United States Patent

US007089492B2

(12) (10) Patent No.: US 7,089,492 B2
Anderson 45) Date of Patent: Aug. 8, 2006
(54) AUTOMATED CONVERSION OF 6,948,132 BL* 9/2005 Bennett et al. 715/760

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

CALS-COMPATIBLE TABLES TO
ACCESSIBLE HTML TABLES

OTHER PUBLICATIONS

Request of Stevens (On-line discussion of Request by

Inventor: Robert Dan Anderson, Minneapolis, Stevens and Responses by Kosek and Beckers, discussions
MN (US) dated Jun. 7, 2001, last downloaded on Oct. 6, 2005 from
www.biglist.com/lists/xsl-list/archives/200106/msg00234.
Assignee: International Business Machines html, pp. 1-4.*
Corporation, Armonk, NY (US) CALS—Computer Aided Acquisition and Logistics Support
. . o . Raster Format, last updated Oct. 21, 2002, downloaded on
Notice: Subject to any disclaimer, the term of this Oct. 5, 2005 from web.archive.org: Www.fags.org/fags/
patent is extended or adjusted under 35 graphics/fileformats-fag/part3/section-24.html, pp. 1-2.*
U.S.C. 154(b) by 497 days.
* cited by examiner
Appl. No.: 10/406,671
ppl. o ’ Primary Examiner—Doug Hutton
Filed: Apr. 3, 2003 Assistant Examiner—Michael K. Botts
(74) Attorney, Agent, or Firm—Wood, Herron & Evans,
Prior Publication Data LLP
US 2004/0199870 Al Oct. 7, 2004 (57) ABSTRACT
IGn0t6FClI 500 2006.01 An apparatus, program product and method support the
GOGF 5/00 (200 6. 01) automated conversion of a table formatted in a CALS-
(0D) ;) compatible format to an HTML-compatible format, e.g., for
US. CL oo 715/523; 715/500; 715/513; use by presentation of the table by a screen reader or other
. . . 715/517 application requiring knowledge of what headers apply to a
Field of Classification Search 715/513, given cell in a table. A table may be converted from a
o 715/ 503, 523, 517 CALS-compatible format to an HTML-compatible format
See application file for complete search history. by assigning an identifier to each header cell in the table, in
. particular by embedding the identifier in an HTML identifier
References Cited attribute for such header cell. Then, for each non-header cell
U.S. PATENT DOCUMENTS in the table, any overlapping header cells therefor may be
. detected, and the identifier for any detected overlapping
2 ’fgz’ éi; gl . ‘1‘; égg? ﬁ’an et ?tll' R ;}2; 2 g header cell may be embedded in an HTML headers attribute
,175, uramoto et al. B
6,373,504 BL* 42002 Nielsenooooovvvrr. 715730 1oF such non-header cell.
6,565,609 B1* 5/2003 Sorge et al. 715/503
6,757,870 B1* 6/2004 Stingerc..ccccceeevnee 715/513 18 Claims, 3 Drawing Sheets
DEVELOPER COMPUTER
MEMORY —~ 30
CALS/HTML 46
CONVERSION
TOOL
22
B |2 o % -
USER/» 4 TV/V;) e USERCOMPUTER y— 3
CPU € MEMORY
I/F I’F - 48
S o4 SCREEN
(50 | READER
cAs || HimL | ¥ @ 44 [-8 -4
TABLE | | TABLE |92 NETWORK USER
oow [T
STORAGE DEVICE
| 36
STORAGE DEVICE

U.S. Patent

Aug. 8, 2006 Sheet 1 of 3 US 7,089,492 B2
10
1 2 3 4 5 f
1| HEAD1 | HEAD2 | HEAD3 | HEAD4 HEAD5
2| ROWH B c D
A
3| Row?2 E F G H FIG. 1
4| ROWS3 J K L M
TABLE
12
TGROUP / FlG 9
7//
COLSPEC " TBODY
THEAD o
SPANSPEC TROOT o
ROW OQD
ROW °°° \ / / \ ROW
ENTRY o<ENTRY
/ _ ENTRYesc ENTRY ROW VAN

ENTRYoo0 ENTRY

ENTRY -=oENTRY

/N how

VDEVELOPER COMPUTER
MEMORY -~ 30
CALS/HTML - 46
CONVERSION

TOOL

%8 | 2% 4
USER NETWORK
VF LCPU }* VE
50 |
CALS HTML |
TABLE TABLE | 92
STORAGE DEVICE

ENTRY.<-o ENTRY / \
ENTRY.2o ENTRY

22
20 /
USER COMPUTER 30
— MEMORY
o4 SCREEN ™8
READER
@D |y
NETWORK USER
T IIF — OPU I
| 36
STORAGE DEVICE

FIG. 3

U.S. Patent Aug. 8, 2006 Sheet 2 of 3 US 7,089,492 B2

<CONVERT TABLEj\ 54 FI G. 4

Y 56
FOR EACH < DONE

THEAD ROW

62

NEXTy 57 FOR EACH
DONE FoR EACH TBODY ROW

HEAD ENTRY, NEXT
NEXT| 58 DONE Fom EACH

ASSIGN ID ROW ENTRY
TO ENTRY

@

NEXT
Y -
v %0 IS THIS THE 66
OUTPUT ENTRY NO " FIRST ENTRY IN
IN HTML THE ROW?

REALLY IN FIRST
COLUMN?

ASSIGNID |70
TO ENTRY

| 72
DETERMINE
OVERLAPPING
COLUMN HEADERS

Y

¥ y 74
DETERMINE
OVERLAPPING
ROW HEADERS

T8
OUTPUT HTML | YES
HEADER

ATTRIBUTES

76

Y
COLUMN OR
ROW HEADER VALUE
NOT EMPTY?

