wo 20097105179 A1 |]I} OO OO0 R O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 1M1 0000 0.0 001 00O 0
ernational Bureau S,/ ‘) |
. . . ME' (10) International Publication Number
(43) International Publication Date \,!:,: #
27 August 2009 (27.08.2009) WO 2009/105179 A1

(51) International Patent Classification: (74) Agent: GOLDHUSH, Douglas, H.; Squire, Sanders &

GO6F 9/44 (2006.01) GO6F 15/16 (2006.01) Dempsey L.L.P., 8000 Towers Crescent Dr., 14th Floor,

i A 22182-6212 .

(21) International Application Number: Vienna, V. (Us)
PCT/US2009/000967 (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
17 February 2009 (17.02.2009) CA., CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
(25) Filing Language: Enghsh EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
12/032,827 18 February 2008 (18.02.2008) US NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
(71) Applicant (for all designated States except US): RPATH, UG, US, UZ, VC, VN, ZA, ZM, ZW.

INC. [US/US]; 701 Corporate Center Drive, Suite 450, . L
Raleigh, North Carolina 27607 (US). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventor; and GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(75) Inventor/Applicant (for US only): TROAN, Erik ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
[US/US]; 707 Evanvale Court, Cary, North Carolina TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
27518 (US). ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: METHODS, SYSTEMS, AND COMPUTER PROGRAM PRODUCTS FOR UPDATING SOFTWARE ON A DATA
PROCESSING SYSTEM BASED ON TRANSITION RULES BETWEEN CLASSES OF COMPATIBLE VERSIONS

(57) Abstract: Software is updated by detining a plurality
i) of compatibility classes for software versions, generating
File repository File repository rules for transitions between ones of the plurality of com-

140 150 patibility classes, and updating software from a first one
of the software versions to a second one of the software
versions based on the rules.

WO 2009/105179 A1 W00 0T 0 OO

MC, MK, MT, NL, NO, PL, PT, RO, SE, SL, SK, TR), __
OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

Published:

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

WO 2009/105179 PCT/US2009/000967

METHODS, SYSTEMS, AND COMPUTER PROGRAM PRODUCTS FOR UPDATING
SOFTWARE ON A DATA PROCESSING SYSTEM BASED ON TRANSITION RULES
BETWEEN CLASSES OF COMPATIBLE VERSIONS

BACKGROUND OF THE INVENTION

[0001] The present invention relates to data processing methods, systems, and
computer program products, and, more particularly, to data processing methods, systems, and
computer program products for updating software on a data processing system.

[0002] A technique known as software versioning is often used to keep track of
different instances of a software product. For example, a software provider may assign
different release names or numbers to a particular software product to identify the sequence
and content of the different versions of the product. While a software product is being
developed, the developers may assign version numbers to the product at various stages of
development to mark, for example, milestones where significant changes in content or
functionality have been added to the product. The version labeling or numbering system may
be relatively simple and only identify major milestones in functionality or content or may be
more complex and use multiple fields to identify more substantial changes in content along
with more minor changes, such as the addition of minor features, patches, etc.

[0003] A software developer or customer may desire to transition from one software
version to another. Conventional software management and/or development systems
generally rely on versioning information to determine how to transition from one software
version to another. Unfortunately, conventional versioning systems generally do not provide
sufficient rules for transitioning between software versions, particularly where there may be
numerous versions of a software product publicly available with a vériety of paths that may

be used for transitioning between the available versions.

WO 2009/105179 PCT/US2009/000967

BRIEF SUMMARY OF THE INVENTION

[0004] According to some embodiments of the present invention, software may be
updated by defining a plurality of compatibility classes for software versions, generating rules
for transitions between ones of the plurality of compatibility classes, and updating software
from a first one of the software versions to a second one of the software versions based on the
rules.

[0005] In other embodiments, the first one of the software versions is in a first one of
the plurality of compatibility classes and the second one of the software versions is in a
second one of the compatibility classes. The rules include at least one rule that disallows a
transition from the second one of the plurality of compatibility classes to the first one of the
plurality of compatibility classes.

