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RESET VECTORS FOR BOOT
INSTRUCTIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. provisional
patent application No. 61/509,078, filed on Jul. 18, 2011,
which is hereby incorporated by reference herein in its
entirety.

BACKGROUND

[0002] A computing device, such as a device including a
processor, may interact with secret or otherwise sensitive
information during operation. As such, some computing
devices may operate to protect the sensitive information. For
example, a computing device may encrypt sensitive informa-
tion using a security parameter, such as an encryption key,
stored on the device. The computing device may also operate
to protect the security parameter stored on the device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The following detailed description references the
drawings, wherein:

[0004] FIG.1isablockdiagram of an example processorto
read boot information having different formats from different
reset vectors;

[0005] FIG. 2 is a block diagram of an example computing
system comprising a processor to retrieve boot information
from different reset vectors;

[0006] FIG. 3 is a block diagram of an example computing
device to read portions of independent boot information from
a plurality of reset vectors;

[0007] FIG. 4A is a block diagram of an example comput-
ing device comprising an address selector to set region selec-
tion bits based on a state value;

[0008] FIG. 4B is a block diagram of an example address
selector to set region selection bits based on a state value;
[0009] FIG. 5 is a flowchart of an example method for
booting a computing device with different boot information
based on a state value; and

[0010] FIG. 6 is a flowchart of an example method for
booting a computing device with one of a plurality of sets of
boot information stored in different formats based on a state
value.

DETAILED DESCRIPTION

[0011] As noted above, a computing device may operate to
protect sensitive information using security parameters
stored on the computing device. To protect both the sensitive
information and the security parameters, some computing
device processors may have multiple operating states that
may each be utilized in different stages of the life cycle of the
computing device. For example, when a computing device is
being developed, tested, and/or initialized in a controlled
environment, a processor of the computing device may be
operated in a clear state in which the processor provides little
or no security for information stored on or utilized by the
processor. For example, instructions executed by the proces-
sor in this clear state may be stored outside the processor in a
cleartext (e.g., unencrypted, uncompressed, etc.) format.

[0012] When the computing device is operated in an envi-
ronment in which it is vulnerable to security threats, the
processor may be operated in a secure state in which the
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device provides more security for information stored on and/
or utilized by the processor than in the clear state. For
example, instructions and other information used by the pro-
cessor in the secure state may be stored outside of the proces-
sor in an encoded (e.g., encrypted) format to prevent tamper-
ing with the information to gain access to security parameters
stored on the processor. Additionally, if the computing device
detects a breach of the device’s security, the processor may
zeroize its security parameters and operate thereafter in a
zeroize state in which the processor provides event reporting
and diagnostic functionalities until the device is returned to
the controlled environment. A computing device may store
information for each of these state concurrently, but only
utilize the information (e.g., execute instructions) for the
current state.

[0013] A processor having multiple operating states may
use a single reset vector pointing to common boot information
used to begin the process of booting the computing device,
regardless of the desired operating state. This common boot
information may include common boot instructions, which
may determine the desired operating state for the processor
and subsequently cause the processor to read and utilize infor-
mation (e.g., data and/or instructions) specific to the desired
operating state. In such examples, the common boot instruc-
tions may additionally determine the format in which the
state-specific information is stored and prepare the processor
to reformat (e.g., decrypt) the state-specific information, if it
is stored in a format other than a default format for the pro-
cessor. For example, if the common boot instructions deter-
mine that the secure state is the desired state, the common
boot instructions may then prepare the processor to decrypt
any further information read from external while in the secure
state.

[0014] In such examples, the common boot information to
which the reset vector points cannot have multiple different
formats at the same time. For example, the common boot
information cannot have the cleartext format of a clear state
and an encrypted format of a secure state at the same time.
Rather, the common boot information may be stored in a
default format (e.g., cleartext, unencrypted, etc.) so that the
processor may utilize the common boot information (includ-
ing common boot instructions) immediately after a reset. In
such examples, the processor may begin reformatting and
using boot information for a given state after the common
boot instructions have determined the operating state and
prepared the processor to reformat the state-specific boot
information.

[0015] However, storing common boot information in a
default format for the processor, such as cleartext, may be a
point of vulnerability for the security of the processor. For
example, an attacker may readily modify or replace cleartext
boot instructions to thereby cause the processor to enter the
wrong operating state. Such altered or replaced instructions
may cause the processor to enter a clear state when the com-
mon boot instructions would cause the processor to enter the
secure state. In such examples, the attacker may be able to
gain unauthorized access to security parameters stored on the
processor. Additionally, an attacker may learn how to set the
state of the processor by viewing instructions, stored in cleart-
ext, for setting the operating state of the processor.

[0016] To address these issues, examples disclosed herein
include a processor providing separate reset vectors for dif-
ferent operating states of the processor, and providing pro-
cessor logic-based selection of and reading from one of the
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reset vectors based on the operating state of the processor. In
some examples, each of the reset vectors may point to a first
portion of boot information for a different operating state of
the processor. In such examples, the boot information for
different operating states, including a first piece of boot infor-
mation accessed for each state, may be stored in different
formats. For example, a reset vector for a secure state may
point to encrypted boot information and a reset vector for a
clear state may point to unencrypted boot information. As
such, the use of vulnerable common boot information may be
eliminated.

[0017] As noted above, examples disclosed herein provide
processor logic based selection of and reading from a reset
vector. In such examples, logic of the processor may select
and read from a reset vector in response to a reset before
retrieving any instruction stored outside of the processor. By
providing processor logic-based selection of the reset vector,
examples disclosed herein may select the reset vector point-
ing to appropriately formatted boot information for the
desired operating state without first loading any instruction
stored outside of the processor. For example, processor logic
may determine an appropriate reset vector and reformatting
method, if any, from an indication of the operating state stored
on the processor. In such examples, a processor in the secure
state may begin reading and reformatting encoded boot infor-
mation immediately after a reset request without first reading
and utilizing vulnerable common boot instructions to deter-
mine the current state and prepare the processor to appropri-
ately reformat state-specific information. As such, all infor-
mation for the secure state that is stored outside the processor
may be stored in an encoded (e.g., encrypted) format, thereby
making it more difficult to tamper with information (e.g.,
instructions) for the secure state to gain access to security
parameters stored on the processor.

[0018] Referring now to the drawings, FIG. 1 is a block
diagram of an example processor 110 to read boot informa-
tion having different formats from different reset vectors. As
used herein, a “processor” may be at least one integrated
circuit (IC), such as at least one semiconductor-based micro-
processor, including at least one of a central processing unit
(CPU), a graphics processing unit (GPU), a field-program-
mable gate array (FPGA) configured to retrieve and execute
instructions stored on a machine-readable storage medium,
other electronic circuitry suitable for the retrieval and execu-
tion of such instructions, or a combination thereof.

[0019] In the example of FIG. 1, processor 110 includes
state storage 112 and a vector controller 120. As used herein,
“storage” may be any type of memory or other electronic
circuitry for storing data in any suitable format. In some
examples, state storage 112 may include at least one register
of non-volatile memory. State storage 112 may store a state
value 181 indicating an operating state of processor 110. As
used herein, an “operating state” of a processor dictates, for
each of a plurality of processor functionalities, whether the
processor is to permit or prevent the functionality.

[0020] In the example of FIG. 1, the operating states of
processor 110 include at least a clear state and a secure state.
Other examples may include additional and/or different oper-
ating states. For example, the operating state of processor 110
may be the clear state when state storage 112 stores a clear
state value, and may be the secure state when state storage 112
stores a secure state value different than the clear state value.
As used herein, a “clear state” of a processor may be a state in
which the processor permits functionalities for the develop-
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ment, initialization and/or testing of the processor. In some
examples, a processor in the clear state may permit the storing
of security parameters in secure parameter storage of the
processor, but permit few or no security functionalities of the
processor. Additionally, as used herein, a “secure state” of a
processor may be a state in which the processor permits the
use of at least some security functionalities of the processor
not permitted in the clear state.

[0021] In some examples, vector controller 120 may
receive state value 181 from state storage 112. As used herein,
a ““vector controller” is a module of a processor including
logic on the processor for selecting and reading from one of a
plurality of reset vectors based on a state value of the proces-
sor, in response to a reset request, without first reading infor-
mation from outside of the processor. In some examples, the
functionality of vector controller 120 may be implemented in
the form of electronic circuitry, in the form of executable
instructions encoded on a machine-readable storage medium
of'processor 110, or a combination thereof. In such examples,
the vector controller may provide processor logic-based
selection of and reading from one of a plurality of reset
vectors regardless of how the logic on the processor is imple-
mented.