A 80
OUTPUT ENTRY
IN HTML

NO

U.S. Patent

72
DETERMINE OVERLAPPING
COLUMN HEADERS

l — 82
OPEN LIST
84
FOR EACH ™_ DONE
THEAD ROW

ENTRY
BEFORE GIVEN>YES
SPAN?

NO 90

WITHIN GIVEN
SPAN?

YES 01

ADD ENTRY
IDTO LIST

FIG. 5

Aug. 8,2006

CLOSE AND
RETURN LIST

Sheet 3 of 3

92

US 7,089,492 B2

T4
DETERMINE OVERLAPPING
ROW HEADERS

! 94
OPEN LIST

ADD ENTRY
D TOLIST

|

CLOSE AND
RETURN LIST

106

ENTRY PAST
GIVEN SPAN?

NO

FIG. 6

US 7,089,492 B2

1

AUTOMATED CONVERSION OF
CALS-COMPATIBLE TABLES TO
ACCESSIBLE HTML TABLES

FIELD OF THE INVENTION

The invention relates to computers and computer soft-
ware, and in particular, to document formatting and conver-
sion of documents between different formats.

BACKGROUND OF THE INVENTION

Given the increasing pervasiveness of the Internet on
contemporary society, it has become imperative that Internet
content is accessible to as many individuals as possible,
regardless of native languages, countries of origin, or dis-
abilities. In fact, in the United States, the Americans with
Disabilities Act (ADA), which was codified into law to
guarantee equal opportunity for individuals with disabilities
in public accommodations, employment, transportation,
state and local government services, and telecommunica-
tions, applies to Internet content created in association with
these various affected areas.

The ADA requires, for example, that content made avail-
able on the Internet be made accessible to those with visual
impairments, in particular, by requiring Internet content to
be compatible with screen readers used by the visually
disabled to access the Internet. A screen reader is a software
program that utilizes voice synthesis to read aloud the
contents of a web page or other content displayed on a
computer.

For the non-visually impaired, most Internet content is
viewed using a program known as a web browser. A web
browser predominantly accepts web pages and other Internet
content that is formatted in a language referred to as Hyper-
text Markup Language (HTML). Likewise, most screen
readers are configured to access HTML-formatted web
pages, given the pervasive nature of HTML content on the
Internet.

Web pages formatted in HTML are able to integrate text
with a large number of components, including images,
tables, audio clips, video clips, animations, etc. In addition,
text may be formatted with specific fonts, colors, attributes,
etc. HTML is a tag-based markup language, whereby for-
mats and components are described via tags that are embed-
ded in a web page.

Tables, for example, are typically defined using a number
of predefined tags. HTML tables include an array of cells
disposed in rows and columns, and can include header
columns and/or rows in addition to regular cells.

To comply with accessibility requirements, each non-
header cell in an HTML table must indicate what headers
apply to that cell. By doing so, a screen reader can alert a
user as to which headers apply to a particular cell being
accessed by the user. This capability is typically supported
by first giving every header cell an ID attribute, and then
configuring each cell in the table to point to every related
header cell by placing the header’s ID into the “headers”
attribute for that cell.

In simple tables, where each non-header cell takes up no
more than one row or column, it is relatively straightforward
process to assign each non-header cell the ID’s of the
applicable row and/or column header. For complex tables,
however, where individual cells may span multiple columns
and/or rows, the assignment of applicable row/header 1D’s
to each non-header cell is more problematic. In particular,
any header that spans multiple columns and/or rows must be

20

25

30

35

40

45

50

55

60

65

2

pointed to by cells in every column/row spanned by that
header. Likewise, any non-header cell that spans multiple
columns/rows must point to every header that fully or
partially overlaps that cell.

Whenever a web page is originally authored in HTML
format, the inclusion of appropriate header ID’s in an HTML
table for accessibility purposes is relatively straightforward.
Moreover, even when a graphical HTML-based develop-
ment environment is used, the inclusion of such function-
ality into the program code that generates table HTML code
is relatively effortless.

However, this scenario is substantially more problematic
when web pages are authored in other formats, and then
converted to HTML by automated tools. For example, the
Extensible Markup Language (XML) is often used in data-
driven applications to generate tables and other data pre-
sentations. In XML, the building blocks of documents are
defined by Document Type Definitions (DTD’s). Tables, for
example, may be defined using a DTD referred to as the
CALS Table Model, which is also used as the basis for the
Oasis XML Exchange Table Model. Tables defined using the
CALS Table Model, as well as tables defined using other
DTD’s based upon the CALS Table Model such as the Oasis
XML Exchange Table Model, will hereinafter collectively
be referred to as “CALS-compatible” tables.

CALS-compatible tables are typically not directly read-
able by web browsers, and as a result, such tables typically
must be converted to HTML prior to viewing in a web
browser. Oftentimes, it would be desirable to be able to
utilize a software tool to automate the conversion of such
tables to HTML. However, it has been found that certain
automated tools, such as those promulgated by the Wold
Wide Web Consortium, are not readily capable of converting
these tables to an HTML format for accessibility and access
by screen readers, typically because such tools are intended
to be side-effect-free, and as a result do not permit variables
to be set and reset. As a result, developers are often required
to manually edit the resulting tables for compliance with
accessibility requirements. Given, however, the volume of
Internet content, and the frequency at which it is updated,
any requirement for manual editing can be extremely bur-
densome for a content provider.

