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RENAL NERVE ABLATION USING
CONDUCTIVE FLUID JET AND RF ENERGY

RELATED PATENT DOCUMENTS

This application claims the benefit of Provisional Patent
Application Ser. No. 61/406,304 filed Oct. 25, 2010, to which
priority is claimed pursuant to 35 U.S.C. §119(e) and which
are hereby incorporated herein by reference.

SUMMARY

Embodiments of the disclosure are directed to a catheter
dimensioned for advancement through a vessel of the body. A
pressurizable lumen of the catheter is configured to receive a
pressurized electrically conductive fluid. A nozzle is fluidly
coupled to a distal end of the pressurizable lumen and con-
figured to direct a jet of the pressurized conductive fluid at a
wall of a target vessel to create or expand a hole through the
target vessel and to fill at least some of the space adjacent to
the hole with the conductive fluid. At least one electrical
conductor extends at least partially along the catheter and
terminates proximate or at the distal end of the pressurizable
lumen. The electrical conductor is configured to conduct
radiofrequency energy to the conductive fluid sufficient to
ablate target tissue in contact with the conductive fluid.

In accordance with some embodiments, a catheter includes
a flexible shaft having a proximal end, a distal end, a length,
and a lumen arrangement extending between the proximal
and distal ends. The length of the shaft is sufficient to access
apatient’s renal artery relative to a percutaneous access loca-
tion. A pressurizable lumen of the lumen arrangement is
configured to receive a pressurized conductive fluid. A nozzle
is fluidly coupled to a distal end of the pressurizable lumen.
The nozzle is configured to direct a jet of the pressurized
conductive fluid at a wall of the renal artery to create or
expand a hole through the artery wall and to fill at least some
of'perivascular space adjacent to the hole with the conductive
fluid. At least one electrical conductor extends at least par-
tially along the shaft and terminates proximate or at the distal
end of the pressurizable lumen. The electrical conductor is
configured to conduct radiofrequency energy to the conduc-
tive fluid sufficient to ablate perivascular renal nerves in con-
tact with the conductive fluid.

According to further embodiments, a method involves
advancing a catheter through a vessel of the body to a target
location proximate target tissue adjacent an outer wall of the
vessel. The method further involves creating a hole through
the vessel at the target location, filing the hole and at least
some of the space adjacent to the hole with conductive fluid
via a lumen of the catheter, and conducting radiofrequency
energy along the catheter and to the conductive fluid filing the
hole and the at least some of the space adjacent to the hole
sufficient to ablate the target tissue. According to some
embodiments, the hole is created in a wall of a renal artery,
and the target tissue comprises perivascular renal nerve tis-
sue.

These and other features can be understood in view of the
following detailed discussion and the accompanying draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a right kidney and renal vascu-
lature including a renal artery branching laterally from the
abdominal aorta;
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FIGS. 2A and 2B illustrate sympathetic innervation of the
renal artery;

FIG. 3A illustrates various tissue layers of the wall of the
renal artery;

FIGS. 3B and 3C illustrate a portion of a renal nerve;

FIG. 4 illustrates a treatment catheter comprising a jet and
electrode arrangement configured to deliver a pressurized,
electrically conductive fluid spray through a wall of a target
vessel and ablate target tissue adjacent the target vessel wall
in accordance with various embodiments;

FIG. 5 illustrates a treatment catheter comprising a multi-
plicity of jet and electrode arrangements each configured to
deliver a pressurized, electrically conductive fluid spray
through a wall of a target vessel and ablate target tissue
adjacent the target vessel wall in accordance with various
embodiments;

FIGS. 6 A-6C illustrate treatment catheters comprising a jet
and electrode arrangement configured to deliver a pressur-
ized, electrically conductive fluid spray through a wall of a
target vessel and ablate target tissue adjacent the target vessel
wall in accordance with various embodiments; and

FIG. 7 shows a representative RF renal therapy apparatus
in accordance with various embodiments of the disclosure.

DESCRIPTION

Embodiments of the disclosure are directed to apparatuses
and methods for ablating extravascular target tissue from
within a vessel. Embodiments of the disclosure are directed to
apparatuses and methods for ablating perivascular renal
nerves from within the renal artery or other nearby vessel for
the treatment of hypertension. Embodiments of the disclosure
are directed to an intravascular catheter having a high-pres-
sure fluid jet arrangement for creating a small hole through a
vessel wall, dispensing an electrically conductive fluid
through the hole and into perivascular space adjacent the
vessel wall, and delivering RF energy to the conductive fluid
and surrounding tissue of sufficient power to ablate perivas-
cular tissue, such as perivascular renal nerve tissue, in contact
with the conductive fluid.

When using RF electrode(s) placed in the renal artery for
ablation of perivascular renal nerves for treatment of hyper-
tension, the highest current density and thus the greatest
heating is typically adjacent to the electrode. All the current
that reaches the target tissue must also pass through the renal
artery wall. In order to achieve tissue temperatures for effec-
tive ablation of the renal nerves, the renal artery can also be
injured. Active cooling can be provided, but requires a larger
catheter and a more complex system. Improved approaches to
reducing injury to the renal artery during ablation of the renal
nerves are disclosed herein.

Embodiments described in the present disclosure provide
for sufficient ablation of target nerves while reducing injury to
the renal artery by using a high-velocity jet of highly conduc-
tive fluid to cut a very small hole in the artery wall and conduct
the current past the artery wall. In some configurations, an
external control unit pressurizes a conductive fluid (such as
saline with conductive additives) and also powers the RF
transmission. A catheter with a pressurized fluid lumen and a
conductor attaches to the external control unit.

In accordance with various method embodiments, a cath-
eter is guided to the treatment location and directed against
the wall of a patient’s renal artery. A conductive fluid is
pressurized and transported through a pressurizable fluid
lumen of the catheter and exits through a nozzle. A brief
activation of the conductive fluid jet is used to create a hole
through the artery wall and fill the hole with the conductive
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fluid. Depending on the duration of jet activation, a volume of
conductive fluid will also dissect and collect in the perivas-
cular space.

Radiofrequency (RF) energy or other form of high-fre-
quency AC energy is passed along an electrical conductor that
extends between the distal and proximal ends of the catheter.
The electrical conductor may take the form of a metallic tube
which also serves as the conductive fluid lumen of the cath-
eter. The RF energy passes preferentially through the conduc-
tive fluid, through the small hole in the artery wall, and to the
perivascular tissue, where it spreads and heats the perivascu-
lar renal nerve tissue due to the higher impedance of the
perivascular renal nerve tissue relative to that of the conduc-
tive fluid.

Various embodiments of the disclosure are directed to
apparatuses and methods for renal denervation for treating
hypertension. Hypertension is a chronic medical condition in
which the blood pressure is elevated. Persistent hypertension
is a significant risk factor associated with a variety of adverse
medical conditions, including heart attacks, heart failure,
arterial aneurysms, and strokes. Persistent hypertension is a
leading cause of chronic renal failure. Hyperactivity of the
sympathetic nervous system serving the kidneys is associated
with hypertension and its progression. Deactivation of nerves
in the kidneys via renal denervation can reduce blood pres-
sure, and may be a viable treatment option for many patients
with hypertension who do not respond to conventional drugs.

