发明名称
通信方法、终端以及基站

摘要
一种可在具备基站(2)和存在于该基站(2)所覆盖的服务区中的多个终端(包括一个的情况)的通信系统中实现的通信方法，在从基站(2)返回了表示接收失败的NAK信号、并且分配给被返回了该NAK信号的终端(1)的发送许可时间结束的情况下，终端(1)不进行发送请求，而是自主地发送再发送数据。
1. 一种可以在通信系统中实现的通信方法，该通信系统至少具备一个基站和存在于该基站所覆盖的服务区中的多个（包括一个）终端，其特征在于，上述方法包括：

再发送步骤，在从上述基站返送了表示接收失败的分配信号，并且分配给被返送了该 NAK 信号的终端的发送许可时间结束的情况下，该终端不进行发送请求，而是自主地发送再发送数据。

2. 根据权利要求 1 所述的通信方法，其特征在于，

在上述再发送步骤中，被返送了 NAK 信号的终端从该 NAK 信号的接收时开始，在经过了与上述基站之间规定的预定时间以后，不进行发送请求，而是自主地发送再发送数据，上述基站从发送了 NAK 信号开始经过上述预定时间后，开始再发送数据的接收动作。

3. 根据权利要求 2 所述的通信方法，其特征在于，

在从向上述终端发送了 NAK 信号开始到接收再发送数据的期间内，在从其它终端接收到发送请求信号并且被返送了 NAK 信号的终端的发送许可时间结束的情况下，上述基站预测再发送数据的发送时间带，根据该预测，延迟向上述其它终端分配的发送许可时间，使其不与再发送数据的发送时间带相重叠。

4. 根据权利要求 1 所述的通信方法，其特征在于，

在上述再发送步骤中，使再发送时的纠错用编码率比初始发送时的编码率低。

5. 一种终端，与基站一起构成通信系统，其特征在于，上述终端具备：

自主发送单元，在从上述基站返送了表示接收失败的 NAK 信号、并且发送许可时间结束的情况下，不进行发送请求，而是自主地发送再发送数据。

6. 根据权利要求 5 所述的终端，其特征在于，
上述自主发送单元从上述 NAK 信号的接收时开始，在经过了与上述基站之间规定的预定时间以后，不进行发送请求，而是自主地发送再发送数据。

7. 根据权利要求 5 所述的终端，其特征在于，
上述自主发送单元使再发送时的纠错用编码率比初始发送时的编码率低。

8. 一种基站，与存在于该基站所覆盖的服务区中的多个（包括一个）终端一起构成通信系统，其特征在于，上述基站具备:
接收处理单元，从发送了表示接收失败的 NAK 信号开始，在经过了与上述终端之间规定的预定时间以后，开始再发送数据的接收动作。

9. 根据权利要求 8 所述的基站，其特征在于，具备:
调度单元，在从向特定的终端发送了 NAK 信号开始，到接收再发送数据的期间内，在从其它终端接收到发送请求信号、并且被返送了 NAK 信号的终端的发送许可时间结束的情况下，预测再发送数据的发送时间带，根据该预测，延迟向上述其它终端分配的发送许可时间，使其不与再发送数据的发送时间带相重叠。
通信方法、终端以及基站

技术领域

本发明涉及一种可在至少由一个基站和多个（包括一个）终端构成的无线通信系统中实现的通信方法，更详细地讲，涉及一种执行再发送控制作为纠错技术的情况下的通信方法。

背景技术

以下，作为现有技术，说明例如在至少具备一个基站和存在于该基站所覆盖的服务区中的多个（包括一个）终端的通信系统中实施的一般通信处理。

例如，基站具有从发送数据发送请求的多个终端中选择将给予发送许可的终端的功能，即所谓的调度功能，终端基本上根据其调度进行数据发送。

这里，具体地说明上述基站以及终端的动作（参照非专利文献1）。首先，产生了要发送的数据的终端向基站进行数据发送请求。这时，作为发送请求而由终端向基站通知的信息例如可以考虑是保存在缓冲器中的数据量、终端可输出的发送功率等。另一方面，基站根据作为发送请求发送来的信息、各终端发送了数据时的预测信道品质以及在基站中接收时的允许干扰电平等，来选择将给予发送许可的终端，并返回分配信号作为针对发送请求的应答。这时，基站向终端通知能够选择的最大发送比特数，即传输速度（速率）和发送许可时间（时间）。