One factor that complicates the problem of automatically
converting CALS-compatible tables to accessible HTML
tables stems from the limitations of the tools that are
typically used to perform such conversions. Many conver-
sions, for example, are performed using XSLT, which is a
transformation language used to convert XML documents to
other formats using the XSL Stylesheet Language for XML.
XSLT, however, does not permit variables, once assigned
specific values, to thereafter be changed to different values.
From the standpoint of converting CALS-compatible tables
to HTML, this limitation of XSLT eliminates the ability to
use straightforward programming techniques, such as
matrix-based operations, to determine the appropriate head-
ers to identify in each non-header cell of a table being
converted to HTML. As such, XSLT has not been considered
a viable environment for converting CALS-compatible
tables to accessible HTML tables.

Therefore, a significant need exists in the art for a manner
of automating the conversion of CALS-compatible tables to
HTML, while complying with accessibility requirements for
the same.

US 7,089,492 B2

3
SUMMARY OF THE INVENTION

The invention addresses these and other problems asso-
ciated with the prior art by providing an apparatus, program
product and method that support the automated conversion
of a table formatted in a CALS-compatible format to an
accessible HTML-compatible format, e.g., for use by pre-
sentation of the table by a screen reader or other application
requiring knowledge of what headers apply to a given cell in
a table. Moreover, such support extends to complex tables
that incorporate cells that span multiple columns and/or
rows of a table. By doing so, the degree of manual inter-
vention connected with customizing documents incorporat-
ing CALS-compatible tables to a format suitable for access
by a screen reader may be reduced or eliminated altogether.

Consistent with one aspect of the invention, a table may
be converted from a CALS-compatible format to an HTML-
compatible format by assigning an identifier to each header
cell in the table, in particular by embedding the identifier in
an HTML identifier attribute for such header cell. Then, for
each non-header cell in the table, any overlapping header
cells therefor may be detected, and the identifier for any
detected overlapping header cell may be embedded in an
HTML headers attribute for such non-header cell.

These and other advantages and features, which charac-
terize the invention, are set forth in the claims annexed
hereto and forming a further part hereof. However, for a
better understanding of the invention, and of the advantages
and objectives attained through its use, reference should be
made to the Drawings, and to the accompanying descriptive
matter, in which there is described exemplary embodiments
of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary complex table
incorporating cells that span multiple columns and rows.

FIG. 2 illustrates a data structure for a generic CALS-
compatible table.

FIG. 3 is a block diagram illustrating the principal hard-
ware and software components in a developer computer
capable of converting a CALS-compatible table to an
HTML-compatible table in a manner consistent with the
invention, and a user computer capable of host a screen
reader for viewing the HTML-compatible table.

FIG. 4 is a flowchart illustrating the program flow of a
convert table routine executed by the conversion tool refer-
enced in FIG. 3.

FIG. 5 is a flowchart illustrating the program flow of the
determine overlapping column headers routine referenced in
FIG. 4.

FIG. 6 is a flowchart illustrating the program flow of the
determine overlapping row headers routine referenced in
FIG. 4.

DETAILED DESCRIPTION

The embodiments discussed hereinafter take tables
marked up using the CALS DTD, the Oasis XML Exchange
Table Model, or another CALS-compatible format and con-
verts them into HTML tables that are accessible to screen
readers and other programs requiring knowledge of what
headers apply to a given cell in a table.

To make an HTML table accessible, every non-header
cell, or entry, in the table must indicate which headers apply
to that cell. This is accomplished by first giving every header
cell an identifier, or ID, attribute. Each cell in the table must

5

20

25

30

35

40

45

55

60

65

4

then point to every related header cell, which is accom-
plished by placing the header’s ID into the “headers”
attribute for that cell. It will be appreciated that identifier and
headers attributes used for column headers may either be
similar to or different from the identifier and headers
attributes used for row headers.

While it is relatively straightforward to determine the
headers attribute in simple tables, in which no cell takes up
more than one row or column, it is more problematic for
complex tables, in which cells may span any number of rows
or columns. For complex tables, any header that spans
multiple columns or rows must be pointed to by cells in
every column and/or row overlapped by that header. Like-
wise, any ordinary cell that spans multiple columns or rows
must point to every header that fully or partially overlaps
that cell.

As an example, an exemplary complex table 10 is illus-
trated in FIG. 1, including six columns and four rows, with
each column labeled 1-6 and each row labeled 1-4. Row 1
and column 1 are each further illustrated as “header” rows
and columns, with the headers in the header row being
identified as “HEAD1”, “HEAD2”, “HEAD3”, “HEAD4”,
and “HEADS5”, and the headers in the header column being
identified as “ROW1”, “ROW2”, and “ROW3” (the cell at
column 1, row 1 being considered a header from the header
row).

A number of non-header cells A-M are also illustrated,
with cell A illustrating a cell that spans multiple rows, and
cell B illustrating a cell that spans multiple columns. More-
over, it may be seen that header cell “header 5 spans
multiple columns, including those within which cells C, D,
G, H, L, and M are found (columns 5 and 6).

To ensure proper and accurate operation of a screen
reader, the screen reader will need to be able to identity, for
example, that row headers “row 1” and “row 2” apply to cell
A (along with column header “header 2”), that column
headers “header 3” and “header 4 apply to cell B (along
with row header “row 1”), and that column header “header
5” applies to each of cells C, D, G, H, L and M.

It will be appreciated that a complex table may include
header cells that span multiple rows or columns and/or
non-header cells that span multiple rows and/or columns.
Furthermore, complex tables may include multiple header
rows and/or multiple header columns, and in some instances,
header rows or columns may be omitted from some complex
tables (e.g., a complex table may have a header row but no
header column).

