et al.
2005/0080374 A1		Esch et al.		2006/0269555			Salcedo et al.
2005/0129616 A1	6/2005			2006/0271111			Demarais et al.
2005/0137180 A1		Robinson et al.		2006/0276852 2006/0287644			Demarais et al. Inganas et al.
2005/0143817 A1 2005/0148842 A1		Hunter et al. Wang et al.		2007/0016184			Cropper et al.
2005/0148842 A1 2005/0149069 A1		Bertolero et al.		2007/0016274			Boveja et al.
2005/0149080 A1		Hunter et al.		2007/0027390			Maschke et al.
2005/0149158 A1		Hunter et al.		2007/0043077			Mewshaw et al.
2005/0149173 A1		Hunter et al.		2007/0043409 2007/0049924		3/2007	Brian et al.
2005/0149175 A1		Hunter et al.		2007/0066957			Demarais et al.
2005/0154277 A1 2005/0154445 A1		Tang et al. Hunter et al.		2007/0066972			Ormsby et al.
2005/0154453 A1		Hunter et al.		2007/0073151	A1	3/2007	
2005/0154454 A1		Hunter et al.		2007/0093710			Maschke
2005/0165389 A1	7/2005			2007/0100405			Thompson et al.
2005/0165391 A1	7/2005			2007/0106247 2007/0112327			Burnett et al. Yun et al.
2005/0165467 A1		Hunter et al.		2007/0112327			Francischelli et al.
2005/0165488 A1 2005/0175661 A1		Hunter et al. Hunter et al.		2007/0129720			Demarais et al.
2005/0175662 A1		Hunter et al.		2007/0129760			Demarais et al.
2005/0175663 A1		Hunter et al.		2007/0129761			Demarais et al.
2005/0177103 A1	8/2005	Hunter et al.		2007/0135875			Demarais et al.
2005/0177225 A1		Hunter et al.		2007/0149963 2007/0162109			Matsukuma et al. Davila et al.
2005/0181004 A1		Hunter et al.		2007/0102109			Weinberg et al.
2005/0181008 A1 2005/0181011 A1		Hunter et al. Hunter et al.		2007/0173899			Levin et al.
2005/0181011 A1 2005/0181977 A1		Hunter et al.		2007/0179496			Swoyer et al.
2005/0182479 A1		Bonsignore et al.		2007/0203480			Mody et al.
2005/0183728 A1		Hunter et al.		2007/0203549			Demarais et al.
2005/0186242 A1		Hunter et al.		2007/0207186 2007/0208134			Scanlon et al. Hunter et al.
2005/0186243 A1		Hunter et al.		2007/0208134			Gelfand et al.
2005/0191331 A1 2005/0203410 A1		Hunter et al. Jenkins		2007/0208256			Marilla
2005/0209587 A1	9/2005			2007/0208301	A1	9/2007	Evard et al.
2005/0214205 A1	9/2005	Salcedo et al.		2007/0219576			Cangialosi
2005/0214207 A1	9/2005			2007/0225781		9/2007	
2005/0214208 A1	9/2005			2007/0233170 2007/0239062		10/2007	Chopra et al.
2005/0214209 A1 2005/0214210 A1	9/2005 9/2005			2007/0248639			Demopulos et al.
2005/0214210 A1 2005/0214268 A1		Cavanagh et al.		2007/0249703			Mewshaw et al.
2005/0228286 A1		Messerly et al.		2007/0254833			Hunter et al.
2005/0228415 A1		Gertner		2007/0265687			Deem et al.
2005/0228460 A1		Levin et al.		2007/0278103 2007/0282302			Hoerr et al. Wachsman et al.
2005/0232921 A1		Rosen et al. Suzuki et al.		2007/0292411			Salcedo et al.
2005/0234312 A1 2005/0245862 A1		Seward		2007/0293782		12/2007	
2005/0251116 A1		Steinke et al.		2007/0299043			Hunter et al.
2005/0252553 A1	11/2005	Ginggen		2008/0004673			Rossing et al.
2005/0256398 A1		Hastings et al.		2008/0009927 2008/0015501		1/2008	Vilims Gertner
2005/0267556 A1 2006/0004323 A1		Shuros et al.		2008/0013301			Jacobsen et al.
2006/0004323 A1 2006/0018949 A1		Chang et al. Ammon et al.		2008/0033049			Mewshaw
2006/0024564 A1		Manclaw		2008/0039746			Hissong et al.
2006/0025765 A1		Landman et al.		2008/0039830			Munger et al.
2006/0062786 A1		Salcedo et al.		2008/0051454		2/2008 3/2008	
2006/0083194 A1		Dhrimaj et al.		2008/0064957 2008/0071269			Hilario et al.
2006/0089637 A1 2006/0089638 A1		Werneth et al. Carmel et al.		2008/0071306			Gertner
2006/0095096 A1		DeBenedictis et al.		2008/0082109			Moll et al.
2006/0106375 A1		Werneth et al.		2008/0086072	A1		Bonutti et al.
2006/0142790 A1		Gertner		2008/0091193			Kauphusman et al.
2006/0142801 A1		Demarais et al.		2008/0097251			Babaev
2006/0147492 A1		Hunter et al.		2008/0097426			Root et al.
2006/0167106 A1 2006/0167498 A1		Zhang et al. DiLorenzo		2008/0108867 2008/0119879		5/2008	Zhou Brenneman et al.
2006/016/498 A1 2006/0171895 A1		Bucay-Couto		2008/01198/9			Stone et al.
2006/0171893 A1 2006/0184221 A1		Stewart et al.		2008/0132450			Lee et al.
					-		

(56) Re	eferences Cited	2010/0049191 A1	1/2010	Macherey et al.
(50)	ciciences circu	2010/0030061 A1	2/2010	Canfield et al.
U.S. PA	TENT DOCUMENTS	2010/0048983 A1		Ball et al.
		2010/0049099 A1	2/2010	Thapliyal et al.
	5/2008 Ramzipoor et al.	2010/0049186 A1 2010/0049188 A1		Ingle et al. Nelson et al.
	5/2008 Gertner 7/2008 Golijanin et al.	2010/0049283 A1		Johnson
	7/2008 Gertner	2010/0057150 A1	3/2010	Demarais et al.
2008/0161801 A1 7	7/2008 Steinke et al.	2010/0069837 A1		Rassat et al.
	7/2008 Lafontaine et al.	2010/0076299 A1 2010/0076425 A1		Gustus et al. Carroux
	7/2008 Starksen et al. 7/2008 Kieval et al.	2010/0070423 A1 2010/0087782 A1		Ghaffari et al.
	8/2008 Stone et al.	2010/0106005 A1		Karczmar et al.
	8/2008 Stone et al.	2010/0114244 A1		Manda et al.
	3/2008 Joshi	2010/0130836 A1 2010/0137860 A1		Malchano et al. Demarais et al.
	8/2008 Boyle et al.	2010/0137860 A1 2010/0137952 A1		Demarais et al.
	0/2008 Gelfand et al. 0/2008 Gross	2010/0160903 A1	6/2010	
	9/2008 Khuri-Yakub et al.	2010/0160906 A1	6/2010	
2008/0234790 A1 9	0/2008 Bayer et al.	2010/0168624 A1	7/2010	
	0/2008 Humphreys et al.	2010/0168731 A1 2010/0168739 A1		Wu et al. Wu et al.
)/2008 Gruber)/2008 Lee et al.	2010/0108733 A1 2010/0174282 A1		Demarais et al.
	0/2008 Dunn	2010/0191112 A1		Demarais et al.
)/2008 Bell	2010/0191232 A1		Boveda
	0/2008 Zarins et al.	2010/0217162 A1 2010/0222786 A1	8/2010 9/2010	Hissong et al. Kassab
	0/2008 Steinke 1/2008 Gertner	2010/0222780 A1 2010/0222851 A1		Deem et al.
	1/2008 Germer 1/2008 Werneth et al.	2010/0222854 A1		Demarais et al.
	1/2008 Gertner	2010/0228122 A1		Keenan et al.
	/2008 Rosenman et al.	2010/0249604 A1 2010/0249773 A1		Hastings et al.
	1/2008 Richter	2010/0249773 A1 2010/0256616 A1		Clark et al. Katoh et al.
	2/2008 Gertner 2/2008 Fourkas et al.	2010/0268217 A1	10/2010	
	2/2008 Viswanathan et al.	2010/0268307 A1		Demarais et al.
	2/2008 Griffith et al.	2010/0284927 A1		Lu et al.
	1/2009 Goren et al.	2010/0286684 A1 2010/0298821 A1		Hata et al. Garbagnati
	1/2009 DiLorenzo 1/2009 Arcot-Krishnamurthy et al.	2010/0298821 A1 2010/0305036 A1		Barnes et al.
	1/2009 Hadjicostis	2010/0312141 A1		Keast et al.
	2/2009 Levin et al.	2010/0324472 A1		Wulfman
	2/2009 Northrop et al.	2011/0009750 A1 2011/0021976 A1		Taylor et al. Li et al.
	2/2009 Kim et al. 3/2009 Wu et al.	2011/0021970 A1 2011/0034832 A1		Cioanta et al.
	3/2009 Wu et al.	2011/0040324 A1		McCarthy et al.
2009/0076409 A1 3	3/2009 Wu et al.	2011/0044942 A1		Puri et al.
	4/2009 Abboud et al.	2011/0060324 A1 2011/0071400 A1		Wu et al. Hastings et al.
	1/2009 Kieval 1/2009 Young	2011/0071400 A1 2011/0071401 A1		Hastings et al.
2009/0112202 A1 4 2009/0118620 A1 5	5/2009 Tgavalekos et al.	2011/0077498 A1		McDaniel
2009/0118726 A1 5	5/2009 Auth et al.	2011/0092781 A1		Gertner
	5/2009 Weber et al.	2011/0092880 A1		Gertner Seward
	5/2009 Minar et al. 5/2009 Saadat et al.	2011/0104061 A1 2011/0112400 A1		Emery et al.
	5/2009 Saddat et al.	2011/0118600 A1		Gertner
	5/2009 Ferren et al.	2011/0118726 A1		De La Rama et al.
	5/2009 Desai et al.	2011/0130708 A1 2011/0137155 A1		Perry et al. Weber et al.
	7/2009 Hon 7/2009 Whitehurst et al.	2011/0137133 A1 2011/0144479 A1		Hastings et al.
	8/2009 Wintendist et al.	2011/0146673 A1		Keast et al.
	8/2009 Miller et al.	2011/0166499 A1		Demarais et al.
	8/2009 Mangat et al.	2011/0178570 A1		Demarais et al. Beetel et al.
	8/2009 Hastings et al.	2011/0200171 A1 2011/0202098 A1		Demarais et al.
	8/2009 Moyer et al. 8/2009 Cromack et al.	2011/0207758 A1		Sobotka et al.
	9/2009 Demarais et al.	2011/0208096 A1		Demarais et al.
	0/2009 Babaev	2011/0257523 A1		Hastings et al.
	0/2009 Salcedo et al.	2011/0257564 A1 2011/0257622 A1		Demarais et al. Salahieh et al.
	0/2009 Chan et al. 0/2009 Maor et al.	2011/0257622 A1 2011/0257641 A1		Hastings et al.
	0/2009 Gunn et al.	2011/0257642 A1		Griggs, III
2009/0248012 A1 10	0/2009 Maor et al.	2011/0263921 A1	10/2011	Vrba et al.
	0/2009 Rahme	2011/0264011 A1		Wu et al. 604/528
)/2009 Chen et al.)/2009 Zhou et al.	2011/0264075 A1* 2011/0264086 A1	10/2011 10/2011	Leung et al 604/528
	1/2009 Enou et al.	2011/0264086 A1 2011/0264116 A1		Kocur et al.
	1/2009 Crowley	2011/0270238 A1		Rizq et al.
2009/0318749 A1 12	2/2009 Stolen et al.	2011/0306851 A1	12/2011	Wang
2010/0009267 A1 1	1/2010 Chase et al.	2011/0319809 A1	12/2011	Smith

