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RENAL NERVE ABLATION USING 
CONDUCTIVE FLUID UET AND RF ENERGY 

RELATED PATENT DOCUMENTS 

This application claims the benefit of Provisional Patent 
Application Ser. No. 61/406,304 filed Oct. 25, 2010, to which 
priority is claimed pursuant to 35 U.S.C. S 119(e) and which 
are hereby incorporated herein by reference. 

SUMMARY 

Embodiments of the disclosure are directed to a catheter 
dimensioned for advancement through a vessel of the body. A 
pressurizable lumen of the catheter is configured to receive a 
pressurized electrically conductive fluid. A nozzle is fluidly 
coupled to a distal end of the pressurizable lumen and con 
figured to direct a jet of the pressurized conductive fluid at a 
wall of a target vessel to create or expand a hole through the 
target vessel and to fill at least Some of the space adjacent to 
the hole with the conductive fluid. At least one electrical 
conductor extends at least partially along the catheter and 
terminates proximate or at the distal end of the pressurizable 
lumen. The electrical conductor is configured to conduct 
radiofrequency energy to the conductive fluid Sufficient to 
ablate target tissue in contact with the conductive fluid. 

In accordance with Some embodiments, a catheter includes 
a flexible shaft having a proximal end, a distal end, a length, 
and a lumen arrangement extending between the proximal 
and distal ends. The length of the shaft is sufficient to access 
a patient’s renal artery relative to a percutaneous access loca 
tion. A pressurizable lumen of the lumen arrangement is 
configured to receive a pressurized conductive fluid. A nozzle 
is fluidly coupled to a distal end of the pressurizable lumen. 
The nozzle is configured to direct a jet of the pressurized 
conductive fluid at a wall of the renal artery to create or 
expand a hole through the artery wall and to fill at least some 
of perivascular space adjacent to the hole with the conductive 
fluid. At least one electrical conductor extends at least par 
tially along the shaft and terminates proximate or at the distal 
end of the pressurizable lumen. The electrical conductor is 
configured to conduct radiofrequency energy to the conduc 
tive fluid sufficient to ablate perivascular renal nerves in con 
tact with the conductive fluid. 

According to further embodiments, a method involves 
advancing a catheter through a vessel of the body to a target 
location proximate target tissue adjacent an outer wall of the 
vessel. The method further involves creating a hole through 
the vessel at the target location, filing the hole and at least 
some of the space adjacent to the hole with conductive fluid 
via a lumen of the catheter, and conducting radiofrequency 
energy along the catheterand to the conductive fluid filing the 
hole and the at least some of the space adjacent to the hole 
Sufficient to ablate the target tissue. According to some 
embodiments, the hole is created in a wall of a renal artery, 
and the target tissue comprises perivascular renal nerve tis 
SC. 

These and other features can be understood in view of the 
following detailed discussion and the accompanying draw 
1ngS. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is an illustration of a right kidney and renal vascu 
lature including a renal artery branching laterally from the 
abdominal aorta; 
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2 
FIGS. 2A and 2B illustrate sympathetic innervation of the 

renal artery; 
FIG. 3A illustrates various tissue layers of the wall of the 

renal artery; 
FIGS. 3B and 3C illustrate a portion of a renal nerve; 
FIG. 4 illustrates a treatment catheter comprising a jet and 

electrode arrangement configured to deliver a pressurized, 
electrically conductive fluid spray through a wall of a target 
vessel and ablate target tissue adjacent the target vessel wall 
in accordance with various embodiments; 

FIG. 5 illustrates a treatment catheter comprising a multi 
plicity of jet and electrode arrangements each configured to 
deliver a pressurized, electrically conductive fluid spray 
through a wall of a target vessel and ablate target tissue 
adjacent the target vessel wall in accordance with various 
embodiments; 

FIGS. 6A-6C illustrate treatment catheters comprising a jet 
and electrode arrangement configured to deliver a pressur 
ized, electrically conductive fluid spray through a wall of a 
target vessel and ablate target tissue adjacent the target vessel 
wall in accordance with various embodiments; and 

FIG. 7 shows a representative RF renal therapy apparatus 
in accordance with various embodiments of the disclosure. 

DESCRIPTION 

Embodiments of the disclosure are directed to apparatuses 
and methods for ablating extravascular target tissue from 
within a vessel. Embodiments of the disclosure are directed to 
apparatuses and methods for ablating perivascular renal 
nerves from within the renal artery or other nearby vessel for 
the treatment of hypertension. Embodiments of the disclosure 
are directed to an intravascular catheter having a high-pres 
Sure fluid jet arrangement for creating a small hole through a 
vessel wall, dispensing an electrically conductive fluid 
through the hole and into perivascular space adjacent the 
vessel wall, and delivering RF energy to the conductive fluid 
and Surrounding tissue of Sufficient power to ablate perivas 
cular tissue, such as perivascular renal nerve tissue, in contact 
with the conductive fluid. 
When using RF electrode(s) placed in the renal artery for 

ablation of perivascular renal nerves for treatment of hyper 
tension, the highest current density and thus the greatest 
heating is typically adjacent to the electrode. All the current 
that reaches the target tissue must also pass through the renal 
artery wall. In order to achieve tissue temperatures for effec 
tive ablation of the renal nerves, the renal artery can also be 
injured. Active cooling can be provided, but requires a larger 
catheter and a more complex system. Improved approaches to 
reducing injury to the renal artery during ablation of the renal 
nerves are disclosed herein. 

Embodiments described in the present disclosure provide 
for sufficientablation of target nerves while reducing injury to 
the renal artery by using a high-velocity jet of highly conduc 
tive fluid to cut a very small hole in the artery wall and conduct 
the current past the artery wall. In some configurations, an 
external control unit pressurizes a conductive fluid (Such as 
saline with conductive additives) and also powers the RF 
transmission. A catheter with a pressurized fluid lumen and a 
conductor attaches to the external control unit. 

In accordance with various method embodiments, a cath 
eter is guided to the treatment location and directed against 
the wall of a patient’s renal artery. A conductive fluid is 
pressurized and transported through a pressurizable fluid 
lumen of the catheter and exits through a nozzle. A brief 
activation of the conductive fluid jet is used to create a hole 
through the artery wall and fill the hole with the conductive 
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fluid. Depending on the duration of jet activation, a Volume of 
conductive fluid will also dissect and collect in the perivas 
cular space. 

Radiofrequency (RF) energy or other form of high-fre 
quency AC energy is passed along an electrical conductor that 
extends between the distal and proximal ends of the catheter. 
The electrical conductor may take the form of a metallic tube 
which also serves as the conductive fluid lumen of the cath 
eter. The RF energy passes preferentially through the conduc 
tive fluid, through the small hole in the artery wall, and to the 
perivascular tissue, where it spreads and heats the perivascu 
lar renal nerve tissue due to the higher impedance of the 
perivascular renal nerve tissue relative to that of the conduc 
tive fluid. 

Various embodiments of the disclosure are directed to 
apparatuses and methods for renal denervation for treating 
hypertension. Hypertension is a chronic medical condition in 
which the blood pressure is elevated. Persistent hypertension 
is a significant risk factor associated with a variety of adverse 
medical conditions, including heart attacks, heart failure, 
arterial aneurysms, and strokes. Persistent hypertension is a 
leading cause of chronic renal failure. Hyperactivity of the 
sympathetic nervous system serving the kidneys is associated 
with hypertension and its progression. Deactivation of nerves 
in the kidneys via renal denervation can reduce blood pres 
Sure, and may be a viable treatment option for many patients 
with hypertension who do not respond to conventional drugs. 