然后，由分配信号选择出的终端根据接收到的信息进行数据发送。这时，终端在发送许可时间内发送数据。

另外，在3GPP中，研究了物理层中的再发送控制（ARQ：自动请求重发）（参照非专利文献2），从终端接收到数据的基站在接收
成功时返送 ACK 信号，在接收失败时返送 NAK 信号。然后，终端在接收到 NAK 信号时，在进行再发送之前再次发送发送请求，在从基站接收到分配信号以后，再次向基站进行同一数据的再发送。

非专利文献 1
3GPP TR25.896 V1.0.0，7.1.2.2，7.1.2.3
非专利文献 2
3GPP TR25.896 V1.0.0，7.2

然而，在上述文献所记载的通信方法中，在终端中有要发送的数据时，该数据即使是再发送数据，也必须向基站进行发送请求，作为其应答接收分配信号。因此存在的问题时，再发送数据的发送产生延迟，尽管基站已经正确地接收到其它数据，但不能向上位层发送数据群。

另外，在返送了 NAK 信号的基站中，原不废弃接收失败的数据，而是为了将其用于与再发送数据的合成，对接收失败时的数据进行缓存。因此存在的问题是，如果在数据的再发送中产生延迟，则使用缓冲器的时间变长，缓冲器使用效率恶化。

发明内容

本发明是鉴于上述问题而完成的，目的在于提供一种可以通过改善再发送数据的发送延迟，来提高基站中的缓冲器使用效率的通信方法、执行该通信方法的终端以及基站。

本发明的通信方法是一种可在至少具备一个基站和存在于该基站所覆盖的服务区中的多个（包含一个）终端的通信系统中实现的通信方法，其特征在于，包括：再发送步骤，例如在从上述基站返送了表示接收失败的 NAK 信号、并且分配给被返送了该 NAK 信号的终端的发送许可时间结束的情况下，该终端自主地发送再发送数据。

依据本发明，即使在从基站返送了 NAK 信号、并且分配给终端的发送许可时间结束的情况下，也自主地发送再发送数据。由此，与再发送时执行与发送请求的发送以及分配信号的接收有关的处理的现
有技术相比，能够大幅度地减少在发送再发送数据时产生的延迟时间。另外，通过能够减少该延迟时间，缩短了用于存储接收失败的数据的缓冲器的使用时间，因此大幅度提高了缓冲器使用效率。

附图说明
图 1 是表示实施方式 1 的通信方法的图；
图 2 是表示实施方式 1 的终端以及基站的结构的图；
图 3 是表示实施方式 2 的通信方法的图；
图 4 是表示实施方式 2 的终端以及基站的结构的图；
图 5 是表示实施方式 3 的通信方法的图；
图 6 是表示实施方式 4 的通信方法的图；
图 7 是表示实施方式 4 的终端以及基站的结构的图。

具体实施方式
以下，根据附图详细地说明本发明的通信方法、终端以及基站的实施方式。该实施方式并不限定本发明。
图 1 是表示实施方式 1 的通信方法的图，这里表示终端自主地发送再发送数据的情况。另外，在本实施方式中，假定例如至少具备一个基站和存在于该基站所覆盖的服务区中的多个（包括一个）终端的通信系统。另外，在本实施方式中，为了说明方便，说明终端发送 5 个发送数据的情况。

首先，在产生了要发送的数据（图示的 5 个发送数据）的终端中，向基站发送发送请求信号（步骤 S1）。这时，作为发送请求信号而由终端向基站通知的信息例如可以考虑是保存在缓冲器中的数据量、终端能够输出的发送功率等。