(56)	Referen	nces Cited	2013/0096553 2013/0096554			Hill et al. Groff et al.
U.S.	PATENT	DOCUMENTS	2013/0096604			Hanson et al.
		~ 14	2013/0110106			Richardson
2012/0029496 A1 2012/0029500 A1	2/2012	Smith Jenson	2013/0116687 2013/0165764			Willard Scheuermann et al.
2012/0029505 A1		Jenson	2013/0165844			Shuros et al.
2012/0029509 A1	2/2012		2013/0165916			Mathur et al.
2012/0029510 A1 2012/0029511 A1		Haverkost Smith et al.	2013/0165917			Mathur et al.
2012/0029511 A1		Willard et al.	2013/0165920 2013/0165923			Weber et al. Mathur et al.
2012/0029513 A1		Smith et al.	2013/0165924			Mathur et al.
2012/0059241 A1 2012/0059286 A1	3/2012	Hastings et al. Hastings et al.	2013/0165925			Mathur et al.
2012/0065506 A1	3/2012		2013/0165926 2013/0165990			Mathur et al. Mathur et al.
2012/0065554 A1	3/2012		2013/0103990			Perry et al.
2012/0095461 A1 2012/0101413 A1		Herscher et al. Beetel et al.	2013/0172872			Subramaniam et al.
2012/0101490 A1	4/2012		2013/0172877		7/2013	
2012/0101538 A1		Ballakur et al.	2013/0172878 2013/0172879		7/2013	Smith Sutermeister
2012/0109021 A1 2012/0116382 A1		Hastings et al. Ku et al.	2013/0172879			Willard
2012/0116383 A1		Mauch et al.	2013/0172881		7/2013	Hill et al.
2012/0116392 A1		Willard				
2012/0116438 A1 2012/0116486 A1		Salahieh et al. Naga et al.	FC	DREIGN	I PATE	NT DOCUMENTS
2012/0123243 A1	5/2012	Hastings	EP	11800	04 A1	2/2002
2012/0123258 A1		Willard	EP		77 B1	8/2003
2012/0123261 A1 2012/0123303 A1		Jenson et al. Sogard et al.	EP		11 A2	1/2008
2012/0123406 A1		Edmunds et al.	EP EP		53 A2 94 A2	4/2008 8/2008
2012/0130289 A1		Demarais et al.	EP		56 B1	7/2009
2012/0130345 A1 2012/0130359 A1		Levin et al. Turovskiy	EP		93 A2	7/2009
2012/0130360 A1		Buckley et al.	EP EP		55 A2 33 A1	8/2009 6/2010
2012/0130362 A1		Hastings et al.	EP		06 A1	7/2010
2012/0130368 A1 2012/0130458 A1		Jenson Ryba et al.	EP		89 B1	8/2010
2012/0136344 A1		Buckley et al.	EP EP		57 B1 44 A1	1/2011 8/2011
2012/0136349 A1		Hastings	EP		82 B1	10/2011
2012/0136350 A1 2012/0136417 A1		Goshgarian et al. Buckley et al.	EP		56 A2	10/2011
2012/0136418 A1		Buckley et al.	EP EP		40 B1 34 B1	12/2011 4/2012
2012/0143181 A1		Demarais et al.	EP		21 B1	10/2012
2012/0143293 A1 2012/0143294 A1		Mauch et al. Clark et al.	GB	24563		7/2009
2012/0150267 A1	6/2012	Buckley et al.	WO WO		88 A1 60 A1	12/1998 1/1999
2012/0157986 A1		Stone et al. Steinke et al.	WO		18 A1	8/2000
2012/0157987 A1 2012/0157988 A1		Stone et al.	WO	030265		4/2003
2012/0157989 A1		Stone et al.		0041008 0041102		11/2004 12/2004
2012/0157992 A1		Smith et al.	WO WO2	0060227	90	3/2006
2012/0157993 A1 2012/0158101 A1		Jenson et al. Stone et al.		0060418 0061051		4/2006
2012/0158104 A1	6/2012	Huynh et al.		0070355		10/2006 3/2007
2012/0172837 A1 2012/0172870 A1		Demarais et al. Jenson et al.	WO WO2	0070789	97	7/2007
2012/01/28/0 A1 2012/0184952 A1		Jenson et al.		0070869 0071038		8/2007 9/2007
2012/0197198 A1		Demarais et al.		0071038		9/2007
2012/0197252 A1 2012/0232409 A1		Deem et al. Stahmann et al.	WO WO2	0071213		10/2007
2012/0232409 A1 2012/0265066 A1		Crow et al.		0071468 0080144		12/2007 1/2008
2012/0265198 A1		Crow et al.		0080144		1/2008
2013/0012844 A1 2013/0012866 A1		Demarais et al. Deem et al.	WO WO2	0080611		5/2008
2013/0012867 A1		Demarais et al.		0080611 0080704		5/2008 6/2008
2013/0013024 A1		Levin et al.		0080704		10/2009
2013/0023865 A1 2013/0035681 A1	1/2013	Steinke et al. Subramanaim et al.		0100673		6/2010
2013/0033081 A1 2013/0066316 A1		Steinke et al.		0100781 0101023		7/2010 9/2010
2013/0085489 A1		Fain et al.		0101023		11/2010
2013/0090563 A1 2013/0090578 A1		Weber Smith et al.	WO 2	0110059	01 A2	1/2011
2013/0090578 A1 2013/0090647 A1	4/2013			0110537 0110537		5/2011 5/2011
2013/0090649 A1	4/2013	Smith et al.		0110337 0110910		7/2011
2013/0090650 A1		Jenson et al.	WO WO2	0110910	69	7/2011
2013/0090651 A1 2013/0090652 A1	4/2013 4/2013	Smith Jenson		0111305 0111300		10/2011 10/2011
2013/0096550 A1	4/2013			0111300		11/2011

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO 2012019156 A1 2/2012 WO WO2012019156 2/2012 WO 2013049601 A2 4/2013

OTHER PUBLICATIONS

Strategic Business Development, Inc., "Thermal and Disruptive Angioplasty: A Physician's Guide," 8 pages, 1990.

Zhang et al., "Non-contact Radio-Frequency Ablation for Obtaining Deeper Lesions," IEEE Transaction on Biomedical Engineering, vol. 50, No. 2, 6 pages, Feb. 2003.

Lazebnik et al., "Tissue Strain Analytics Virtual Touch Tissue Imaging and Qualification," Siemens Whitepaper, Oct. 2008, 7 pages.

Han et al., "Third-Generation Cryosurgery for Primary and Recurrent Prostate Caner," BJU International, vol. 93, pp. 14-18, Sep. 23, 2003.

Zhou et al., "Mechanism Research of Cryoanalgesia," Forefront Publishing Group, 1995.

Florete, "Cryoblative Procedure for Back Pain," Jacksonville Medicine, Oct. 1998, 10 pages.

Stevenson, "Irrigated RF Ablation: Power Titration and Fluid Management for Optimal Safety Efficacy," 2005, 4 pages.

Giliatt et al., "The Cause of Nerve Damage in Acute Compression," Trans Am Neurol Assoc, 1974: 99; 71-4.

Omura et al., "A Mild Acute Compression Induces Neurapraxia in Rat Sciatic Nerve," The International Journal of Neuroscience, vol. 114 (12), pp. 1561-1572, Dec. 2004.

Baun, "Interaction with Soft Tissue," Principles of General & Vascular Sonography, Chapter 2, pp. 23-24, Before Mar. 2012.

Blue Cross Blue Shield Medicaly Policy, "Surgery Section—MRI-Guided Focused Ultrasound (MRgFUS) for the Treatment of Uterine Fibroids and Other Tumors," 2005, 5 pages.

Gentry et al., "Combines 3D Intracardiac Echo and Ultrasound Ablation," Medical Imaging 2003: Ultrasonic and Signal Processing, vol. 5035, 2003, pp. 166-173.

Lafon et al., "Optmizing the Shape of Ultrasound Transducers for Interstitial Thermal Ablations," MEd Phys. Mar. 2002; 29(3): 290-7 (abstract only).

G. Ter Haar, "Ultrasound Focal Beam Surgery," Ultrasound in Med. & Biol., 1995, vol. 21, No. 9, pp. 1089-1100.

Seip et al., "Transurethral High Intensity Focused Ultrasound: Catheter Based Prototypes and Experimental Results," IEEE Ultrasonics Symposium Proceeding, 2000, 4 pages.

Toytman et al., "Tissue Dissection with Ultrafast Laser Using Extended and Multiple Foci," SPIE Proceeding, Optical Interactions with Tissues and Cells XXI, vol. 7562, 2010, 10 pages.

Zhoue et al., "Non-Thermal Ablation of Rabbit Liver VX2 Tumore by Pulsed High Intensity Focused Ultrasound Contrast Agent: Pathological Characteristics," World Journal of Gastroenterology, vol. 14(43), Nov. 21, 2008, pp. 6743-6747.

Van Den Berg, "Light echoes image the human body," OLE, Oct. 2001, p. 35-37.

"IntraLuminal: Products," IntraLuminal Therapeutics, Inc., 2003, p. 1-9.

"Laser Catheter to Aid Coronary Surgery," TechTalk: MIT, Jan. 9, 1991, p. 1-4.

"Optical Coherence Tomography: Advantages of OCT," LightLab Imaging Technology, Sep. 3, 2003.

"Optical Coherence Tomography: Image Gallery Cardiovascular Procedures," LightLab Imaging Technology, Sep. 3, 2003.

"Optical Coherence Tomography: LightLab Imaging Starts US Cardiology Clinical Investigations," LightLab Imaging Technology, 2002.

"Optical Coherence Tomography: LightLab Sees Bright Prospects for Cardiac Application of OCT Technology," LightLab Imaging Technology, 2001, vol. 27, No. 35.

"Optical Coherence Tomography: What is OCT?," LightLab Imaging Technology, Sep. 3, 2003.

"Optical Coherence Tomography: Why Use OCT?," LightLab Imaging Technology, Sep. 3, 2003.

"Products—Functional Measurement," Volcano Functional Measurement Products US, Mar. 24, 2003, p. 1-2.

Brown et al., "Radiofrequency capacitive heaters: the effect of coupling medium resistivity on power absorption along a mouse leg," Physics in Medicine and Biology, 1993, p. 1-12, vol. 38.

Carrington, "Future of CVI: It's all about plaque: Identification of vulnerable lesions, not 'rusty pipes,' could become cornerstone of preventive cardiology," Diagnostic Imaging, 2001, p. 1-8.

Chen et al., "Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo," EuroIntervention, 2013, p. 1-8.