The kidneys are instrumental in a number of body pro-
cesses, including blood filtration, regulation of fluid balance,
blood pressure control, electrolyte balance, and hormone pro-
duction. One primary function of the kidneys is to remove
toxins, mineral salts, and water from the blood to form urine.
The kidneys receive about 20-25% of cardiac output through
the renal arteries that branch left and right from the abdominal
aorta, entering each kidney at the concave surface of the
kidneys, the renal hilum.

Blood flows into the kidneys through the renal artery and
the afferent arteriole, entering the filtration portion of the
kidney, the renal corpuscle. The renal corpuscle is composed
of the glomerulus, a thicket of capillaries, surrounded by a
fluid-filled, cup-like sac called Bowman’s capsule. Solutes in
the blood are filtered through the very thin capillary walls of
the glomerulus due to the pressure gradient that exists
between the blood in the capillaries and the fluid in the Bow-
man’s capsule. The pressure gradient is controlled by the
contraction or dilation ofthe arterioles. After filtration occurs,
the filtered blood moves through the efferent arteriole and the
peritubular capillaries, converging in the interlobular veins,
and finally exiting the kidney through the renal vein.

Particles and fluid filtered from the blood move from the
Bowman’s capsule through a number of tubules to a collect-
ing duct. Urine is formed in the collecting duct and then exits
through the ureter and bladder. The tubules are surrounded by
the peritubular capillaries (containing the filtered blood). As
the filtrate moves through the tubules and toward the collect-
ing duct, nutrients, water, and electrolytes, such as sodium
and chloride, are reabsorbed into the blood.

The kidneys are innervated by the renal plexus which ema-
nates primarily from the aorticorenal ganglion. Renal ganglia
are formed by the nerves of the renal plexus as the nerves
follow along the course of the renal artery and into the kidney.
The renal nerves are part of the autonomic nervous system
which includes sympathetic and parasympathetic compo-
nents. The sympathetic nervous system is known to be the
system that provides the bodies “fight or flight” response,
whereas the parasympathetic nervous system provides the
“rest and digest” response. Stimulation of sympathetic nerve
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activity triggers the sympathetic response which causes the
kidneys to increase production of hormones that increase
vasoconstriction and fluid retention. This process is referred
to as the renin-angiotensin-aldosterone-system (RAAS)
response to increased renal sympathetic nerve activity.

In response to a reduction in blood volume, the kidneys
secrete renin, which stimulates the production of angiotensin.
Angiotensin causes blood vessels to constrict, resulting in
increased blood pressure, and also stimulates the secretion of
the hormone aldosterone from the adrenal cortex. Aldoster-
one causes the tubules of the kidneys to increase the reabsorp-
tion of sodium and water, which increases the volume of fluid
in the body and blood pressure.

Congestive heart failure (CHF) is a condition that has been
linked to kidney function. CHF occurs when the heart is
unable to pump blood effectively throughout the body. When
blood flow drops, renal function degrades because of insuffi-
cient perfusion of the blood within the renal corpuscles. The
decreased blood flow to the kidneys triggers an increase in
sympathetic nervous system activity (i.e., the RAAS becomes
too active) that causes the kidneys to secrete hormones that
increase fluid retention and vasorestriction. Fluid retention
and vasorestriction in turn increases the peripheral resistance
of'the circulatory system, placing an even greater load on the
heart, which diminishes blood flow further. If the deteriora-
tion in cardiac and renal functioning continues, eventually the
body becomes overwhelmed, and an episode of heart failure
decompensation occurs, often leading to hospitalization of
the patient.

FIG. 1 is an illustration of a right kidney 10 and renal
vasculature including a renal artery 12 branching laterally
from the abdominal aorta 20. In FIG. 1, only the right kidney
10 is shown for purposes of simplicity of explanation, but
reference will be made herein to both right and left kidneys
and associated renal vasculature and nervous system struc-
tures, all of which are contemplated within the context of
embodiments of the disclosure. The renal artery 12 is pur-
posefully shown to be disproportionately larger than the right
kidney 10 and abdominal aorta 20 in order to facilitate dis-
cussion of various features and embodiments of the present
disclosure.

The right and left kidneys are supplied with blood from the
right and left renal arteries that branch from respective right
and left lateral surfaces of the abdominal aorta 20. Each of the
right and left renal arteries is directed across the crus of the
diaphragm, so as to form nearly a right angle with the abdomi-
nal aorta 20. The right and left renal arteries extend generally
from the abdominal aorta 20 to respective renal sinuses proxi-
mate the hilum 17 of the kidneys, and branch into segmental
arteries and then interlobular arteries within the kidney 10.
The interlobular arteries radiate outward, penetrating the
renal capsule and extending through the renal columns
between the renal pyramids. Typically, the kidneys receive
about 20% of total cardiac output which, for normal persons,
represents about 1200 mL of blood flow through the kidneys
per minute.

The primary function of the kidneys is to maintain water
and electrolyte balance for the body by controlling the pro-
duction and concentration of urine. In producing urine, the
kidneys excrete wastes such as urea and ammonium. The
kidneys also control reabsorption of glucose and amino acids,
and are important in the production of hormones including
vitamin D, renin and erythropoietin.

An important secondary function of the kidneys is to con-
trol metabolic homeostasis of the body. Controlling hemo-
static functions include regulating electrolytes, acid-base bal-
ance, and blood pressure. For example, the kidneys are
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responsible for regulating blood volume and pressure by
adjusting volume of water lost in the urine and releasing
erythropoietin and renin, for example. The kidneys also regu-
late plasma ion concentrations (e.g., sodium, potassium,
chloride ions, and calcium ion levels) by controlling the quan-
tities lost in the urine and the synthesis of calcitrol. Other
hemostatic functions controlled by the kidneys include stabi-
lizing blood pH by controlling loss of hydrogen and bicar-
bonate ions in the urine, conserving valuable nutrients by
preventing their excretion, and assisting the liver with detoxi-
fication.

Also shown in FIG. 1 is the right suprarenal gland 11,
commonly referred to as the right adrenal gland. The supra-
renal gland 11 is a star-shaped endocrine gland that rests on
top of the kidney 10. The primary function of the suprarenal
glands (left and right) is to regulate the stress response of the
body through the synthesis of corticosteroids and catechola-
mines, including cortisol and adrenaline (epinephrine),
respectively. Encompassing the kidneys 10, suprarenal
glands 11, renal vessels 12, and adjacent perirenal fat is the
renal fascia, e.g., Gerota’s fascia, (not shown), which is a
fascial pouch derived from extraperitoneal connective tissue.