另一方面，基站根据作为上述发送请求信号发送来的信息，各终端发送了数据时的预测信道品质以及在基站单站中接收时的允许干扰电平等，选择将给予发送许可的终端，作为针对发送请求信号的应答，返回分配信号（步骤 S2）。这时，基站向终端通知终端能够选择的最
大发送比特数，即传输速度（速率）和表示能够发送数据的期间的发送许可时间（时间）。

然后，终端在上述发送许可时间内，例如发送 4 个数据（步骤 S3 ~ S6），从终端接收到 4 个数据的基站在接收成功时发送 ACK 信号，在接收失败时发送 NAK 信号，图 1 中示出第 1 个数据、第 2 个数据以及第 4 个数据接收成功，而第 3 个数据接收失败的例子。从而，基站按照 ACK 信号、ACK 信号、NAK 信号、ACK 信号的顺序发送应答信号（步骤 S7 ~ S10）。

接着，由于终端接收到 NAK 信号作为针对第 3 个数据的应答信号，因此通过再发送控制，再次发送第 3 个数据，但在本方式中的再发送控制中，并不是像现有技术那样再次发送发送请求信号，而是自主地再次发送上述第 3 个数据（步骤 S11）。在图 1 中，在接收到与第 4 个数据相对应的 ACK 信号之后立即再次发送第 3 个数据，作为其应答，接收 ACK 信号（步骤 S13）。

另外，在再次发送第 3 个数据之后，由于还剩下第 5 个数据尚未发送，因此终端向基站发送发送请求信号（步骤 S12），在作为其应答接收到分配信号以后（步骤 S14），发送第 5 个数据（步骤 S15），作为其应答接收 ACK 信号（步骤 S16）。

图 2 是表示能够实现上述通信方法的本方式的终端以及基站在结构的图，终端 1 具有发送缓冲器 11、发送请求判断部 12、发送部 13、接收部 14、分配接收部 15、发送时间判断部 16、发送数据判断和自主发送部 17、发送数据生成部 18、ACK/NAK 接收部 19，基站 2 具有发送部 21、请求接收和调度部 22、发送部 23、接收处理部 24、缓冲器 25。

这里，详细地说明如上所述构成的终端和基站的动作。

首先，在终端 1 中，在缓冲器 11 中存储从上位层到达的数据，发送请求判断部 12 根据存储在这里的数据量判断有无发送请求。另外，发送请求判断部 12 始终从发送时间判断部 16 取得表示是否是在发送许可时间内的信息，并将其用于有无发送请求的判断中。然后，
在进行发送请求的情况下，经由发送部13向基站2发送发送请求信号。

接着，分配接收部15经由接收部14接收分配信号。在这里，对所接收到的分配信息进行解读，并向发送时间判断部16通知其解读结果。发送时间判断部16判断被分配的发送许可时间，并向发送请求判断部12以及发送数据判断和自主发送部17通知其判断结果。

接着，在发送数据判断和自主发送部17中，在发送许可时间内从缓冲器11取得数据，并将所取得的数据传送到发送数据生成部18。在发送数据生成部18中，在进行了纠错用编码等发送处理之后，经由发送部13向基站2发送所生成的发送数据。

接着，在作为针对发送数据的应答而接收到ACK/NAK信号的情况下，在ACK/NAK接收部19中，分析所接收的ACK/NAK信号，并向发送数据判断和自主发送部17通知其分析结果。

接着，在发送数据判断和自主发送部17中，根据上述分析结果，判断是发送新数据（接收到ACK信号时）还是发送再发送数据（接收到NAK信号时）。然后，在判断为发送新数据的情况下，果是在发送许可时间内，则从缓冲器11取得数据，并将所取得的数据传送到发送数据生成部18，如果是在发送许可时间以外，则指示再次进行发送请求。另一方面，在判断为发送再发送数据时，即使是在发送许可时间以外，也不进行发送请求，而是自主地发送再发送数据。另外，发送数据判断和自主发送部17中，在自主地发送再发送数据时，向发送请求判断部12通知该情况，从而防止发送发送请求信号。由此，能够在不进行发送请求的情况下，立即发送再发送数据。