[0022] Additionally, as used herein, a “reset vector” is an
address from which a processor may first read or otherwise
retrieve information from a machine-readable storage
medium outside of the processor after undergoing a reset. As
used herein, to read “from” a reset vector means to read
information stored at the address of the reset vector or to read
information from a sequentially-addressed portion of a stor-
age medium starting at the address of the reset vector. For
example, in the context of word-addressed storage (e.g.,
memory), to read information from a reset vector may be to
read the word stored at the address of the reset vector. In other
examples, in the context of byte-addressed storage, to read
information from a reset vector may be to read a word (e.g., 4
bytes) stored at a plurality of sequentially-addressed bytes of
the storage beginning at the address of the reset vector. Addi-
tionally, as used herein, information stored “at” a reset vector
means information stored at the address of the reset vector or
information stored at sequential addresses of a storage
medium starting at the address of the reset vector. As used
herein, a reset vector may be said to “point to” information
stored in a storage medium at the address of the reset vector.
[0023] Insome examples, the information stored at a reset
vector may be an entry address for a set of boot instructions
for booting a computing device including the processor. In
such examples, the processor may boot the computing device
by executing the boot instructions starting with the instruc-
tions at the entry address stored at the reset vector. As used
herein, an “entry address” is the address of a point of entry
into a set of instructions executable by the processor (e.g., a
program, etc.). Also, as used herein, a “machine-readable
storage medium” may be any electronic, magnetic, optical, or
other physical storage to contain or store information such as
executable instructions, data, and the like. For example, any
machine-readable storage medium described herein may be
any of Random Access Memory (RAM), flash memory, a
storage drive (e.g., a hard disk), a Compact Disc Read Only
Memory (CD-ROM), and the like, or a combination thereof.
Further, any machine-readable storage medium described
herein may be non-transitory.

[0024] In addition to receiving state value 181, vector con-
troller 120 may also receive a reset request 183. In some
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examples, reset request 183 may be generated by instructions
executed by processor 110 (e.g., a software generated reset).
In other examples, reset request 183 may be received from
outside of processor 110. In response to reset request 183,
vector controller 120 may read boot information from one of
a plurality of reset vectors selected based on state value 181.
Asused herein, “boot information” is information that may be
used by a processor to boot a computing device including the
processor. In some examples, the boot information may
include at least one of boot instructions and boot data.

[0025] As used herein, “boot instructions” area set of
instructions that may be executed by a processor to boot a
computing device including the processor. In some examples,
aset of boot instructions may be the first instructions executed
by the processor after a reset of the processor. Boot instruc-
tions may include, for example, instructions for testing and/or
configuring components and/or functionalities of the com-
puting device. In such examples, the components of the com-
puting device to be tested and/or configured may include the
processor, memory, a memory management unit, crypto-
graphic functionalities, and the like, or a combination thereof.
Additionally, as used herein, “boot data” is any data (e.g.,
addresses, etc.) that may be used by a processor of a comput-
ing device, along with boot instructions, to boot the comput-
ing device. In some examples, boot data may include an
address at which a first instruction of a set of boot instructions
is stored in a storage medium outside of the processor. In such
examples, a reset vector may point to boot data including an
entry address for a set of boot instructions, which may be the
address of a first instruction of the set of boot instructions. In
such examples, a vector controller 120 may read this boot data
(e.g., the entry address for the boot instructions) from a reset
vector in response to a reset request.

[0026] Intheexampleof FIG. 1, in response to reset request
183, vector controller 120 may read a portion of clear boot
information from a clear state reset vector, if state value 181
indicates a clear state. For example, vector controller 120 may
provide, to a machine-readable storage medium storing the
clear boot information, a read request 184 to read the portion
of the clear boot information from the clear state reset vector.
In such examples, the clear state reset vector may be the read
address of read request 184. In some examples, the clear boot
information may include a set of clear boot instructions and
clear boot data. The clear boot data may include, for example,
an entry address for the clear boot instructions, and this clear
boot data may be stored in the storage medium at the address
of'the clear reset vector. In such examples, the portion of the
clear boot information read from the clear state reset vector by
vector controller 120 may be clear boot data including the
entry address for the clear boot instructions, which may be an
address at which one of the clear boot instructions is stored. In
some examples, processor 110 may boot the computing
device including processor 110 by executing the clear boot
instructions beginning with the instruction at the entry
address read from the clear state reset vector.

[0027] If state value 181 indicates a secure state, then, in
response to reset request 183, vector controller 120 may read
a portion of secure boot information from a secure state reset
vector. For example, vector controller 120 may provide, to a
machine-readable storage medium storing the secure boot
information, a read request 186 to read the portion of the
secure boot information from the secure state reset vector. In
such examples, the secure state reset vector may be the read
address of read request 186. In some examples, the secure
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boot information may include a set of secure boot instructions
and secure boot data. In such examples, the secure boot data
may include, for example, an entry address for the secure boot
instructions, and this secure boot data may be stored in the
storage medium at the address of the secure reset vector. In
such examples, the portion of the secure boot information
read from the secure state reset vector by vector controller
120 may be secure boot data including the entry address for
the secure boot instructions, which may be an address at
which one of the secure boot instructions is stored. In some
examples, processor 110 may boot the computing device
including processor 110 by executing the secure boot instruc-
tions beginning with the instruction at the entry address read
from the secure state reset vector.

[0028] Insome examples, vector controller 120 may select
one of a plurality of reset vectors in response to reset request
183 by selectively altering an address of a read request gen-
erated by processor 110. For example, vector controller 120
may include a core module of processor 110 and, in response
to reset request 183, the core module may output a read
request having as the read address a default reset vector for the
core module (e.g., for an interrupt handler of the core mod-
ule). In such examples, vector controller 120 may determine
that a read address on an address bus of processor 110 refers
to a reset region of a machine-readable storage medium, and
may selectively substitute at least one region selection bit, set
based on state value 181, for at least one bit of the address on
the address bus. In this manner, vector controller 120 may
selectively alter the address of a read request provided in
response to reset request 183 to thereby read from a reset
vector associated with state value 181 in response to reset
request 183. In other examples, vector controller 120 may
select the reset vector in response to reset request 183 in other
ways. For example, a core module included in vector control-
ler 120 may receive state value 181 and select one of a plu-
rality of state-specific reset vectors stored in the core module
in response to reset request 183. In such examples, the state-
specific reset vectors may each be stored in non-volatile stor-
age of the core module or hard-coded in logic of the core
module. In such examples, the core module may, in response
to reset request 183, output a read request having a reset
vector associated with state value 181 as the read address.

[0029] In some examples, the clear boot information may
have a first format, while the secure boot information has a
second format different than the first format. For example, the
clear boot information may be stored in a cleartext or an
otherwise unencrypted format, while the secure boot infor-
mation may be stored in an encrypted format. As used herein,
information in a “cleartext” format is information that a pro-
cessor receiving the information is configured to execute or
otherwise operate on without first reformatting (e.g., decrypt-
ing, decoding, etc.) the instruction. For example, an instruc-
tion in a cleartext format may be an instruction that the pro-
cessor may execute without reformatting, and an address in a
cleartext format may be an address from which the processor
may read without first reformatting the address. Also, as used
herein, information in an “encrypted” format is information
in a format that a processor receiving the information may
execute or otherwise operate on after decrypting the instruc-
tion. Additionally, in some examples, all information for a
given state stored outside of processor 110 may have the same
format. For example, all information (e.g., data, instructions)
that may be utilized by processor 110 in the clear state,
including the clear boot information and information and/or
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executable instructions for other clear state applications, may
be stored outside the processor in the same format (e.g., the
first format). Additionally, in some examples, all information
that may be utilized by processor 110 in the secure state,
including the secure boot information and information and/or
executable instructions for other secure state applications,
may be stored outside the processor in the same format (e.g.,
the second format).

[0030] In some examples, vector controller 120 may
include a formatting module that may determine whether to
reformat information read from outside of processor 110
based on state value 181. In such examples, when the state
value 181 indicates the secure state, the formatting module
may decrypt the secure boot instructions read from outside of
processor 110. In other examples, the first and second formats
may be any two formats different from one another. In some
examples, the first and second formats may both be formats
other than cleartext. For example, information in the first
format may be encrypted or otherwise encoded (e.g., com-
pressed, etc.) in any manner different than the manner in
which information in the second format is encrypted or oth-
erwise encoded. In some examples, the first and second for-
mats may be different encrypted formats. In such examples,
information in the first and second formats may be encrypted
differently (e.g., using different encryption formats and/or
different encryption keys, etc.).

[0031] Inexamples described above, a processor may read
boot information from different reset vectors based on an
operating state of the processor in response to a reset request.
By selecting a state-specific reset vector based on the operat-
ing state with logic of the processor, the processor may select
an appropriate reset vector and begin reading state-specific
boot information in response to a reset request before reading
any other information from outside of the processor. Addi-
tionally, the processor may include a reformatting module to
selectively reformat received information based on the oper-
ating state of the processor. In such examples, the processor
may, in different operating states, process diftferently format-
ted instructions beginning with a very first instruction read
from outside the processor after a reset. In this manner,
examples described herein may eliminate the use of vulner-
able, cleartext common boot instructions.