The autonomic nervous system of the body controls invol-
untary actions of the smooth muscles in blood vessels, the
digestive system, heart, and glands. The autonomic nervous
system is divided into the sympathetic nervous system and the
parasympathetic nervous system. In general terms, the para-
sympathetic nervous system prepares the body for rest by
lowering heart rate, lowering blood pressure, and stimulating
digestion. The sympathetic nervous system effectuates the
body’s fight-or-flight response by increasing heart rate,
increasing blood pressure, and increasing metabolism.

In the autonomic nervous system, fibers originating from
the central nervous system and extending to the various gan-
glia are referred to as preganglionic fibers, while those
extending from the ganglia to the effector organ are referred
to as postganglionic fibers. Activation of the sympathetic
nervous system is effected through the release of adrenaline
(epinephrine) and to a lesser extent norepinephrine from the
suprarenal glands 11. This release of adrenaline is triggered
by the neurotransmitter acetylcholine released from pregan-
glionic sympathetic nerves.

The kidneys and ureters (not shown) are innervated by the
renal nerves 14. FIGS. 1 and 2A-2B illustrate sympathetic
innervation of the renal vasculature, primarily innervation of
the renal artery 12. The primary functions of sympathetic
innervation of the renal vasculature include regulation of
renal blood flow and pressure, stimulation of renin release,
and direct stimulation of water and sodium ion reabsorption.

Most of the nerves innervating the renal vasculature are
sympathetic postganglionic fibers arising from the superior
mesenteric ganglion 26. The renal nerves 14 extend generally
axially along the renal arteries 12, enter the kidneys 10 at the
hilum 17, follow the branches of the renal arteries 12 within
the kidney 10, and extend to individual nephrons. Other renal
ganglia, such as the renal ganglia 24, superior mesenteric
ganglion 26, the left and right aorticorenal ganglia 22, and
celiac ganglia 28 also innervate the renal vasculature. The
celiac ganglion 28 is joined by the greater thoracic splanchnic
nerve (greater TSN). The aorticorenal ganglia 26 is joined by
the lesser thoracic splanchnic nerve (lesser TSN) and inner-
vates the greater part of the renal plexus.

Sympathetic signals to the kidney 10 are communicated
via innervated renal vasculature that originates primarily at
spinal segments T10-T12 and L.1. Parasympathetic signals
originate primarily at spinal segments S2-S4 and from the
medulla oblongata of the lower brain. Sympathetic nerve
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traffic travels through the sympathetic trunk ganglia, where
some may synapse, while others synapse at the aorticorenal
ganglion 22 (via the lesser thoracic splanchnic nerve, i.e.,
lesser TSN) and the renal ganglion 24 (via the least thoracic
splanchnic nerve, i.e., least TSN). The postsynaptic sympa-
thetic signals then travel along nerves 14 of the renal artery 12
to the kidney 10. Presynaptic parasympathetic signals travel
to sites near the kidney 10 before they synapse on or near the
kidney 10.

With particular reference to FIG. 2A, the renal artery 12, as
with most arteries and arterioles, is lined with smooth muscle
34 that controls the diameter of the renal artery lumen 13.
Smooth muscle, in general, is an involuntary non-striated
muscle found within the media layer of large and small arter-
ies and veins, as well as various organs. The glomeruli of the
kidneys, for example, contain a smooth muscle-like cell
called the mesangial cell. Smooth muscle is fundamentally
different from skeletal muscle and cardiac muscle in terms of
structure, function, excitation-contraction coupling, and
mechanism of contraction.

Smooth muscle cells can be stimulated to contract or relax
by the autonomic nervous system, but can also react on
stimuli from neighboring cells and in response to hormones
and blood borne electrolytes and agents (e.g., vasodilators or
vasoconstrictors). Specialized smooth muscle cells within the
afferent arteriole of the juxtaglomerular apparatus of kidney
10, for example, produces renin which activates the angioten-
sion II system.

The renal nerves 14 innervate the smooth muscle 34 of the
renal artery wall 15 and extend lengthwise in a generally axial
or longitudinal manner along the renal artery wall 15. The
smooth muscle 34 surrounds the renal artery circumferen-
tially, and extends lengthwise in a direction generally trans-
verse to the longitudinal orientation of the renal nerves 14, as
is depicted in FIG. 2B.

The smooth muscle 34 of the renal artery 12 is under
involuntary control of the autonomic nervous system. An
increase in sympathetic activity, for example, tends to con-
tract the smooth muscle 34, which reduces the diameter of'the
renal artery lumen 13 and decreases blood perfusion. A
decrease in sympathetic activity tends to cause the smooth
muscle 34 to relax, resulting in vessel dilation and an increase
in the renal artery lumen diameter and blood perfusion. Con-
versely, increased parasympathetic activity tends to relax the
smooth muscle 34, while decreased parasympathetic activity
tends to cause smooth muscle contraction.

FIG. 3A shows a segment of a longitudinal cross-section
through a renal artery, and illustrates various tissue layers of
the wall 15 of the renal artery 12. The innermost layer of the
renal artery 12 is the endothelium 30, which is the innermost
layer of the intima 32 and is supported by an internal elastic
membrane. The endothelium 30 is a single layer of cells that
contacts the blood flowing though the vessel lumen 13.
Endothelium cells are typically polygonal, oval, or fusiform,
and have very distinct round or oval nuclei. Cells of the
endothelium 30 are involved in several vascular functions,
including control of blood pressure by way of vasoconstric-
tion and vasodilation, blood clotting, and acting as a barrier
layer between contents within the lumen 13 and surrounding
tissue, such as the membrane of the intima 32 separating the
intima 32 from the media 34, and the adventitia 36. The
membrane or maceration of the intima 32 is a fine, transpar-
ent, colorless structure which is highly elastic, and commonly
has a longitudinal corrugated pattern.

Adjacent the intima 32 is the media 33, which is the middle
layer of the renal artery 12. The media is made up of smooth
muscle 34 and elastic tissue. The media 33 can be readily
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identified by its color and by the transverse arrangement of its
fibers. More particularly, the media 33 consists principally of
bundles of smooth muscle fibers 34 arranged in a thin plate-
like manner or lamellae and disposed circularly around the
arterial wall 15. The outermost layer of the renal artery wall
15 is the adventitia 36, which is made up of connective tissue.
The adventitia 36 includes fibroblast cells 38 that play an
important role in wound healing.

A perivascular region 37 is shown adjacent and peripheral
to the adventitia 36 of the renal artery wall 15. A renal nerve
14 is shown proximate the adventitia 36 and passing through
a portion of the perivascular region 37. The renal nerve 14 is
shown extending substantially longitudinally along the outer
wall 15 of the renal artery 12. The main trunk of the renal
nerves 14 generally lies in or on the adventitia 36 of the renal
artery 12, often passing through the perivascular region 37,
with certain branches coursing into the media 33 to enervate
the renal artery smooth muscle 34.