The kidneys are instrumental in a number of body pro 
cesses, including blood filtration, regulation of fluid balance, 
blood pressure control, electrolyte balance, and hormone pro 
duction. One primary function of the kidneys is to remove 
toxins, mineral salts, and water from the blood to form urine. 
The kidneys receive about 20-25% of cardiac output through 
the renal arteries that branch left and right from the abdominal 
aorta, entering each kidney at the concave surface of the 
kidneys, the renal hilum. 

Blood flows into the kidneys through the renal artery and 
the afferent arteriole, entering the filtration portion of the 
kidney, the renal corpuscle. The renal corpuscle is composed 
of the glomerulus, a thicket of capillaries, Surrounded by a 
fluid-filled, cup-like sac called Bowman's capsule. Solutes in 
the blood are filtered through the very thin capillary walls of 
the glomerulus due to the pressure gradient that exists 
between the blood in the capillaries and the fluid in the Bow 
man's capsule. The pressure gradient is controlled by the 
contraction ordilation of the arterioles. After filtration occurs, 
the filtered blood moves through the efferentarteriole and the 
peritubular capillaries, converging in the interlobular veins, 
and finally exiting the kidney through the renal vein. 

Particles and fluid filtered from the blood move from the 
Bowman's capsule through a number of tubules to a collect 
ing duct. Urine is formed in the collecting duct and then exits 
through the ureter and bladder. The tubules are surrounded by 
the peritubular capillaries (containing the filtered blood). As 
the filtrate moves through the tubules and toward the collect 
ing duct, nutrients, water, and electrolytes, such as sodium 
and chloride, are reabsorbed into the blood. 
The kidneys are innervated by the renal plexus which ema 

nates primarily from the aorticorenal ganglion. Renal ganglia 
are formed by the nerves of the renal plexus as the nerves 
follow along the course of the renal artery and into the kidney. 
The renal nerves are part of the autonomic nervous system 
which includes sympathetic and parasympathetic compo 
nents. The sympathetic nervous system is known to be the 
system that provides the bodies “fight or flight' response, 
whereas the parasympathetic nervous system provides the 
“rest and digest response. Stimulation of sympathetic nerve 
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4 
activity triggers the sympathetic response which causes the 
kidneys to increase production of hormones that increase 
vasoconstriction and fluid retention. This process is referred 
to as the renin-angiotensin-aldosterone-system (RAAS) 
response to increased renal sympathetic nerve activity. 

In response to a reduction in blood Volume, the kidneys 
secrete renin, which stimulates the production of angiotensin. 
Angiotensin causes blood vessels to constrict, resulting in 
increased blood pressure, and also stimulates the secretion of 
the hormone aldosterone from the adrenal cortex. Aldoster 
one causes the tubules of the kidneys to increase the reabsorp 
tion of sodium and water, which increases the volume of fluid 
in the body and blood pressure. 

Congestive heart failure (CHF) is a condition that has been 
linked to kidney function. CHF occurs when the heart is 
unable to pump blood effectively throughout the body. When 
blood flow drops, renal function degrades because of insuffi 
cient perfusion of the blood within the renal corpuscles. The 
decreased blood flow to the kidneys triggers an increase in 
sympathetic nervous system activity (i.e., the RAAS becomes 
too active) that causes the kidneys to secrete hormones that 
increase fluid retention and vasorestriction. Fluid retention 
and vasorestriction in turn increases the peripheral resistance 
of the circulatory system, placing an even greater load on the 
heart, which diminishes blood flow further. If the deteriora 
tion incardiac and renal functioning continues, eventually the 
body becomes overwhelmed, and an episode of heart failure 
decompensation occurs, often leading to hospitalization of 
the patient. 

FIG. 1 is an illustration of a right kidney 10 and renal 
vasculature including a renal artery 12 branching laterally 
from the abdominal aorta 20. In FIG. 1, only the right kidney 
10 is shown for purposes of simplicity of explanation, but 
reference will be made herein to both right and left kidneys 
and associated renal vasculature and nervous system struc 
tures, all of which are contemplated within the context of 
embodiments of the disclosure. The renal artery 12 is pur 
posefully shown to be disproportionately larger than the right 
kidney 10 and abdominal aorta 20 in order to facilitate dis 
cussion of various features and embodiments of the present 
disclosure. 
The right and left kidneys are supplied with blood from the 

right and left renal arteries that branch from respective right 
and left lateral surfaces of the abdominal aorta 20. Each of the 
right and left renal arteries is directed across the crus of the 
diaphragm, so as to form nearly a right angle with the abdomi 
nal aorta 20. The right and left renal arteries extend generally 
from the abdominal aorta 20 to respective renal sinuses proxi 
mate the hilum 17 of the kidneys, and branch into segmental 
arteries and then interlobular arteries within the kidney 10. 
The interlobular arteries radiate outward, penetrating the 
renal capsule and extending through the renal columns 
between the renal pyramids. Typically, the kidneys receive 
about 20% of total cardiac output which, for normal persons, 
represents about 1200 mL of blood flow through the kidneys 
per minute. 
The primary function of the kidneys is to maintain water 

and electrolyte balance for the body by controlling the pro 
duction and concentration of urine. In producing urine, the 
kidneys excrete wastes Such as urea and ammonium. The 
kidneys also control reabsorption of glucose and amino acids, 
and are important in the production of hormones including 
Vitamin D, renin and erythropoietin. 
An important secondary function of the kidneys is to con 

trol metabolic homeostasis of the body. Controlling hemo 
static functions include regulating electrolytes, acid-basebal 
ance, and blood pressure. For example, the kidneys are 
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responsible for regulating blood Volume and pressure by 
adjusting Volume of water lost in the urine and releasing 
erythropoietin and renin, for example. The kidneys also regu 
late plasma ion concentrations (e.g., sodium, potassium, 
chloride ions, and calcium ion levels) by controlling the quan 
tities lost in the urine and the synthesis of calcitrol. Other 
hemostatic functions controlled by the kidneys include stabi 
lizing blood pH by controlling loss of hydrogen and bicar 
bonate ions in the urine, conserving valuable nutrients by 
preventing their excretion, and assisting the liver with detoxi 
fication. 

Also shown in FIG. 1 is the right suprarenal gland 11, 
commonly referred to as the right adrenal gland. The Supra 
renal gland 11 is a star-shaped endocrine gland that rests on 
top of the kidney 10. The primary function of the suprarenal 
glands (left and right) is to regulate the stress response of the 
body through the synthesis of corticosteroids and catechola 
mines, including cortisol and adrenaline (epinephrine), 
respectively. Encompassing the kidneys 10, Suprarenal 
glands 11, renal vessels 12, and adjacent perirenal fat is the 
renal fascia, e.g., Gerota’s fascia, (not shown), which is a 
fascial pouch derived from extraperitoneal connective tissue. 
The autonomic nervous system of the body controls invol 

untary actions of the Smooth muscles in blood vessels, the 
digestive system, heart, and glands. The autonomic nervous 
system is divided into the sympathetic nervous system and the 
parasympathetic nervous system. In general terms, the para 
sympathetic nervous system prepares the body for rest by 
lowering heart rate, lowering blood pressure, and stimulating 
digestion. The sympathetic nervous system effectuates the 
body's fight-or-flight response by increasing heart rate, 
increasing blood pressure, and increasing metabolism. 