A CALS-compatible table is typically incorporated into
an SGML, XML or other tagged document and is defined in
a well known manner that is well known in the art. An
exemplary data structure for a generic CALS-compatible
table, for example, is illustrated in FIG. 2. In particular, a
tree data structure 12 is shown, with a root element “table”
having one or more “tgroup” child elements, each with
several additional child elements “colspec”, “spanspec”,
“thead”, “tfoot”, and “tbody”. Each of the aforementioned
elements are typically represented in an SGML or XML
document using “table”, “tgroup”, “colspec”, “spanspec”,
“thead”, “tfoot” and “tbody” tags. Under each “tgroup”
element, only a “tbody” element is required.

Each “colspec” element defines how an associated col-
umn in a table is formatted. Such an element may include,
among other information, a “colname” attribute used to
identify the column. The “spanspec” element defines the
horizontal “span” of columns. The “thead” element may be
used to identify a header row, and when present includes at
least one “row” child element and at least one “entry” child

US 7,089,492 B2

5

element, which are used to respectively delimit rows and
individual entries in a header. Likewise the “tfoot” element
may be used to identify a footer row, and when present
includes at least one “row” child element and at least one
“entry” child element, which are used to respectively delimit
rows and individual entries in a footer. Similarly, the “tbody”
element may be used to identify a non-header and non-footer
row, and includes at least one “row” child element and at
least one “entry” child element, which are used to respec-
tively delimit rows and individual entries in the body of a
table.

It will be appreciated that each element typically has a
number of additional attributes, and furthermore, that other
elements may also be defined in a CALS-compatible table.
In addition, in some embodiments, it may be desirable or
necessary to depart from the CALS-compatible models for
some purposes, e.g., by defining new tags and/or attributes.
For example, many CALS-compatible models do not pro-
vide a way to designate that a column is a header column.
As such, it may be desirable to utilize an additional attribute
or tag to provide such a designation. One suitable imple-
mentation is to add a “rowheader” attribute to a table
element to indicate that the first column of a table should be
treated as a header. As wilt become more apparent below,
when such functionality is supported, additional header
information, utilized to render a table readable by a screen
reader, may be added to the table.

Moreover, for the sake of convenience, a “header cell”
will hereinafter be used to apply table cells identified as
being in a table header by virtue of a “thead” element, as
well as tables cells identified as being in a table footer by
virtue of a “tfoot” element, given that a “footer” is func-
tionally equivalent to a “header” insofar as it characterizes
the information in a particular column or row. “Header cells”
may also be defined outside of “thead” or “tfoot” elements,
e.g., via the use of a “rowheader” attribute as described
above for the purpose of defining a row header, or even the
use of a “rowfooter” attribute that could be used to identify
a cell as being a part of a footer for a cell.

Embodiments consistent with the invention desirably
allow accessible complex HTML tables to be created from
CALS-compatible tables without manually adding attributes
into the output HTML. Moreover, in embodiments discussed
hereinafter, the conversion may be performed using XSLT,
which is maintained by the World Wide Web Consortium (or
W3C), the group that maintains the HTML DTD. Other
programming languages may be used in the alternative;
however, the herein-described conversion routine is particu-
larly well suited for applications where resettable variables
are not supported by the underlying programming language
within which the conversion routine is implemented. It will
also be appreciated that, while one of the predominant
benefits of the herein-described embodiments relates to the
conversion of complex tables from a CALS-compatible
format to HTML, such embodiments may also process
non-complex tables in a similar manner.

FIG. 3 next illustrates an exemplary hardware and soft-
ware environment suitable for implementing a table conver-
sion tool consistent with the invention. In particular, FIG. 3
illustrates a developer computer 20 interfaced with a user
computer 22 over a network, e.g., over the Internet, repre-
sented at 24. For the purposes of the invention, either
computer 20, 22 is an electronic apparatus that may be
implemented by practically any type of computer, computer
system or other programmable electronic device, including
a client computer, a server computer, a portable computer, a
handheld computer, an embedded controller, etc. Moreover,

20

25

30

35

40

45

50

55

60

65

6

either computer 20, 22 may be implemented using one or
more networked computers, e.g., in a cluster or other dis-
tributed computing system.

Each computer 20, 22 typically includes a central pro-
cessing unit (CPU) 26, 28 including one or more micropro-
cessors coupled to a memory 30, 32, which may represent
the random access memory (RAM) devices comprising the
main storage of computer 20, 22, as well as any supplemen-
tal levels of memory, e.g., cache memories, non-volatile or
backup memories (e.g., programmable or flash memories),
read-only memories, etc. In addition, each memory 30, 32
may be considered to include memory storage physically
located elsewhere in the respective computer 20, 22, e.g.,
any cache memory in a processor in either of CPU’s 26, 28,
as well as any storage capacity used as a virtual memory,
e.g., as stored on a mass storage device 34, 36, or on another
computer coupled to one of computers 20, 22.

Each computer 20, 22 also typically receives a number of
inputs and outputs for communicating information exter-
nally. For interface with a user or operator, each computer
20, 22 typically includes a user interface 38, 40 incorporat-
ing one or more user input devices (e.g., a keyboard, a
mouse, a trackball, a joystick, a touchpad, and/or a micro-
phone, among others) and a display (e.g., a CRT monitor, an
LCD display panel, and/or a speaker, among others). Oth-
erwise, user input may be received via another computer or
terminal coupled to the respective computer (e.g., if a
computer 20, 22 is implemented as a server or other multi-
user computer.