Embodiments of the disclosure may be implemented to
provide varying degrees of denervation therapy to innervated
renal vasculature. For example, embodiments of the disclo-
sure may provide for control of the extent and relative per-
manency of renal nerve impulse transmission interruption
achieved by denervation therapy delivered using a treatment
apparatus of the disclosure. The extent and relative perma-
nency of renal nerve injury may be tailored to achieve a
desired reduction in sympathetic nerve activity (including a
partial or complete block) and to achieve a desired degree of
permanency (including temporary or irreversible injury).

Returning to FIGS. 3B and 3C, the portion of the renal
nerve 14 shown in FIGS. 3B and 3C includes bundles 14a of
nerve fibers 145 each comprising axons or dendrites that
originate or terminate on cell bodies or neurons located in
ganglia or on the spinal cord, or in the brain. Supporting tissue
structures 14¢ of the nerve 14 include the endoneurium (sur-
rounding nerve axon fibers), perineurium (surrounds fiber
groups to form a fascicle), and epineurium (binds fascicles
into nerves), which serve to separate and support nerve fibers
145 and bundles 14a. In particular, the endoneurium, also
referred to as the endoneurium tube or tubule, is a layer of
delicate connective tissue that encloses the myelin sheath of a
nerve fiber 145 within a fasciculus.

Major components of a neuron include the soma, which is
the central part of the neuron that includes the nucleus, cel-
lular extensions called dendrites, and axons, which are cable-
like projections that carry nerve signals. The axon terminal
contains synapses, which are specialized structures where
neurotransmitter chemicals are released in order to commu-
nicate with target tissues. The axons of many neurons of the
peripheral nervous system are sheathed in myelin, which is
formed by a type of glial cell known as Schwann cells. The
myelinating Schwann cells are wrapped around the axon,
leaving the axolemma relatively uncovered at regularly
spaced nodes, called nodes of Ranvier. Myelination of axons
enables an especially rapid mode of electrical impulse propa-
gation called saltation.

In some embodiments, a treatment apparatus of the disclo-
sure may be implemented to deliver denervation therapy that
causes transient and reversible injury to renal nerve fibers
1454. In other embodiments, a treatment apparatus of the dis-
closure may be implemented to deliver denervation therapy
that causes more severe injury to renal nerve fibers 145, which
may be reversible if the therapy is terminated in a timely
manner. In preferred embodiments, a treatment apparatus of
the disclosure may be implemented to deliver denervation
therapy that causes severe and irreversible injury to renal
nerve fibers 145, resulting in permanent cessation of renal
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sympathetic nerve activity. For example, a treatment appara-
tus may be implemented to deliver a denervation therapy that
disrupts nerve fiber morphology to a degree sufficient to
physically separate the endoneurium tube of the nerve fiber
145, which can prevent regeneration and re-innervation pro-
cesses.

By way of example, and in accordance with Seddon’s
classification as is known in the art, a treatment apparatus of
the disclosure may be implemented to deliver a denervation
therapy that interrupts conduction of nerve impulses along the
renal nerve fibers 145 by imparting damage to the renal nerve
fibers 145 consistent with neruapraxia. Neurapraxia
describes nerve damage in which there is no disruption of the
nerve fiber 144 or its sheath. In this case, there is an interrup-
tion in conduction of the nerve impulse down the nerve fiber,
with recovery taking place within hours to months without
true regeneration, as Wallerian degeneration does not occur.
Wallerian degeneration refers to a process in which the part of
the axon separated from the neuron’s cell nucleus degener-
ates. This process is also known as anterograde degeneration.
Neurapraxia is the mildest form of nerve injury that may be
imparted to renal nerve fibers 145 by use of a treatment
apparatus according to embodiments of the disclosure.

A treatment apparatus may be implemented to interrupt
conduction of nerve impulses along the renal nerve fibers 145
by imparting damage to the renal nerve fibers consistent with
axonotmesis. Axonotmesis involves loss of the relative con-
tinuity of the axon of a nerve fiber and its covering of myelin,
but preservation of the connective tissue framework of the
nerve fiber. In this case, the encapsulating support tissue 14¢
of'the nerve fiber 145 is preserved. Because axonal continuity
is lost, Wallerian degeneration occurs. Recovery from
axonotmesis occurs only through regeneration of the axons, a
process requiring time on the order of several weeks or
months. Electrically, the nerve fiber 145 shows rapid and
complete degeneration. Regeneration and re-innervation may
occur as long as the endoneural tubes are intact.

A treatment apparatus may be implemented to interrupt
conduction of nerve impulses along the renal nerve fibers 145
by imparting damage to the renal nerve fibers 145 consistent
with neurotmesis. Neurotmesis, according to Seddon’s clas-
sification, is the most serious nerve injury in the scheme. In
this type of injury, both the nerve fiber 146 and the nerve
sheath are disrupted. While partial recovery may occur, com-
plete recovery is not possible. Neurotmesis involves loss of
continuity of the axon and the encapsulating connective tissue
14c¢, resulting in a complete loss of autonomic function, in the
case of renal nerve fibers 145. If the nerve fiber 145 has been
completely divided, axonal regeneration causes a neuroma to
form in the proximal stump.

A more stratified classification of neurotmesis nerve dam-
age may be found by reference to the Sunderland System as is
known in the art. The Sunderland System defines five degrees
of nerve damage, the first two of which correspond closely
with neurapraxia and axonotmesis of Seddon’s classification.
The latter three Sunderland System classifications describe
different levels of neurotmesis nerve damage.

The first and second degrees of nerve injury in the Sunder-
land system are analogous to Seddon’s neurapraxia and
axonotmesis, respectively. Third degree nerve injury, accord-
ing to the Sunderland System, involves disruption of the
endoneurium, with the epineurium and perineurium remain-
ing intact. Recovery may range from poor to complete
depending on the degree of intrafascicular fibrosis. A fourth
degree nerve injury involves interruption of all neural and
supporting elements, with the epineurium remaining intact.
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The nerve is usually enlarged. Fifth degree nerve injury
involves complete transection of the nerve fiber 146 with loss
of continuity.

Turning now to FIG. 4, there is illustrated a treatment
catheter comprising a jet and electrode arrangement config-
ured to deliver a pressurized, electrically conductive fluid
spray through a wall of a target vessel and ablate target tissue
adjacent the target vessel wall in accordance with various
embodiments. In FIG. 4, the treatment catheter 102 is shown
deployed within a lumen of a patient’s renal artery 12. The
treatment catheter 102, according to various embodiments,
includes a flexible shaft having a proximal end, a distal end,
and a lumen arrangement extending between the proximal
and distal ends. The length of the shaft is sufficient to access
the patient’s renal artery 12 relative to a percutaneous access
location.

The lumen arrangement of the catheter 102 includes a
pressurizable lumen 106 configured to receive a pressurized
conductive fluid at its proximal end. The conductive fluid may
be pressurized in the range of about 100 to 500 psi, for
example. A nozzle 108 is fluidly coupled to the distal end of
the pressurized bowl lumen 106. The nozzle 108 is configured
to direct ajet of pressurized conductive fluid ata wall 15 of the
renal artery 12 to create or expand a hole through the artery
wall 15. The nozzle may have a diameter ranging from about
0.001 to 0.005 inch, for example.