[0032] FIG.2 is a block diagram of an example computing
system 295 comprising a processor 110 to retrieve boot infor-
mation from different reset vectors. Computing system 295
includes processor 110 and a machine-readable storage
medium 250. In the example of FIG. 2, storage medium 250
includes clear boot information 252 having a first format,
secure boot information 254 having a second format, and
zeroize boot information 256. Clear boot information 252
may include clear boot data 253 A and clear boot instructions
253B each having the first format, secure boot information
254 may include secure boot data 255A and secure boot
instructions 255B each having the second format, and zeroize
boot information 256 may include zeroize boot data 257A
and zeroize boot instructions 257B.

[0033] In the example of FIG. 2, processor 110 includes
state storage 112 and vector controller 120, as described
aboveinrelationto FIG. 1. Also as described above in relation
to FIG. 1, vector controller 120 may provide read requests
184 and 186 to a machine-readable storage medium. In
response to a valid read request, storage medium 250 may
provide, to processor 110, information 287 stored at the
address indicated by the read request.
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[0034] Intheexample of FIG. 2, in response to reset request
183, vector controller 120 may provide read request 184 to
storage medium 250 to read a portion of clear boot informa-
tion 252 having the first format from a clear state reset vector,
if state value 181 indicates the clear state. In some examples,
the portion of clear boot information 252 read from the clear
state reset vector may be clear boot data 253 A, which may
include an entry address for clear boot instructions 253B. In
such examples, processor 110 may boot a computing device
including processor 110 with clear boot instructions 253B
after reading clear boot data 253 A from the clear state reset
vector. For example, after reading clear boot data 253A from
the clear state reset vector, processor 110 may begin execut-
ing clear boot instructions 253B beginning with a clear boot
instruction stored at the entry address stored at the clear state
reset vector.

[0035] If state value 181 indicates the secure state, vector
controller 120 may, in response to reset request 183, provide
read request 186 to storage medium 250 to read a portion of
secure boot information 254 having the second format from a
secure state reset vector. In some examples, the portion of
secure boot information 252 read from the secure state reset
vector may be secure boot data 255A, which may include an
entry address for secure boot instructions 255B. In such
examples, processor 110 may boot a computing device
including processor 110 with secure boot instructions 255B
after reading secure boot data 255 A from the secure state reset
vector. For example, after reading secure boot data 255A
from the secure state reset vector, processor 110 may begin
executing secure boot instructions 255B beginning with a
secure boot instruction stored at the entry address stored at the
secure state reset vector.

[0036] In some examples, prior to executing secure boo
instructions 255B, processor 110 may verify that secure boot
information 254 has not been altered by checking at least
some of secure boot information 254 against validation data,
such as a digital signature, of secure boot information 254. As
used herein, “validation data” may be any type of data that
may be derived from a collection of information and subse-
quently used to determine whether the information has been
altered since generation of the validation data. In some
examples, at least some of secure boot information 254 may
be stored on processor 110 (e.g., in a cache) until processor
110 verifies that validation data derived from the stored infor-
mation matches the validation data included in the secure
boot information 254. In some examples, the verification data
may be derived using hashing, processes used for error detec-
tion (e.g., processes used to generate a checksum, a cyclic
redundancy check (CRC), etc.), or the like. If the derived
validation data matches the validation data of boot informa-
tion 254, the instructions may be executed, and otherwise not.
In some examples, any state-specific information stored on
storage medium 250 may include validation data for the infor-
mation, and processor 110 may verify the validation data
prior to utilizing some or all of the information.

[0037] In some examples, vector controller 120 includes a
core module 222 and a formatting module 225 including an
encryption module 227. In such examples, the functionalities
of modules 222, 225, and 227 may be implemented in the
form of electronic circuitry, in the form of executable instruc-
tions encoded on a machine-readable storage medium, or a
combination thereof. In some examples, core module 222
may include or implement the functionalities of a CPU core.
As used herein, a “CPU core” is a component of a processor
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capable of at least executing instructions. In some examples,
aCPU core may include at least one of an arithmetic logic unit
(ALU), an interrupt handler, a fetch controller, a data write-
back controller, a floating-point unit, or a combination
thereof. In some examples, core module 222 may execute or
otherwise operate on information having the first format
without this information first being reformatted. For example,
core module 222 may execute instructions having the first
format and may operate on data (e.g., addresses) having the
first format. In some examples, the first format may be a
cleartext format.

[0038] In the example of FIG. 2, formatting module 225
may reformat information received by processor 110 based
on state value 181 of processor 110. In some examples, infor-
mation read from or written to storage medium 250 by pro-
cessor 110 may pass through formatting module 225. In such
examples, formatting module 225 may have multiple operat-
ing modes, which may be selected based on state value 181.
For example, formatting module 225 may have a bypass
mode, in which formatting module 225 forwards received
information without reformatting the information, and at
least one formatting mode, in which formatting module 225
reformats received information. In some examples, format-
ting module 225 may have multiple different formatting
modes associated with different operating states of processor
110 and different formats associated with those operating
states.

[0039] In the example of FIG. 2, information used by pro-
cessor 110 in the clear state, including at least clear boot
information 252, for example, may be stored outside of pro-
cessor 110 in the first format. In such examples, information
287 read from storage medium 250 when processor 110 is in
the clear state (e.g., clear boot information 252) may have the
first format. As such, in some examples, information read in
the clear state may be passed to core module 222 without first
being reformatted. Accordingly, in some examples, format-
ting module 225 may operate in a bypass mode in which it
outputs received information without reformatting the infor-
mation, if state value 181 indicates a clear state. In such
examples, formatting module 225 may receive information
287 and output the received information in the format in
which it was received, if state value 181 indicates the clear
state.

[0040] Additionally, in some examples, information used
by processor 110 in the secure state, including at least secure
boot information 254, for example, may be stored outside of
processor 110 in the second format. As such, information 287
read from storage medium 250 when processor 110 is in the
secure state (e.g., secure boot information 254) may have the
second format. Accordingly, in some examples, formatting
module 225 may reformat information 287 received from
storage medium 250 from the second format to the first for-
mat, if state value 181 indicates the secure state.

[0041] In some examples, formatting module 225 may
include an encryption module 227 to encrypt and decrypt
information. In such examples, the second format may be an
encrypted format for protecting the information for the secure
state when stored outside of processor 110, and the first
format may be an unencrypted format, such as a cleartext
format. In such examples, encryption module 227 may
decrypt received information 287 from an encrypted second
format to the unencrypted first format, if state value 181
indicates the secure state. In examples described herein, stor-
ing information used in the secure state in an encrypted for-
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mat when stored outside of processor 110 may provide addi-
tional security for the secure state of processor 110. For
example, the information may be kept secret when stored
outside of the processor when stored in an encrypted format.
Additionally, it may be difficult to effectively replace or
modify sections of code stored in an encrypted format.

[0042] Additionally, in some examples, if state value 181
indicates the secure state, formatting module 225 may refor-
mat information 289 to be written to storage medium 250
from the first format to the second format (e.g., encrypt the
information) before writing the information. In such
examples, if the information written is subsequently read by
processor 110 in the secure state, then formatting module 225
may reformat the information from the second to the first
format.

[0043] By selecting an operating mode based on a state
value 181 of state storage 112, formatting module 225 may
allow all information utilized by a processor in a given mode
to be stored outside of the processor in a state-specific format.
For example, all information for the clear state, including the
information stored at the clear state reset vector, may be
stored in first format (e.g., a cleartext format), while all infor-
mation for the secure state, including the information stored
at the secure state reset vector, may be stored in a second
format (e.g., an encrypted format). In such examples, format-
ting module 225 may correctly reformat (or bypass) all infor-
mation read in a given operating state of the processor, begin-
ning with information read from a state-specific reset vector,
based on state value 181. In this manner, examples disclosed
herein may eliminate the use of common boot information,
and instead allow state-specific boot information to beused in
each operating state. Further, in some examples, the state-
specific boot information for different states may have differ-
ent, state-specific formats.

[0044] Additionally, in some examples, the operating states
of'processor 110 may include a zeroize state in addition to the
clear and secure states. In such examples, the operating state
of processor 110 may be the zeroize state when state storage
112 stores a zeroize state value, different that the clear and
secure state values, as state value 181. As used herein, a
“zeroize state” of a processor may be a state entered by the
processor after detection of a security incident and in which
the processor prevents the storage of security parameters and
permits diagnostic functionalities of the processor. Addition-
ally, in some examples, a processor in the zeroize state may
permit event reporting functionalities, but permit few or no
security functionalities of processor 110.