[0006] In further embodiments, the first one of the software versions is in a first one
of the plurality of compatibility classes and the second one of the software versions is in a
second one of the compatibility classes. Updating the software includes updating the
software from the first one of the software versions to the second one of the software versions
based on at least a first one of the rules for transitioning directly from the first one of the
plurality of compatibility classes to the second one of the plurality of compatibility classes.

[0007] In still further embodiments, the rules include a second one of the rules that
disallows a transition directly from the second one of the plurality of compatibility classes to
the first one of the plurality of compatibility classes.

[0008] In still further embodiments, the rules include a second one of the rules for
transitioning from the first one of the plurality of compatibility classes to a third one of the
plurality of compatibility classes and a third one of the rules for transitioning from the third
one of the plurality of compatibility classes to the second one of the plurality of compatibility
classes.

[0009] In still further embodiments, the rules include a fourth one of the rules that
disallows a transition from the second one of the plurality of compatibility classes to the third
one of the plurality of compatibility classes or a transition from the third one of the plurality
of compatibility classes to the first one of the plurality of compatibility classes.

[0010] In other embodiments, the first one of the software versions is in a first one of
the plurality of compatibility classes and the second one of the software versions is ina
second one of the plurality of compatibility classes. Updating the software includes updating

the software from the first one of the software versions to the second one of the software

WO 2009/105179 PCT/US2009/000967

versions based on at least a first one of the rules for transitioning from the first one of the
plurality of compatibility classes to a third one of the plurality of compatibility classes and a
second one of the rules for transitioning from the third one of the plurality of compatibility
classes to the second one of the plurality of compatibility classes.

[0011] In still other embodiments, the rules include a third one of the rules for
transitioning directly from the first one of the plurality of compatibility classes to the second
one of the plurality of compatibility classes.

[0012] In still other embodiments, the rules include a third one of the rules that
disallows a transition from the second one of the plurality of compatibility classes to the third
one of the plurality of compatibility classes or a transition from the third one of the plurality
of compatibility classes to the first one of the plurality of compatibility classes.

[0013] In still other embodiments, the rules include a third one of the rules that
disallows a transition directly from the second one of the plurality of compatibility classes to
the first one of the plurality of compatibility classes.

[0014] In still other embodiments, the rules include a third one of the rules that
disallows a transition directly from the first one of the plurlaity of compatibility classes to the
second one of the plurality of compatibility classes

[0015] In further embodiments, one of the compatibility classes has a plurality of the
software versions associated therewith.

[0016] In still further embodiments, one of the compatibility classes has only one of
the software versions associated therewith.

[0017] Although described primarily above with respect to method aspects of the
present invention, it will be understood that the present invention may also be embodied as

systems and computer program products.

BRIEF DESCRIPTION OF THE DRAWINGS
[0018] Other features of the present invention will be more readily understood from
the following detailed description of specific embodiments thereof when read in conjunction
with the accompanying drawings, in which:
[0019] FIG. 1 is a block diagram that illustrates a software development environment
in a;ccordance with some embodiments of the present invention;
[0020] FIG. 2 is a data processing system for use in the software development

environment of FIG. 1 in accordance with some embodiments of the present invention;

WO 2009/105179 PCT/US2009/000967

[0021] FIG. 3 is a block diagram that illustrates a software/hardware architecture for
updating software based on transition rules between compatible versions in accordance with
some embodiments of the present invention;

[0022] FIG. 4 is a block diagram that illustrates rules for transitioning between
software versions in accordance with some embodiments of the present invention;

[0023] FIG. 5 is a matrix that illustrates rules for transitioning between compatibility
classes of software versions in accordance with some embodiments of the present invention;
and

[0024] FIG. 6 is a flowchart that illustrates operations for updating software based on
transition rules between compatible versions in accordance with some embodiments of the

present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0025] While the invention is susceptible to various modifications and alternative
forms, specific embodiments thereof are shown by way of example in the drawings and will
herein be described in detail. It should be understood, however, that there is no intent to limit
the invention to the particular forms disclosed, but on the contrary, the invention is to cover
all modifications, equivalents, and alternatives falling within the spirit and scope of the
invention as defined by the claims. Like reference numbers signify like elements throughout
the description of the figures.