For non-volatile storage, each computer 20, 22 typically
includes one or more mass storage devices 34, 36, e.g., a
floppy or other removable disk drive, a hard disk drive, a
direct access storage device (DASD), an optical drive (e.g.,
a CD drive, a DVD drive, etc.), and/or a tape drive, among
others. Furthermore, each computer 20, 22 may also include
an interface 42, 44 with one or more networks (e.g., a LAN,
a WAN, a wireless network, and/or the Internet 24, among
others) to permit the communication of information with
other computers and electronic devices. It should be appre-
ciated that each computer 20, 22 typically includes suitable
analog and/or digital interfaces between CPU’s 26, 28 and
each of components 30-44, as is well known in the art.

Each computer 20, 22 operates under the control of an
operating system (not shown), and executes or otherwise
relies upon various computer software applications, compo-
nents, programs, objects, modules, data structures, etc. (e.g.,
a CALS/HTML conversion tool 46 resident in computer 20,
and a screen reader 48 resident in computer 22). Moreover,
various applications, components, programs, objects, mod-
ules, etc. may also execute on one or more processors in
another computer coupled to either computer 20, 22 via a
network, e.g., in a distributed or client-server computing
environment, whereby the processing required to implement
the functions of a computer program may be allocated to
multiple computers over a network.

In general, the routines executed to implement the
embodiments of the invention, whether implemented as part
of an operating system or a specific application, component,
program, object, module or sequence of instructions, or even
a subset thereof, will be referred to herein as “computer
program code,” or simply “program code.” Program code
typically comprises one or more instructions that are resi-
dent at various times in various memory and storage devices
in a computer, and that, when read and executed by one or
more processors in a computer, cause that computer to
perform the steps necessary to execute steps or elements
embodying the various aspects of the invention. Moreover,

US 7,089,492 B2

7

while the invention has and hereinafter will be described in
the context of fully functioning computers and computer
systems, those skilled in the art will appreciate that the
various embodiments of the invention are capable of being
distributed as a program product in a variety of forms, and
that the invention applies equally regardless of the particular
type of signal bearing media used to actually carry out the
distribution. Examples of signal bearing media include but
are not limited to recordable type media such as volatile and
non-volatile memory devices, floppy and other removable
disks, hard disk drives, magnetic tape, optical disks (e.g.,
CD-ROMs, DVDs, etc.), among others, and transmission
type media such as digital and analog communication links.

In addition, various program code described hereinafter
may be identified based upon the application within which
it is implemented in a specific embodiment of the invention.
However, it should be appreciated that any particular pro-
gram nomenclature that follows is used merely for conve-
nience, and thus the invention should not be limited to use
solely in any specific application identified and/or implied
by such nomenclature. Furthermore, given the typically
endless number of manners in which computer programs
may be organized into routines, procedures, methods, mod-
ules, objects, and the like, as well as the various manners in
which program functionality may be allocated among vari-
ous software layers that are resident within a typical com-
puter (e.g., operating systems, libraries, APIs, applications,
applets, etc.), it should be appreciated that the invention is
not limited to the specific organization and allocation of
program functionality described herein.

Those skilled in the art will recognize that the exemplary
environment illustrated in FIG. 3 is not intended to limit the
present invention. Indeed, those skilled in the art will
recognize that other alternative hardware and/or software
environments may be used without departing from the scope
of the invention.

To implement CALS/HTML conversion in a manner
consistent with the invention, a CALS/HTML conversion
tool 46 is resident in developer computer 20. Tool 46 may be
a standalone tool or application, or may be integrated with
other program code, e.g., to provide a suite of functions
suitable for converting documents to a format suitable for
access by a screen reader, or more broadly for developing
screen reader-compatible documents. Tool 46 is utilized to
process a CALS-compatible table represented at 50 and
generate therefrom an HTML-compatible table represented
at 52. Each table may be stored in a separate data structure,
or alternatively, may be incorporated into a document
including additional information to be displayed and/or
verbalized along with the respective table.

User computer 22, in turn, has a screen reader 48 resident
therein for verbalizing, or generating audible representations
of, HTML-compatible documents, including documents
incorporating HTML-compatible tables. In the illustrated
embodiment, screen reader application 48 is conventional in
nature, and requires no unique functionality to handle
HTML-compatible tables generated by tool 46.

It will be appreciated that the tables generated by tool 46,
and presented by screen reader 48, may be resident in
different computer systems at different points in time. For
example, developer computer 20 may also serve as a web
server to which user computer 22 connects to retrieve
HTML-compatible documents for presentation by screen
reader 48. In the alternative, tables generated by tool 46 may
be stored on a separate web server that is accessible by
computer 22. Moreover, tables generated by tool 46 may be
used by a screen reader resident on the same computer, or

20

25

30

35

40

45

50

55

60

65

8

may be stored on a removable storage medium and con-
veyed to computer 22 by alternate means to a computer
network. Other alternatives will be apparent to one of
ordinary skill in the art having the benefit of the instant
disclosure.

As noted above, in order to make tables accessible, each
non-header cell typically must use a “headers™ attribute to
associate itself with appropriate cells in the table header. In
the illustrated implementation of tool 46 discussed herein-
after, XSLT expressions are used to determine the location
of a current cell within a table, based on attributes on the
cell. The tool then recursively scans each row of the header
to find cells that overlap the current cell. Then, once all
overlapping cells have been found, the ID’s are saved while
row headers (those in the first column) are evaluated.

For row headers, the herein-described implementation of
the tool makes use of an extra “rowheader” attribute, which
may indicate, for example, whether the first column of a row
is a row header, or alternatively, the identities of which, if
any, columns in a row are to be considered row headers. If
this attribute indicates that the first row is a header row, the
first entry of each row is analyzed. If the row overlaps all or
part of the current cell, its ID is saved. Once all overlapping
cells have been determined, processing returns to the current
cell. ID’s for all headers above the cell are added to those
from the first column, and the result is placed in the headers
attribute.