In the autonomic nervous system, fibers originating from 
the central nervous system and extending to the various gan 
glia are referred to as preganglionic fibers, while those 
extending from the ganglia to the effector organ are referred 
to as postganglionic fibers. Activation of the sympathetic 
nervous system is effected through the release of adrenaline 
(epinephrine) and to a lesser extent norepinephrine from the 
Suprarenal glands 11. This release of adrenaline is triggered 
by the neurotransmitter acetylcholine released from pregan 
glionic sympathetic nerves. 
The kidneys and ureters (not shown) are innervated by the 

renal nerves 14. FIGS. 1 and 2A-2B illustrate sympathetic 
innervation of the renal vasculature, primarily innervation of 
the renal artery 12. The primary functions of sympathetic 
innervation of the renal vasculature include regulation of 
renal blood flow and pressure, stimulation of renin release, 
and direct stimulation of water and Sodium ion reabsorption. 
Most of the nerves innervating the renal vasculature are 

sympathetic postganglionic fibers arising from the Superior 
mesenteric ganglion 26. The renal nerves 14 extend generally 
axially along the renal arteries 12, enter the kidneys 10 at the 
hilum 17, follow the branches of the renal arteries 12 within 
the kidney 10, and extend to individual nephrons. Other renal 
ganglia, such as the renal ganglia 24, Superior mesenteric 
ganglion 26, the left and right aorticorenal ganglia 22, and 
celiac ganglia 28 also innervate the renal vasculature. The 
celiac ganglion 28 is joined by the greater thoracic splanchnic 
nerve (greater TSN). The aorticorenal ganglia 26 is joined by 
the lesser thoracic splanchnic nerve (lesser TSN) and inner 
Vates the greater part of the renal plexus. 

Sympathetic signals to the kidney 10 are communicated 
via innervated renal vasculature that originates primarily at 
spinal segments T10-T12 and L1. Parasympathetic signals 
originate primarily at spinal segments S2-S4 and from the 
medulla oblongata of the lower brain. Sympathetic nerve 
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6 
traffic travels through the sympathetic trunk ganglia, where 
Some may synapse, while others synapse at the aorticorenal 
ganglion 22 (via the lesser thoracic splanchnic nerve, i.e., 
lesser TSN) and the renal ganglion 24 (via the least thoracic 
splanchnic nerve, i.e., least TSN). The postsynaptic sympa 
thetic signals then travel along nerves 14 of the renal artery 12 
to the kidney 10. Presynaptic parasympathetic signals travel 
to sites near the kidney 10 before they synapse on or near the 
kidney 10. 

With particular reference to FIG. 2A, the renal artery 12, as 
with mostarteries and arterioles, is lined with smooth muscle 
34 that controls the diameter of the renal artery lumen 13. 
Smooth muscle, in general, is an involuntary non-striated 
muscle found within the media layer of large and Small arter 
ies and Veins, as well as various organs. The glomeruli of the 
kidneys, for example, contain a smooth muscle-like cell 
called the mesangial cell. Smooth muscle is fundamentally 
different from skeletal muscle and cardiac muscle in terms of 
structure, function, excitation-contraction coupling, and 
mechanism of contraction. 
Smooth muscle cells can be stimulated to contractor relax 

by the autonomic nervous system, but can also react on 
stimuli from neighboring cells and in response to hormones 
and blood borne electrolytes and agents (e.g., vasodilators or 
vasoconstrictors). Specialized smooth muscle cells within the 
afferent arteriole of the juxtaglomerular apparatus of kidney 
10, for example, produces renin which activates the angioten 
sion II system. 
The renal nerves 14 innervate the smooth muscle 34 of the 

renal artery wall 15 and extend lengthwise in a generally axial 
or longitudinal manner along the renal artery wall 15. The 
smooth muscle 34 surrounds the renal artery circumferen 
tially, and extends lengthwise in a direction generally trans 
verse to the longitudinal orientation of the renal nerves 14, as 
is depicted in FIG. 2B. 
The smooth muscle 34 of the renal artery 12 is under 

involuntary control of the autonomic nervous system. An 
increase in sympathetic activity, for example, tends to con 
tract the smooth muscle34, which reduces the diameter of the 
renal artery lumen 13 and decreases blood perfusion. A 
decrease in Sympathetic activity tends to cause the Smooth 
muscle 34 to relax, resulting in vessel dilation and an increase 
in the renal artery lumen diameter and blood perfusion. Con 
versely, increased parasympathetic activity tends to relax the 
Smooth muscle 34, while decreased parasympathetic activity 
tends to cause Smooth muscle contraction. 

FIG. 3A shows a segment of a longitudinal cross-section 
through a renal artery, and illustrates various tissue layers of 
the wall 15 of the renal artery 12. The innermost layer of the 
renal artery 12 is the endothelium 30, which is the innermost 
layer of the intima 32 and is supported by an internal elastic 
membrane. The endothelium 30 is a single layer of cells that 
contacts the blood flowing though the vessel lumen 13. 
Endothelium cells are typically polygonal, oval, or fusiform, 
and have very distinct round or oval nuclei. Cells of the 
endothelium 30 are involved in several vascular functions, 
including control of blood pressure by way of vasoconstric 
tion and vasodilation, blood clotting, and acting as a barrier 
layer between contents within the lumen 13 and surrounding 
tissue. Such as the membrane of the intima 32 separating the 
intima 32 from the media 34, and the adventitia 36. The 
membrane or maceration of the intima 32 is a fine, transpar 
ent, colorless structure which is highly elastic, and commonly 
has a longitudinal corrugated pattern. 

Adjacent the intima32 is the media 33, which is the middle 
layer of the renal artery 12. The media is made up of smooth 
muscle 34 and elastic tissue. The media 33 can be readily 
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identified by its color and by the transverse arrangement of its 
fibers. More particularly, the media 33 consists principally of 
bundles of smooth muscle fibers 34 arranged in a thin plate 
like manner or lamellae and disposed circularly around the 
arterial wall 15. The outermost layer of the renal artery wall 
15 is the adventitia 36, which is made up of connective tissue. 
The adventitia 36 includes fibroblast cells 38 that play an 
important role in wound healing. 
A perivascular region 37 is shown adjacent and peripheral 

to the adventitia 36 of the renal artery wall 15. A renal nerve 
14 is shown proximate the adventitia 36 and passing through 
a portion of the perivascular region37. The renal nerve 14 is 
shown extending Substantially longitudinally along the outer 
wall 15 of the renal artery 12. The main trunk of the renal 
nerves 14 generally lies in or on the adventitia 36 of the renal 
artery 12, often passing through the perivascular region 37. 
with certain branches coursing into the media 33 to enervate 
the renal artery smooth muscle 34. 