[0026] As used herein, the singular forms "a," "an," and "the" are intended to include
the plural forms as well, unless expressly stated otherwise. It should be further understood
that the terms "comprises" and/or "comprising" when used in this specification is taken to
specify the presence of stated features, integers, steps, operations, elements, and/or
components, but does not preclude the presence or addition of one or more other features,
integers, steps, operations, elements, components, and/or groups thereof. It will be
understood that when an element is referred to as being "connected" or "coupled" to another
element, it can be directly connected or coupled to the other element or intervening elements
may be present. Furthermore, "connected" or "coupled" as used herein may include
wirelessly connected or coupled. As used herein, the term "and/or" includes any and all
combinations of one or more of the associated listed items.

[0027] Unless otherwise defined, all terms (including technical and scientific terms)

used herein have the same meaning as commonly understood by one of ordinary skill in the

WO 2009/105179 PCT/US2009/000967

art to which this invention belongs. It will be further understood that terms, such as those
defined in commonly used dictionaries, should be interpreted as having a meaning that is
consistent with their meaning in the context of the relevant art and will not be interpreted in
an idealized or overly formal sense unless expressly so defined herein.

[0028] The present invention may be embodied as methods, systems, and/or computer
program products. Accordingly, the present invention may be embodied in hardware and/or
in software (including firmware, resident software, micro-code, efc.). Furthermore, the
present invention may take the form of a computer program product on a computer-usable or
computer-readable storage medium having computer-usable or computer-readable program
code embodied in the medium for use by or in connection with an instruction execution
system. In the context of this document, a computer-usable or computer-readable medium
may be any medium that can contain, store, communicate, propagate, or transport the program
for use by or in connection with the instruction execution system, apparatus, or device.

[0029] The computer-usable or computer-readable medium may be, for example but
not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or propagation medium. More specific examples (a nonexhaustive
list) of the computer-readable medium would include the following: an electrical connection
having one or more wires, a portable computer diskette, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash
memory), an optical fiber, and a portable compact disc read-only memory (CD-ROM). Note
that the computer-usable or computer-readable medium could even be paper or another
suitable medium upon which the program is printed, as the program can be electronically
captured, via, for instance, optical scanning of the paper or other medium, then compiled,
interpreted, or otherwise processed in a suitable manner, if necessary, and then stored in a
computer memory.

[0030] As used herein, the term "file" may include any construct that binds a
conglomeration of information, such as instructions, numbers, words, and/or images into a
coherent unit. Accordingly, a file may be, for example, a document, an image, an email, a
database document (e.g., a Lotus Notes document), an application (e.g., a Powerpoint
presentation), and/or a Web page.

[0031] Some embodiments of the present invention may arise from a realization that
conventional software management and/or development systems generally do not provide

sufficient rules for transitioning between software versions. It may be desirable, therefore, to

WO 2009/105179 PCT/US2009/000967

provide a mechanism that allows software developers and/or system administrators to
determine how to transition between software versions. In some embodiments, one or more
compatibility classes are defined with each class encompassing all software versions that are
equivalent in terms of changes involved in transitioning between classes. Rules can be
defined for transitioning between the classes. For example, the rules may define what
elements are added, what elements are removed, and what modifications are made to one or
more of the elements when transitioning from one of the compatibility classes to another.
This may allow a software update operation to occur by applying the rules for transitioning
from a software version in one compatibility class to a software version in another
compatibility class. By using transition rules, invalid transitions, which may be called
rollback fences, may be readily defined. This may allow a software developer to know in
advance that if a software update is made to transition to a software version in a certain
compatibility class, then it may not be possible to rollback to a version in another, e.g.,
previous, compatibility class. Moreover, the transition rules may also allow for the
automation of updates by defining a valid update transition path.

[0032] Referring to FIG. 1, a software development environment, in accordance with
some embodiments of the present invention, comprises a development server 100 that is
coupled to a client workstation 120, a network 130, and a storage system 160. The network
130 may be a global network, such as the Internet or other publicly accessible network.
Various elements of the network may be interconnected by a wide area network, a local area
network, an Intranet, and/or other private network, which may not be accessible by the
general public. Thus, the communication network 130 may represent a combination of public
and private networks or a virtual private network (VPN). One or more software developers
may use workstations, such as workstation 120, to develop software on the development
server 100. This software may run on the development server 100 and may also be stored
thereon and/or on the storage system 160. The storage system 160 may also be used to store
backups/snapshots of the data processing system 100 software, versions of various software
files/components, libraries, development tools, and/or other files use in the development
process. In some embodiments, various software files, such as applications, open source
components, data, etc., may be obtained from other sources, such as file repositories 140 and
150. Thus, a software developer may write new code and/or incorporate existing modules
developed by others into the software being developed on the development server 100.