[0045] Intheexample of FIG. 2, in response to reset request
183, vector controller 120 may provide a read request 288 to
storage medium 250 to read a portion of zeroize boot infor-
mation 256 from a zeroize state reset vector, if state value 181
indicates the zeroize state. In some examples, the portion of
zeroize boot information 256 read from the zeroize state reset
vector may be zeroize boot data 257 A, which may include an
entry address for secure boot instructions 257B. In such
examples, processor 110 may boot a computing device
including processor 110 with zeroize boot instructions 257B
after reading zeroize boot data 257A from the zeroize state
reset vector. For example, after reading zeroize boot data
257 A from the zeroize state reset vector, processor 110 may
begin executing zeroize boot instructions 257B beginning
with a zeroize boot instruction stored at the entry address
stored at the zeroize state reset vector.
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[0046] In some examples, zeroize boot information 256
may have a third format different than the first and second
formats. In such examples, zeroize boot information 256 may
be encoded, encrypted, or otherwise formatted differently
than clear and secure boot information 252 and 254. For
example, when clear boot information 252 is in a cleartext
format, and secure boot information 254 is encrypted, zeroize
boot information 256 may be encrypted differently than
secure boot information 254 (e.g., encrypted with a different
key or by a different process), or may be compressed or
otherwise encoded by a suitable process other than encryp-
tion. In other examples, the first, second, and third formats
may be any three formats different from one another. In some
examples, all three formats may be formats other than cleart-
ext. For example, information in the first, second, and third
formats may each be encrypted, encoded, or otherwise for-
matted such that the three formats are different from one
another.

[0047] In some examples, information used by processor
110 in the zeroize state, including at least zeroize boot infor-
mation 256, for example, may be stored outside of processor
110 in the third format. In such examples, information 287
read from storage medium 250 when processor 110 is in the
zeroize state (e.g., zeroize boot information 256) may have
the third format. Accordingly, in some examples, formatting
module 225 may reformat information 287 received from
storage medium 250 from the third format to the first format,
if state value 181 indicates the zeroize state. In such
examples, formatting module 225 may have multiple format-
ting modes. For example, formatting module 225 may operate
in a first formatting mode to reformat information from the
second to the first format, if state value 181 indicates the
secure state. Additionally, formatting module 225 may oper-
ate in a second formatting mode to reformat information from
the third to the first format, if state value 181 indicates the
zeroize state. In other examples, zeroize boot instructions 256
may have the same format as clear boot instructions 252 (i.e.,
the first format). In such examples, formatting module 225
may enter a bypass mode if state value 181 indicates the
zeroize state. In some examples, vector controller 120 may
select one of the plurality of reset vectors in response to reset
request 183 in any manner described above in relation to FI1G.
1. For example, vector controller 120 may select one of the
plurality of reset vectors in response to reset request 183 by
selectively altering an address of a read request generated by
processor 110, as described above in relation to FIG. 1.

[0048] Additionally, in some examples, all information for
a given state stored outside of processor 110 may have the
same format, as described above in relation to FIG. 1. For
example, all information that may be utilized by processor
110 in the clear state may be stored outside the processor in
the same format, and all information that may be utilized by
processor 110 in the secure state may be stored outside the
processor in the same format. Additionally, in some
examples, all information (e.g., data, instructions) that may
be utilized by processor 110 in the zeroize state, including the
zeroize boot information and information and/or executable
instructions for other zeroize state applications, may be stored
outside the processor in the same format (e.g., the third for-
mat). Also, while examples are described herein in the context
of clear, secure, and zeroize states, other examples may
include additional and/or other states.

[0049] FIG. 3 is a block diagram of an example computing
device 300 to read portions of independent boot information
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from a plurality of reset vectors. As used herein, a “computing
device” may be a desktop or, notebook computer, a tablet
computer, a computer networking device (e.g., a hardware
security module), a server, or any other device or equipment
(e.g., an automated teller machine (ATM), etc.) including a
processor. In some examples, computing device 300 may be
any of the devices noted above. Computing device 300 may
include a processor 310 and a machine-readable storage
medium 350. Processor 310 may include state storage 112
and a vector controller 120, as described above in relation to
FIGS. 1 and 2. In the example of FIG. 3, processor 310 also
includes a storage control module 332, secure parameter stor-
age 334, and a security control module 340. Security control
module 340 may include an incident monitor module 342, a
record storage module 344, a zeroize module 346, and an
indication module 348. In some examples, the functionalities
of modules 332, 340, 342, 344, 346, and 348 may be imple-
mented in the form of electronic circuitry, in the form of
executable instructions encoded on a machine-readable stor-
age medium, or a combination thereof.

[0050] Insomeexamples, storage medium 350 may include
clear boot information 252 and secure boot information 254,
as described above in relation to FIG. 2. In such examples,
clear boot information 252 may have a first format and secure
boot information 254 may have a second format different than
the first format, as described above in relation to FIG. 2. In the
example of FIG. 3, storage medium may further include
zeroize boot information 356, which may be similar to
zeroize boot information 256, except that it may have the first
format rather than a third format, as described above in rela-
tion to FIG. 2. In such examples, zeroize boot data 357A and
zeroize boot instructions 357B may be the same as zeroize
boot data 257A and zeroize boot instructions 257B, respec-
tively, except stored in different formats.

[0051] Intheexample of FIG. 3, state storage 112 may store
state value 181 indicating an operating state of processor 310,
as described above in relation to FIGS. 1 and 2. The operating
states of processor 310 may include at least the clear state, the
secure state, and the zeroize state. In some examples, each of
the operating states of processor 310 may cause processor
310 to operate in a manner appropriate for different stages of
the life cycle of computing device 300. For example, during
development, testing, and/or initialization of computing
device 300 in a controlled environment, processor 310 may be
operated in the clear state in which few or no security func-
tionalities of processor 310 are permitted. In an environment
in which computing device 300 is vulnerable to security
threats, processor 310 may operate in the secure state, in
which processor 310 permits the operation of security func-
tionalities not permitted in the clear state to protect informa-
tion stored on or utilized by processor 310. In some examples,
in the secure state, processor 310 may zeroize at least one
security parameter in secure parameter storage 334 and enter
a zeroize state in response to the detection of a security
incident. In the zeroize state, processor 310 may permit diag-
nostic functionalities for investigating the security incident
that caused processor 310 to enter the zeroize state and pre-
vents the storage of security parameters in secure parameter
storage 334.

[0052] Insome examples, in response to reset request 183,
vector controller 120 may provide a read request 384 to
storage medium 350 to read a portion of clear boot informa-
tion 252 from a clear state reset vector, if state value 181
indicates the clear state. The read address of read request 384
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may be the clear state reset vector. In some examples, the
portion of clear boot information 252 read from the clear state
reset vector may be clear boot data 253 A, which may include
an entry address for clear boot instructions 253B. In such
examples, processor 110 may boot computing device 300
with clear boot instructions 253B after reading clear boot data
253A from the clear state reset vector, as described above in
relation to FIG. 2. In some examples, if state value 181 indi-
cates the secure state, vector controller 120 may, in response
to reset request 183, provide read request 386 to storage
medium 350 to read a portion of secure boot information 254
from a secure state reset vector. The read address of read
request 386 may be the secure state reset vector. In some
examples, the portion of secure boot information 252 read
from the secure state reset vector may be secure boot data
255A, which may include an entry, address for secure boot
instructions 255B. In such examples, processor 110 may boot
computing device 300 with secure boot instructions 255B
after reading secure boot data 255 A from the secure state reset
vector, as described above in relation to FIG. 2.

[0053] Additionally, in the example of FIG. 3, in response
to reset request 183, vector controller 120 may provide a read
request 388 to storage medium 250 to read a portion of
zeroize boot information 356 from a zeroize state reset vector,
if state value 181 indicates the zeroize state. The read address
of read request 388 may be the zeroize state reset vector. In
some examples, the portion of zeroize boot information 356
read from the zeroize state reset vector may be zeroize boot
data 357A, which may include an entry address for secure
boot instructions 357B. In such examples, processor 310 may
boot computing device 300 with zeroize boot instructions
3578 after reading zeroize boot data 357A from the zeroize
state reset vector, as described above in relation to zeroize
boot instructions 356 of FIG. 2. In some examples, vector
controller 120 may select one of the plurality of state-specific
reset vectors in response to reset request 183 in any manner
described above in relation to FIG. 1.

[0054] In some examples, vector controller 120 may
include formatting module 225, as described above in relation
to FIG. 2. In such examples, formatting module 225 may
reformat information 287 read from storage medium 250, as
described above in relation to FIG. 2. In some examples, as
noted above, clear and zeroize boot information 252 and 356
may have the first format, while the secure boot information
254 may have a second format different than the first format.
For example, the clear and zeroize boot information 252 and
356 may be stored in a cleartext or an otherwise unencrypted
format, while secure boot information 254 may be stored in
an encrypted format. In such examples, formatting module
225 may operate in a bypass mode if state value 181 indicates
the clear or zeroize state. In other examples, clear boot infor-
mation 252, secure boot information 254, and zeroize boot
information 356 may each be stored in a different format on
storage medium 350.