Embodiments of the disclosure may be implemented to 
provide varying degrees of denervation therapy to innervated 
renal vasculature. For example, embodiments of the disclo 
sure may provide for control of the extent and relative per 
manency of renal nerve impulse transmission interruption 
achieved by denervation therapy delivered using a treatment 
apparatus of the disclosure. The extent and relative perma 
nency of renal nerve injury may be tailored to achieve a 
desired reduction in sympathetic nerve activity (including a 
partial or complete block) and to achieve a desired degree of 
permanency (including temporary or irreversible injury). 

Returning to FIGS. 3B and 3C, the portion of the renal 
nerve 14 shown in FIGS. 3B and 3C includes bundles 14a of 
nerve fibers 14b each comprising axons or dendrites that 
originate or terminate on cell bodies or neurons located in 
ganglia or on the spinal cord, or in the brain. Supporting tissue 
structures 14c of the nerve 14 include the endoneurium (sur 
rounding nerve axon fibers), perineurium (Surrounds fiber 
groups to form a fascicle), and epineurium (binds fascicles 
into nerves), which serve to separate and Support nerve fibers 
14b and bundles 14a. In particular, the endoneurium, also 
referred to as the endoneurium tube or tubule, is a layer of 
delicate connective tissue that encloses the myelin sheath of a 
nerve fiber 14b within a fasciculus. 
Major components of a neuron include the Soma, which is 

the central part of the neuron that includes the nucleus, cel 
lular extensions called dendrites, and axons, which are cable 
like projections that carry nerve signals. The axon terminal 
contains synapses, which are specialized structures where 
neurotransmitter chemicals are released in order to commu 
nicate with target tissues. The axons of many neurons of the 
peripheral nervous system are sheathed in myelin, which is 
formed by a type of glial cell known as Schwann cells. The 
myelinating Schwann cells are wrapped around the axon, 
leaving the axolemma relatively uncovered at regularly 
spaced nodes, called nodes of Ranvier. Myelination of axons 
enables an especially rapid mode of electrical impulse propa 
gation called Saltation. 

In some embodiments, a treatment apparatus of the disclo 
sure may be implemented to deliver denervation therapy that 
causes transient and reversible injury to renal nerve fibers 
14b. In other embodiments, a treatment apparatus of the dis 
closure may be implemented to deliver denervation therapy 
that causes more severe injury to renal nerve fibers 14b, which 
may be reversible if the therapy is terminated in a timely 
manner. In preferred embodiments, a treatment apparatus of 
the disclosure may be implemented to deliver denervation 
therapy that causes severe and irreversible injury to renal 
nerve fibers 14b, resulting in permanent cessation of renal 
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sympathetic nerve activity. For example, a treatment appara 
tus may be implemented to deliver a denervation therapy that 
disrupts nerve fiber morphology to a degree sufficient to 
physically separate the endoneurium tube of the nerve fiber 
14b, which can prevent regeneration and re-innervation pro 
CCSSCS. 

By way of example, and in accordance with Seddon's 
classification as is known in the art, a treatment apparatus of 
the disclosure may be implemented to deliver a denervation 
therapy that interrupts conduction of nerve impulses along the 
renal nerve fibers 14b by imparting damage to the renal nerve 
fibers 14b consistent with neruapraxia. Neurapraxia 
describes nerve damage in which there is no disruption of the 
nerve fiber 14b or its sheath. In this case, there is an interrup 
tion in conduction of the nerve impulse down the nerve fiber, 
with recovery taking place within hours to months without 
true regeneration, as Wallerian degeneration does not occur. 
Wallerian degeneration refers to a process in which the part of 
the axon separated from the neuron's cell nucleus degener 
ates. This process is also known as anterograde degeneration. 
Neurapraxia is the mildest form of nerve injury that may be 
imparted to renal nerve fibers 14b by use of a treatment 
apparatus according to embodiments of the disclosure. 
A treatment apparatus may be implemented to interrupt 

conduction of nerve impulses along the renal nerve fibers 14b 
by imparting damage to the renal nerve fibers consistent with 
axonotmesis. Axonotmesis involves loss of the relative con 
tinuity of the axon of a nerve fiber and its covering of myelin, 
but preservation of the connective tissue framework of the 
nerve fiber. In this case, the encapsulating Support tissue 14c 
of the nerve fiber 14b is preserved. Because axonal continuity 
is lost, Wallerian degeneration occurs. Recovery from 
axonotmesis occurs only through regeneration of the axons, a 
process requiring time on the order of several weeks or 
months. Electrically, the nerve fiber 14b shows rapid and 
complete degeneration. Regeneration and re-innervation may 
occur as long as the endoneural tubes are intact. 
A treatment apparatus may be implemented to interrupt 

conduction of nerve impulses along the renal nerve fibers 14b 
by imparting damage to the renal nerve fibers 14b consistent 
with neurotmesis. Neurotmesis, according to Seddon's clas 
sification, is the most serious nerve injury in the scheme. In 
this type of injury, both the nerve fiber 14b and the nerve 
sheath are disrupted. While partial recovery may occur, com 
plete recovery is not possible. Neurotmesis involves loss of 
continuity of the axon and the encapsulating connective tissue 
14c, resulting in a complete loss of autonomic function, in the 
case of renal nerve fibers 14b. If the nerve fiber 14b has been 
completely divided, axonal regeneration causes a neuroma to 
form in the proximal Stump. 
A more stratified classification of neurotmesis nerve dam 

age may be found by reference to the Sunderland System as is 
known in the art. The Sunderland System defines five degrees 
of nerve damage, the first two of which correspond closely 
with neurapraxia and axonotmesis of Seddon's classification. 
The latter three Sunderland System classifications describe 
different levels of neurotmesis nerve damage. 
The first and second degrees of nerve injury in the Sunder 

land system are analogous to Seddon's neurapraxia and 
axonotmesis, respectively. Third degree nerve injury, accord 
ing to the Sunderland System, involves disruption of the 
endoneurium, with the epineurium and perineurium remain 
ing intact. Recovery may range from poor to complete 
depending on the degree of intrafascicular fibrosis. A fourth 
degree nerve injury involves interruption of all neural and 
Supporting elements, with the epineurium remaining intact. 
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The nerve is usually enlarged. Fifth degree nerve injury 
involves complete transection of the nerve fiber 14b with loss 
of continuity. 

Turning now to FIG. 4, there is illustrated a treatment 
catheter comprising a jet and electrode arrangement config 
ured to deliver a pressurized, electrically conductive fluid 
spray through a wall of a target vessel and ablate target tissue 
adjacent the target vessel wall in accordance with various 
embodiments. In FIG. 4, the treatment catheter 102 is shown 
deployed within a lumen of a patient's renal artery 12. The 
treatment catheter 102, according to various embodiments, 
includes a flexible shaft having a proximal end, a distal end, 
and a lumen arrangement extending between the proximal 
and distal ends. The length of the shaft is sufficient to access 
the patient's renal artery 12 relative to a percutaneous access 
location. 
The lumen arrangement of the catheter 102 includes a 

pressurizable lumen 106 configured to receive a pressurized 
conductive fluid at its proximal end. The conductive fluid may 
be pressurized in the range of about 100 to 500 psi, for 
example. A nozzle 108 is fluidly coupled to the distal end of 
the pressurized bowl lumen 106. The nozzle 108 is configured 
to directajet of pressurized conductive fluidata wall 15 of the 
renal artery 12 to create or expand a hole through the artery 
wall 15. The nozzle may have a diameter ranging from about 
0.001 to 0.005 inch, for example. 