Although two repositories and one workstation client are shown in FIG. 1, it will be

WO 2009/105179 PCT/US2009/000967

understood that fewer or additional repositories and/or clients may be used in accordance with
various embodiments of the present invention. It will be appreciated that the development
server 100 may be implemented as a single server, separate servers, or a network of servers
either co-located in a server farm, for example, or located in different geographic regions.

[0033] As shown in FIG. 1, some embodiments according to the invention can operate
in a logically separated client side/server side-computing environment, sometimes referred to
hereinafter as a client/server environment. The client/server environment is a computational
architecture that involves a client process (i.e., client workstation 120) requesting service
from a server process (i.e., development server 100, and file depositories 140 and 150). In
general, the client/server environment maintains a distinction between processes, although
client and server processes may operate on different machines or on the same machine.
Accordingly, the client and server sides of the client/server environment are referred to as
being logically separated. Usually, when client and server processes operate on separate
devices, each device can be customized for the needs of the respective process. For example,
a server process can "run on" a system having large amounts of memory and disk space,
whereas the client process often "runs on" a system having a graphic user inferface provided
by high-end video cards and large-screen displays.

[0034] The clients and servers can communicate using a standard communications
mode, such as Hypertext Transport Protocol (HTTP), SOAP, and/or XML-RPC. According
to the HTTP request- response communications model, HTTP requests are sent from the
client to the server and HTTP responses are sent from the server to the client in response to an
HTTP request. In operation, the server waits for a client to open a connection and to request
information, such as a Web page. In response, the server sends a copy of the requested
information to the client, closes the connection to the client, and waits for the next
connection. It will be understood that the server can respond to requests from more than one
client.

[0035] Although FIG. 1 illustrates an exemplary software development environment,
it will be understood that the present invention is not limited to such configurations, but is
intended to encompass any configuration capable of carrying out the operations described
herein. For example, for purposes of illustration, some embodiments of the present invention
are described herein in the context of a software development environment. Various

embodiments of the present invention may also be applicable to the management of software

WO 2009/105179 PCT/US2009/000967

on a data processing system, including, for example, updates and/or other revisions to the
system software.

[0036] FIG. 2 illustrates a data processing system 200 that may be used to implement
the development server 100 of FIG. 1 and that may include a module for updating software on
a data processing system in accordance with some embodiments of the present invention.

The data processing system 200 comprises input device(s) 205, such as a keyboard or keypad,
a display 210, and a memory 215 that communicate with a processor 220. The data
processing system 200 may further comprise a storage system 225, a speaker 230, and an I/O
data port(s) 235 that also communicate with the processor 220. The storage system 225 may
include removable and/or fixed media, such as floppy disks, ZIP drives, hard disks, or the like
as well as virtual storage such as a RAMDISK. The I/O data port(s) 235 may be used to
transfer information between the data processing system 100 and another computer system or
a network (e.g., the Internet). These components may be conventional components, such as
those used in many conventional computing devices, and their functionality, with respect to
conventional operations, is generally known to those skilled in the art. The memory 215 may
be configured with a software update module 240 that may be used to update software on the
data processing system 200. The type of update made to the software is not limited and may
be made in a variety of forms. For example, an entire application or operating system may be
updated, a portion of a software product may be updated through the addition or subtraction
of a feature module, a software product under development may be updated through the
addition of new functionality and/or bug fixes/patches, a software product may be rebuilt after
acquiring updated versions of various files that comprise the software product, and/or a
software product may be updated through the use of new data, e.g., updating a database with
new data, etc. These non-limiting examples are for purposes of illustrating various
embodiments of the present invention and are not exhaustive of the types of software updates
that can be performed.