Cimino, "Preventing plaque attack," Mass High Tech, 2001, p. 1-2. Dahm et al., "Relation of Degree of Laser Debulking of In-Stent Restenosis as a Predictor of Restenosis Rate," The American Journal of Cardiology, 2002, p. 68-70, vol. 90.

De Korte et al., "Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro," Circulation, Aug. 8, 2000, p. 617-623.

Durney et al., "Radiofrequency Radiation Dosimetry Handbook," Oct. 1986, p. 1-2, Fourth Edition.

Durney et al., "Radiofrequency Radiation Dosimetry Handbook: Contents," Oct. 1986, p. 1-5, Fourth Edition.

Fournier-Desseux et al., "Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography," Physiological Measurement, 2005, p. 337-349. Vo. 26, Institute of Physics Publishing.

Fram et al., "Feasibility of Radiofrequency Powered, Thermal Balloon Ablation of Atrioventricular Bypass Tracts Via the Coronary Sinus: In Vivo Canine Studies," PACE, Aug. 1995, p. 1518-1530, vol. 18.

Fram et al., "Low Pressure Radiofrequency Balloon Angioplasty: Evaluation in Porcine Peripheral Arteries," JACC, 1993, p. 1512-1521, vol. 21, No. 6, American College of Cardiology.

Fujimori et al., "Significant Prevention of In-Stent Restenosis by Evans Blue in Patients with Acute Myocardial Infarction," American Heart Association, 2002.

Fujita et al., "Sarpogrelate, An Antagonist of 5-HT(2A) Receptor, Treatment Reduces Restenosis After Coronary Stenting," American Heart Association, 2002.

Gabriel, "Appendix A: Experimental Data," 1999, p. 1-21.

Gabriel, "Appendix C: Modeling the frequency dependence of the dielectric properties to a 4 dispersions spectrum," p. 1-6, 1999.

Gregory et al., "Liquid Core Light Guide for Laser Angioplasty," The Journal of Quantum Electronics, Dec. 1990, p. 2289-2296, vol. 26, No. 12.

Kaplan et al., "Healing after Arterial Dilatation with Radiofrequency Thermal and Nonthermal Balloon Angioplasty Sytems," Journal of Investigative Surgery, 1993, p. 33-52, vol. 6.

Kolata, "New Studies Question Value of Opening Arteries," The New York Times, Mar. 21, 2004, p. 1-5.

Konings et al., "Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries," IEEE Transactions on Medical Imaging, Aug. 1997, p. 439-446, vol. 16, No. 4.

Kurtz et al., "Lamellar Refractive Surgery with Scanned Intrastromal Picosecond and Femtosecond Laser Pulses in Animal Eyes," Journal of Refractive Surgery, Sep./Oct. 1998, p. 541-548.

Lee et al., "Thermal Compression and Molding of Atherosclerotic Vascular Tissue With Use of Radiofrequency Energy: Implications for Radiofrequency Balloon Angioplasty," JACC, 1989, p. 1167-1175, vol. 13, No. 5, American College of Cardiology.

Lima et al., "Efficacy and Safety of Oral Sirolimus to Treat and Prevent In-Stent Restenosis: A Pilot Study Results," American Heart Association, 2002, p. 2929.

Lima et al., "Systemic Immunosuppression Inhibits In-Stent Coronary Intimal Proliferation in Renal Transplant Patients," American Heart Association, 2002, p. 2928.

Morice et al., "A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization," The New England Journal of Medicine, Jun. 6, 2012, p. 1773-1780, vol. 346, No. 23.

(56) References Cited

OTHER PUBLICATIONS

Muller-Leisse et al., "Effectiveness and Safety of Ultrasonic Atherosclerotic Plaque Ablation: In Vitro Investigation," CardioVascular and Interventional Radiology, 1993, p. 303-307, vol. 16.

Nair et al., "Regularized Autoregressive Analysis of Intravascular Ultrasound Backscatter: Improvement in Spatial Accuracy of Tissue Maps," IEEE Transactions on Ultrasonics, Apr. 2004, p. 420-431, vol. 51, No. 4.

Popma et al., "Percutaneous Coronary and Valvular Intervention," p. 1364-1405, in Braunwald et al. (eds) Heart Disease (6th ed) Philadelphia, PA WB Saunders 2001.

Resar et al., "Endoluminal Sealing of Vascular Wall Disruptions With Radiofrequency-Heated Balloon Angioplasty," Catheterization and Cardiovascular Diagnosis, 1993, p. 161-167, vol. 29.

Romer et al., "Histopathology of Human Coronary Atherosclerosis by Quantifying Its Chemical Composition With Raman Spectroscopy," Circulation, 1998, p. 878-885, vol. 97.

Schauerte et al., "Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation," Circulation, 2000, p. 2774-2780, vol. 102.

Scheller et al., "Intracoronary Paclitaxel Added to Contrast Media Inhibits In-Stent Restenosis of Porcine Coronary Arteries," American Heart Association, 2002, p. 2227.

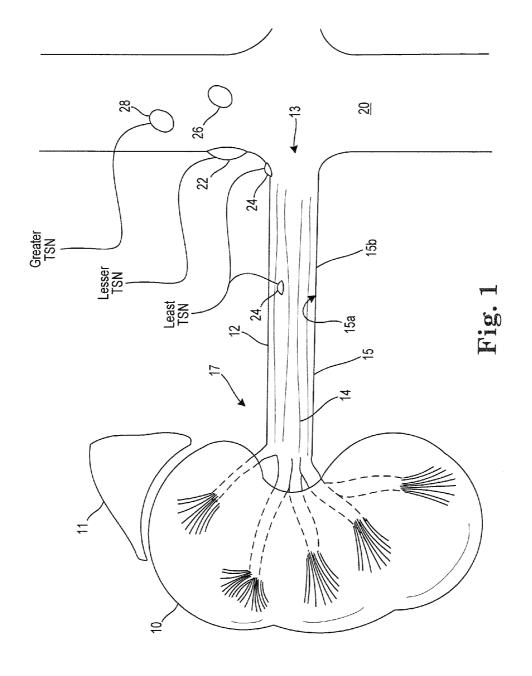
Scheller et al., "Potential solutions to the current problem: coated balloon," EuroIntervention, 2008, p. C63-C66, vol. 4 (Supplement C).

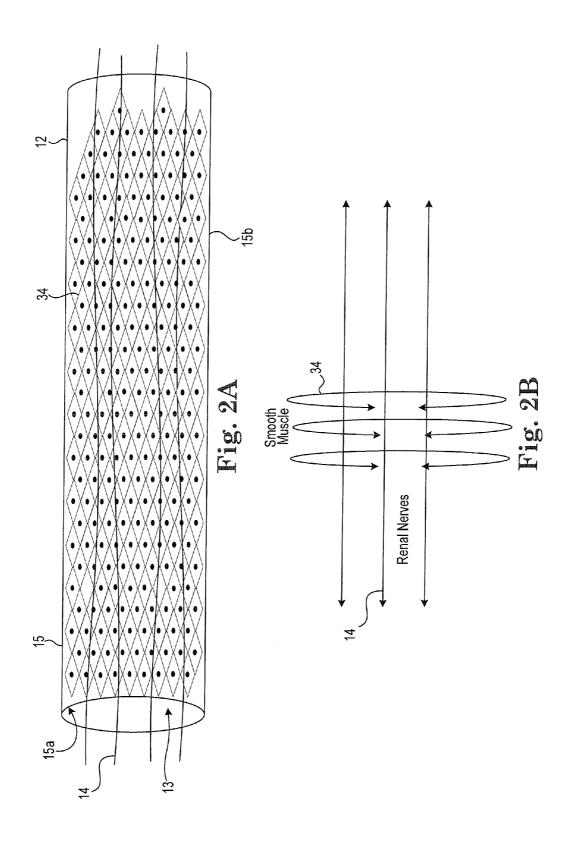
Shaffer, "Scientific basis of laser energy," Clinics in Sports Medicine, 2002, p. 585-598, vol. 21.

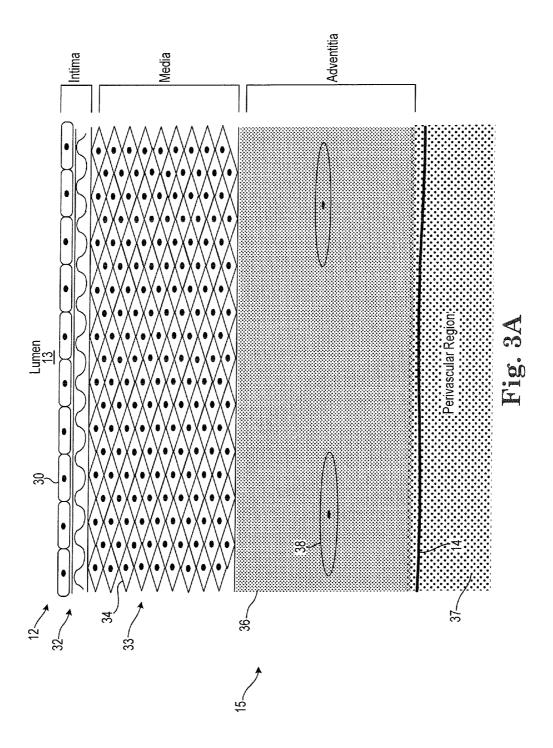
Shmatukha et al., "MRI temperature mapping during thermal balloon angioplasty," Physics in Medicine and Biology, 2006, p. N163-N171, vol. 51.

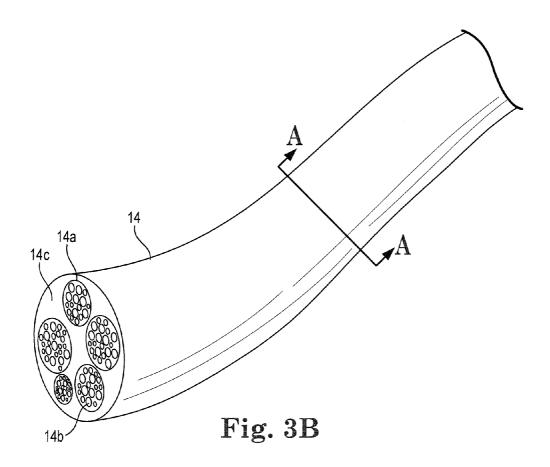
Slager et al., "Vaporization of Atherosclerotic Plaques by Spark Erosion," J Am Coll Cardiol, 1985, p. 21-25.

Stiles et al., "Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance," IEEE Transactions on Biomedical Engineering, Jul. 2003, p. 916-921, vol. 50, No. 7.


Suselbeck et al., "In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes," Basic Res Cardiol, 2005, p. 28-34, vol. 100.


Suselbeck et al., "Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system," Basic Res Cardiol, 2005, p. 446-452, vol. 100.


Tepe et al., "Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg," The New England Journal of Medicine, 2008, p. 689-699, vol. 358.