In some configurations, the nozzle 108 may include a tis 
Sue-penetrating feature that facilitates dissection of the renal 
artery wall 15. For example, a leading surface of the nozzle 
108 may have a sharpened edge. In such embodiments, the 
nozzle 108 can be advanced through the hole in theartery wall 
15 to a location at or extending beyond an outer surface of the 
artery wall 15. Prior to advancing the nozzle 108 through the 
hole, a jet of pressurized conductive fluid can be used to 
expand the diameter of the hole, which serves to increase the 
ease by which the nozzle 108 can be advanced through the 
hole. 

In other configurations, embodiments of which are 
described hereinbelow, an elongated member having a tissue 
penetrating feature (e.g., needle) at its distal end can be dis 
placed axially within the pressurizable lumen 106. With the 
catheter's distal tip positioned adjacent the wall 15 of the 
renal artery 12, the elongated member is advanced so that the 
tissue-penetrating feature penetrates into and through the 
renal artery wall 15. 

After piercing or expanding a previously created hole 
through the renal artery wall 15, the conductive fluid is dis 
pensed from the nozzle 108 to fill at least some perivascular 
space adjacent to the hole. In configurations where the nozzle 
108 is not advanced through the hole, the conductive fluid 
dispensed from the nozzle 108 also fills the hole. At least one 
electrical conductor extends at least partially along the cath 
eter 102 and terminates proximate or at the distal end of the 
pressurizer the lumen 106. The electrical conductor is con 
figured to conduct high-frequency AC energy (e.g., radiofre 
quency energy) to the conductive fluid Sufficient to ablate 
perivascular renal nerve tissue 111 in contact with the con 
ductive fluid. 
The conductive fluid preferably has an impedance lower 

than that of the renal artery and perivascular tissue proximate 
the hole. In some embodiments, the conductive fluid is cooled 
to a temperature Sufficient to provide cooling at the renal 
artery treatment site. In other embodiments, a cooling 
arrangement separate from the pressurized lumen 106 can be 
incorporated into the catheter 102 to provide cooling at the 
renal artery treatment site. For example, a separate infusion of 
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10 
nonconductive fluid can be used for artery cooling and to 
decrease RF energy losses in the renal artery lumen. 

In some embodiments, the nozzle 108 comprises electri 
cally conductive material 109, such as a metallic annular 
tapered ring, which defines an electrode. An electrical con 
ductor is coupled to the electrically conductive nozzle 108 
and extends along the length of the catheter 102 to its proxi 
mal end. In other configurations, the electrical conductor 
(e.g., a wire or conductive composite elongated member) 
extends between the distal and proximal ends of the catheter 
102, and the distal tip of the electrical conductor defines the 
electrode 109. For example, the pressurizable lumen 106 can 
include a metallic tube that serves as an electrical conductor 
between a proximal energy source and the distal tip of the 
metallic tube which serves as an electrode 109. In other con 
figurations, at least a proximal portion of the pressurizable 
lumen 106 comprises nonconductive material, and the nozzle 
108 comprises an electrically conductive element 109. In 
further configurations, an electrical conductor extends 
between the distal and proximal ends of the catheter 102 for 
electrically coupling the nozzle 108 with an external energy 
source at the proximal end of the catheter 102. 
The distal end of one or both of the catheter 102 and 

pressurizable lumen 106 may incorporate a pre-formed curve 
that facilitates proper positioning of the nozzle 108 against 
the wall 15 of the renal artery. For example, the distal ends of 
the catheter 102 and pressurizable lumen 106 may incorpo 
rate pre-formed curves that together can form a complex 
curved shape which can position the nozzle 108 at or near 
perpendicular with respect to the renal artery wall 15. In other 
configurations, the pressurizable lumen 106 can be fashioned 
as a metallic tube, and at least the distal end of the pressuriz 
able lumen 106 can include a shape-memory tube section. 
When extended beyond the distal tip of the catheter 102, the 
shape-memory tube section assumes a predetermined curved 
shape for orienting the nozzle at a desired angle (e.g., 90+/ 
20°) relative to the renal artery wall 15. In further configura 
tions, a tensioning wire or cable can be connected at the distal 
tip of the catheter 102. Desired curvature of the distal end or 
tip of the catheter 102 can be achieved by applying an appro 
priate force to the tensioning wire/cable, allowing the clini 
cian to orient the nozzle 108 at a desired angle relative to the 
renal artery wall 15. 

In some embodiments, the treatment catheter 102 includes 
a single pressurizable lumen 106 fluidly coupled to a multi 
plicity of the nozzles 108. The multiplicity of nozzles 108 
may be fluidly coupled to the single pressurizable lumen 106 
via an intervening structure, such as a manifold, balloon, 
chamber or a series of orifices in a tube, for example. The 
intervening structure is preferably configured to channel 
pressurized conductive fluid from the signal pressurizable 
lumen 106 to a multiplicity of the nozzles 108. 

FIG. 5 illustrates a treatment catheter comprising a multi 
plicity of jet and electrode arrangements each configured to 
deliver a pressurized, electrically conductive fluid spray 
through a wall of a target vessel and ablate target tissue 
adjacent the target vessel wall in accordance with various 
embodiments. In the embodiment illustrated in FIG. 5, a 
treatment catheter 102 includes multiple jets that can be used 
to concurrently or serially ablate separate locations along and 
around the renal artery perivascular tissue. An expandable 
stabilization arrangement can be provided to position the jet 
nozzles against the renal artery wall and stabilize the position 
of the nozzles during the ablation procedure. 
The embodiment of FIG. 5 shows a treatment catheter 102 

that employs a multiplicity of jet arrangements. The catheter 
102 includes a multiplicity of pressurizable lumens 106a and 
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106b fluidly coupled to a multiplicity of nozzles 208a and 
208b, respectively. The treatment catheter 102 further 
includes an expandable balloon or mesh structure 221 pro 
vided at a distal end of the catheter 102. The expandable 
structure 221 is configured to position the nozzles 208a and 
208b against the wall 15 of the renal artery 12 and stabilize the 
position of the nozzles 208a and 208b during the ablation 
procedure. FIG. 5 further shows extension lumens 204A and 
204B fluidly coupled to pressurizable lumens 106a and 106b, 
respectively. 

In some configurations, the extension lumens 204A and 
204B define end sections of the pressurizable lumens 106a 
and 106b that terminate on an exterior surface of the expand 
able structure 221. In other embodiments, the extension 
lumens 204A and 204B define lumen structures integral to the 
expandable structure 221, which are fluidly coupled to pres 
surizable lumens 106a and 106b during catheter fabrication. 
For example, the extension lumens 204A and 204B may be 
formed into the surface of an expandable balloon structure 
221. By way of further example, the extension lumens 204A 
and 204B may be polymeric or metallic tubes having distal 
ends that terminate at the Surface of an expandable mesh 
structure 221. 