另一方面，在基站2中，经由接收部21接收发送请求信号，请求接收和调度部22评价该发送请求信号，作为其结果将分配信号经由发送部23通知给终端1。另外，在接收到数据的情况下，接收处理部24进行预定的接收处理，并利用ACK/NAK信号返送接收结果（成功/失败）。这时，对于接收成功的数据，立即向上位层传送，另一方面，对于接收失败的数据，为了在再次发送来同一数据时进行合成，将其存储在缓冲器25中。
这样，在本实施方式中，即使在从基站返送了 NAK 信号，而且分配给终端的发送许可时间结束的情况下，也不进行与发送请求信号的发送以及分配信号的接收有关的处理，而是自主地发送再发送数据。由此，与再发送时执行与发送请求的发送以及分配信号的接收有关的处理的现有技术相比较，可以大幅度地减少再发送数据发送时产生的延迟时间。另外，通过能够减少该延迟时间，还缩短用于存储发送失败的数据的缓冲器的使用时间，因此可以大幅度地提高缓冲器使用效率。

接着，说明实施方式 2 的通信方法。图 3 是表示实施方式 2 的通信方法的图。以下，仅说明本实施方式与前面说明过的实施方式 1 不同的处理。

在本实施方式中，通过步骤 S9 的处理接收到 NAK 信号的终端从 NAK 信号的接收时起，在经过了与基站之间预先规定好的一定时间以后，发送再发送数据（步骤 S21）。该再发送控制与在实施方式 1 中记载的处理相同，与基站之间不进行发送请求信号和分配信号的交换，而是自主地发送再发送数据。

图 4 是表示能够实现上述通信方法的本实施方式的终端以及基站的结构的图。终端 1a 采用包括控制部 31，发送数据判断和自主发送部 17a 的结构。基站 2a 采用包括控制部 32 和接收处理部 24a 的结构。另外，在本实施方式中，仅说明与前面说明过的实施方式 1 不同的动作。

终端 1a 以及基站 2a 的控制部 31、32 在发送数据的收发之前进行控制信息的交换，预先规定自主发送用的定时。终端 1a 的控制部 31 向发送数据判断和自主发送部 17 通知所规定的一定时间。然后，发送数据判断和自主发送部 17a 在判断为发送再发送数据时，即使是在发送许可时间以外，也不进行发送请求，而是从 NAK 信号的接收时起，在经过了上述一定时间以后，自主地发送再发送数据。

另一方面，基站 2a 的控制部 32 进行控制，使得在发送了 NAK 信号并且经过了上述一定时间后开始接收处理部 24a 中的接收动作。
这样，在本实施方式中，将从 NAK 信号的接收时起经过了特定的一定时间后的时刻作为自主地发送再发送数据的定时。由此，基站可以在从 NAK 信号的接收时开始，经过了一定时间后进行再发送数据的接收动作，从而可以有效地使用作为接收机的功能，因而可以大幅度地降低功耗量。

另外，只要是在基站以及终端中都识别出相同的值，则上述一定时间可以任意地规定，既可以事先在基站－终端之间进行通知，也可以不对具体的值进行通信，而是使用预先存储的时间。

接着，说明实施方式 3 的通信方法。图 5 是表示实施方式 3 的通信方法的图。以下，在本实施方式中，仅说明与前面说明过的实施方式 2 不同的处理。另外，本实施方式的终端以及基站的结构与前面说明过的实施方式 2 的图 4 相同。

在本实施方式中，向终端 1a 发送了 NAK 信号的基站预测来自终端 1a 的自主发送，向避开其预测时间带，另外发送来发送请求信号的其它终端给予发送许可。

例如，在从向终端 1a 发送了 NAK 信号开始，到接收再发送数据的期间内，在从其它终端接收到发送请求信号（步骤 S31），而且终端 1a 的发送许可时间结束的情况下，在基站 2a 中，可以预测到从 NAK 信号的发送开始经过一定时间后将发送来再发送数据。