[0055] Additionally, in some examples, all information for
a given state stored outside of processor 110 may have the
same format, as described above in relation to FIGS. 1 and 2.
For example, all information that may be utilized by proces-
sor 110 in the clear state may be stored in the same format, all
information that may be utilized by processor 110 in the
secure state may be stored in the same format, and all infor-
mation that may be utilized by processor 110 in the zeroize
state may be stored in the same format.
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[0056] In the example of FIG. 3, clear boot information
252, secure boot information 254, and zeroize boot informa-
tion 356 are independent from one another. Moreover, in such
examples, clear, secure, and zeroize boot instructions 253B,
255B, and 3578 are independent from one another. In such
examples, clear boot information 252, secure boot informa-
tion 254, and zeroize boot information 356 each include a full
set of boot data and instructions that may be used to boot
computing device 300. In some examples, each of clear boot
information 252, secure boot information 254, and zeroize
boot information 356 is sufficient for performing a cold boot
of computing device 300 (i.e., to boot computing device 300
from an off state after power is applied). In some examples,
each of clear, secure, and zeroize boot instructions 253B,
255B, and 357B may include instructions for testing and/or
configuring components and/or functionalities of computing
device 300, and for otherwise preparing computing device
300 to operate in accordance with a current operating state of
processor 310, as indicated by state value 181.

[0057] In the example of FIG. 3, processor 310 includes
secure parameter storage 334 and a storage control module
332. In some examples, secure parameter storage 334 may
store at least one security parameter for processor 310. As
used herein, a “security parameter” is information used by a
computing device for cryptography, authentication, or any
other security functionality of the computing device. Some
examples of security parameters may include, for example,
cryptographic keys, initialization vectors, personal identifi-
cation numbers (PINs), public exponents for cryptography,
and the like. In the example of FIG. 3, secure parameter
storage 334 is storage in which processor 310 may store
security parameters for use by processor 310.

[0058] Insome examples, storage control module 332 may
control interaction with secure parameter storage 334 in
accordance with the operating state of processor 310. In the
example of FIG. 3, storage control module 332 may permit
processor 310 to write security parameters to secure param-
eter storage 334 based on state value 181. In some examples,
storage control module 332 may permit information, such as
security parameters, to be written to secure parameter storage
334 if state value 181 indicates the clear state or the secure
state. In such examples, in the clear and secure states, proces-
sor 310 may allow a host device, external to processor 310 and
computing device 300, to write a security parameter 385 to
secure parameter storage 334.

[0059] Additionally, in some examples, storage control
module 332 may prevent information, such as security
parameters, from being written to secure parameter storage
334 if state value 181 indicates the zeroize state. For example,
storage control module 332 may detect an operation to write
to secure parameter storage 334. If state value 181 indicates
the clear or secure state, storage control module 332 may take
no action to prevent the write operation. If state value 181
indicates the zeroize state, storage control module 332 may
prevent the write operation by, for example, preventing a
write control signal from being asserted or by causing a
processor exception to prevent the write operation.

[0060] Insome examples, security control module 340 may
control the response of processor 310 to a security incident
based on the operating state of processor 310. In the example
of FIG. 3, security control module includes an incident moni-
tor module 342 that may monitor processor 310 for security
incidents. As used herein, a “security incident” is an event
affecting or otherwise related to a computing device or a
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component thereof that may, alone or in combination with at
least one other event, increase the vulnerability of informa-
tion stored on the computing device. For example, a security
incident may be a change in a condition or configuration of a
computing device or receipt of any signal by the computing
device that may, alone or in combination with at least one
other change or signal, increase the vulnerability of informa-
tion stored on the computing device. For example, incident
monitor module 342 may monitor processor 310 and/or com-
puting device 300 for security incidents. In some examples,
incident monitor module 342 may detect a security incident
upon determining that an actual or attempted physical tam-
pering with or probing of processor 310 has occurred, upon
determining that a signal received by processor 310 is part of
anattack (e.g., is a forged signal, a replayed signal, etc.), upon
receiving a signal indicating the occurrence of a security
incident from another incident monitor external to processor
310, and the like.

[0061] In the example of FIG. 3, in response to incident
monitor module 342 detecting a security incident, zeroize
module 346 may zeroize at least one security parameter
stored in secure parameter storage 334 if state value 181
indicates the secure state. As used herein, “zeroization” of
information includes at least one of erasing and overwriting
the information at least once. Zeroization module 346 may
erase and/or overwrite some or all of the contents of secure
parameter storage 334. In some examples, to zeroize security
parameters, Zeroization module 346 may overwrite each bit
of'the security parameters multiple times. For example, mod-
ule 346 may overwrite each bit of the security parameters
with a first logic value (e.g., 0), then with a second logic value
(e.g., 1), and then overwrite the security parameters with a
combination of logic 1’s and logic 0’s. Also, in some
examples, module 346 may erase security parameters and
then take further actions to prevent the recovery of the erased
parameters, such as overwriting the erased parameters at least
once, to complete the zeroization of the security parameters.
In addition to zeroizing storage 334, record storage module
344 may also store an incident record, as described above in
relation to the clear state, if state value 181 indicates the
secure state.

[0062] If state value 181 indicates the clear state, then
record storage module 344 may store an incident record in
response to incident monitor module 342 detecting a security
incident. In such examples, record storage module 344 may
store the incident record in record storage on or external to
processor 310. The incident record may include details of the
security incident, such as the date, time, event that triggered
the detection of the security incident, and any other details
that may be used to diagnose, study or further determine the
cause of the security incident. Additionally, security control
module 340 may prevent zeroize module 346 from zeroizing
of any parameter of secure parameter storage 334 if state
value 181 indicates the clear state. In this manner, processor
310 may be tested in the clear state without zeroizing secure
parameter storage 334, which may also be written with secu-
rity parameters as part of an initialization process in the clear
state. In such examples, the ability of incident monitor mod-
ule 342 to detect security incidents may be tested without
zeroize module 346 zeroizing secure parameter storage 334
upon detecting a security incident.

[0063] Ifstate value 181 indicates the zeroize state, then, in
response to incident monitor module 342 detecting a security
incident, indication module 348 may indicate the occurrence
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of'the security incident. In some examples, indication module
348 may output at least one of an auditory indication, visual
indication, or other indication to a user of computing device
300 via an output device (e.g., display, speaker, etc.) of com-
puting device 300 to indicate the occurrence of the security
incident. Additionally, in some examples, security control
module 340 may prevent record storage module 344 from
recording any incident records if state value 181 indicates the
zeroize state. In this manner, security control module 340
may alert a user to the detection of a security incident while
preventing record storage module 344 from overwriting an
incident record documenting the security incident that caused
processor 310 to enter the zeroize state.

[0064] As noted above, each of the operating states of pro-
cessor 310 may cause processor 310 to operate in a manner
appropriate for a different stage of the life cycle of computing
device 300. For example, as described above in relation to
FIG. 3, the operating state of processor 310 may dictate
whether processor 310 permits writing to secure parameter
storage 334, whether processor 310 permits reformatting of
information read from outside of processor 310, and/or what
action to take in response to detecting a security incident. In
some examples, the clear state may dictate that processor 310
permit writing to secure parameter storage 334 and storing
incident records in response to detecting security incidents.
Additionally, in the clear state, processor 310 may prevent
certain security functionalities of processor 310, such as
reformatting information read from or written to storage
external to processor 310 with reformatting module 225.

[0065] Additionally, in some examples, the secure state
may dictate that processor 310 permit certain security func-
tionalities prevented in the clear state. For example, the secure
state may dictate that processor 310 reformat all information
read from or written to external storage and at least partially
zeroize secure parameter storage 334 in response to detecting
a security incident. The secure state may also permit writing
information to secure parameter storage. Moreover, in some
examples, the zeroize state may dictate that processor 310
prevent writing to secure parameter storage 334 and output an
indication in response to detecting a security incident rather
than storing an incident record. As such, the clear, secure, and
zeroize states may each cause processor 310 to operate in a
manner appropriate to a different portion of the life cycle of
computing device 300. Also, while examples are described
herein in the context of clear, secure, and zeroize states, other
examples may include additional and/or other states.

[0066] FIG. 4A is a block diagram of an example comput-
ing device 300 comprising an address selector 326 to set
region selection bits based on a state value 181. As described
above in relation to FIG. 3, computing device 300 may
include a processor 310, and machine-readable storage
medium 350. Inthe example of FIG. 4A, vector controller 120
includes an address selector 326, in addition to core module
222 described above in relation to FIG. 2. Vector controller
120 may also include formatting module 225 described above
in relation to FIG. 2. In the example of FIG. 4A, core module
222 includes interrupt handler 324, and address selector
includes region determining module 328 and selection bits
determining module 329. In some examples, the functional-
ities of interrupt handler 324, address selector 326, and mod-
ules 328 and 329 may each be implemented in the form of
electronic circuitry, in the form of executable instructions
encoded on a machine-readable storage medium, or a com-
bination thereof. Additionally, in some examples, the vector
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controllers of the examples of FIGS. 1-3 may each include the
functionalities of vector controller 120 described herein in
relation to FIG. 4A.