In some configurations, the nozzle 108 may include a tis-
sue-penetrating feature that facilitates dissection of the renal
artery wall 15. For example, a leading surface of the nozzle
108 may have a sharpened edge. In such embodiments, the
nozzle 108 can be advanced through the hole in the artery wall
15 to a location at or extending beyond an outer surface of the
artery wall 15. Prior to advancing the nozzle 108 through the
hole, a jet of pressurized conductive fluid can be used to
expand the diameter of the hole, which serves to increase the
ease by which the nozzle 108 can be advanced through the
hole.

In other configurations, embodiments of which are
described hereinbelow, an elongated member having a tissue-
penetrating feature (e.g., needle) at its distal end can be dis-
placed axially within the pressurizable lumen 106. With the
catheter’s distal tip positioned adjacent the wall 15 of the
renal artery 12, the elongated member is advanced so that the
tissue-penetrating feature penetrates into and through the
renal artery wall 15.

After piercing or expanding a previously created hole
through the renal artery wall 15, the conductive fluid is dis-
pensed from the nozzle 108 to fill at least some perivascular
space adjacent to the hole. In configurations where the nozzle
108 is not advanced through the hole, the conductive fluid
dispensed from the nozzle 108 also fills the hole. At least one
electrical conductor extends at least partially along the cath-
eter 102 and terminates proximate or at the distal end of the
pressurizer the lumen 106. The electrical conductor is con-
figured to conduct high-frequency AC energy (e.g., radiofre-
quency energy) to the conductive fluid sufficient to ablate
perivascular renal nerve tissue 111 in contact with the con-
ductive fluid.

The conductive fluid preferably has an impedance lower
than that of the renal artery and perivascular tissue proximate
the hole. In some embodiments, the conductive fluid is cooled
to a temperature sufficient to provide cooling at the renal
artery treatment site. In other embodiments, a cooling
arrangement separate from the pressurized lumen 106 can be
incorporated into the catheter 102 to provide cooling at the
renal artery treatment site. For example, a separate infusion of
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nonconductive fluid can be used for artery cooling and to
decrease RF energy losses in the renal artery lumen.

In some embodiments, the nozzle 108 comprises electri-
cally conductive material 109, such as a metallic annular
tapered ring, which defines an electrode. An electrical con-
ductor is coupled to the electrically conductive nozzle 108
and extends along the length of the catheter 102 to its proxi-
mal end. In other configurations, the electrical conductor
(e.g., a wire or conductive composite elongated member)
extends between the distal and proximal ends of the catheter
102, and the distal tip of the electrical conductor defines the
electrode 109. For example, the pressurizable lumen 106 can
include a metallic tube that serves as an electrical conductor
between a proximal energy source and the distal tip of the
metallic tube which serves as an electrode 109. In other con-
figurations, at least a proximal portion of the pressurizable
lumen 106 comprises nonconductive material, and the nozzle
108 comprises an electrically conductive element 109. In
further configurations, an electrical conductor extends
between the distal and proximal ends of the catheter 102 for
electrically coupling the nozzle 108 with an external energy
source at the proximal end of the catheter 102.

The distal end of one or both of the catheter 102 and
pressurizable lumen 106 may incorporate a pre-formed curve
that facilitates proper positioning of the nozzle 108 against
the wall 15 of the renal artery. For example, the distal ends of
the catheter 102 and pressurizable lumen 106 may incorpo-
rate pre-formed curves that together can form a complex
curved shape which can position the nozzle 108 at or near
perpendicular with respect to the renal artery wall 15. In other
configurations, the pressurizable lumen 106 can be fashioned
as a metallic tube, and at least the distal end of the pressuriz-
able lumen 106 can include a shape-memory tube section.
When extended beyond the distal tip of the catheter 102, the
shape-memory tube section assumes a predetermined curved
shape for orienting the nozzle at a desired angle (e.g., 90°+/
20°) relative to the renal artery wall 15. In further configura-
tions, a tensioning wire or cable can be connected at the distal
tip of the catheter 102. Desired curvature of the distal end or
tip of the catheter 102 can be achieved by applying an appro-
priate force to the tensioning wire/cable, allowing the clini-
cian to orient the nozzle 108 at a desired angle relative to the
renal artery wall 15.

In some embodiments, the treatment catheter 102 includes
a single pressurizable lumen 106 fluidly coupled to a multi-
plicity of the nozzles 108. The multiplicity of nozzles 108
may be fluidly coupled to the single pressurizable lumen 106
via an intervening structure, such as a manifold, balloon,
chamber or a series of orifices in a tube, for example. The
intervening structure is preferably configured to channel
pressurized conductive fluid from the signal pressurizable
lumen 106 to a multiplicity of the nozzles 108.

FIG. 5 illustrates a treatment catheter comprising a multi-
plicity of jet and electrode arrangements each configured to
deliver a pressurized, electrically conductive fluid spray
through a wall of a target vessel and ablate target tissue
adjacent the target vessel wall in accordance with various
embodiments. In the embodiment illustrated in FIG. 5, a
treatment catheter 102 includes multiple jets that can be used
to concurrently or serially ablate separate locations along and
around the renal artery perivascular tissue. An expandable
stabilization arrangement can be provided to position the jet
nozzles against the renal artery wall and stabilize the position
of the nozzles during the ablation procedure.

The embodiment of FIG. 5 shows a treatment catheter 102
that employs a multiplicity of jet arrangements. The catheter
102 includes a multiplicity of pressurizable lumens 1064 and
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1064 fluidly coupled to a multiplicity of nozzles 2084 and
208b, respectively. The treatment catheter 102 further
includes an expandable balloon or mesh structure 221 pro-
vided at a distal end of the catheter 102. The expandable
structure 221 is configured to position the nozzles 208a and
208b against the wall 15 of the renal artery 12 and stabilize the
position of the nozzles 2084 and 2085 during the ablation
procedure. FIG. 5 further shows extension lumens 204A and
204B fluidly coupled to pressurizable lumens 106a and 1065,
respectively.

In some configurations, the extension lumens 204A and
204B define end sections of the pressurizable lumens 1064
and 10654 that terminate on an exterior surface of the expand-
able structure 221. In other embodiments, the extension
lumens 204 A and 204B define lumen structures integral to the
expandable structure 221, which are fluidly coupled to pres-
surizable lumens 1064 and 1065 during catheter fabrication.
For example, the extension lumens 204A and 204B may be
formed into the surface of an expandable balloon structure
221. By way of further example, the extension lumens 204A
and 204B may be polymeric or metallic tubes having distal
ends that terminate at the surface of an expandable mesh
structure 221.