FIGS. 4-6 next illustrate an exemplary convert table
routine 54 that may be executed by tool 46 to convert a table
from a CALS-compatible format to HTML. Routine 54 may
be called, for example, during processing of an XML or
SGML document, and in response to detection of a CALS-
compatible table in the document. As noted above, routine
54 may be implemented using XSLT, and it will be appre-
ciated that such implementation in XSLT would be well
within the abilities of one of ordinary skill in the art having
the benefit of the instant disclosure.

As shown in FIG. 4, routine 54 begins in blocks 56 and
57 by initiating a loop to process each “thead” entry in the
CALS-compatible table, i.e., each entry element detected
within a “thead” tagged region (between a matching set of
<thead> and </thead> tags). In particular, block 56 iterates
through each row in the “thead” tagged region, while for
each such row, block 57 iterates through each entry in the
current row.

For each such entry, block 57 passes control to block 58
to assign an ID to that entry. Block 60 then outputs the
HTML equivalent of the thead entry, and control returns to
block 57 to process additional thead entries. It will be
appreciated that the conversion of CALS-compatible table
information, e.g., thead and tbody entries, into suitable
HTML code would be well within the abilities of one of
ordinary skill in the art having the benefit of the instant
disclosure.

Once all thead entries have been processed, block 56
passes control to block 62 to initiate a loop to process each
“tbody” entry in the table, i.e., each entry element detected
within a “tbody” tagged region (between a matching set of
<tbody> and </tbody> tags). In particular, block 62 iterates
through each row in the “tbody” tagged region, while for
each such row, block 64 iterates through each entry in the
current row.

For each such entry, block 64 passes control to blocks 66
and 68 to determine whether the current cell is a row header.
In particular, block 66 determines whether the entry is the
first entry in the row, and block 68 determines whether the
entry really is in the first column. If both determinations are

US 7,089,492 B2

9

true, control passes to block 70 to assign an ID to the entry.
Control then passes to call a determine overlapping column
headers routine 72 to determine all overlapping column
headers. Otherwise, if either determination in block 66 or 68
is false, block 70 is skipped, and routine 72 is called.

Next, upon completion of routine 72, a determine over-
lapping row headers routine 74 is called to determine all
overlapping row headers. The result of each determination is
a list of column and row headers that overlap the current
thody entry, with a “0” value returned from either of routines
72, 74 if the respective determination determines that no
overlapping column/row headers are found for that entry.

Next, block 76 determines whether either of the column
list and the row header list has returned a non-zero value
(indicating that there is at least one column header and/or
row header that overlaps the entry). If so, control passes to
block 78 to output HTML header attributes that list the ID’s
of'the overlapping column and row headers. By doing so, the
header information necessary for meeting accessibility
requirements is embedded in the HTML table.

Next, block 80 outputs the HTML equivalent of the entry,
and control returns to block 64 to process additional entries.
Moreover, returning to block 76, if the determination made
in block 76 is negative, block 78 is skipped, and control
passes directly to block 80.

Processing of the tbody entries continues until all thody
entries have been processed. Routine 54 is then complete,
with an HTML-equivalent table to the CALS-compatible
table having been output by the routine, and with the
necessary accessibility information embedded in the table.

FIG. 5 next illustrates routine 72 of FIG. 4 in greater
detail. When called, routine 72 is passed the span of a current
thody entry by routine 54, and begins in block 82 by opening
a list of overlapping column headers (which initially will
contain no values). Next, block 84 initiates a loop to process
each row of the thead. For each such row, block 84 passes
control to block 86 to process each entry in the current thead
row. For each such entry, block 88 determines whether the
span of the thead entry is before that provided to the routine,
and if so, returns control to block 86 to process the next
thead entry in the current row. Otherwise, block 88 passes
control to block 90 to determine whether the span of the
thead entry is within (i.e., overlaps) that provided to the
routine, and if so, passes control to block 91 to add the ID
of'the overlapping thead entry to the list. Control then passes
to block 86 to process the next thead entry in the current-
row.

Once all thead entries have been processed in the current
row, block 86 passes control to block 84 to process another
thead row. Once all thead rows have been processed block
84 passes control to block 92 to terminate the routine and
close and return the generated list of overlapping column
headers.

To determine the start and end columns for an entry,
whether a regular entry or a header entry, it may be desirable
to access any or all of three possible sources of column
information. First, the column name(s) of an entry may be
encoded as an attribute in the entry, whereby a mapping of
column name(s) to column number(s) may be used to
determine the appropriate column number(s) for an entry.
Second, a spanname may be referenced as an attribute in an
entry, whereby column information specified in a spanspec
element in the table may be used as the entry column
information. Third, an entry may directly specify column
start and column end names as attributes in the entry.

With these sources in mind, the manner in which an
overlapping thead entry is determined in blocks 84-90 can

20

25

30

35

40

45

50

55

60

65

10
vary depending upon the underlying programming environ-
ment. In XSLT, for example, each call of routine 72 may
process the table header using a new mode, and sequentially
process each thead entry in the table header. The start and
end location (i.e., the span) of each thead entry may then be
determined in any of the manners discussed above, with a
determination made as to whether the span of the thead entry
is before the given span. If so, additional thead entries in the
same row (if any) may then be processed. Otherwise, a
determination may be made as to whether the span of the
thead entry overlaps the given span, whereby the ID of that
thead entry is added to the list in the event of a detected
overlap. Then, whenever it is determined that the span is past
the given span, or the entry is the last in the row, processing
may progress to the next thead row. Once each row in the
thead is processed, the list is complete, and control may
return to the current entry in the thody. It will be appreciated
that developing XSLT program code to implement the above
functionality would be within the abilities of one of ordinary
skill in the art having the benefit of the instant disclosure.