US 8,398,630, 03/2013, Demarais et al. (withdrawn)

^{*} cited by examiner

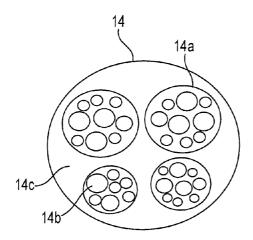
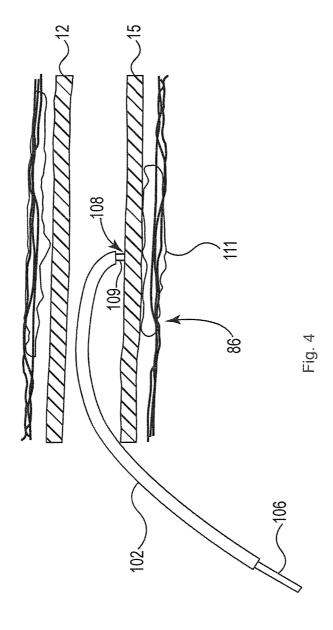
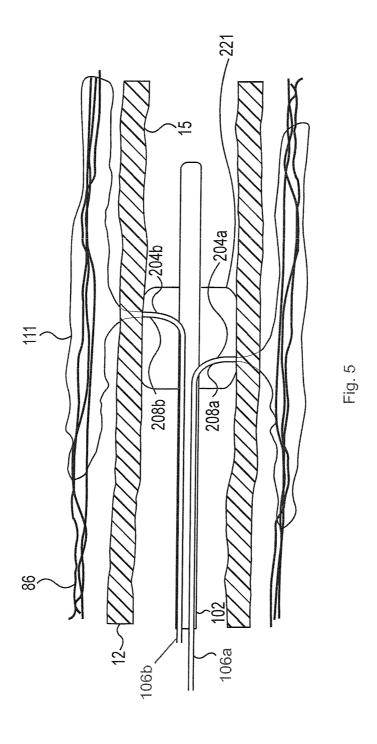
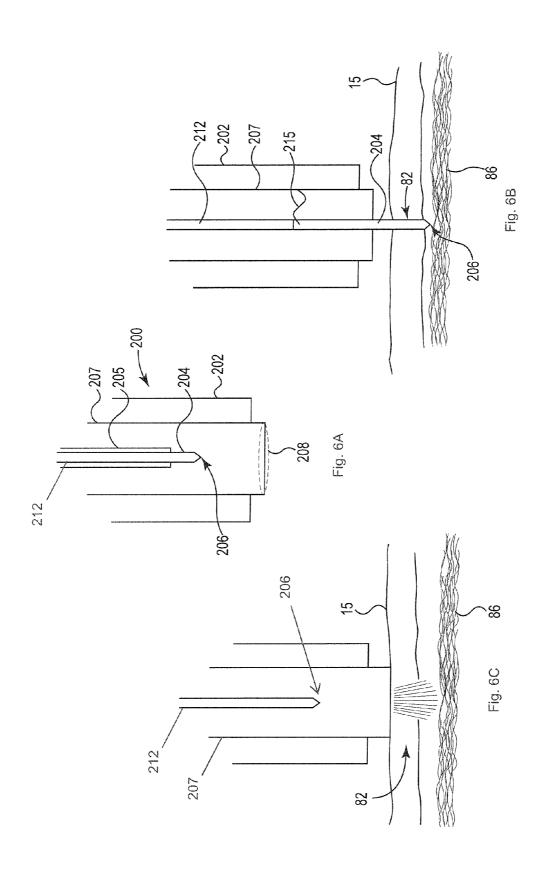
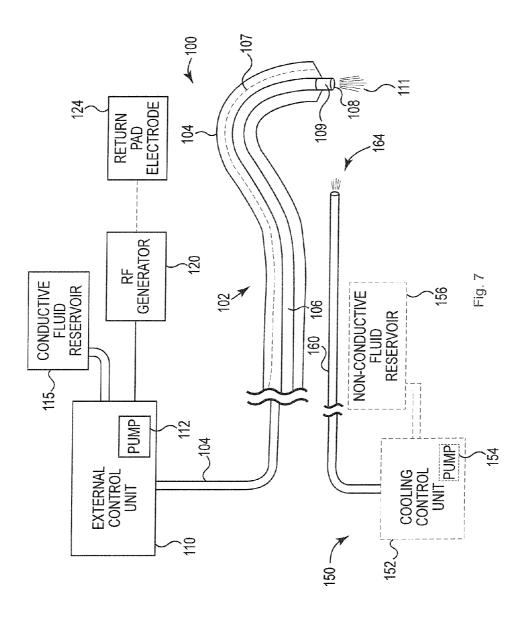






Fig. 3C

RENAL NERVE ABLATION USING CONDUCTIVE FLUID JET AND RF ENERGY

RELATED PATENT DOCUMENTS

This application claims the benefit of Provisional Patent Application Ser. No. 61/406,304 filed Oct. 25, 2010, to which priority is claimed pursuant to 35 U.S.C. §119(e) and which are hereby incorporated herein by reference.

SUMMARY

Embodiments of the disclosure are directed to a catheter dimensioned for advancement through a vessel of the body. A pressurizable lumen of the catheter is configured to receive a pressurized electrically conductive fluid. A nozzle is fluidly coupled to a distal end of the pressurizable lumen and configured to direct a jet of the pressurized conductive fluid at a wall of a target vessel to create or expand a hole through the target vessel and to fill at least some of the space adjacent to the hole with the conductive fluid. At least one electrical conductor extends at least partially along the catheter and terminates proximate or at the distal end of the pressurizable lumen. The electrical conductor is configured to conduct 25 radiofrequency energy to the conductive fluid sufficient to ablate target tissue in contact with the conductive fluid.

In accordance with some embodiments, a catheter includes a flexible shaft having a proximal end, a distal end, a length, and a lumen arrangement extending between the proximal 30 and distal ends. The length of the shaft is sufficient to access a patient's renal artery relative to a percutaneous access location. A pressurizable lumen of the lumen arrangement is configured to receive a pressurized conductive fluid. A nozzle is fluidly coupled to a distal end of the pressurizable lumen. 35 The nozzle is configured to direct a jet of the pressurized conductive fluid at a wall of the renal artery to create or expand a hole through the artery wall and to fill at least some of perivascular space adjacent to the hole with the conductive fluid. At least one electrical conductor extends at least par- 40 tially along the shaft and terminates proximate or at the distal end of the pressurizable lumen. The electrical conductor is configured to conduct radiofrequency energy to the conductive fluid sufficient to ablate perivascular renal nerves in contact with the conductive fluid.

According to further embodiments, a method involves advancing a catheter through a vessel of the body to a target location proximate target tissue adjacent an outer wall of the vessel. The method further involves creating a hole through the vessel at the target location, filing the hole and at least 50 some of the space adjacent to the hole with conductive fluid via a lumen of the catheter, and conducting radiofrequency energy along the catheter and to the conductive fluid filing the hole and the at least some of the space adjacent to the hole sufficient to ablate the target tissue. According to some 55 embodiments, the hole is created in a wall of a renal artery, and the target tissue comprises perivascular renal nerve tissue.

These and other features can be understood in view of the following detailed discussion and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a right kidney and renal vasculature including a renal artery branching laterally from the abdominal aorta;

2

FIGS. 2A and 2B illustrate sympathetic innervation of the renal artery;

FIG. 3A illustrates various tissue layers of the wall of the renal artery;

FIGS. 3B and 3C illustrate a portion of a renal nerve;

FIG. 4 illustrates a treatment catheter comprising a jet and electrode arrangement configured to deliver a pressurized, electrically conductive fluid spray through a wall of a target vessel and ablate target tissue adjacent the target vessel wall in accordance with various embodiments;

FIG. 5 illustrates a treatment catheter comprising a multiplicity of jet and electrode arrangements each configured to deliver a pressurized, electrically conductive fluid spray through a wall of a target vessel and ablate target tissue adjacent the target vessel wall in accordance with various embodiments;

FIGS. 6A-6C illustrate treatment catheters comprising a jet and electrode arrangement configured to deliver a pressurized, electrically conductive fluid spray through a wall of a target vessel and ablate target tissue adjacent the target vessel wall in accordance with various embodiments; and

FIG. 7 shows a representative RF renal therapy apparatus in accordance with various embodiments of the disclosure.

DESCRIPTION

Embodiments of the disclosure are directed to apparatuses and methods for ablating extravascular target tissue from within a vessel. Embodiments of the disclosure are directed to apparatuses and methods for ablating perivascular renal nerves from within the renal artery or other nearby vessel for the treatment of hypertension. Embodiments of the disclosure are directed to an intravascular catheter having a high-pressure fluid jet arrangement for creating a small hole through a vessel wall, dispensing an electrically conductive fluid through the hole and into perivascular space adjacent the vessel wall, and delivering RF energy to the conductive fluid and surrounding tissue of sufficient power to ablate perivascular tissue, such as perivascular renal nerve tissue, in contact with the conductive fluid.

When using RF electrode(s) placed in the renal artery for ablation of perivascular renal nerves for treatment of hypertension, the highest current density and thus the greatest heating is typically adjacent to the electrode. All the current that reaches the target tissue must also pass through the renal artery wall. In order to achieve tissue temperatures for effective ablation of the renal nerves, the renal artery can also be injured. Active cooling can be provided, but requires a larger catheter and a more complex system. Improved approaches to reducing injury to the renal artery during ablation of the renal nerves are disclosed herein.

Embodiments described in the present disclosure provide for sufficient ablation of target nerves while reducing injury to the renal artery by using a high-velocity jet of highly conductive fluid to cut a very small hole in the artery wall and conduct the current past the artery wall. In some configurations, an external control unit pressurizes a conductive fluid (such as saline with conductive additives) and also powers the RF transmission. A catheter with a pressurized fluid lumen and a conductor attaches to the external control unit.

In accordance with various method embodiments, a catheter is guided to the treatment location and directed against the wall of a patient's renal artery. A conductive fluid is pressurized and transported through a pressurizable fluid lumen of the catheter and exits through a nozzle. A brief activation of the conductive fluid jet is used to create a hole through the artery wall and fill the hole with the conductive

fluid. Depending on the duration of jet activation, a volume of conductive fluid will also dissect and collect in the perivascular space.

Radiofrequency (RF) energy or other form of high-frequency AC energy is passed along an electrical conductor that 5 extends between the distal and proximal ends of the catheter. The electrical conductor may take the form of a metallic tube which also serves as the conductive fluid lumen of the catheter. The RF energy passes preferentially through the conductive fluid, through the small hole in the artery wall, and to the perivascular tissue, where it spreads and heats the perivascular renal nerve tissue due to the higher impedance of the perivascular renal nerve tissue relative to that of the conductive fluid.

Various embodiments of the disclosure are directed to apparatuses and methods for renal denervation for treating hypertension. Hypertension is a chronic medical condition in which the blood pressure is elevated. Persistent hypertension is a significant risk factor associated with a variety of adverse medical conditions, including heart attacks, heart failure, 20 arterial aneurysms, and strokes. Persistent hypertension is a leading cause of chronic renal failure. Hyperactivity of the sympathetic nervous system serving the kidneys is associated with hypertension and its progression. Deactivation of nerves in the kidneys via renal denervation can reduce blood pressure, and may be a viable treatment option for many patients with hypertension who do not respond to conventional drugs.

The kidneys are instrumental in a number of body processes, including blood filtration, regulation of fluid balance, blood pressure control, electrolyte balance, and hormone production. One primary function of the kidneys is to remove toxins, mineral salts, and water from the blood to form urine. The kidneys receive about 20-25% of cardiac output through the renal arteries that branch left and right from the abdominal aorta, entering each kidney at the concave surface of the 35 kidneys, the renal hilum.