According to some embodiments, the distal ends of the 
extension lumens 204A and 204B include an electrically 
conductive material, and this conductive material is electri 
cally coupled to an electrical conductor that runs along the 
length of the catheter 102. For example, the extension lumens 
204a and 204B define end sections of metallic tubes 106A 
and 106B, respectively. In other embodiments, the pressuriz 
able lumens 106a and 106b can be formed from polymeric 
material and the distal ends of the extension lumens 204a and 
204B can include electrically conductive material which is 
electrically coupled to an electrical conductor that runs along 
the length of the catheter 102. After delivering the conductive 
fluid into the perivascular space 111, radiofrequency energy 
is communicated to the electrically conductive material at the 
distal ends of the extension lumens 204a and 204B. The 
conductive fluid provides a low impedance pathway to the 
perivascular renal nerve tissue contained within the perivas 
cular space 111 for the RF energy. 
The jet arrangements shown in the illustrative embodiment 

of FIG. 5 is useful for ablating perivascular renal nerve tissue 
at two separate locations within the renal artery 15. In FIG. 5, 
the two extension lumens 204a and 204b are spaced apart 
from one another both circumferentially and axially. As such, 
two circumferentially and axially spaced regions of perivas 
cular renal nerve tissue proximate the expandable structure 
221 can be ablated. It is noted that the axial spacing between 
the extension lumens 204a and 204b can be eliminated for 
treatment catheters implemented to ablate a circumferential 
region of perivascular renal nerve tissue. 

Additional jet arrangements can be incorporated into the 
treatment catheter 102. For example, the expandable structure 
221 and lumen arrangement of the catheter 102 can be con 
figured to accommodate four jet arrangements spaced apart 
from one another both axially and circumferentially, so that 
eachjet and associated electrode element can ablate approxi 
mately one-fourth of a circumferential region of the perivas 
cular renal nerve tissue. By way of further example, the 
expandable structure 221 and lumen arrangement of the cath 
eter 102 can be configured to accommodate six jet arrange 
ments spaced apart from one another both axially and circum 
ferentially, Such that each jet and associated electrode 
element can ablate approximately one-sixth of a circumfer 
ential region of the perivascular renal nerve tissue. Ablation 
of perivascular renal nerve tissue adjacent each of the jet and 
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electrode element arrangement using the RF energy can be 
performed serially or sequentially. 

It is understood that a treatment catheter 102 which incor 
porates a multiplicity of jet arrangements can include an 
expandable structure 221 configured to position the multi 
plicity of jet arrangements in one or both of axially and 
circumferentially spaced relationships to one another. Also, 
each of the jet arrangements can be fluidly coupled to an 
individual pressurizable lumens of the treatment catheter 102, 
or some or all of the jet arrangements can be fluidly coupled 
to a common pressurizable lumen. Ablation of perivascular 
renal nerve tissue using the jet and electrode element arrange 
ments can be performed serially or sequentially, irrespective 
of whether the jet arrangements are fluidly coupled to sepa 
rate lumens or a common lumen. 

Although not shown in FIG. 5 for purposes of simplicity, 
expandable structure 221 includes an activation feature (e.g., 
pressurizable lumen(s) or push/pull wire(s)) for transforming 
the expandable structure 221 between low-profile introduc 
tion and deployment configurations. It is noted that an 
expandable balloon structure 221 can be implemented to 
include a cooling arrangement in the form of a recirculating 
cooling circuit or a phase-change cooling arrangement. 

According to various method embodiments, the distal end 
of the treatment catheter 102 is delivered to a patient's renal 
artery 12 using one or both of a guiding catheter and a delivery 
sheath. During the delivery procedure, the expandable struc 
ture 221 is in its collapsed low-profile introduction configu 
ration. After the expandable structure 221 is positioned at a 
desired location within the renal artery 12, the expandable 
structure 221 is activated, which centers the catheter 102 
within the renal artery 12 and positions the nozzles 208a and 
208b against the wall 15 of the renal artery 12. The jets are 
activated for a brief duration of time and at an appropriate 
pressure to create a hole through the renal artery wall 15 using 
high-pressure electrically conductive fluid. The conductive 
fluid fills the holes in the artery wall 15 and perivascular space 
111 adjacent the holes. Radiofrequency energy is delivered 
the perivascular renal nerve tissue included in the perivascu 
lar space 111 via the nozzles 208a and 208b or electrically 
conductive electrode elements at or near the nozzles 208a and 
208b. 

In accordance with various embodiments, and with refer 
ence to FIGS. 6A-6C, a catheter apparatus 200 can be con 
figured to accommodate a conductive wire which can be used 
to create a hole through the renal artery wall 15. A low 
pressure conductive fluid jet can be used to expand the hole in 
the artery wall 15 created by the conductive wire and, if 
needed, to dissect the perivascular space 111. RF energy can 
be transferred to the conductive fluid at the distal tip of the 
conductive wire to ablate the perivascular renal nerve tissue. 

FIGS. 6A-6C illustrate various features of a catheter appa 
ratus 200 at different stages of an ablation procedure in accor 
dance with embodiments of the disclosure. As shown in FIG. 
6A, the catheter apparatus 200 includes a treatment catheter 
202 having a pressurizable lumen 207 dimensioned to receive 
an elongated member 212. The elongated member 212 is 
displaceable within the pressurizable lumen 207 and extend 
able beyond a distal opening 208 which defines a nozzle of the 
pressurizable lumen 207. The shape of the nozzle 208 in 
FIGS. 6A-6C is not shown for purposes of simplicity. The 
elongated member 212 is insulated along its length except at 
a distal end section 204, which remains exposed. The exposed 
distal end section 204 includes a tissue-penetrating feature 
206. The tissue-penetrating feature 206 can be used to create 
a pilot hole 82 in the wall 15 of a patients renal artery, which 
is best seen in FIG. 6B. 
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According to other embodiments, and with continued ref 
erence to FIG. 6B, the elongated member 212 includes a distal 
short conductive wire 204 having a tissue-penetrating feature 
206 at its distalend. In the embodiment shown in FIG. 6B, the 
distal short conductive wire 204 is connected to a proximal 
nonconductive (e.g., plastic) section of the elongated member 
212. The pressurizable lumen 207, according to this embodi 
ment, comprises a conductive metal tube. An electrical con 
ductor 215 has opposing ends respectively connected to a 
distal location of the conductive metal tube 207 and a proxi 
mal location of the short conductive wire 204. The length of 
the electrical conductor 215 provides slack to allow for free 
axial movement of the short conductive wire 204 between 
retracted and extended positions. In an alternative embodi 
ment, the pressurizable lumen 207 can be formed from non 
conductive material, and an electrical conductor can extend 
between a proximal end of the pressurizable lumen 207 and a 
proximal end of the short conductive wire 204. The short 
conductive wire 204 in FIG. 6B is shown penetrating through 
the wall 15 of the patient’s renal artery. 

In the embodiment shown in FIG. 6C, the elongated mem 
ber 212 comprises a conductive wire which includes a tissue 
penetrating feature 206 at its distal end. Depending on the 
diameter of the distal end of the elongated member 212, a 
relatively low-pressure jet of conductive fluid can be directed 
into the pilot hole 82 for purposes of expanding the size of the 
pilot hole 82 and dissecting the perivascular space adjacent 
the pilot hole 82. FIG. 6C illustrates retraction of the elon 
gated member 212 into the pressurizable lumen 207, and 
dispensing of a conductive fluid into the pilot hole 82 and into 
perivascular space which includes perivascular renal nerve 
tissue 86. After dispensing a sufficient volume of conductive 
fluid into the perivascular space, the distal end of the elon 
gated member 212 is advanced into the pilot hole 82 so that 
the RF energy can be transmitted from the distal end of the 
elongated member 212 to the conductive fluid in contact with 
the perivascular renal nerve tissue 86. The above-described 
ablation procedure illustrated in FIGS. 6A-6C can be per 
formed for each jet and electrode arrangement incorporated 
in a catheter arrangement 200 in accordance with various 
embodiments of the disclosure. 