Now turning to FIG. 6, routine 74 is illustrated in greater
detail. When called, routine 74 is passed the span of a current
thody entry by routine 54, and begins in block 94 by opening
a list of overlapping row headers (which initially will
contain no values). Next, block 96 determines whether row
headers are even used in the table. If so, control passes to
block 98 to initiate a loop to process the first entry in each
row of the table. For each such entry, block 98 passes control
to block 100 to determine whether the entry is even in
column 1 of the table. If not, control returns to block 98 to
process the next row. If so, control passes to block 102 to
determine whether the span of the entry overlaps that of the
given span. If so, control passes to block 104 to add the ID
of the overlapping entry to the list. Control then passes to
block 98 to process the first entry in the next row, if any.
Returning to block 102, if the entry is not overlapping,
control passes to block 106 to determine whether the entry
is past the given span. If not, control returns to block 98 to
process the first entry in the next row, if any. Otherwise,
control passes to block 108 to terminate the routine and close
and return the list. Returning also to blocks 96 and 98, if
either no row headers are used, or after all rows have been
processed, control passes to block 108.

It will be appreciated that, in other embodiments, it may
be desirable to identify headers disposed in another column
(e.g., for a column footer). Such identification may utilize a
location method as described above, or may look only at the
last entry in each row in the case of a column footer.
Modification of routine 74 to incorporate such additional
functionality would be well within the abilities of one of
ordinary skill in the art having the benefit of the instant
disclosure.

As noted above, row headers in the herein-described
implementation may be identified through the use of a “row
header” attribute in an entry. To identify overlapping row
headers, a process similar to that described above in con-
nection with column headers may be used. For example, in
an XSLT implementation, a current row may be found rather
simply given that each row has a single <row> tag. If an
entry has a “morerows” attribute, this indicates that the entry
spans more than one row, and tells how many (e.g., “<entry
morrows="1">" means that an entry takes up a total of two
rows). The start and end rows may be saved in variables, and
if an entry is not itself in a first column, the first entry in
every row may be processed using a new mode, with the
start and end positions (i.e., span) of the entry passed in as
values. Processing as described above in connection with

US 7,089,492 B2

11

routine 74 may then be performed. As above, the imple-
mentation of routine 74 in XSLT would be well within the
abilities of one of ordinary skill in the art having the benefit
of the instant disclosure.

To further illustrate the operation of the herein-described
embodiment, exemplary CALS-compatible code for the
table illustrated in FIG. 1 is presented below in Table I:

TABLE 1

CALS TABLE INPUT

<table rowheader="firstcol”>

<tgroup cols=“6">

<colspec colname="coll”/>

<colspec colname="col2”/>

<colspec colname="col3”/>

<colspec colname="col4”/>

<colspec colname="col5”/>

<colspec colname="col6”/>

<thread>

<rows>

<entry colname="col1”>HEADI1 </entry>
<entry colname="col2”>HEAD2</entry>
<entry colname="col3”>HEAD3</entry>
<entry colname="col4”>HEAD4</entry>
<entry namest="“col5” nameend="“col6”>HEADS5</entry>
</row>

</thread>

<tbody>

<rows>

<entry colname="coll”>ROW1</entry>
<entry colname="col2” morerows="1">A</entry>
<entry namest="“col3” nameend="“col4”>B</entry>
<entry colname="col5”>C</entry>
<entry colname="col6”>D</entry>
</row>

<rows>

<entry colname="coll”>ROW2</entry>
<entry colname="col3”>E</entry>
<entry colname="col4”>F</entry>
<entry colname="col5”>G</entry>
<entry colname="col6”>H</entry>
</row>

<rows>

<entry colname="coll”>ROW3</entry>
<entry colname="col2”>I</entry>

<entry colname="col3”>J</entry>

<entry colname="col4”>K</entry>
<entry colname="col5”>L</entry>
<entry colname="col6”>M</entry>
</row>

</tbody>

</tgroup>

</table>

Processing of the above code by routine 54 would proceed
as outlined above. Of note, for entry A, routine 72 would
return a column header ID for the “HEAD2” column header,
while routine 74 would return row header ID’s for both the
“ROW1” and “ROW2” row headers (based upon the start
and end rows for entry A being 2 and 3, respectively).
Likewise, for entry B, routine 72 would return column
header ID’s for the “HEAD3” and “HEAD4” column head-
ers (based upon the start and end columns for entry B being
3 and 4, respectively), while routine 74 would return a row
header ID for the “ROW1” row header. Moreover, for each
of entries C, D, G, H, L and M, routine 72 would return a
column header ID for the “HEADS” column header (based
upon the start and end columns for the “HEADS5” column
header being 5 and 6, respectively),

Table II continues the above example by illustrating
exemplary HTML code for the above table, subsequent to
processing by routine 54:

5

20

25

30

35

40

45

50

55

60

65

12

TABLE 1I

HTML TABLE OUTPUT

<table frame="border” border="1" rules="all”>
<colgroup><col/><col/><col/><col/><col/><col/><colgroup>
<thread align="left”>