[0037] FIG. 3 illustrates a processor 300 and memory 305 that may be used in
embodiments of data processing systems, such as the development server 100 of FIG. 1
and/or the data processing system 200 of FIG. 2, in which software is updated based on
transition rules between compatible versions in accordance with some embodiments of the
present inventioﬁ. The processor 300 communicates with the memory 305 via an
address/data bus 310. The processor 300 may be, for example, a commercially available or

custom microprocessor. The memory 305 is representative of the one or more memory

WO 2009/105179 PCT/US2009/000967

devices containing the software and data used adaptive, context based file selection in
accordance with some embodiments of the present invention. The memory 305 may include,
but is not limited to, the following types of devices: cache, ROM, PROM, EPROM,
EEPROM, flash, SRAM, and DRAM.

[0038] As shown in FIG. 3, the memory 305 may contain up to four or more
categories of software and/or data: the operating system 315, a software update module 320, a
software image 325, and a transition rules/data module 330. The operating system 315
generally controls the operation of the data processing system. In particular, the operating
system 315 may manage the data processing system's software and/or hardware resources and
may coordinate execution of programs by the processor 300. The software update module
320 may be configured to facilitate updates to installed software on the data processing
system. As discussed above, the types of updates made to the software on the data processing
system are not limited and may be made in a variety of forms. The software image 325 may
be any file or set of files and may even include the entire software image running on the data
processing system. Moreover, the software image may include settings, such as network
configuration information, printer information, and the like. The transition rules/data 330
may include rules/data for transitioning between compatibility classes of software versions.
The rules may define what elements are added, what elements are removed, and/or what
modifications are made to one or more of the elements when transitioning from one of the
compatibility classes to another. This is illustrated, for example, in FIG. 4. In the example
shown, the software may be a database file in which various fields may be included. There
are three different compatibility classes having three different software versions associated
therewith. In the first compatibility class/version, the database file includes a name and zip
code. In the second compatibility class/version, the database file includes a name, zip code,
and state. In the third compatibility class/version, the database file includes a name, zip code,
and a state field that is indexed. Accordingly, the rule for transitioning from the first
compatibility class/version to the second compatibility class/version is to add the state field.
The rule for transitioning from the second compatibility class/version to the third
compatibility class/version is to index the state field. The rule for transitioning from the third
compatibility class/version to the second compatibility class/version is to do nothing as the
second compatibility class/version merely includes a state field and does not require that the
state field not be indexed. Finally, the rule for transitioning from the second compatibility

class/version to the first compatibility class/version is to remove the state field.

WO 2009/105179 PCT/US2009/000967

[0039] In accordance with various embodiments of the present invention, rules may
be defined for transitioning directly from a first class to a second class and/or indirectly in
which rules are defined for transitioning from a first class to one or more intermediate classes
and from transitioning from the one or more intermediate classes to a second class. In some
embodiments, for example, a direct transition from a first class to a second class may not be
allowed, but it may be possible to transition from the first class to a third class and then from
the third class to the second class. In further embodiments, transition rules may be defined
that specify invalid transitions between classes. These invalid transitions may define rollback
fences to inform a software developer and/or administrator that if a transition is made to a
certain class, it may not be possible to transition from that certain class to one or more other
classes.

[0040] Although FIG. 3 illustrates exemplary hardware/software architectures that
may be used in data processing systems, such as the development server 100 of FIG. 1 and/or
the data processing system 200 of FIG. 2, for updating software based on transition rules
between compatible versions, it will be understood that the present invention is not limited to
such a configuration but is intended to encompass any configuration capable of carrying out
operations described hérein. Moreover, the functionality of the development server 100 of
FIG. 1, the data processing system 200 of FIG. 2, and/or the hardware/software architecture of
FIG. 3 may be implemented as a single processor system, a multi-processor system, or even a
network of stand-alone computer systems, in accordance with various embodiments of the
present invention.

[0041] Computer program code for carrying out operations of data processing systems
discussed above with respect to FIGS. 1, 2, and 3 may be written in a high-level programming
language, such as Java, C, and/or C++, for development convenience. In addition, computer
program code for carrying out operations of the present invention may also be written in other
programming languages, such as, but not limited to, interpreted languages. Some modules or
routines may be written in assembly language or even micro-code to enhance performance
and/or memory usage. It will be further appreciated that the functionality of any or all of the
program modules may also be implemented using discrete hardware components, one or more
application specific integrated circuits (ASICs), or a programmed digital signal processor or
microcontroller.