Blood flows into the kidneys through the renal artery and the afferent arteriole, entering the filtration portion of the kidney, the renal corpuscle. The renal corpuscle is composed of the glomerulus, a thicket of capillaries, surrounded by a 40 fluid-filled, cup-like sac called Bowman's capsule. Solutes in the blood are filtered through the very thin capillary walls of the glomerulus due to the pressure gradient that exists between the blood in the capillaries and the fluid in the Bowman's capsule. The pressure gradient is controlled by the 45 contraction or dilation of the arterioles. After filtration occurs, the filtered blood moves through the efferent arteriole and the peritubular capillaries, converging in the interlobular veins, and finally exiting the kidney through the renal vein.

Particles and fluid filtered from the blood move from the 50 Bowman's capsule through a number of tubules to a collecting duct. Urine is formed in the collecting duct and then exits through the ureter and bladder. The tubules are surrounded by the peritubular capillaries (containing the filtered blood). As the filtrate moves through the tubules and toward the collecting duct, nutrients, water, and electrolytes, such as sodium and chloride, are reabsorbed into the blood.

The kidneys are innervated by the renal plexus which emanates primarily from the aorticorenal ganglion. Renal ganglia are formed by the nerves of the renal plexus as the nerves of follow along the course of the renal artery and into the kidney. The renal nerves are part of the autonomic nervous system which includes sympathetic and parasympathetic components. The sympathetic nervous system is known to be the system that provides the bodies "fight or flight" response, of whereas the parasympathetic nervous system provides the "rest and digest" response. Stimulation of sympathetic nerve

4

activity triggers the sympathetic response which causes the kidneys to increase production of hormones that increase vasoconstriction and fluid retention. This process is referred to as the renin-angiotensin-aldosterone-system (RAAS) response to increased renal sympathetic nerve activity.

In response to a reduction in blood volume, the kidneys secrete renin, which stimulates the production of angiotensin. Angiotensin causes blood vessels to constrict, resulting in increased blood pressure, and also stimulates the secretion of the hormone aldosterone from the adrenal cortex. Aldosterone causes the tubules of the kidneys to increase the reabsorption of sodium and water, which increases the volume of fluid in the body and blood pressure.

Congestive heart failure (CHF) is a condition that has been linked to kidney function. CHF occurs when the heart is unable to pump blood effectively throughout the body. When blood flow drops, renal function degrades because of insufficient perfusion of the blood within the renal corpuscles. The decreased blood flow to the kidneys triggers an increase in sympathetic nervous system activity (i.e., the RAAS becomes too active) that causes the kidneys to secrete hormones that increase fluid retention and vasorestriction. Fluid retention and vasorestriction in turn increases the peripheral resistance of the circulatory system, placing an even greater load on the heart, which diminishes blood flow further. If the deterioration in cardiac and renal functioning continues, eventually the body becomes overwhelmed, and an episode of heart failure decompensation occurs, often leading to hospitalization of the patient.

FIG. 1 is an illustration of a right kidney 10 and renal vasculature including a renal artery 12 branching laterally from the abdominal aorta 20. In FIG. 1, only the right kidney 10 is shown for purposes of simplicity of explanation, but reference will be made herein to both right and left kidneys and associated renal vasculature and nervous system structures, all of which are contemplated within the context of embodiments of the disclosure. The renal artery 12 is purposefully shown to be disproportionately larger than the right kidney 10 and abdominal aorta 20 in order to facilitate discussion of various features and embodiments of the present disclosure.

The right and left kidneys are supplied with blood from the right and left renal arteries that branch from respective right and left lateral surfaces of the abdominal aorta 20. Each of the right and left renal arteries is directed across the crus of the diaphragm, so as to form nearly a right angle with the abdominal aorta 20. The right and left renal arteries extend generally from the abdominal aorta 20 to respective renal sinuses proximate the hilum 17 of the kidneys, and branch into segmental arteries and then interlobular arteries within the kidney 10. The interlobular arteries radiate outward, penetrating the renal capsule and extending through the renal columns between the renal pyramids. Typically, the kidneys receive about 20% of total cardiac output which, for normal persons, represents about 1200 mL of blood flow through the kidneys per minute.

The primary function of the kidneys is to maintain water and electrolyte balance for the body by controlling the production and concentration of urine. In producing urine, the kidneys excrete wastes such as urea and ammonium. The kidneys also control reabsorption of glucose and amino acids, and are important in the production of hormones including vitamin D, renin and erythropoietin.

An important secondary function of the kidneys is to control metabolic homeostasis of the body. Controlling hemostatic functions include regulating electrolytes, acid-base balance, and blood pressure. For example, the kidneys are

responsible for regulating blood volume and pressure by adjusting volume of water lost in the urine and releasing erythropoietin and renin, for example. The kidneys also regulate plasma ion concentrations (e.g., sodium, potassium, chloride ions, and calcium ion levels) by controlling the quantities lost in the urine and the synthesis of calcitrol. Other hemostatic functions controlled by the kidneys include stabilizing blood pH by controlling loss of hydrogen and bicarbonate ions in the urine, conserving valuable nutrients by preventing their excretion, and assisting the liver with detoxification.

5

Also shown in FIG. 1 is the right suprarenal gland 11, commonly referred to as the right adrenal gland. The suprarenal gland 11 is a star-shaped endocrine gland that rests on top of the kidney 10. The primary function of the suprarenal 15 glands (left and right) is to regulate the stress response of the body through the synthesis of corticosteroids and catecholamines, including cortisol and adrenaline (epinephrine), respectively. Encompassing the kidneys 10, suprarenal glands 11, renal vessels 12, and adjacent perirenal fat is the 20 renal fascia, e.g., Gerota's fascia, (not shown), which is a fascial pouch derived from extraperitoneal connective tissue.

The autonomic nervous system of the body controls involuntary actions of the smooth muscles in blood vessels, the digestive system, heart, and glands. The autonomic nervous 25 system is divided into the sympathetic nervous system and the parasympathetic nervous system. In general terms, the parasympathetic nervous system prepares the body for rest by lowering heart rate, lowering blood pressure, and stimulating digestion. The sympathetic nervous system effectuates the 30 body's fight-or-flight response by increasing heart rate, increasing blood pressure, and increasing metabolism.

In the autonomic nervous system, fibers originating from the central nervous system and extending to the various ganglia are referred to as preganglionic fibers, while those 35 extending from the ganglia to the effector organ are referred to as postganglionic fibers. Activation of the sympathetic nervous system is effected through the release of adrenaline (epinephrine) and to a lesser extent norepinephrine from the suprarenal glands 11. This release of adrenaline is triggered 40 by the neurotransmitter acetylcholine released from preganglionic sympathetic nerves.

The kidneys and ureters (not shown) are innervated by the renal nerves 14. FIGS. 1 and 2A-2B illustrate sympathetic innervation of the renal vasculature, primarily innervation of 45 the renal artery 12. The primary functions of sympathetic innervation of the renal vasculature include regulation of renal blood flow and pressure, stimulation of renin release, and direct stimulation of water and sodium ion reabsorption.

Most of the nerves innervating the renal vasculature are 50 sympathetic postganglionic fibers arising from the superior mesenteric ganglion 26. The renal nerves 14 extend generally axially along the renal arteries 12, enter the kidneys 10 at the hilum 17, follow the branches of the renal arteries 12 within the kidney 10, and extend to individual nephrons. Other renal 55 ganglia, such as the renal ganglia 24, superior mesenteric ganglion 26, the left and right aorticorenal ganglia 22, and celiac ganglia 28 also innervate the renal vasculature. The celiac ganglion 28 is joined by the greater thoracic splanchnic nerve (greater TSN). The aorticorenal ganglia 26 is joined by the lesser thoracic splanchnic nerve (lesser TSN) and innervates the greater part of the renal plexus.

Sympathetic signals to the kidney 10 are communicated via innervated renal vasculature that originates primarily at spinal segments T10-T12 and L1. Parasympathetic signals 65 originate primarily at spinal segments S2-S4 and from the medulla oblongata of the lower brain. Sympathetic nerve

traffic travels through the sympathetic trunk ganglia, where some may synapse, while others synapse at the aorticorenal ganglion 22 (via the lesser thoracic splanchnic nerve, i.e., lesser TSN) and the renal ganglion 24 (via the least thoracic splanchnic nerve, i.e., least TSN). The postsynaptic sympathetic signals then travel along nerves 14 of the renal artery 12 to the kidney 10. Presynaptic parasympathetic signals travel to sites near the kidney 10 before they synapse on or near the kidney 10.

6

With particular reference to FIG. 2A, the renal artery 12, as with most arteries and arterioles, is lined with smooth muscle 34 that controls the diameter of the renal artery lumen 13. Smooth muscle, in general, is an involuntary non-striated muscle found within the media layer of large and small arteries and veins, as well as various organs. The glomeruli of the kidneys, for example, contain a smooth muscle-like cell called the mesangial cell. Smooth muscle is fundamentally different from skeletal muscle and cardiac muscle in terms of structure, function, excitation-contraction coupling, and mechanism of contraction.

Smooth muscle cells can be stimulated to contract or relax by the autonomic nervous system, but can also react on stimuli from neighboring cells and in response to hormones and blood borne electrolytes and agents (e.g., vasodilators or vasoconstrictors). Specialized smooth muscle cells within the afferent arteriole of the juxtaglomerular apparatus of kidney 10, for example, produces renin which activates the angiotension II system.

The renal nerves 14 innervate the smooth muscle 34 of the renal artery wall 15 and extend lengthwise in a generally axial or longitudinal manner along the renal artery wall 15. The smooth muscle 34 surrounds the renal artery circumferentially, and extends lengthwise in a direction generally transverse to the longitudinal orientation of the renal nerves 14, as is depicted in FIG. 2B.

The smooth muscle **34** of the renal artery **12** is under involuntary control of the autonomic nervous system. An increase in sympathetic activity, for example, tends to contract the smooth muscle **34**, which reduces the diameter of the renal artery lumen **13** and decreases blood perfusion. A decrease in sympathetic activity tends to cause the smooth muscle **34** to relax, resulting in vessel dilation and an increase in the renal artery lumen diameter and blood perfusion. Conversely, increased parasympathetic activity tends to relax the smooth muscle **34**, while decreased parasympathetic activity tends to cause smooth muscle contraction.

FIG. 3A shows a segment of a longitudinal cross-section through a renal artery, and illustrates various tissue layers of the wall 15 of the renal artery 12. The innermost layer of the renal artery 12 is the endothelium 30, which is the innermost layer of the intima 32 and is supported by an internal elastic membrane. The endothelium 30 is a single layer of cells that contacts the blood flowing though the vessel lumen 13. Endothelium cells are typically polygonal, oval, or fusiform, and have very distinct round or oval nuclei. Cells of the endothelium 30 are involved in several vascular functions, including control of blood pressure by way of vasoconstriction and vasodilation, blood clotting, and acting as a barrier layer between contents within the lumen 13 and surrounding tissue, such as the membrane of the intima 32 separating the intima 32 from the media 34, and the adventitia 36. The membrane or maceration of the intima 32 is a fine, transparent, colorless structure which is highly elastic, and commonly has a longitudinal corrugated pattern.