According to some embodiments, the distal ends of the
extension lumens 204A and 204B include an electrically
conductive material, and this conductive material is electri-
cally coupled to an electrical conductor that runs along the
length of the catheter 102. For example, the extension lumens
204a and 204B define end sections of metallic tubes 106A
and 106B, respectively. In other embodiments, the pressuriz-
able lumens 106a and 1065 can be formed from polymeric
material and the distal ends of the extension lumens 2044 and
204B can include electrically conductive material which is
electrically coupled to an electrical conductor that runs along
the length of the catheter 102. After delivering the conductive
fluid into the perivascular space 111, radiofrequency energy
is communicated to the electrically conductive material at the
distal ends of the extension lumens 204a and 204B. The
conductive fluid provides a low impedance pathway to the
perivascular renal nerve tissue contained within the perivas-
cular space 111 for the RF energy.

The jet arrangements shown in the illustrative embodiment
of FIG. 5 is useful for ablating perivascular renal nerve tissue
attwo separate locations within the renal artery 15. In FIG. 5,
the two extension lumens 204a and 2045 are spaced apart
from one another both circumferentially and axially. As such,
two circumferentially and axially spaced regions of perivas-
cular renal nerve tissue proximate the expandable structure
221 can be ablated. It is noted that the axial spacing between
the extension lumens 204a and 2045 can be eliminated for
treatment catheters implemented to ablate a circumferential
region of perivascular renal nerve tissue.

Additional jet arrangements can be incorporated into the
treatment catheter 102. For example, the expandable structure
221 and lumen arrangement of the catheter 102 can be con-
figured to accommodate four jet arrangements spaced apart
from one another both axially and circumferentially, so that
each jet and associated electrode element can ablate approxi-
mately one-fourth of a circumferential region of the perivas-
cular renal nerve tissue. By way of further example, the
expandable structure 221 and lumen arrangement of the cath-
eter 102 can be configured to accommodate six jet arrange-
ments spaced apart from one another both axially and circum-
ferentially, such that each jet and associated electrode
element can ablate approximately one-sixth of a circumfer-
ential region of the perivascular renal nerve tissue. Ablation
of perivascular renal nerve tissue adjacent each of the jet and
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electrode element arrangement using the RF energy can be
performed serially or sequentially.

It is understood that a treatment catheter 102 which incor-
porates a multiplicity of jet arrangements can include an
expandable structure 221 configured to position the multi-
plicity of jet arrangements in one or both of axially and
circumferentially spaced relationships to one another. Also,
each of the jet arrangements can be fluidly coupled to an
individual pressurizable lumens of the treatment catheter 102,
or some or all of the jet arrangements can be fluidly coupled
to a common pressurizable lumen. Ablation of perivascular
renal nerve tissue using the jet and electrode element arrange-
ments can be performed serially or sequentially, irrespective
of whether the jet arrangements are fluidly coupled to sepa-
rate lumens or a common lumen.

Although not shown in FIG. 5 for purposes of simplicity,
expandable structure 221 includes an activation feature (e.g.,
pressurizable lumen(s) or push/pull wire(s)) for transforming
the expandable structure 221 between low-profile introduc-
tion and deployment configurations. It is noted that an
expandable balloon structure 221 can be implemented to
include a cooling arrangement in the form of a recirculating
cooling circuit or a phase-change cooling arrangement.

According to various method embodiments, the distal end
of the treatment catheter 102 is delivered to a patient’s renal
artery 12 using one or both of a guiding catheter and a delivery
sheath. During the delivery procedure, the expandable struc-
ture 221 is in its collapsed low-profile introduction configu-
ration. After the expandable structure 221 is positioned at a
desired location within the renal artery 12, the expandable
structure 221 is activated, which centers the catheter 102
within the renal artery 12 and positions the nozzles 208a and
2085 against the wall 15 of the renal artery 12. The jets are
activated for a brief duration of time and at an appropriate
pressure to create a hole through the renal artery wall 15 using
high-pressure electrically conductive fluid. The conductive
fluid fills the holes in the artery wall 15 and perivascular space
111 adjacent the holes. Radiofrequency energy is delivered
the perivascular renal nerve tissue included in the perivascu-
lar space 111 via the nozzles 208a and 2085 or electrically
conductive electrode elements at or near the nozzles 208a and
2085.

In accordance with various embodiments, and with refer-
ence to FIGS. 6A-6C, a catheter apparatus 200 can be con-
figured to accommodate a conductive wire which can be used
to create a hole through the renal artery wall 15. A low-
pressure conductive fluid jet can be used to expand the hole in
the artery wall 15 created by the conductive wire and, if
needed, to dissect the perivascular space 111. RF energy can
be transferred to the conductive fluid at the distal tip of the
conductive wire to ablate the perivascular renal nerve tissue.

FIGS. 6 A-6C illustrate various features of a catheter appa-
ratus 200 at different stages of an ablation procedure in accor-
dance with embodiments of the disclosure. As shown in FIG.
6A, the catheter apparatus 200 includes a treatment catheter
202 having a pressurizable lumen 207 dimensioned to receive
an elongated member 212. The elongated member 212 is
displaceable within the pressurizable lumen 207 and extend-
able beyond a distal opening 208 which defines a nozzle of the
pressurizable lumen 207. The shape of the nozzle 208 in
FIGS. 6A-6C is not shown for purposes of simplicity. The
elongated member 212 is insulated along its length except at
adistal end section 204, which remains exposed. The exposed
distal end section 204 includes a tissue-penetrating feature
206. The tissue-penetrating feature 206 can be used to create
apilot hole 82 in the wall 15 of a patient’s renal artery, which
is best seen in FIG. 6B.
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According to other embodiments, and with continued ref-
erenceto FIG. 6B, the elongated member 212 includes a distal
short conductive wire 204 having a tissue-penetrating feature
206 at its distal end. In the embodiment shown in FIG. 6B, the
distal short conductive wire 204 is connected to a proximal
nonconductive (e.g., plastic) section of the elongated member
212. The pressurizable lumen 207, according to this embodi-
ment, comprises a conductive metal tube. An electrical con-
ductor 215 has opposing ends respectively connected to a
distal location of the conductive metal tube 207 and a proxi-
mal location of the short conductive wire 204. The length of
the electrical conductor 215 provides slack to allow for free
axial movement of the short conductive wire 204 between
retracted and extended positions. In an alternative embodi-
ment, the pressurizable lumen 207 can be formed from non-
conductive material, and an electrical conductor can extend
between a proximal end of the pressurizable lumen 207 and a
proximal end of the short conductive wire 204. The short
conductive wire 204 in FIG. 6B is shown penetrating through
the wall 15 of the patient’s renal artery.

In the embodiment shown in FIG. 6C, the elongated mem-
ber 212 comprises a conductive wire which includes a tissue-
penetrating feature 206 at its distal end. Depending on the
diameter of the distal end of the elongated member 212, a
relatively low-pressure jet of conductive fluid can be directed
into the pilot hole 82 for purposes of expanding the size of the
pilot hole 82 and dissecting the perivascular space adjacent
the pilot hole 82. FIG. 6C illustrates retraction of the elon-
gated member 212 into the pressurizable lumen 207, and
dispensing of a conductive fluid into the pilot hole 82 and into
perivascular space which includes perivascular renal nerve
tissue 86. After dispensing a sufficient volume of conductive
fluid into the perivascular space, the distal end of the elon-
gated member 212 is advanced into the pilot hole 82 so that
the RF energy can be transmitted from the distal end of the
elongated member 212 to the conductive fluid in contact with
the perivascular renal nerve tissue 86. The above-described
ablation procedure illustrated in FIGS. 6 A-6C can be per-
formed for each jet and electrode arrangement incorporated
in a catheter arrangement 200 in accordance with various
embodiments of the disclosure.