[0067] In the example of FIG. 4A, storage medium 350
includes a reset region 360 comprising a clear region 362, a
secure region 364, and a zeroize region 366. In some
examples, reset region 360 is an address range within storage
medium, and each of clear, secure, and zeroize regions 362,
364, and 366 is an address range within reset region 360. In
the example of FIG. 4A, clear region 362 may include at least
a portion of clear boot information 252, secure region 364
may include at least a portion of secure boot information 254,
and zeroize region may include at least a portion of zeroize
boot information 356. In some examples, the clear, secure,
and zeroize regions 362, 364, and 366 may include clear boot
data 253 A, secure boot data 255A, and zeroize boot data
357A, respectively. In such examples, the clear boot data
253A may be an entry address for clear boot instructions
253B, the secure boot data 255A may be an entry address for
secure boot instructions 255B, and the zeroize boot data 357A
may be an entry address for zeroize boot instructions 357B.
[0068] In the example of FIG. 4A, in response to a reset
request 183, vector controller 120 may provide to storage
medium 350 a read operation 392 to read from one of a
plurality of reset vectors based on state value 181. In some
examples, read operation 392 may include a portion of an
address on a first bus section 372, read control signal 376, and
region selection bits 394. In the examples described above in
relation to FIGS. 1-3, reset vector read requests output by
vector controller 120 may each be similar to read operation
392.

[0069] In some examples, interrupt handler 324 may
receive reset request 183 and, in response, may provide a
memory access address 375 on an address bus 370 of proces-
sor 310 as part of a read operation. In some examples, the read
operation may be a request to read from a default reset vector
of'interrupt handler 324, and memory access address 375 may
be the address of the default reset vector. The read operation
may include memory access address 375 and a read control
signal 376 to indicate a read operation to storage medium 350.
In some examples, address bus 370 may have first and second
bus sections 372 and 374, which may provide first and second
portions of an address on address bus 370, respectively, to
address selector 326. In such examples, first bus section 372
includes less than all of an address on bus 370, and second bus
section 374 includes at least one bit of the address. Address
bus 370 may provide the first portion of an address on address
bus 370 to storage medium 350 via first bus section 372.
[0070] Intheexampleof FIG. 4A, address selector 326 may
receive memory access address 375 from interrupt handler
324 via address bus 370. In some examples, address selector
326 may receive a first portion of memory access address 375
via first bus section 372 and receive a second portion of
address 375 via second bus section 374. In the example of
FIG. 4A, region determining module 328 may determine
whether memory access address 375 refers to reset region 360
of storage 350. For example, module 328 may determine
whether the address 375 is an address within the address
range of resetregion 360. In some examples, module 328 may
determine whether memory access address 375 refers to reset
region 360 from the first portion of address 375, received via
first bus section 372.

[0071] In some examples, if module 328 determines from
the first portion of address 375 that address 375 refers to reset
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region 360, then selection bits determining module 329 may
set region selection bits 394 based on state value 181. In such
examples, address selector 326 may provide the region selec-
tion bits 394 to storage medium 350 in place of the second
portion of the memory access address output by interrupt
handler 324. In this manner, address selector 326 may sub-
stitute region selection bits 394 for the second portion of
address 372 it address 375 refers to reset region 360, in order
to redirect the read request to a reset vector associated with
state value 181 (i.e., the operating state of processor 310). If
module 328 determines from the first portion of address 375
that address 375 does not refer to reset region 360, then
module 329 may set region selection bits 394 equal to the
second portion of address 375 received via second bus section
374.Inthis manner, storage medium 350 may receive the read
request output by interrupt hander 324 if address 375 does not
refer to reset region 360.

[0072] In the example of FIG. 4A, if memory access
address 375 refers to reset region 360, then region selection
bits 394 may distinguish between addresses within reset
region 360. For example, region selection bits 394, set based
on state value 181, may distinguish among addresses in at
least clear region 362, secure region 364, and zeroize region
366. In such examples, the first portion of address 375
together with region selection bits 394, set based on state
value 181, may form an address in one of clear region 362,
secure region 364, and zeroize region 366. In some examples,
the address formed may point to one of a portion of clear boot
information 252 stored in clear region 362, a portion of secure
boot information 254 stored in secure region 364, and a por-
tion of zeroize boot information 356 stored in zeroize region
366.

[0073] FIG. 48 is a block diagram of an example address
selector 326 to set region selection bits 394 based on a state
value 181. The example of FIG. 48 will be described herein in
the context of a computing device architecture having a byte-
addressed memory and using 32-bit addresses. However,
examples described herein may be utilized in the context of
other architectures as well. In the example of FIG. 48, address
bus 370 may be a 32-bit address bus to communicate a 32-bit
address including address bits A0-A31. In some examples,
first bus section 372 may communicate address bits A0, A1,
and A4-A31, and second bus section 374 may communicate
address bits A2 and A3.

[0074] In some examples, a default reset vector of a pro-
cessor (e.g., of an interrupt handler of the processor) may be
an address pointing to the beginning of a last word (e.g., a last
4 bytes) of addressable memory. For example, the default
reset vector may be the hexadecimal address OXxFFFF FFFC,
which points to the first of 4 sequentially stored bytes of
memory that form the last word of addressable memory. Inthe
example of FIG. 4B, reset region 360 may include hexadeci-
mal addresses OXFFFF FFFO through OxFFFF FFFF, which
includes the default reset vector.

[0075] Insome examples, the clear reset vector may be the
address OxFFFF FFFC, the secure reset vector may be the
address OxFFFF FFF8, and the zeroize reset vector may be the
address OxFFFF FFF4. In such examples, reading informa-
tion from one of these reset vector may include reading 4
sequentially stored bytes beginning at the address of the reset
vector. Additionally, in such examples, as the clear reset vec-
tor may be the same address as the default reset vector, and the
4 bytes beginning at OXFFFF FFF0 may be unused.
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[0076] Inthe example of FIG. 4B, addresses in reset region
360 have the common characteristic that address bits A4-A31
are all logic 1 for addresses in reset region 360. In such
examples, region determining module 328 may determine
that a memory access address 375 on address bus 370 refers to
reset region 360 if each of address bits A4-A31 is alogic 1. In
some examples, module 328 may include an AND gate 432 to
perform an AND operation on address bits Ad4-A31 of first bus
section 372 to determine whether memory access address 375
refers to reset region 360. In some examples, address bits
A4-A31 may be a portion of the first portion of address 375
described above in relation to FIG. 4A. If each of bits A4-A31
is alogic 1, then AND gate 432 may output a logic 1 as region
signal 435, indicating that address 375 refers to reset region
360. Ifany of bits A4-A31 is not a logic 1, then AND gate 432
may output a logic 0 as region signal 435, indicating that
address 375 does not refer to reset region 360.

[0077] Insome examples, selection bits determining mod-
ule 329 may include a multiplexer 438 and two inverters 434
and 436. In such examples, multiplexer 438 may receive
region signal 435, address bits A2 and A3 of second bus
section 374, and the respective outputs of inverters 434 and
436. Multiplexer 438 may output region selection bits 394. In
some examples, multiplexer 438 may set region selection bits
394 based on address bits A2 and A3 if region signal 435 is a
logic 0, indicating that address 375 does not refer to reset
region 360. In such examples, multiplexer 438 may output
address bits A2 and A3 to storage medium 350 (of FIG. 4A) as
region selection bits 394, if region signal 435 is a logic 0. In
this manner, storage medium 350 receives the original
address 375 placed on address bus 370 (e.g., by interrupt
handler 324 of FIG. 4A), if address 375 is not within reset
region 360.

[0078] In some examples, multiplexer 438 may set region
selection bits 394 based state value 181, if region signal 435
is a logic 1, indicating that memory access address 375 refers
to reset region 360. In some examples, state value 181 is
stored as one or more bits in state storage 112 (of FIG. 4A),
depending upon the number of possible state values. In the
example of FIG. 4B, the three possible values of state value
181 (e.g., clear, secure, and zeroize) may be represented by
two state bits 481 A and 481B stored in state storage 112. In
other examples, each state may have its own bit and module
329 may include logic to encode the individual bits into state
bits such as state bits 481A and 481B.