Adjacent the intima 32 is the media 33, which is the middle layer of the renal artery 12. The media is made up of smooth muscle 34 and elastic tissue. The media 33 can be readily

identified by its color and by the transverse arrangement of its fibers. More particularly, the media 33 consists principally of bundles of smooth muscle fibers 34 arranged in a thin platelike manner or lamellae and disposed circularly around the arterial wall 15. The outermost layer of the renal artery wall 5 15 is the adventitia 36, which is made up of connective tissue. The adventitia 36 includes fibroblast cells 38 that play an important role in wound healing.

A perivascular region 37 is shown adjacent and peripheral to the adventitia 36 of the renal artery wall 15. A renal nerve 14 is shown proximate the adventitia 36 and passing through a portion of the perivascular region 37. The renal nerve 14 is shown extending substantially longitudinally along the outer wall 15 of the renal artery 12. The main trunk of the renal nerves 14 generally lies in or on the adventitia 36 of the renal artery 12, often passing through the perivascular region 37, with certain branches coursing into the media 33 to enervate the renal artery smooth muscle 34.

Embodiments of the disclosure may be implemented to provide varying degrees of denervation therapy to innervated 20 renal vasculature. For example, embodiments of the disclosure may provide for control of the extent and relative permanency of renal nerve impulse transmission interruption achieved by denervation therapy delivered using a treatment apparatus of the disclosure. The extent and relative perma- 25 nency of renal nerve injury may be tailored to achieve a desired reduction in sympathetic nerve activity (including a partial or complete block) and to achieve a desired degree of permanency (including temporary or irreversible injury).

Returning to FIGS. 3B and 3C, the portion of the renal 30 nerve 14 shown in FIGS. 3B and 3C includes bundles 14a of nerve fibers 14b each comprising axons or dendrites that originate or terminate on cell bodies or neurons located in ganglia or on the spinal cord, or in the brain. Supporting tissue structures 14c of the nerve 14 include the endoneurium (sur- 35 rounding nerve axon fibers), perineurium (surrounds fiber groups to form a fascicle), and epineurium (binds fascicles into nerves), which serve to separate and support nerve fibers 14b and bundles 14a. In particular, the endoneurium, also referred to as the endoneurium tube or tubule, is a layer of 40 conduction of nerve impulses along the renal nerve fibers 14b delicate connective tissue that encloses the myelin sheath of a nerve fiber 14b within a fasciculus.

Major components of a neuron include the soma, which is the central part of the neuron that includes the nucleus, cellular extensions called dendrites, and axons, which are cable- 45 like projections that carry nerve signals. The axon terminal contains synapses, which are specialized structures where neurotransmitter chemicals are released in order to communicate with target tissues. The axons of many neurons of the peripheral nervous system are sheathed in myelin, which is 50 formed by a type of glial cell known as Schwann cells. The myelinating Schwann cells are wrapped around the axon, leaving the axolemma relatively uncovered at regularly spaced nodes, called nodes of Ranvier. Myelination of axons enables an especially rapid mode of electrical impulse propa- 55 gation called saltation.

In some embodiments, a treatment apparatus of the disclosure may be implemented to deliver denervation therapy that causes transient and reversible injury to renal nerve fibers **14***b*. In other embodiments, a treatment apparatus of the disclosure may be implemented to deliver denervation therapy that causes more severe injury to renal nerve fibers 14b, which may be reversible if the therapy is terminated in a timely manner. In preferred embodiments, a treatment apparatus of the disclosure may be implemented to deliver denervation 65 therapy that causes severe and irreversible injury to renal nerve fibers 14b, resulting in permanent cessation of renal

8

sympathetic nerve activity. For example, a treatment apparatus may be implemented to deliver a denervation therapy that disrupts nerve fiber morphology to a degree sufficient to physically separate the endoneurium tube of the nerve fiber 14b, which can prevent regeneration and re-innervation pro-

By way of example, and in accordance with Seddon's classification as is known in the art, a treatment apparatus of the disclosure may be implemented to deliver a denervation therapy that interrupts conduction of nerve impulses along the renal nerve fibers 14b by imparting damage to the renal nerve fibers 14b consistent with neruapraxia. Neurapraxia describes nerve damage in which there is no disruption of the nerve fiber 14b or its sheath. In this case, there is an interruption in conduction of the nerve impulse down the nerve fiber, with recovery taking place within hours to months without true regeneration, as Wallerian degeneration does not occur. Wallerian degeneration refers to a process in which the part of the axon separated from the neuron's cell nucleus degenerates. This process is also known as anterograde degeneration. Neurapraxia is the mildest form of nerve injury that may be imparted to renal nerve fibers 14b by use of a treatment apparatus according to embodiments of the disclosure.

A treatment apparatus may be implemented to interrupt conduction of nerve impulses along the renal nerve fibers 14b by imparting damage to the renal nerve fibers consistent with axonotmesis. Axonotmesis involves loss of the relative continuity of the axon of a nerve fiber and its covering of myelin, but preservation of the connective tissue framework of the nerve fiber. In this case, the encapsulating support tissue 14cof the nerve fiber 14b is preserved. Because axonal continuity is lost, Wallerian degeneration occurs. Recovery from axonotmesis occurs only through regeneration of the axons, a process requiring time on the order of several weeks or months. Electrically, the nerve fiber 14b shows rapid and complete degeneration. Regeneration and re-innervation may occur as long as the endoneural tubes are intact.

A treatment apparatus may be implemented to interrupt by imparting damage to the renal nerve fibers 14b consistent with neurotmesis. Neurotmesis, according to Seddon's classification, is the most serious nerve injury in the scheme. In this type of injury, both the nerve fiber 14b and the nerve sheath are disrupted. While partial recovery may occur, complete recovery is not possible. Neurotmesis involves loss of continuity of the axon and the encapsulating connective tissue 14c, resulting in a complete loss of autonomic function, in the case of renal nerve fibers 14b. If the nerve fiber 14b has been completely divided, axonal regeneration causes a neuroma to form in the proximal stump.

A more stratified classification of neurotmesis nerve damage may be found by reference to the Sunderland System as is known in the art. The Sunderland System defines five degrees of nerve damage, the first two of which correspond closely with neurapraxia and axonotmesis of Seddon's classification. The latter three Sunderland System classifications describe different levels of neurotmesis nerve damage.

The first and second degrees of nerve injury in the Sunderland system are analogous to Seddon's neurapraxia and axonotmesis, respectively. Third degree nerve injury, according to the Sunderland System, involves disruption of the endoneurium, with the epineurium and perineurium remaining intact. Recovery may range from poor to complete depending on the degree of intrafascicular fibrosis. A fourth degree nerve injury involves interruption of all neural and supporting elements, with the epineurium remaining intact.

The nerve is usually enlarged. Fifth degree nerve injury involves complete transection of the nerve fiber **14***b* with loss of continuity.

Turning now to FIG. 4, there is illustrated a treatment catheter comprising a jet and electrode arrangement configured to deliver a pressurized, electrically conductive fluid spray through a wall of a target vessel and ablate target tissue adjacent the target vessel wall in accordance with various embodiments. In FIG. 4, the treatment catheter 102 is shown deployed within a lumen of a patient's renal artery 12. The treatment catheter 102, according to various embodiments, includes a flexible shaft having a proximal end, a distal end, and a lumen arrangement extending between the proximal and distal ends. The length of the shaft is sufficient to access the patient's renal artery 12 relative to a percutaneous access location

The lumen arrangement of the catheter 102 includes a pressurizable lumen 106 configured to receive a pressurized conductive fluid at its proximal end. The conductive fluid may 20 be pressurized in the range of about 100 to 500 psi, for example. A nozzle 108 is fluidly coupled to the distal end of the pressurized bowl lumen 106. The nozzle 108 is configured to direct a jet of pressurized conductive fluid at a wall 15 of the renal artery 12 to create or expand a hole through the artery 25 wall 15. The nozzle may have a diameter ranging from about 0.001 to 0.005 inch, for example.

In some configurations, the nozzle 108 may include a tissue-penetrating feature that facilitates dissection of the renal artery wall 15. For example, a leading surface of the nozzle 30 108 may have a sharpened edge. In such embodiments, the nozzle 108 can be advanced through the hole in the artery wall 15 to a location at or extending beyond an outer surface of the artery wall 15. Prior to advancing the nozzle 108 through the hole, a jet of pressurized conductive fluid can be used to 35 expand the diameter of the hole, which serves to increase the ease by which the nozzle 108 can be advanced through the hole.

In other configurations, embodiments of which are described hereinbelow, an elongated member having a tissue- 40 penetrating feature (e.g., needle) at its distal end can be displaced axially within the pressurizable lumen 106. With the catheter's distal tip positioned adjacent the wall 15 of the renal artery 12, the elongated member is advanced so that the tissue-penetrating feature penetrates into and through the 45 renal artery wall 15.

After piercing or expanding a previously created hole through the renal artery wall 15, the conductive fluid is dispensed from the nozzle 108 to fill at least some perivascular space adjacent to the hole. In configurations where the nozzle 50 108 is not advanced through the hole, the conductive fluid dispensed from the nozzle 108 also fills the hole. At least one electrical conductor extends at least partially along the catheter 102 and terminates proximate or at the distal end of the pressurizer the lumen 106. The electrical conductor is configured to conduct high-frequency AC energy (e.g., radiofrequency energy) to the conductive fluid sufficient to ablate perivascular renal nerve tissue 111 in contact with the conductive fluid.

The conductive fluid preferably has an impedance lower 60 than that of the renal artery and perivascular tissue proximate the hole. In some embodiments, the conductive fluid is cooled to a temperature sufficient to provide cooling at the renal artery treatment site. In other embodiments, a cooling arrangement separate from the pressurized lumen 106 can be 65 incorporated into the catheter 102 to provide cooling at the renal artery treatment site. For example, a separate infusion of

10

nonconductive fluid can be used for artery cooling and to decrease RF energy losses in the renal artery lumen.

In some embodiments, the nozzle 108 comprises electrically conductive material 109, such as a metallic annular tapered ring, which defines an electrode. An electrical conductor is coupled to the electrically conductive nozzle 108 and extends along the length of the catheter 102 to its proximal end. In other configurations, the electrical conductor (e.g., a wire or conductive composite elongated member) extends between the distal and proximal ends of the catheter 102, and the distal tip of the electrical conductor defines the electrode 109. For example, the pressurizable lumen 106 can include a metallic tube that serves as an electrical conductor between a proximal energy source and the distal tip of the metallic tube which serves as an electrode 109. In other configurations, at least a proximal portion of the pressurizable lumen 106 comprises nonconductive material, and the nozzle 108 comprises an electrically conductive element 109. In further configurations, an electrical conductor extends between the distal and proximal ends of the catheter 102 for electrically coupling the nozzle 108 with an external energy source at the proximal end of the catheter 102.

The distal end of one or both of the catheter 102 and pressurizable lumen 106 may incorporate a pre-formed curve that facilitates proper positioning of the nozzle 108 against the wall 15 of the renal artery. For example, the distal ends of the catheter 102 and pressurizable lumen 106 may incorporate pre-formed curves that together can form a complex curved shape which can position the nozzle 108 at or near perpendicular with respect to the renal artery wall 15. In other configurations, the pressurizable lumen 106 can be fashioned as a metallic tube, and at least the distal end of the pressurizable lumen 106 can include a shape-memory tube section. When extended beyond the distal tip of the catheter 102, the shape-memory tube section assumes a predetermined curved shape for orienting the nozzle at a desired angle (e.g., 90°+/ 20°) relative to the renal artery wall 15. In further configurations, a tensioning wire or cable can be connected at the distal tip of the catheter 102. Desired curvature of the distal end or tip of the catheter 102 can be achieved by applying an appropriate force to the tensioning wire/cable, allowing the clinician to orient the nozzle 108 at a desired angle relative to the renal artery wall 15.