[0042] The present invention is described herein with reference to flowchart and/or

block diagram illustrations of methods, systems, and computer program products in

10

WO 2009/105179 PCT/US2009/000967

accordance with exemplary embodiments of the invention. These flowchart and/or block
diagrams further illustrate exemplary operations for updating software based on transition
rules between compatible versions, in accordance with some embodiments of the present
invention. It will be understood that each block of the flowchart and/or block diagram
illustrations, and combinations of blocks in the flowchart and/or block diagram illustrations,
may be implemented by computer program instructions and/or hardware operations. These
computer program instructions may be provided to a processor of a general purpose
computer, a special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus, create means and/or circuits for
implementing the functions specified in the flowchart and/or block diagram block or blocks.

[0043] These computer program instructions may also be stored in a computer usable
or computer-readable memory that may direct a computer or other programmable data
processing apparatus to function in a particular manner, such that the instructions stored in
the computer usable or computer-readable memory produce an article of manufacture
including instructions that implement the function specified in the flowchart and/or block
diagram block or blocks.

[0044] The computer program instructions may also be loaded onto a computer or
other programmable data processing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus to produce a computer
implemented process such that the instructions that execute on the computer or other
programmable apparatus provide steps for implementing the functions specified in the
flowchart and/or block diagram block or blocks.

[0045] Referring now to FIG. 6, exemplary operations for updating software based on
transition rules between compatible versions begin at block 600 where the software update
module 320 is used to define compatibility classes for software versions. At block 605, the
software update module 320 may be used to generate rules for transitions between
compatibility classes. As shown in FIG. 5, the rules may be organized in the form of a matrix
in which the various compatibility classes are used to define the rows and columns. In the
FIG. S5 example, there are four compatibility classes with three compatibility classes having
software versions 1 - 3 associated therewith and the fourth compatibility class having
software versions 4 and 5 associated therewith. The rules for transitioning between one

compatibility class to another may include a rule for transitioning directly between the

11

WO 2009/105179 PCT/US2009/000967

compatibility classes and/or may include a combination of multiple rules involving the
transition to one or more intermediate classes for transitioning to the final class (i.e., an
indirect transition). In accordance with various embodiments of the present invention, a
direct transition from a first class to a second class may be allowed, a direct transition from
the first class to the second class may not be allowed, but an indirect transition by way of an
intermediate class may be allowed betwen the first and second classes, or both a direct
transition and an indirect transition may be allowed between the first and second classes. For
an example of an indirect transition, the rule for transitioning from compatibility class 1
(version 1) to compatibility class 3 (version 3) may comprise a rule for transitioning from
compatibility class 1 to compatibility class 2 (Rule 1 - 2) along with a rule for transitioning
from compatibility class 2 to compatibility class 2 (Rule 2 - 3). Furthermore, as shown in
FIG. 5, certain class transitions may be disallowed, such as the transition from compatibility
class 4 to compatibility class 3. Such a disallowed transition may be termed a rollback fence
and may provide a warning to a software developer or system administrator that a transition to
a certain compatibility class may limit the potential options for transitioning out of that
compatibility class.

[0046] Returning to FIG. 6, operations continue at block 610 where the software
update module 320 updates one or more files, which may be represented as the software
image 325 in FIG. 3. As discussed above, the updated files may be any file or set of files and
may even include the entire software image running on the data processing system. In other
embodiments, the updated files may include settings, such as network configuration
information, printer information, and the like.

[0047] The flowchart of FIG. 6 illustrates the architecture, functionality, and
operations of some embodiments of methods, systems, and computer program products for
updating software based on transition rules between compatible versions. In this regard, each
block represents a module, segment, or portion of code, which comprises one or more
executable instructions for implementing the specified logical function(s). It should also be
noted that in other implementations, the function(s) noted in the blocks may occur out of the
order noted in FIG. 6. For example, two blocks shown in succession may, in fact, be
executed substantially concurrently or the blocks may sometimes be executed in the reverse
order, depending on the functionality involved.