<tr>

<th valign="top” id="d0e29”>HEADI1 </th>

<th valign="top” id="d0e31”>HEAD2</th>

<th valign="top” id="d0e33”>HEAD3</th>

<th valign="top” id="d0e35”>HEAD4</th>

<th colspan="2" valign="“top” id="d0e37”>HEADS5</th>
</tr>

</thead>

<tbody>

<tr>

<td valign="top” id="d0e41” headers="d0e29”>ROW1</td>
<td rowspan="2" valign="top” headers="d0e41 d0e52 d0e31”>A</td>
<td colspan="2" valign="“top” headers="“d0e41 d0e33 d0e35”>B</td>
<td valign="top” headers=“d0e41 dOe37”>C</td>

<td valign="top” headers=“d0e41 dOe37”>D</td>

</tr>

<tr>

<td valign="top” id="d0e52” headers="d0e29”>ROW2</td>
<td valign="top” headers="d0e52 d0e33”>E</td>

<td valign="top” headers="d0e52 d0e35”>F</td>

<td valign="top” headers="d0e52 d0e37”>G</td>

<td valign="top” headers="d0e52 d0e37”>H</td>

</tr>

<tr>

<td valign="top” id="d0e63” headers="d0e29”>ROW3</td>
<td valign="top” headers="d0e63 d0e31”>I</td>

<td valign="top” headers=“d0e63 d0e33”>J</td>

<td valign="top” headers="d0e63 d0e35”>K</td>

<td valign="top” headers="d0e63 d0e37”>L</td>

<td valign="top” headers="d0e63 d0e37”>M</td>

</tr>

</tbody>

</table>

It will be appreciated that the additional attributes may be
processed in a CALS-compatible table to generate corre-
sponding HTML code. It will also be appreciated that
various additional modifications may be made to the herein-
described embodiments without departing from the spirit
and scope of the invention. Therefore, the invention lies in
the claims hereinafter appended.

What is claimed is:

1. A computer-implemented method of converting a table
from a CALS-compatible format to an HTML-compatible
format, the method comprising:

for each header cell in the table, assigning an identifier to

such header cell by embedding the identifier in an
HTML identifier attribute for such header cell;

for each non-header cell in the table, detecting any

overlapping header cells therefor; and

for each non-header cell in the table, embedding the

identifier for any detected overlapping header cell in an
HTML headers attribute for such non-header cell.

2. The method of claim 1, wherein assigning identifiers,
detecting overlapping header cells and embedding identifi-
ers are performed using XSLT expressions.

3. The method of claim 1, wherein detecting any over-
lapping header cells for a non-header cell in the table
includes identifying at least one header cell that overlaps
such non-header cell.

4. The method of claim 3, wherein identifying at least one
header cell that overlaps such non-header cell includes
opening the table in a new mode.

5. The method of claim 1, wherein detecting any over-
lapping header cells for a non-header cell in the table
includes determining a start and an end column for such

US 7,089,492 B2

13

non-header cell, and detecting at least one header cell that
overlaps the start and end columns.

6. The method of claim 1, wherein detecting any over-
lapping header cells for a non-header cell in the table
includes determining a start and an end row for such
non-header cell, and detecting at least one header cell that
overlaps the start and end rows.

7. The method of claim 1, further comprising sequentially
iterating through each non-header cell in the table, and
wherein detecting any overlapping header cells and embed-
ding the identifier for any detected overlapping header cell
are performed during each sequential iteration.

8. The method of claim 7, wherein detecting any over-
lapping header cells during a sequential iteration includes
identifying all overlapping header cells for a current non-
header cell.

9. An apparatus, comprising:

a memory configured to store a table stored in a CALS-

compatible format;

a processor; and

program code configured to convert the table to an

HTML-compatible format by assigning an identifier to
each header cell in the table via embedding the iden-
tifier in an HTML identifier attribute for such header
cell, detecting any overlapping header cells for each
non-header cell in the table, and, for each non-header
cell in the table, embedding the identifier for any
detected overlapping header cell in an HTML headers
attribute for such non-header cell.

10. The apparatus of claim 9, wherein the program code
is configured to assign identifiers, detect overlapping header
cells and embed identifiers using XSLT expressions.

11. The apparatus of claim 9, wherein the program code
is configured to detect any overlapping header cells for a
non-header cell in the table by identifying at least one header
cell that overlaps such non-header cell.

12. The apparatus of claim 11, wherein the program code
is configured to identify at least one header cell that overlaps
such non-header cell by opening the table in a new mode.

20

25

30

14

13. The apparatus of claim 9, wherein the program code
is configured to detect any overlapping header cells for a
non-header cell in the table by determining a start and an end
column for such non-header cell, and detecting at least one
header cell that overlaps the start and end columns.

14. The apparatus of claim 9, wherein the program code
is configured to detect any overlapping header cells for a
non-header cell in the table by determining a start and an end
row for such non-header cell, and detecting at least one
header cell that overlaps the start and end rows.

15. The apparatus of claim 9, wherein the program code
is further configured to sequentially iterate through each
non-header cell in the table, and to detect any overlapping
header cells and embed the identifier for any detected
overlapping header cell during each sequential iteration.

16. The apparatus of claim 15, wherein the program code
is configured to detect any overlapping header cells during
a sequential iteration by identifying all overlapping header
cells for a current non-header cell.

17. A program product, comprising:

program code configured to convert a table from a CALS-

compatible format to an HTML-compatible format by
assigning an identifier to each header cell in the table
via embedding the identifier in an HTML identifier
attribute for such header cell, detecting any overlapping
header cells for each non-header cell in the table, and,
for each non-header cell in the table, embedding the
identifier for any detected overlapping header cell in an
HTML headers attribute for such non-header cell;

a signal bearing medium bearing the program code.

18. The program product of claim 17, wherein the signal
bearing medium includes at least one of a recordable
medium and a transmission medium.