In some embodiments, the treatment catheter 102 includes a single pressurizable lumen 106 fluidly coupled to a multiplicity of the nozzles 108. The multiplicity of nozzles 108 may be fluidly coupled to the single pressurizable lumen 106 via an intervening structure, such as a manifold, balloon, chamber or a series of orifices in a tube, for example. The intervening structure is preferably configured to channel pressurized conductive fluid from the signal pressurizable lumen 106 to a multiplicity of the nozzles 108.

FIG. 5 illustrates a treatment catheter comprising a multiplicity of jet and electrode arrangements each configured to deliver a pressurized, electrically conductive fluid spray through a wall of a target vessel and ablate target tissue adjacent the target vessel wall in accordance with various embodiments. In the embodiment illustrated in FIG. 5, a treatment catheter 102 includes multiple jets that can be used to concurrently or serially ablate separate locations along and around the renal artery perivascular tissue. An expandable stabilization arrangement can be provided to position the jet nozzles against the renal artery wall and stabilize the position of the nozzles during the ablation procedure.

The embodiment of FIG. 5 shows a treatment catheter 102 that employs a multiplicity of jet arrangements. The catheter 102 includes a multiplicity of pressurizable lumens 106a and

106b fluidly coupled to a multiplicity of nozzles 208a and 208b, respectively. The treatment catheter 102 further includes an expandable balloon or mesh structure 221 provided at a distal end of the catheter 102. The expandable structure 221 is configured to position the nozzles 208a and 5208b against the wall 15 of the renal artery 12 and stabilize the position of the nozzles 208a and 208b during the ablation procedure. FIG. 5 further shows extension lumens 204A and 204B fluidly coupled to pressurizable lumens 106a and 106b, respectively.

In some configurations, the extension lumens 204A and 204B define end sections of the pressurizable lumens 106a and 106b that terminate on an exterior surface of the expandable structure 221. In other embodiments, the extension lumens 204A and 204B define lumen structures integral to the 15 expandable structure 221, which are fluidly coupled to pressurizable lumens 106a and 106b during catheter fabrication. For example, the extension lumens 204A and 204B may be formed into the surface of an expandable balloon structure 221. By way of further example, the extension lumens 204A and 204B may be polymeric or metallic tubes having distal ends that terminate at the surface of an expandable mesh structure 221.

According to some embodiments, the distal ends of the extension lumens 204A and 204B include an electrically 25 conductive material, and this conductive material is electrically coupled to an electrical conductor that runs along the length of the catheter 102. For example, the extension lumens 204a and 204B define end sections of metallic tubes 106A and 106B, respectively. In other embodiments, the pressurizable lumens 106a and 106b can be formed from polymeric material and the distal ends of the extension lumens 204a and 204B can include electrically conductive material which is electrically coupled to an electrical conductor that runs along the length of the catheter 102. After delivering the conductive 35 fluid into the perivascular space 111, radiofrequency energy is communicated to the electrically conductive material at the distal ends of the extension lumens 204a and 204B. The conductive fluid provides a low impedance pathway to the perivascular renal nerve tissue contained within the perivas- 40 cular space 111 for the RF energy.

The jet arrangements shown in the illustrative embodiment of FIG. 5 is useful for ablating perivascular renal nerve tissue at two separate locations within the renal artery 15. In FIG. 5, the two extension lumens 204a and 204b are spaced apart 45 from one another both circumferentially and axially. As such, two circumferentially and axially spaced regions of perivascular renal nerve tissue proximate the expandable structure 221 can be ablated. It is noted that the axial spacing between the extension lumens 204a and 204b can be eliminated for 50 treatment catheters implemented to ablate a circumferential region of perivascular renal nerve tissue.

Additional jet arrangements can be incorporated into the treatment catheter 102. For example, the expandable structure 221 and lumen arrangement of the catheter 102 can be configured to accommodate four jet arrangements spaced apart from one another both axially and circumferentially, so that each jet and associated electrode element can ablate approximately one-fourth of a circumferential region of the perivascular renal nerve tissue. By way of further example, the 60 expandable structure 221 and lumen arrangement of the catheter 102 can be configured to accommodate six jet arrangements spaced apart from one another both axially and circumferentially, such that each jet and associated electrode element can ablate approximately one-sixth of a circumferential region of the perivascular renal nerve tissue. Ablation of perivascular renal nerve tissue adjacent each of the jet and

12

electrode element arrangement using the RF energy can be performed serially or sequentially.

It is understood that a treatment catheter 102 which incorporates a multiplicity of jet arrangements can include an expandable structure 221 configured to position the multiplicity of jet arrangements in one or both of axially and circumferentially spaced relationships to one another. Also, each of the jet arrangements can be fluidly coupled to an individual pressurizable lumens of the treatment catheter 102, or some or all of the jet arrangements can be fluidly coupled to a common pressurizable lumen. Ablation of perivascular renal nerve tissue using the jet and electrode element arrangements can be performed serially or sequentially, irrespective of whether the jet arrangements are fluidly coupled to separate lumens or a common lumen.

Although not shown in FIG. 5 for purposes of simplicity, expandable structure 221 includes an activation feature (e.g., pressurizable lumen(s) or push/pull wire(s)) for transforming the expandable structure 221 between low-profile introduction and deployment configurations. It is noted that an expandable balloon structure 221 can be implemented to include a cooling arrangement in the form of a recirculating cooling circuit or a phase-change cooling arrangement.

According to various method embodiments, the distal end of the treatment catheter 102 is delivered to a patient's renal artery 12 using one or both of a guiding catheter and a delivery sheath. During the delivery procedure, the expandable structure 221 is in its collapsed low-profile introduction configuration. After the expandable structure 221 is positioned at a desired location within the renal artery 12, the expandable structure 221 is activated, which centers the catheter 102 within the renal artery 12 and positions the nozzles 208a and 208b against the wall 15 of the renal artery 12. The jets are activated for a brief duration of time and at an appropriate pressure to create a hole through the renal artery wall 15 using high-pressure electrically conductive fluid. The conductive fluid fills the holes in the artery wall 15 and perivascular space 111 adjacent the holes. Radiofrequency energy is delivered the perivascular renal nerve tissue included in the perivascular space 111 via the nozzles 208a and 208b or electrically conductive electrode elements at or near the nozzles 208a and

In accordance with various embodiments, and with reference to FIGS. 6A-6C, a catheter apparatus 200 can be configured to accommodate a conductive wire which can be used to create a hole through the renal artery wall 15. A low-pressure conductive fluid jet can be used to expand the hole in the artery wall 15 created by the conductive wire and, if needed, to dissect the perivascular space 111. RF energy can be transferred to the conductive fluid at the distal tip of the conductive wire to ablate the perivascular renal nerve tissue.

FIGS. 6A-6C illustrate various features of a catheter apparatus 200 at different stages of an ablation procedure in accordance with embodiments of the disclosure. As shown in FIG. 6A, the catheter apparatus 200 includes a treatment catheter 202 having a pressurizable lumen 207 dimensioned to receive an elongated member 212. The elongated member 212 is displaceable within the pressurizable lumen 207 and extendable beyond a distal opening 208 which defines a nozzle of the pressurizable lumen 207. The shape of the nozzle 208 in FIGS. 6A-6C is not shown for purposes of simplicity. The elongated member 212 is insulated along its length except at a distal end section 204, which remains exposed. The exposed distal end section 204 includes a tissue-penetrating feature 206. The tissue-penetrating feature 206 can be used to create a pilot hole 82 in the wall 15 of a patient's renal artery, which is best seen in FIG. 6B.

According to other embodiments, and with continued reference to FIG. 6B, the elongated member 212 includes a distal short conductive wire 204 having a tissue-penetrating feature **206** at its distal end. In the embodiment shown in FIG. **6**B, the distal short conductive wire 204 is connected to a proximal 5 nonconductive (e.g., plastic) section of the elongated member 212. The pressurizable lumen 207, according to this embodiment, comprises a conductive metal tube. An electrical conductor 215 has opposing ends respectively connected to a distal location of the conductive metal tube 207 and a proxi-10 mal location of the short conductive wire 204. The length of the electrical conductor 215 provides slack to allow for free axial movement of the short conductive wire 204 between retracted and extended positions. In an alternative embodiment, the pressurizable lumen 207 can be formed from non- 15 conductive material, and an electrical conductor can extend between a proximal end of the pressurizable lumen 207 and a proximal end of the short conductive wire 204. The short conductive wire 204 in FIG. 6B is shown penetrating through the wall 15 of the patient's renal artery.

In the embodiment shown in FIG. 6C, the elongated member 212 comprises a conductive wire which includes a tissuepenetrating feature 206 at its distal end. Depending on the diameter of the distal end of the elongated member 212, a relatively low-pressure jet of conductive fluid can be directed 25 into the pilot hole 82 for purposes of expanding the size of the pilot hole 82 and dissecting the perivascular space adjacent the pilot hole 82. FIG. 6C illustrates retraction of the elongated member 212 into the pressurizable lumen 207, and dispensing of a conductive fluid into the pilot hole 82 and into 30 perivascular space which includes perivascular renal nerve tissue 86. After dispensing a sufficient volume of conductive fluid into the perivascular space, the distal end of the elongated member 212 is advanced into the pilot hole 82 so that the RF energy can be transmitted from the distal end of the 35 elongated member 212 to the conductive fluid in contact with the perivascular renal nerve tissue 86. The above-described ablation procedure illustrated in FIGS. 6A-6C can be performed for each jet and electrode arrangement incorporated embodiments of the disclosure.

FIG. 7 shows a representative RF renal therapy apparatus 100 in accordance with various embodiments of the disclosure. The apparatus 100 illustrated in FIG. 7 includes an external control unit 110 which includes an RF generator 120. 45 The external control unit 110 typically includes some or all of power control circuitry, timing control circuitry, temperature measuring circuitry, and impedance measuring circuitry. An ablation catheter 102 of the RF renal therapy apparatus 100 includes a shaft 104 having a pressurizable lumen 106 which 50 terminates with a nozzle 108. The nozzle 108 or an electrically conductive element 109 is configured to function as an electrode and coupled to a separate conductor 107 or the pressurizable lumen 106 if fashioned as a metallic tube. The distal end of the pressurizable lumen 106 and the nozzle are 55 preferably held at a desired orientation within the patient's renal artery during ablation by a stabilization arrangement (not shown) of a type previously described.

The external control unit 110 includes a pump 112 which is fluidly coupled to a reservoir 115 containing electrically conductive fluid. The external control unit 110 controls the amount of pressure generated by the pump 112. For example, the external control unit 110 can control the pump 112 to dispense conductive fluid at a relatively high pressure for creating a hole through an artery wall and dissecting target 65 tissue adjacent the artery wall. The external control unit 110 may control the pump 112 for dispending conductive fluid at

14

a relatively low pressure for expanding a pilot hole created by a piercing needle or other tissue-penetrating appliance.