FIG. 7 shows a representative RF renal therapy apparatus 
100 in accordance with various embodiments of the disclo 
sure. The apparatus 100 illustrated in FIG. 7 includes an 
external control unit 110 which includes an RF generator 120. 
The external control unit 110 typically includes some or all of 
power control circuitry, timing control circuitry, temperature 
measuring circuitry, and impedance measuring circuitry. An 
ablation catheter 102 of the RF renal therapy apparatus 100 
includes a shaft 104 having a pressurizable lumen 106 which 
terminates with a nozzle 108. The nozzle 108 or an electri 
cally conductive element 109 is configured to function as an 
electrode and coupled to a separate conductor 107 or the 
pressurizable lumen 106 if fashioned as a metallic tube. The 
distal end of the pressurizable lumen 106 and the nozzle are 
preferably held at a desired orientation within the patients 
renal artery during ablation by a stabilization arrangement 
(not shown) of a type previously described. 
The external control unit 110 includes a pump 112 which is 

fluidly coupled to a reservoir 115 containing electrically con 
ductive fluid. The external control unit 110 controls the 
amount of pressure generated by the pump 112. For example, 
the external control unit 110 can control the pump 112 to 
dispense conductive fluid at a relatively high pressure for 
creating a hole through an artery wall and dissecting target 
tissue adjacent the artery wall. The external control unit 110 
may control the pump 112 for dispending conductive fluid at 
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14 
a relatively low pressure for expanding a pilot hole created by 
a piercing needle or other tissue-penetrating appliance. 
The RF generator 120 preferably includes a pad electrode 

124 which is configured to comfortably engage the patients 
back or other portion of the body near the kidneys. The RF 
generator 120, nozzle or separate electrode 108, and pad 
electrode 124 preferably operate in a unipolar ablation mode. 
Radiofrequency energy produced by the RF generator 120 is 
coupled to the nozzle 108 or conductive element 109 via the 
conductor 107 or pressurizable lumen 106 if metallic, propa 
gates through the conductive fluid, and ablates target tissue, 
Such as perivascular renal nerve tissue, in accordance with a 
predetermined activation sequence. 
As is further shown in FIG. 7, a cooling fluid can be 

delivered to the ablation site within the renal artery under the 
control of a cooling control unit 152. The cooling control unit 
152 includes a pump 154 and is fluidly coupled to a reservoir 
156 containing a nonconductive (or conductive) cooling fluid 
or cryogen. As discussed previously, the cooling control unit 
152 can dispense a biocompatible liquid coolant 164 to the 
ablation site or a liquid thermal transfer agent within a closed 
circulation or phase-change cooling circuit. 

In general, when renal artery tissue temperatures rise above 
about 113°F. (50° C.), protein is permanently damaged (in 
cluding those of renal nerve fibers). If heated over about 65° 
C., collagen denatures and tissue shrinks. If heated over about 
65° C. and up to 100° C., cell walls break and oil separates 
from water. Above about 100° C., tissue desiccates. 

According to some embodiments, the RF generator 120 is 
configured to control activation and deactivation of the nozzle 
108/conductive element 109 in accordance with a predeter 
mined energy delivery protocol and in response to signals 
received from temperature measuring circuitry. The RF gen 
erator 120 controls radiofrequency energy delivered to the 
nozzle 108/conductive element 109 so as to maintain the 
current densities at a level Sufficient to cause heating of the 
perivascular renal tissue to at least a temperature of 55°C., for 
example. 

Temperature sensors can be situated at the nozzle 108/ 
conductive element 109 to provide continuous monitoring of 
renal artery tissue temperatures, and RF generator power can 
be automatically adjusted so that target temperatures are 
achieved and maintained. An impedance sensor arrangement 
may be used to measure and monitor electrical impedance 
during RF denervation therapy, and the power and timing of 
the RF generator 120 may be moderated based on the imped 
ance measurements or a combination of impedance and tem 
perature measurements. Marker bands 314 can be placed on 
one or multiple parts of the nozzle/nozzle region and/or shaft 
104 to enable visualization during the procedure. A guidewire 
or guiding catheter can be used to locate the renal artery to be 
treated, and the catheter 102 can be advanced over the 
guidewire/guiding catheter and through the ostium of the 
renal artery. 
The embodiments shown in the figures have been generally 

described in the context of intravascular-based ablation of 
perivascular renal nerves for control of hypertension. It is 
understood, however, that embodiments of the disclosure 
have applicability in other contexts, such as energy delivery 
from within other vessels of the body, including other arteries, 
veins, and vasculature (e.g., cardiac and urinary vasculature 
and vessels), and other tissues of the body, including various 
organs. For example, the treatment catheter 102 can be con 
figured for deployment within the renal vein, and the pressur 
izable lumen 106 and electrode 109 can be advanced through 
a hole created in the renal artery wall. The pressurizable 
lumen 106 and electrode 109 can be further advanced to a 
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location proximate perivascular renal nerve tissue Surround 
ing the adjacent the near wall of the renal artery. A steering or 
tensioning wire and/or a pre-formed curve can be provided at 
the distal tip of the pressurizable lumen 106 to allow the 
clinician to access perivascular renal nerve tissue adjacent the 
far wall of the renal artery. Conductive fluid can be dispensed 
through the perivascular space Surrounding the adjacent renal 
artery and within the perivascular renal nerve tissue included 
within the perivascular space. RF ablation can be conducted 
in step-wise fashion at discrete locations about the periphery 
of the renal artery or in a single delivery of RF energy (assum 
ing conductive fluid nearly or entirely surrounds the renal 
artery. 
By way of further example, an appropriately sized pressur 

izable lumen 106 and electrode 109 can be deployed in a 
cardiac chamber, such as the right atrium for treating reen 
trant tachyarrhythmias, or a cardiac vessel. Such as the ostium 
of the pulmonary vein for treating atrial fibrillation. Various 
embodiments may be configured for deployment in the ure 
thra to treat benign prostatic hyperplasia (BPH) or to treat a 
tumor using an appropriately sized pressurizable lumen 106 
and electrode 109 of a type described hereinabove. 

It is to be understood that even though numerous charac 
teristics of various embodiments have been set forth in the 
foregoing description, together with details of the structure 
and function of various embodiments, this detailed descrip 
tion is illustrative only, and changes may be made in detail, 
especially in matters of structure and arrangements of parts 
illustrated by the various embodiments to the full extent indi 
cated by the broad general meaning of the terms in which the 
appended claims are expressed. 