[0079] Inthe example of FIG. 4B, a state value 181 of “00”
may indicate the clear state, with state bits 481B and 481A
both being a logic 0. A state value 181 of “01” may indicate
the secure state, with state bit 481B being logic 0 and state bit
481A being logic 1, and a state value 181 of “10” may indicate
the zeroize state, with state bit481B being logic 1 and state bit
481A being logic 0. In such examples, inverters 434 and 436
may provide inverted values of state bits 481B and 481A to
multiplexer 438. In some examples, if region signal 435 is a
logic 1, multiplexer 438 may set region selection bits 394 to
be the values output by inverters 434 and 436 to thereby
substitute these bits for address bits A3 and A2, respectively.
[0080] Insuchexamples, when state value 181 indicates the
clear state, multiplexer 438 may output “11” as region selec-
tion bits 394, to cause vector controller 120 (of FIG. 4A) to
read from a clear reset vector, which is address OXFFFF
FFFC. When state value 181 indicates the secure state, mul-
tiplexer 438 may output “10” as region selection bits 394, to
cause vector controller 120 (of FIG. 4A) to read from a secure
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reset vector, which is address OXFFFF FFF8. When state
value 181 indicates the zeroize state, multiplexer 438 may
output “01” as region selection bits 394, to cause vector
controller 120 (of FI1G. 4A) to read from a zeroize reset vector,
which is address OxFFFF FFF4.

[0081] In this manner, address selector 326 may detect a
read operation having a read address referring to reset region
360, such as a request to read a default reset vector, and
redirect the read request to a state-specific reset vector based
on state value 181. Additionally, address selector 326 may
allow addresses not referring to reset region 360 to be pro-
vided to storage medium 350 (of FIG. 4A) without redirection
when the initial read address does not refer to reset region
360. In such examples, a reset vector for a state other than the
current state cannot be accessed since address selector 326
may redirect read requests for the reset region to the reset
vector of the current state.

[0082] In the example of FIG. 4B, the assignment of state
bits 481 A and 481B and the use of inverters 434 and 436 allow
the clear state to have a value of “00” while also allowing the
clear state reset vector to have the same address as a default
reset vector (e.g., OxFFFF FFFC). However, in other
examples, different assignments of state bit values to operat-
ing states may be used, and/or inverters 434 and 436 may be
omitted.

[0083] Additionally, in other examples, address selector
326 may be used to substitute region selection bits for difter-
ent address bits. For example, second bus section 374 may
include address bits A12 and A13, while first bus section 372
includes the remaining address bits. In such examples, reset
region 360 may be the last 16 kilobytes (KB) of storage
medium 350, with each of the three operating states having a
full 4 KB block assigned to it (with one 4 KB block being
unused). Such examples may be implemented in a manner
similar to the example illustrated in FIG. 4B, except that AND
gate 432 may perform the AND operation on address bits
A14-A31, and region selection bits 394 may be substituted
for address bits A12 and A13 to select among the 4 KB blocks
of reset region 360. In such examples, reset region 360 may
include a 4 KB clear region 362, a 4 KB secure region 352,
and a 4 KB zeroize region 366. In such examples, clear region
362 may include up to 4 KB of clear boot information 252,
secure region 352 may include up to 4 KB of secure boot
information 254, and zeroize region 366 may include up to 4
KB of zeroize boot information 356. In such examples, a 4
KB block for a state other than the current state cannot be
accessed since address selector 326 may redirect read
requests for the reset region to the 4 KB block of the current
state.

[0084] In other examples, a different computing device
architecture may be utilized. For example, examples
described herein may be implemented with a word-addressed
memory using 20-bit addresses. In such examples, a vector
controller may use an address selector similar to address
selector 326 of FIG. 4B, except that AND gate 432 may
perform the AND operation on address bits A2-A19, and
module 329 may substitute region selection bits 394 for
address bits A0 and Al.

[0085] FIG. 5 is a flowchart of an example method 500 for
booting a computing device with different boot information
based on a state value. Although execution of method 500 is
described below with reference to processor 110 of FIG. 1,
other suitable components for execution of method 500 can
be utilized (e.g., computing device 300). Additionally,
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method 500 may be implemented by logic on a processor,
regardless of how the logic on the processor is implemented.
[0086] At 505 of method 500, vector controller 120 of
processor 110 may receive a state value 181 from state storage
112. In some examples, state value may indicate one of a
plurality of operating states of processor 110. For example,
the operating states may include a clear state associated with
a clear state reset vector pointing to clear boot information, a
secure state associated with a secure state reset vector point-
ing to secure boot information, and a zeroize state associated
with a zeroize state reset vector pointing to zeroize boot
information. In some examples, the secure boot information
may have a different format than the clear boot information,
as described above in relation to FIGS. 1-3. Additionally, in
some examples, the clear boot information, the secure boot
information, and the zeroize boot information may be inde-
pendent from one another.

[0087] At 510 of method 500, vector controller 120 may
receive reset request 183. In the example of FI1G. 5, processor
110 may, in response to reset request 183, boot a computing
device including processor 110 based on state value 181 and
information stored at a reset vector associated with state value
181. In such examples, in response to reset request 183,
processor 110 may determine at 515 whether state value 181
indicates the clear state. If so, method 500 may proceed to
520. Ifnot, processor 110 may determine at 525 whether state
value 181 indicates the secure state. If so, method 500 may
proceed to 530. If not, processor 110 may determine at 535
whether state value 181 indicates the zeroize state. If so,
method 500 may proceed to 540. If not, method 500 may
return to 515. In other examples, method 500 may determine
which the state indicated by state value 181 in a different
order.

[0088] At 520 of method 500, processor 110 may boot the
computing device including processor 110 based on state
value 181 indicating the clear state and based on information
stored at the reset vector associated with state value 181. As
used herein, a given reset vector is “associated with” a given
operating state of a processor if the processor is to read from
the given reset vector in response to a reset vector when it is
in the given operating state. In some examples, processor 110
is to read from a clear state reset vector when state value 181
indicates the clear state. In such examples, at 520, processor
110 may boot the computing device based on a portion of
clear boot information (e.g. clear boot data) stored at the clear
state reset vector, as described above in relation to FIGS. 1-3.
In this manner, processor 110 may boot the computing device
based on the clear boot information.

[0089] At 530 of method 500, processor 110 may boot the
computing device based on state value 181 indicating the
secure state and based on information stored at a secure state
reset vector associated with the secure state value. In such
examples, at 530, processor 110 may boot the computing
device based on a portion of secure boot information (e.g.,
secure boot data) stored at the secure state reset vector, as
described above in relation to FIGS. 1-3. In this manner,
processor 110 may boot the computing device based on the
secure boot information. At 540 of method 500, processor
110 may boot the computing device based on state value 181
indicating the zeroize state and based on information stored at
a zeroize state reset vector associated with the zeroize state
value. In such examples, at 540, processor 110 may boot the
computing device based on a portion of zeroize boot infor-
mation (e.g., Zeroize boot data) stored at the zeroize state reset
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vector, as described above in relation to FIGS. 2-3. In this
manner, processor 110 may boot the computing device based
on the zeroize boot information.

[0090] FIG. 6 is a flowchart of an example method 600 for
booting a computing device with one of a plurality of sets of
boot information stored in different formats based on a state
value. Although execution of method 600 is described below
with reference to processor 110 of FIG. 1, other suitable
components for execution of method 600 can be utilized (e.g.,
computing device 300). Additionally, method 600 may be
implemented by logic on a processor, regardless of how the
logic on the processor is implemented.

[0091] At 605 of method 600, vector controller 120 of
processor 110 may receive a state value 181 from state storage
112. In some examples, state value may indicate a clear state
associated with a clear state reset vector pointing to clear boot
information, a secure state associated with a secure state reset
vector pointing to secure boot information, or a zeroize state
associated with a zeroize state reset vector pointing to zeroize
boot information. In the example of FIG. 6, the clear boot
information may be stored in a first format, the secure boot
information may be stored in a second format different than
the first format, and the zeroize boot information may be
stored in a third format different than the first and second
formats. In some examples, none of the first, second, and third
formats is a format of information that processor 110 may
operate on without first reformatting the information. For
example, each of the first, second, and third formats may be an
encoded or otherwise encrypted format, and not a cleartext
format. Additionally, in some examples, the clear boot infor-
mation, the secure boot information, and the zeroize boot
information may be independent from one another.

[0092] At 610 of method 600, vector controller 120 may
receive reset request 183. In the example of FIG. 6, processor
110 may, in response to reset request 183, boot a computing
device including processor 110 based on state value 181 and
information stored at a reset vector associated with the state
value 181. In such examples, in response to reset request 183,
processor 110 may determine at 615 whether state value 181
indicates the clear state. If so, method 600 may proceed to
620. If not, processor 110 may determine at 635 whether state
value 181 indicates the secure state. If so, method 600 may
proceed to 640. If not, processor 110 may determine at 650
whether state value 181 indicates the zeroize state. If so,
method 600 may proceed to 655. If not, method 600 may
return to 615. In other examples, method 600 may determine
which the state indicated by state value 181 in a different
order.