[0048] Many variations and modifications can be made to the preferred embodiments

without substantially departing from the principles of the present invention. All such

12

WO 2009/105179 PCT/US2009/000967

variations and modifications are intended to be included herein within the scope of the

present invention, as set forth in the following claims.

13

WO 2009/105179 PCT/US2009/000967

CLAIMS
That which is claimed:
1. A method of updating software, comprising:
defining a plurality of compatibility classes for software versions;
generating rules for transitions between ones of the plurality of compatibility classes;
and
updating software from a first one of the software versions to a second one of the

software versions based on the rules.

2. The method of Claim 1, wherein the first one of the software versions is in a
first one of the plurality of compatibility classes and the second one of the software versions
is in a second one of the compatibility classes; and

wherein the rules comprise at least one rule that disallows a transition from the second
one of the plurality of compatibility. classes to the first one of the plurality of compatibility

classes.

3. The method of Claim 1, wherein the first one of the software versions is in a
first one of the plurality of compatibility classes and the second one of the software versions
is in a second one of the compatibility classes; and

wherein updating the software comprises updating the software from the first one of
the software versions to the second one of the software versions based on at least a first one
of the rules for transitioning directly from the first one of the plurality of compatibility classes

to the second one of the plurality of compatibility classes.

4. The method of Claim 3, wherein the rules comprise a second one of the rules
that disallows a transition directly from the second one of the plurality of compatibility

classes to the first one of the plurality of compatibility classes.

5. The method of Claim 3, wherein the rules comprise a second one of the rules
for transitioning from the first one of the plurality of compatibility classes to a third one of the
plurality of compatibility classes and a third one of the rules for transitioning from the third
one of the plurality of compatibility classes to the second one of the plurality of compatibility

classes.

14

WO 2009/105179 PCT/US2009/000967

6. The method of Claim 5, wherein the rules comprise a fourth one of the rules
that disallows a transition from the second one of the plurality of compatibility classes to the
third one of the plurality of compatibility classes or a transition from the third one of the

plurality of compatibility classes to the first one of the plurality of compatibility classes.

7. The method of Claim 1, wherein the first one of the software versions is in a
first one of the plurality of compatibility classes and the second one of the software versions
is in a second one of the plurality of compatibility classes; and

wherein updating the software comprises updating the software from the first one of
the software versions to the second one of the software versions based on at least a first one
of the rules for transitioning from the first one of the plurality of compatibility classes to a
third one of the plurality of compatibility classes and a second one of the rules for
transitioning from the third one of the plurality of compatibility classes to the second one of

the plurality of compatibility classes.

8. The method of Claim 7, wherein the rules comprise a third one of the rules for
transitioning directly from the first one of the plurality of compatibility classes to the second

one of the plurality of compatibility classes.

9. The method of Claim 7, wherein the rules comprise a third one of the rules that
disallows a transition from the second one of the plurality of compatibility classes to the third
one of the plurality of compatibility classes or a transition from the third one of the plurality

of compatibility classes to the first one of the plurality of compatibility classes.

10. The method of Claim 7, wherein the rules comprise a third one of the rules that
disallows a transition directly from the second one of the plurality of compatibility classes to

the first one of the plurality of compatibility classes.
11. The method of Claim 7, wherein the rules comprise a third one of the rules that

disallows a transition directly from the first one of the plurlaity of compatibility classes to the

second one of the plurality of compatibility classes.

15

WO 2009/105179 PCT/US2009/000967

12. The method of Claim 1, wherein one of the compatibility classes has a

plurality of the software versions associated therewith.

13. The method of Claim 1, wherein one of the compatibility classes has only one

of the software versions associated therewith.

14. A system for updating software, comprising:

a data processing system that is configured to define a plurality of compatibility
classes for software versions, generate rules for transitions between ones of the plurality of
compatibility classes, and update software from a first one of the software versions to a

second one of the software versions based on the rules.

15. The system of Claim 14, wherein the first one of the software versions is in a
first one of the plurality of compatibility classes and the second one of the software versions
is in a second one of the compatibility classes; and

wherein the rules comprise at least one rule that disallows a transition from the second
one of the plurality of compatibility classes to the first one of the plurality of compatibility

classes.