What is claimed is: 
1. An apparatus, comprising: 
a catheter comprising a flexible shaft having a proximal 

end, a distal end, a length, and a lumen arrangement 
extending between the proximal and distal ends, the 
length of the shaft Sufficient to access a patient's renal 
artery relative to a percutaneous access location; 

a pressurizable lumen of the lumen arrangement config 
ured to receive a pressurized conductive fluid; 

a nozzle fluidly coupled to a distal end of the pressurizable 
lumen, the nozzle configured to direct a jet of the pres 
surized conductive fluid at a wall of the renal artery to 
create or expand a hole through the artery wall and to fill 
the hole and at least Some of perivascular space adjacent 
to the hole with the conductive fluid; and 

at least one electrical conductor extending at least partially 
along the shaft and terminating proximate or at the distal 
end of the pressurizable lumen, the at least one electrical 
conductor configured to conduct radio frequency energy 
to the conductive fluid sufficient to ablate perivascular 
renal nerve tissue in contact with the conductive fluid; 

wherein the pressurizable lumen comprises electrically 
conductive material that extends between the distal and 
proximal ends of the shaft. 

2. The apparatus of claim 1, wherein the conductive fluid 
has an impedance lower than that of renal artery tissue proxi 
mate the hole. 

3. The apparatus of claim 1, wherein at least the nozzle 
comprises electrically conductive material. 

4. The apparatus of claim 1, wherein at least a proximal 
portion of the pressurizable lumen comprises non-conductive 
material, the nozzle comprises an electrically conductive ele 
ment. 
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5. The apparatus of claim 1, comprising: 
a conductive wire covered with an electrically insulating 

material and having an exposed tip portion, the tip por 
tion configured to create a pilot hole through the artery 
wall; 

wherein a relatively low pressure conductive fluid jet is 
configured to expand the pilot hole in the artery wall and 
dissect the perivascular space, and the radiofrequency 
energy is transferred to the conductive fluid via the tip of 
the conductive wire. 

6. The apparatus of claim 1, comprising a plurality of the 
pressurizable lumens fluidly coupled to a plurality of the 
nozzles, each of the pressurizable lumens individually pres 
surizable. 

7. The apparatus of claim 1, comprising a plurality of the 
pressurizable lumens fluidly coupled to a plurality of the 
nozzles, at least some of the pressurizable lumens fluidly 
coupled to a common pressurizable lumen and commonly 
pressurizable. 

8. The apparatus of claim 1, comprising: 
a plurality of the pressurizable lumens fluidly coupled to a 

plurality of the nozzles; and 
an expandable balloon or mesh provided at the distal end of 

the shaft and configured to position the nozzles against 
the artery wall and stabilize the position of the nozzles 
during ablation. 

9. The apparatus of claim 1, comprising: 
a plurality of the pressurizable lumens fluidly coupled to a 

plurality of the nozzles; 
an expandable balloon or mesh provided at the distal end of 

the shaft and configured to position the nozzles against 
the artery wall and stabilize the position of the nozzles 
during ablation; and 

an external control unit fluidly coupled to the pressurizable 
lumens and configured to control the jets of the pressur 
ized conductive fluid at the wall of the renal artery to 
concurrently ablate separate locations along and around 
the renal artery perivascular tissue. 

10. The apparatus of claim 1, comprising: 
a plurality of the pressurizable lumens fluidly coupled to a 

plurality of the nozzles; 
an expandable balloon or mesh provided at the distal end of 

the shaft and configured to position the nozzles against 
the artery wall and stabilize the position of the nozzles 
during ablation; and 

an external control unit fluidly coupled to the pressurizable 
lumens and configured to control the jets of the pressur 
ized conductive fluid at the wall of the renal artery to 
serially or sequentially ablate separate locations along 
and around the renal artery perivascular tissue. 

11. The apparatus of claim 1, wherein the conductive fluid 
is cooled to a temperature Sufficient to provide cooling at a 
renal artery ablation site. 

12. The apparatus of claim 1, comprising a cooling 
arrangement separate from the pressurizable lumen and con 
figured to provide cooling at a renal artery treatment site. 

13. An apparatus, comprising: 
a catheter dimensioned for advancement through a vessel 

of the body; 
a pressurizable lumen of the catheter configured to receive 

a pressurized conductive fluid; 
a nozzle fluidly coupled to a distal end of the pressurizable 

lumen, the nozzle configured to direct a jet of the pres 
surized conductive fluid at a wall of a target vessel to 
create or expand a hole through the target vessel and to 
fill the hole and at least some of the space adjacent to the 
hole with the conductive fluid; and 
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at least one electrical conductor extending at least partially 
along the catheter and terminating proximate or at the 
distal end of the pressurizable lumen, the at least one 
electrical conductor configured to conduct radio fre 
quency energy to the conductive fluid sufficient to ablate 
target tissue in contact with the conductive fluid; 

wherein the pressurizable lumen comprises electrically 
conductive material that extends between the distal and 
proximal ends of the shaft. 

14. The apparatus of claim 13, wherein at least a proximal 
portion of the pressurizable lumen comprises non-conductive 
material, the nozzle comprises electrically conductive mate 
rial. 

15. The apparatus of claim 13, comprising: 
a conductive wire covered with an electrically insulating 

material and having an exposed tip portion, the tip por 
tion configured to create a pilot hole through the target 
vessel; 

wherein a relatively low pressure conductive fluid jet is 
configured to expand the pilot hole in the target vessel 
wall, and the radiofrequency energy is transferred to the 
conductive fluid via the tip of the conductive wire. 

16. A method, comprising: 
advancing a catheter through a renal artery of the body to a 

target location proximate target tissue adjacent an outer 
wall of the renal artery, wherein the target tissue com 
prises perivascular renal nerve tissue: 

creating a hole through the outer wall of the renal artery at 
the target location: 

filling the hole and at least some of the space adjacent to the 
hole with conductive fluid via a lumen of the catheter; 
and 

conducting radiofrequency energy along the catheter and 
to the conductive fluid filing filling the hole and the at 
least some of the space adjacent to the hole sufficient to 
ablate the target tissue. 
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17. The method of claim 16, comprising: 
creating a plurality of the holes through the renal artery at 

a plurality of one or both ofcircumferentially and axially 
spaced-apart target locations; 

filling the holes and at least some of the space adjacent to 
the holes with the conductive fluid; and 

conducting radiofrequency energy along the catheter and 
to the conductive fluid filling the holes and the at least 
Some of the space adjacent to the holes sufficient to 
ablate the target tissue. 

18. The method of claim 16, further comprising: 
prior to filling the hole, expanding the hole and dissecting 

perivascular space adjacent the hole using a low-pres 
sure jet of conductive fluid. 

19. The method of claim 16, wherein the catheter com 
prises: 

a flexible shaft having a proximal end, a distal end, a length, 
the length of the shaft sufficient to access the renal artery 
relative to a percutaneous access location; 

a nozzle fluidly coupled to a distal end of the lumen, the 
noZZle being configured to direct a jet of the conductive 
fluid at the outer wall of the renal artery to create the hole 
through the outer wall and to fill the hole and at least 
Some of the space adjacent to the hole with the conduc 
tive fluid; and 

at least one electrical conductor extending at least partially 
along the shaft and terminating proximate or at the distal 
end of the lumen, the at least one electrical conductor 
configured to conduct radiofrequency energy to the con 
ductive fluid sufficient to ablate perivascular renal nerve 
tissue in contact with the conductive fluid; 

wherein the lumen comprises electrically conductive mate 
rial that extends between the distal and proximal ends of 
the shaft. 