FIG. 7 shows a representative RF renal therapy apparatus
100 in accordance with various embodiments of the disclo-
sure. The apparatus 100 illustrated in FIG. 7 includes an
external controlunit 110 which includes an RF generator 120.
The external control unit 110 typically includes some or all of
power control circuitry, timing control circuitry, temperature
measuring circuitry, and impedance measuring circuitry. An
ablation catheter 102 of the RF renal therapy apparatus 100
includes a shaft 104 having a pressurizable lumen 106 which
terminates with a nozzle 108. The nozzle 108 or an electri-
cally conductive element 109 is configured to function as an
electrode and coupled to a separate conductor 107 or the
pressurizable lumen 106 if fashioned as a metallic tube. The
distal end of the pressurizable lumen 106 and the nozzle are
preferably held at a desired orientation within the patient’s
renal artery during ablation by a stabilization arrangement
(not shown) of a type previously described.

The external control unit 110 includes a pump 112 which is
fluidly coupled to a reservoir 115 containing electrically con-
ductive fluid. The external control unit 110 controls the
amount of pressure generated by the pump 112. For example,
the external control unit 110 can control the pump 112 to
dispense conductive fluid at a relatively high pressure for
creating a hole through an artery wall and dissecting target
tissue adjacent the artery wall. The external control unit 110
may control the pump 112 for dispending conductive fluid at
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arelatively low pressure for expanding a pilot hole created by
a piercing needle or other tissue-penetrating appliance.

The RF generator 120 preferably includes a pad electrode
124 which is configured to comfortably engage the patient’s
back or other portion of the body near the kidneys. The RF
generator 120, nozzle or separate electrode 108, and pad
electrode 124 preferably operate in a unipolar ablation mode.
Radiofrequency energy produced by the RF generator 120 is
coupled to the nozzle 108 or conductive element 109 via the
conductor 107 or pressurizable lumen 106 if metallic, propa-
gates through the conductive fluid, and ablates target tissue,
such as perivascular renal nerve tissue, in accordance with a
predetermined activation sequence.

As is further shown in FIG. 7, a cooling fluid can be
delivered to the ablation site within the renal artery under the
control of a cooling control unit 152. The cooling control unit
152 includes a pump 154 and is fluidly coupled to a reservoir
156 containing a nonconductive (or conductive) cooling fluid
or cryogen. As discussed previously, the cooling control unit
152 can dispense a biocompatible liquid coolant 164 to the
ablation site or a liquid thermal transfer agent within a closed
circulation or phase-change cooling circuit.

In general, when renal artery tissue temperatures rise above
about 113° F. (50° C.), protein is permanently damaged (in-
cluding those of renal nerve fibers). If heated over about 65°
C., collagen denatures and tissue shrinks. [fheated over about
65° C. and up to 100° C., cell walls break and oil separates
from water. Above about 100° C., tissue desiccates.

According to some embodiments, the RF generator 120 is
configured to control activation and deactivation of the nozzle
108/conductive element 109 in accordance with a predeter-
mined energy delivery protocol and in response to signals
received from temperature measuring circuitry. The RF gen-
erator 120 controls radiofrequency energy delivered to the
nozzle 108/conductive element 109 so as to maintain the
current densities at a level sufficient to cause heating of the
perivascular renal tissue to at least a temperature of 55° C., for
example.

Temperature sensors can be situated at the nozzle 108/
conductive element 109 to provide continuous monitoring of
renal artery tissue temperatures, and RF generator power can
be automatically adjusted so that target temperatures are
achieved and maintained. An impedance sensor arrangement
may be used to measure and monitor electrical impedance
during RF denervation therapy, and the power and timing of
the RF generator 120 may be moderated based on the imped-
ance measurements or a combination of impedance and tem-
perature measurements. Marker bands 314 can be placed on
one or multiple parts of the nozzle/nozzle region and/or shaft
104 to enable visualization during the procedure. A guidewire
or guiding catheter can be used to locate the renal artery to be
treated, and the catheter 102 can be advanced over the
guidewire/guiding catheter and through the ostium of the
renal artery.

The embodiments shown in the figures have been generally
described in the context of intravascular-based ablation of
perivascular renal nerves for control of hypertension. It is
understood, however, that embodiments of the disclosure
have applicability in other contexts, such as energy delivery
from within other vessels of the body, including other arteries,
veins, and vasculature (e.g., cardiac and urinary vasculature
and vessels), and other tissues of the body, including various
organs. For example, the treatment catheter 102 can be con-
figured for deployment within the renal vein, and the pressur-
izable lumen 106 and electrode 109 can be advanced through
a hole created in the renal artery wall. The pressurizable
lumen 106 and electrode 109 can be further advanced to a
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location proximate perivascular renal nerve tissue surround-
ing the adjacent the near wall of the renal artery. A steering or
tensioning wire and/or a pre-formed curve can be provided at
the distal tip of the pressurizable lumen 106 to allow the
clinician to access perivascular renal nerve tissue adjacent the
far wall of the renal artery. Conductive fluid can be dispensed
through the perivascular space surrounding the adjacent renal
artery and within the perivascular renal nerve tissue included
within the perivascular space. RF ablation can be conducted
in step-wise fashion at discrete locations about the periphery
of'the renal artery or in a single delivery of RF energy (assum-
ing conductive fluid nearly or entirely surrounds the renal
artery.

By way of further example, an appropriately sized pressur-
izable lumen 106 and electrode 109 can be deployed in a
cardiac chamber, such as the right atrium for treating reen-
trant tachyarrhythmias, or a cardiac vessel, such as the ostium
of the pulmonary vein for treating atrial fibrillation. Various
embodiments may be configured for deployment in the ure-
thra to treat benign prostatic hyperplasia (BPH) or to treat a
tumor using an appropriately sized pressurizable lumen 106
and electrode 109 of a type described hereinabove.

It is to be understood that even though numerous charac-
teristics of various embodiments have been set forth in the
foregoing description, together with details of the structure
and function of various embodiments, this detailed descrip-
tion is illustrative only, and changes may be made in detail,
especially in matters of structure and arrangements of parts
illustrated by the various embodiments to the full extent indi-
cated by the broad general meaning of the terms in which the
appended claims are expressed.