The RF generator 120 preferably includes a pad electrode 124 which is configured to comfortably engage the patient's back or other portion of the body near the kidneys. The RF generator 120, nozzle or separate electrode 108, and pad electrode 124 preferably operate in a unipolar ablation mode. Radiofrequency energy produced by the RF generator 120 is coupled to the nozzle 108 or conductive element 109 via the conductor 107 or pressurizable lumen 106 if metallic, propagates through the conductive fluid, and ablates target tissue, such as perivascular renal nerve tissue, in accordance with a predetermined activation sequence.

As is further shown in FIG. 7, a cooling fluid can be delivered to the ablation site within the renal artery under the control of a cooling control unit 152. The cooling control unit 152 includes a pump 154 and is fluidly coupled to a reservoir 156 containing a nonconductive (or conductive) cooling fluid or cryogen. As discussed previously, the cooling control unit 20 152 can dispense a biocompatible liquid coolant 164 to the ablation site or a liquid thermal transfer agent within a closed circulation or phase-change cooling circuit.

In general, when renal artery tissue temperatures rise above about 113° F. (50° C.), protein is permanently damaged (including those of renal nerve fibers). If heated over about 65° C., collagen denatures and tissue shrinks. If heated over about 65° C. and up to 100° C., cell walls break and oil separates from water. Above about 100° C., tissue desiccates.

According to some embodiments, the RF generator 120 is configured to control activation and deactivation of the nozzle 108/conductive element 109 in accordance with a predetermined energy delivery protocol and in response to signals received from temperature measuring circuitry. The RF generator 120 controls radiofrequency energy delivered to the nozzle 108/conductive element 109 so as to maintain the current densities at a level sufficient to cause heating of the perivascular renal tissue to at least a temperature of 55° C., for example.

Temperature sensors can be situated at the nozzle 108/ in a catheter arrangement 200 in accordance with various 40 conductive element 109 to provide continuous monitoring of renal artery tissue temperatures, and RF generator power can be automatically adjusted so that target temperatures are achieved and maintained. An impedance sensor arrangement may be used to measure and monitor electrical impedance during RF denervation therapy, and the power and timing of the RF generator 120 may be moderated based on the impedance measurements or a combination of impedance and temperature measurements. Marker bands 314 can be placed on one or multiple parts of the nozzle/nozzle region and/or shaft 104 to enable visualization during the procedure. A guidewire or guiding catheter can be used to locate the renal artery to be treated, and the catheter 102 can be advanced over the guidewire/guiding catheter and through the ostium of the renal artery.

> The embodiments shown in the figures have been generally described in the context of intravascular-based ablation of perivascular renal nerves for control of hypertension. It is understood, however, that embodiments of the disclosure have applicability in other contexts, such as energy delivery from within other vessels of the body, including other arteries, veins, and vasculature (e.g., cardiac and urinary vasculature and vessels), and other tissues of the body, including various organs. For example, the treatment catheter 102 can be configured for deployment within the renal vein, and the pressurizable lumen 106 and electrode 109 can be advanced through a hole created in the renal artery wall. The pressurizable lumen 106 and electrode 109 can be further advanced to a

15

location proximate perivascular renal nerve tissue surrounding the adjacent the near wall of the renal artery. A steering or tensioning wire and/or a pre-formed curve can be provided at the distal tip of the pressurizable lumen **106** to allow the clinician to access perivascular renal nerve tissue adjacent the far wall of the renal artery. Conductive fluid can be dispensed through the perivascular space surrounding the adjacent renal artery and within the perivascular renal nerve tissue included within the perivascular space. RF ablation can be conducted in step-wise fashion at discrete locations about the periphery of the renal artery or in a single delivery of RF energy (assuming conductive fluid nearly or entirely surrounds the renal artery.

By way of further example, an appropriately sized pressurizable lumen **106** and electrode **109** can be deployed in a cardiac chamber, such as the right atrium for treating reentrant tachyarrhythmias, or a cardiac vessel, such as the ostium of the pulmonary vein for treating atrial fibrillation. Various embodiments may be configured for deployment in the urethra to treat benign prostatic hyperplasia (BPH) or to treat a tumor using an appropriately sized pressurizable lumen **106** and electrode **109** of a type described hereinabove.

It is to be understood that even though numerous characteristics of various embodiments have been set forth in the 25 foregoing description, together with details of the structure and function of various embodiments, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts illustrated by the various embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

What is claimed is:

- 1. An apparatus, comprising:
- a catheter comprising a flexible shaft having a proximal end, a distal end, a length, and a lumen arrangement extending between the proximal and distal ends, the length of the shaft sufficient to access a patient's renal 40 artery relative to a percutaneous access location;
- a pressurizable lumen of the lumen arrangement configured to receive a pressurized conductive fluid;
- a nozzle fluidly coupled to a distal end of the pressurizable lumen, the nozzle configured to direct a jet of the pressurized conductive fluid at a wall of the renal artery to create or expand a hole through the artery wall and to fill the hole and at least some of perivascular space adjacent to the hole with the conductive fluid; and
- at least one electrical conductor extending at least partially 50 along the shaft and terminating proximate or at the distal end of the pressurizable lumen, the at least one electrical conductor configured to conduct radio frequency energy to the conductive fluid sufficient to ablate perivascular renal nerve tissue in contact with the conductive fluid: 55
- wherein the pressurizable lumen comprises electrically conductive material that extends between the distal and proximal ends of the shaft.
- 2. The apparatus of claim 1, wherein the conductive fluid has an impedance lower than that of renal artery tissue proximate the hole.
- **3**. The apparatus of claim **1**, wherein at least the nozzle comprises electrically conductive material.
- **4**. The apparatus of claim **1**, wherein at least a proximal portion of the pressurizable lumen comprises non-conductive 65 material, the nozzle comprises an electrically conductive element.

16

- 5. The apparatus of claim 1, comprising:
- a conductive wire covered with an electrically insulating material and having an exposed tip portion, the tip portion configured to create a pilot hole through the artery wall:
- wherein a relatively low pressure conductive fluid jet is configured to expand the pilot hole in the artery wall and dissect the perivascular space, and the radiofrequency energy is transferred to the conductive fluid via the tip of the conductive wire.
- **6**. The apparatus of claim **1**, comprising a plurality of the pressurizable lumens fluidly coupled to a plurality of the nozzles, each of the pressurizable lumens individually pressurizable.
- 7. The apparatus of claim 1, comprising a plurality of the pressurizable lumens fluidly coupled to a plurality of the nozzles, at least some of the pressurizable lumens fluidly coupled to a common pressurizable lumen and commonly pressurizable.
 - **8**. The apparatus of claim **1**, comprising:
 - a plurality of the pressurizable lumens fluidly coupled to a plurality of the nozzles; and
 - an expandable balloon or mesh provided at the distal end of the shaft and configured to position the nozzles against the artery wall and stabilize the position of the nozzles during ablation.
 - 9. The apparatus of claim 1, comprising:
 - a plurality of the pressurizable lumens fluidly coupled to a plurality of the nozzles:
 - an expandable balloon or mesh provided at the distal end of the shaft and configured to position the nozzles against the artery wall and stabilize the position of the nozzles during ablation; and
 - an external control unit fluidly coupled to the pressurizable lumens and configured to control the jets of the pressurized conductive fluid at the wall of the renal artery to concurrently ablate separate locations along and around the renal artery perivascular tissue.
 - 10. The apparatus of claim 1, comprising:
 - a plurality of the pressurizable lumens fluidly coupled to a plurality of the nozzles;
 - an expandable balloon or mesh provided at the distal end of the shaft and configured to position the nozzles against the artery wall and stabilize the position of the nozzles during ablation; and
 - an external control unit fluidly coupled to the pressurizable lumens and configured to control the jets of the pressurized conductive fluid at the wall of the renal artery to serially or sequentially ablate separate locations along and around the renal artery perivascular tissue.
- 11. The apparatus of claim 1, wherein the conductive fluid is cooled to a temperature sufficient to provide cooling at a renal artery ablation site.
- to the conductive fluid sufficient to ablate perivascular renal nerve tissue in contact with the conductive fluid; 55 arrangement separate from the pressurizable lumen and configured to provide cooling at a renal artery treatment site.
 - 13. An apparatus, comprising:
 - a catheter dimensioned for advancement through a vessel of the body;
 - a pressurizable lumen of the catheter configured to receive a pressurized conductive fluid;
 - a nozzle fluidly coupled to a distal end of the pressurizable lumen, the nozzle configured to direct a jet of the pressurized conductive fluid at a wall of a target vessel to create or expand a hole through the target vessel and to fill the hole and at least some of the space adjacent to the hole with the conductive fluid; and

- at least one electrical conductor extending at least partially along the catheter and terminating proximate or at the distal end of the pressurizable lumen, the at least one electrical conductor configured to conduct radio frequency energy to the conductive fluid sufficient to ablate target tissue in contact with the conductive fluid;
- wherein the pressurizable lumen comprises electrically conductive material that extends between the distal and proximal ends of the shaft.
- 14. The apparatus of claim 13, wherein at least a proximal portion of the pressurizable lumen comprises non-conductive material, the nozzle comprises electrically conductive material.
 - 15. The apparatus of claim 13, comprising:
 - a conductive wire covered with an electrically insulating material and having an exposed tip portion, the tip portion configured to create a pilot hole through the target vessel;
 - wherein a relatively low pressure conductive fluid jet is configured to expand the pilot hole in the target vessel wall, and the radiofrequency energy is transferred to the conductive fluid via the tip of the conductive wire.
 - 16. A method, comprising:
 - advancing a catheter through a renal artery of the body to a target location proximate target tissue adjacent an outer wall of the renal artery, wherein the target tissue comprises perivascular renal nerve tissue;
 - creating a hole through the outer wall of the renal artery at the target location;
 - filling the hole and at least some of the space adjacent to the hole with conductive fluid via a lumen of the catheter; and
 - conducting radiofrequency energy along the catheter and to the conductive fluid filing filling the hole and the at least some of the space adjacent to the hole sufficient to ablate the target tissue.

18

- 17. The method of claim 16, comprising:
- creating a plurality of the holes through the renal artery at a plurality of one or both of circumferentially and axially spaced-apart target locations;
- filling the holes and at least some of the space adjacent to the holes with the conductive fluid; and
- conducting radiofrequency energy along the catheter and to the conductive fluid filling the holes and the at least some of the space adjacent to the holes sufficient to ablate the target tissue.
- **18**. The method of claim **16**, further comprising:
- prior to filling the hole, expanding the hole and dissecting perivascular space adjacent the hole using a low-pressure jet of conductive fluid.
- 19. The method of claim 16, wherein the catheter comprises:
 - a flexible shaft having a proximal end, a distal end, a length, the length of the shaft sufficient to access the renal artery relative to a percutaneous access location;
 - a nozzle fluidly coupled to a distal end of the lumen, the nozzle being configured to direct a jet of the conductive fluid at the outer wall of the renal artery to create the hole through the outer wall and to fill the hole and at least some of the space adjacent to the hole with the conductive fluid; and
 - at least one electrical conductor extending at least partially along the shaft and terminating proximate or at the distal end of the lumen, the at least one electrical conductor configured to conduct radiofrequency energy to the conductive fluid sufficient to ablate perivascular renal nerve tissue in contact with the conductive fluid;
 - wherein the lumen comprises electrically conductive material that extends between the distal and proximal ends of the shaft.

* * * * *