另外，在从向终端 1a 发送了 NAK 信号开始，到接收再发送数据的期间内，假如向上述其它终端分配了发送许可时间，则来自终端 1a 的发送与来自上述其它终端的发送有可能相互干扰，从而可能发送失败。

因此，在本实施方式中，基站 2a 的请求接收和调度部 22 根据上述预测，延迟向上述其它终端分配的发送许可时间，使其不与再发送数据的发送时间带相重叠。具体地讲，除了通常的传输速度和发送许可时间长度外，还使用分配信号来通知发送开始时间（步骤 S32）。该发送开始时间既可以是从分配信号的接收开始的相对时间，也可以是基站 2a 与上述其它终端可以共用的绝对时间。
然后，接受了发送许可时间的分配的上述其它终端在指定的发送开始时间之前不进行数据发送，而是在到达指定时间后发送发送许可时间长度的数据（步骤 S33～S36）。具体地讲，上述其它终端的分配接收部 15 分析发送开始时间，进而由发送时间判断部 16 考虑该分析结果来控制发送数据判断和自主发送部 17a 以及发送请求判断部 12。

这样，在本实施方式中，基站预测从 NAK 信号的发送开始经过一定时间后，将从作为数据发送源的终端发送来再发送数据，在所预测的时间带中，限制向其它终端分配发送许可时间。由此，可以避免再发送数据与来自其它终端的发送数据之间的干扰，从而可以降低发送失败的概率。

接着，说明实施方式 4 的通信方法。图 6 是表示实施方式 4 的通信方法的图。以下，在本实施方式中，仅说明与前面说明过的实施方式 1 不同的处理。

在本实施方式中，终端与上述相同，通过自主发送来执行第 3 个数据的再发送，但此时变更编码率。在图 6 中，作为一个例子，把初始发送时的编码率规定为 1/2，把再发送时的编码率规定为 1/4。从而，在上述实施方式中，使用一个时隙来发送第 3 个数据，而在本实施方式中，使用两个时隙来发送第 3 个数据（步骤 S41、S42）。

图 7 是表示能够实现上述通信方法的本实施方式的终端以及基站的结构的图，终端 1b 采用包括发送数据判断和自主发送部 17b、发送数据生成部 18b 的结构，基站 2b 采用包括接收处理部 24b 的结构。另外，在本实施方式中，仅说明与前面说明过的实施方式 1 不同的动作。

终端 1b 的发送数据判断和自主发送部 17b 向发送数据生成部 18b 通知编码率的信息。发送数据生成部 18b 根据所通知的编码率对发送数据进行纠错编码处理。另外，编码率的信息既可以与新数据 / 再发送无关地始终进行通知，也可以仅在再发送时进行通知。另一方面，基站 2b 的接收处理部 24b 根据所规定的编码率对接收信号进行纠错解码。
这样，在本实施方式中，使再发送时的纠错用编码率比初始发送时的编码率低。通过降低编码率，可以提高第 3 个数据的接收以及解调时的抗噪性能和抗干扰性能。另外，利用该效果，在再发送时和初始发送时设定了相同的目标错误率的情况下，可将再发送时的发送功率设定为比初始发送时的发送功率低。从而，可以降低对其它终端的数据发送产生的干扰量。

产业上的可利用性

如上所述，本发明的通信方法可用于由至少一个基站和多个（包括一个）终端构成的无线通信系统中，特别是，适合于采用再发送控制作为该无线通信系统的纠错技术的情况。
图5

来自终端1的发送请求
分配
S1
S2

发送请求数据
1 2 3 4

发送许可时间
S31

来自其它终端的发送请求
S32

分配开始时间
S33 S34 S35

规定一定时间
S21

自主发送
S9 S10

等待发送，直到指定的开始时间

发送许可时间
1 2 3

ACK ACK NAK ACK

ACK ACK ACK