What is claimed is:

1. An apparatus, comprising:

a catheter comprising a flexible shaft having a proximal
end, a distal end, a length, and a lumen arrangement
extending between the proximal and distal ends, the
length of the shaft sufficient to access a patient’s renal
artery relative to a percutaneous access location;

a pressurizable lumen of the lumen arrangement config-
ured to receive a pressurized conductive fluid;

anozzle fluidly coupled to a distal end of the pressurizable
lumen, the nozzle configured to direct a jet of the pres-
surized conductive fluid at a wall of the renal artery to
create or expand a hole through the artery wall and to fill
the hole and at least some of perivascular space adjacent
to the hole with the conductive fluid; and

at least one electrical conductor extending at least partially
along the shaft and terminating proximate or at the distal
end of the pressurizable lumen, the at least one electrical
conductor configured to conduct radio frequency energy
to the conductive fluid sufficient to ablate perivascular
renal nerve tissue in contact with the conductive fluid;

wherein the pressurizable lumen comprises electrically
conductive material that extends between the distal and
proximal ends of the shaft.

2. The apparatus of claim 1, wherein the conductive fluid
has an impedance lower than that of renal artery tissue proxi-
mate the hole.

3. The apparatus of claim 1, wherein at least the nozzle
comprises electrically conductive material.

4. The apparatus of claim 1, wherein at least a proximal
portion of the pressurizable lumen comprises non-conductive
material, the nozzle comprises an electrically conductive ele-
ment.
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5. The apparatus of claim 1, comprising:

a conductive wire covered with an electrically insulating
material and having an exposed tip portion, the tip por-
tion configured to create a pilot hole through the artery
wall;

wherein a relatively low pressure conductive fluid jet is
configured to expand the pilot hole in the artery wall and
dissect the perivascular space, and the radiofrequency
energy is transferred to the conductive fluid via the tip of
the conductive wire.

6. The apparatus of claim 1, comprising a plurality of the
pressurizable lumens fluidly coupled to a plurality of the
nozzles, each of the pressurizable lumens individually pres-
surizable.

7. The apparatus of claim 1, comprising a plurality of the
pressurizable lumens fluidly coupled to a plurality of the
nozzles, at least some of the pressurizable lumens fluidly
coupled to a common pressurizable lumen and commonly
pressurizable.

8. The apparatus of claim 1, comprising:

a plurality of the pressurizable lumens fluidly coupled to a

plurality of the nozzles; and

an expandable balloon or mesh provided at the distal end of
the shaft and configured to position the nozzles against
the artery wall and stabilize the position of the nozzles
during ablation.

9. The apparatus of claim 1, comprising:

a plurality of the pressurizable lumens fluidly coupled to a
plurality of the nozzles;

an expandable balloon or mesh provided at the distal end of
the shaft and configured to position the nozzles against
the artery wall and stabilize the position of the nozzles
during ablation; and

an external control unit fluidly coupled to the pressurizable
lumens and configured to control the jets of the pressur-
ized conductive fluid at the wall of the renal artery to
concurrently ablate separate locations along and around
the renal artery perivascular tissue.

10. The apparatus of claim 1, comprising:

a plurality of the pressurizable lumens fluidly coupled to a
plurality of the nozzles;

an expandable balloon or mesh provided at the distal end of
the shaft and configured to position the nozzles against
the artery wall and stabilize the position of the nozzles
during ablation; and

an external control unit fluidly coupled to the pressurizable
lumens and configured to control the jets of the pressur-
ized conductive fluid at the wall of the renal artery to
serially or sequentially ablate separate locations along
and around the renal artery perivascular tissue.

11. The apparatus of claim 1, wherein the conductive fluid

is cooled to a temperature sufficient to provide cooling at a
renal artery ablation site.

12. The apparatus of claim 1, comprising a cooling
arrangement separate from the pressurizable lumen and con-
figured to provide cooling at a renal artery treatment site.

13. An apparatus, comprising:

a catheter dimensioned for advancement through a vessel
of the body;

a pressurizable lumen of the catheter configured to receive
a pressurized conductive fluid;

anozzle fluidly coupled to a distal end of the pressurizable
lumen, the nozzle configured to direct a jet of the pres-
surized conductive fluid at a wall of a target vessel to
create or expand a hole through the target vessel and to
fill the hole and at least some of the space adjacent to the
hole with the conductive fluid; and
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at least one electrical conductor extending at least partially
along the catheter and terminating proximate or at the
distal end of the pressurizable lumen, the at least one
electrical conductor configured to conduct radio fre-
quency energy to the conductive fluid sufficient to ablate
target tissue in contact with the conductive fluid;

wherein the pressurizable lumen comprises electrically
conductive material that extends between the distal and
proximal ends of the shaft.

14. The apparatus of claim 13, wherein at least a proximal
portion of the pressurizable lumen comprises non-conductive
material, the nozzle comprises electrically conductive mate-
rial.

15. The apparatus of claim 13, comprising:

a conductive wire covered with an electrically insulating
material and having an exposed tip portion, the tip por-
tion configured to create a pilot hole through the target
vessel;

wherein a relatively low pressure conductive fluid jet is
configured to expand the pilot hole in the target vessel
wall, and the radiofrequency energy is transferred to the
conductive fluid via the tip of the conductive wire.

16. A method, comprising:

advancing a catheter through a renal artery of the body to a
target location proximate target tissue adjacent an outer
wall of the renal artery, wherein the target tissue com-
prises perivascular renal nerve tissue;

creating a hole through the outer wall of the renal artery at
the target location;

filling the hole and at least some of the space adjacent to the
hole with conductive fluid via a lumen of the catheter;
and

conducting radiofrequency energy along the catheter and
to the conductive fluid filing filling the hole and the at
least some of the space adjacent to the hole sufficient to
ablate the target tissue.
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17. The method of claim 16, comprising:

creating a plurality of the holes through the renal artery at
aplurality of one or both of circumferentially and axially
spaced-apart target locations;

filling the holes and at least some of the space adjacent to
the holes with the conductive fluid; and

conducting radiofrequency energy along the catheter and
to the conductive fluid filling the holes and the at least
some of the space adjacent to the holes sufficient to
ablate the target tissue.

18. The method of claim 16, further comprising:

prior to filling the hole, expanding the hole and dissecting
perivascular space adjacent the hole using a low-pres-
sure jet of conductive fluid.

19. The method of claim 16, wherein the catheter com-

prises:

aflexible shaft having a proximal end, a distal end, a length,
the length ofthe shaft sufficient to access the renal artery
relative to a percutaneous access location;

a nozzle fluidly coupled to a distal end of the lumen, the
nozzle being configured to direct a jet of the conductive
fluid at the outer wall of the renal artery to create the hole
through the outer wall and to fill the hole and at least
some of the space adjacent to the hole with the conduc-
tive fluid; and

at least one electrical conductor extending at least partially
along the shaft and terminating proximate or at the distal
end of the lumen, the at least one electrical conductor
configured to conduct radiofrequency energy to the con-
ductive fluid sufficient to ablate perivascular renal nerve
tissue in contact with the conductive fluid;

wherein the lumen comprises electrically conductive mate-
rial that extends between the distal and proximal ends of
the shaft.