[0093] At 620 of method 600, processor 110 may boot the
computing device based on state value 181 indicating the
clear state and based on information stored at a clear state
reset vector associated with the clear state value. In such
examples, at 620, processor 110 may boot the computing
device based on a portion of clear boot information (e.g., clear
boot data) stored at the clear state reset vector, as described
above in relation to FIGS. 1-3. In this manner, processor 110
may boot the computing device with the clear boot informa-
tion. Additionally, at 620, booting the computing device with
the clear boot information may include reformatting the clear
boot information from the first format to a cleartext format
with, for example, a formatting module of vector controller
120, as described above in relation to FIG. 2. After booting
with the clear boot information, method 600 may proceed to
625, where processor 110 may receive a security parameter.
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After receiving the security parameter, method 600 may pro-
ceed to 630, where processor 110 may store the security
parameter in a secure parameter storage of processor 110, as
described above in relation to FIG. 3.

[0094] At 640 of method 600, processor 110 may boot the
computing device based on state value 181 indicating the
secure state and based on information stored at a secure state
reset vector associated with the secure state value. In such
examples, at 640, processor 110 may boot the computing
device based on a portion of secure boot information (e.g.,
secure boot data) stored at the secure state reset vector, as
described above in relation to FIGS. 1-3. In this manner,
processor 110 may boot the computing device with the secure
boot information. Additionally, at 640, booting the comput-
ing device with the secure boot information may include
reformatting the secure boot information from the second
format to a cleartext format with a formatting module of
vector controller 120, as described above in relation to FIG. 2.
[0095] After booting with the secure boot information,
method 600 may proceed to 645, where processor 110 may
zeroize the security parameter stored in the secure parameter
storage of processor 110 in response to a security incident. In
some examples, processor 110 may monitor processor 110
and/or the computing device including processor 110 for
security incidents, as described above in relation to FIG. 3. In
response to detecting a security incident, processor 110 may
zeroize at least one security parameter stored in secure param-
eter storage of processor 110 at 645.

[0096] At 655 of method 600, processor 110 may boot the
computing device based on state value 181 indicating the
zeroize state and based on information stored at a zeroize state
reset vector associated with the zeroize state value. In such
examples, at 655, processor 110 may boot the computing
device based on a portion of zeroize boot information (e.g.,
zeroize boot data) stored at the zeroize state reset vector, as
described above in relation to FIGS. 2-3. In this manner,
processor 110 may boot the computing device with the
zeroize boot information. Additionally, at 655, booting the
computing device with the zeroize boot information may
include reformatting the zeroize boot information from the
third format to a cleartext format with a formatting module of
vector controller 120, as described above in relation to FIG. 2.
[0097] After booting with the zeroize boot information,
method 600 may proceed to 660, where processor 110 may
perform at least one fault diagnostic operation. In some
examples the operation may be performed to investigate a
security incident that caused processor 110 to enter the
zeroize state. In such examples, the operation may include
analyzing and/or outputting at least one incident record stored
in record storage by processor 110 when processor 110 was in
the clear or secure state. In some examples, the operation may
be implemented in the form of executable instructions
encoded on a machine-readable storage medium, in the form
of electronic circuitry, or a combination thereof.

What is claimed is:

1. A processor comprising:

state storage to store a state value indicating an operating
state of the processor; and

a vector controller to:

read, from a clear state reset vector, a portion of clear
boot information having a first format in response to a
reset request, if the state value indicates a clear state;
and
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read, from a secure state reset vector, a portion of secure
boot information having a second format in response
to the reset request, if the state value indicates a secure
state, wherein the first and second formats are differ-
ent.

2. The processor of claim 1, wherein the clear boot infor-
mation includes clear boot instructions of the first format, the
secure boot information includes secure boot instructions of
the second format, and wherein the vector controller com-
prises:

a core module to operate on information having the first

format; and
a formatting module to:
receive information from a storage medium;
reformat the received information to the first format, if
the state value indicates the secure state;

reformat information to be written to the storage
medium from the first format to the second format, if
the state value indicates the secure state; and

output the received information in the format in which it
was received, if the state value indicates the clear
state.

3. The processor of claim 2, wherein:

the first format is an unencrypted format;

the second format is an encrypted format; and

the formatting module further comprises:
an encryption module to decrypt the received informa-

tion, if the state value indicates the secure state.

4. The processor of claim 2, wherein the vector controller is
further to:

read, from a zeroize state reset vector, a portion of zeroize
boot information in response to the reset request, if the
state value indicates a zeroize state, wherein the zeroize
boot information includes zeroize boot instructions.

5. The processor of claim 4, wherein:

the zeroize boot information has a third format different
from the first and second formats;

the formatting module is further to reformat the received
information from the third format to the first format, if
the state value indicates the zeroize state; and

the secure boot information includes validation data.

6. A computing device comprising:

a processor comprising:
state storage to store a state value indicating an operating

state of the processor; and

a vector controller to:

read, from a clear state reset vector, a portion of clear
boot information in response to a reset request, if
the state value indicates a clear state;

read, from a secure state reset vector, a portion of
secure boot information in response to the reset
request, if the state value indicates a secure state;
and

read, from a zeroize state reset vector, a portion of
zeroize boot information in response to the reset
request, if the state value indicates a zeroize state,
wherein the clear boot information, the secure boot
information, and the zeroize boot information are
each independent from one another.

7. The computing device of claim 6, further comprising:

a machine-readable storage medium encoded with instruc-
tions executable by the processor, the storage medium
comprising the clear boot information including clear
boot instructions, the secure boot information including
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secure boot instructions, and zeroize boot information
including zeroize boot instructions; and
wherein the processor further comprises:
a storage control module to:
prevent information from being written to the secure
parameter storage, if the state value indicates the
zeroize state; and
permit information to be written to the secure param-
eter storage, if the state value indicates the clear
state or the secure state.
8. The computing device of claim 7, wherein the processor
further comprises:
a security control module to:
monitor the processor for security incidents;
store an incident record in response to detecting a secu-
rity incident, if the state value indicates the clear state;
zeroize the secure parameter storage in response to
detecting the security incident, if the state value indi-
cates the secure state; and
indicate the occurrence of the security incident in
response to detecting the security incident, if the state
value indicates the zeroize state.
9. The computing device of claim 6, wherein:
the clear and zeroize boot information has a first format;
the secure boot information has a second format different
than the first format; and
the processor comprises a formatting module to reformat
the read information from the second format to the first
format, if the state value indicates the secure state.
10. The computing device of claim 6, further comprising:
an address bus to:
provide a memory access address having first and sec-
ond portions to an address selector of the vector con-
troller; and
provide the first portion of the memory access address to
the storage medium;
wherein the address selector is to:
receive the memory access address; and
provide, to the storage medium, region selection bits, set
based on the state value, as the second portion of the
memory access address, if the memory access address
refers to a reset region of the storage medium.
11. The computing device of claim 10, wherein:
the vector controller further comprises:
an interrupt handler to provide the memory access
address on the address bus as part of a read operation
in response to the reset request; and
the address selector comprises:
aregion determining module to perform an AND opera-
tion on at least a portion of the first portion of the
memory access address to determine whether the
memory access address refers to the reset region; and
amultiplexer to set the region selection bits based on the
state value, if the region determining module indi-
cates that the memory access address refers to the
reset region.
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12. The computing device of claim 11, wherein:

the reset region of the storage medium comprises a clear
region including at least the portion of clear boot infor-
mation, a secure region including at least the portion of
the secure boot information, and a zeroize region includ-
ing at least the portion of the zeroize boot information;
and

wherein the region selection bits distinguish among
addresses in at least the clear region, the secure region,
and the zeroize region, if the first portion of the memory
access address refers to the reset region.

13. A method comprising:

receiving, from state storage, a state value indicating one of
a plurality of operating states of a processor, the operat-
ing states including a clear state associated with a clear
state reset vector pointing to clear boot information, a
secure state associated with a secure state reset vector
pointing to secure boot information having a different
format than the clear boot information, and a zeroize
state associated with a zeroize state reset vector pointing
to zeroize boot information; and

booting, in response to a reset request, a computing device
including the processor with the clear, secure, or zeroize
boot information based on the state value and informa-
tion stored at the reset vector associated with the state
value, wherein the clear boot information, the secure
boot information, and the zeroize boot information are
independent from one another.

14. The method of claim 13, further comprising:

receiving a security parameter with the processor, if the
computing device is booted with the clear boot informa-
tion;

storing the received security parameter in parameter stor-
age of the processor, if the computing device is booted
with the clear boot information;

zeroizing the security parameter in the parameter storage in
response to a security incident, if the computing device
is booted with the secure boot information;

performing a fault diagnostic operation, if the computing
device is booted with the zeroize boot information.

15. The method of claim 13, wherein:

booting the computing device with the clear boot informa-
tion comprises reformatting the clear boot information
from a first format to a cleartext format;

booting the computing device with the secure boot instruc-
tions comprises reformatting the secure boot informa-
tion from a second format to a cleartext format, wherein
the first and second formats are different; and

booting the computing device with the zeroize boot infor-
mation comprises reformatting the zeroize boot infor-
mation from a third format to a cleartext format, wherein
the third format is different than the first and second
formats.