16. The system of Claim 14, wherein the first one of the software versions is in a
first one of the plurality of compatibility classes and the second one of the software versions
is in a second one of the compatibility classes; and

wherein the data processing system is further configured to update the software from
the first one of the software versions to the second one of the software versions based on at
least a first one of the rules for transitioning directly from the first one of the plurality of

compatibility classes to the second one of the plurality of compatibility classes.
17. The system of Claim 16, wherein the rules comprise a second one of the rules

that disallows a transition directly from the second one of the plurality of compatibility

classes to the first one of the plurality of compatibility classes.

16

WO 2009/105179 PCT/US2009/000967

18. The system of Claim 14, wherein the first one of the software versions is in a
first one of the plurality of compatibility classes and the second one of the software versions
is in a second one of the plurality of compatibility classes; and

wherein the data processing system is further configured to update the software from
the first one of the software versions to the second one of the software versions based on at
least a first one of the rules for transitioning from the first one of the plurality of compatibility
classes to a third one of the plurality of compatibility classes and a second one of the rules for
transitioning from the third one of the plurality of compatibility classes to the second one of

the plurality of compatibility classes.

19. The system of Claim 18, wherein the rules comprise a third one of the rules
that disallows a transition from the second one of the plurality of compatibility classes to the
third one of the plurality of compatibility classes or a transition from the third one of the

plurality of compatibility classes to the first one of the plurality of compatibility classes.

20. The system of Claim 18, wherein the rules comprise a third one of the rules
that disallows a transition directly from the first one of the plurlaity of compatibility classes to

the second one of the plurality of compatibility classes.

21. A computer program product for managing software versions on a data
processing system, comprising:

a computer readable storage medium having computer readable program code
embodied therein, the computer readable program code comprising:

a data structure that comprises rules for transitions between ones of a plurality of

compatibility classes for software versions.

22, The computer program product of Claim 21, wherein one of the compatibility

classes has a plurality of the software versions associated therewith.

23. The computer program product of Claim 21, wherein one of the compatibility

classes has only one of the software versions associated therewith.
24 A computer program product for updating software, comprising:

17

WO 2009/105179 PCT/US2009/000967

a computer readable storage medium having computer readable program code
embodied therein, the computer readable program code comprising:

computer readable program code configured to define a plurality of compatibility
classes for software versions;

computer readable program code configured to generate rules for transitions between
ones of the plurality of compatibility classes; and

computer readable program code configured to update software from a first one of the

software versions to a second one of the software versions based on the rules.

25. The computer program product of Claim 24, wherein the first one of the
software versions is in a first one of the plurality of compatibility classes and the second one
of the software versions is in a second one of the compatibility classes; and

wherein the rules comprise at least one rule that disallows a transition from the second
one of the plurality of compatibility classes to the first one of the plurality of compatibility

classes.

18

WO 2009/105179

File repository
140

1/6

PCT/US2009/000967

File repository
150

e

Network
130

FIG. 1

Data Processing

System
200

WO 2009/105179 PCT/US2009/000967
2/6
I/O Data
Port(s)
235
J Y
Memory
Y 215
Display Processor
210 220 SW Update
240
A
Y A
Input Storage
Device(s) Sp2e ; (I)(er System
205 = 229

FIG. 2

WO 2009/105179 PCT/US2009/000967
3/6

Memory
305

Operating System
- 315

SW Update

320
Processor
300

SW Image
325

Transition Rules/Data
330

FIG. 3

WO 2009/105179

PCT/US2009/000967
4/6
— Name Zip Version 1 —
Remove Add
state < state
}— Name Zip State Version 2 —<
Do Index
nothing < > state

Name Zip State

: _J v
(indexed) Version 3

FiG. 4

WO 2009/105179

Ver 1

Ver 2

Ver 3

Ver4, 5

PCT/US2009/000967
5/6
Ver 1 Ver 2 Ver 3 Ver4,5
X Rule Rule Rule
1-2 1-3 1-4
Rule X Rule Rule
2-1 2-3 2-4
Rule Rule X Rule
3-1 3-2 3-4
Rule Rule RB X
4-1 4-2 Fence

FIG. 5

WO 2009/105179

6/6

Define compatibility
classes for SW versions

600
/_

'

Generate rules for
transitions between
classes

605
/_

;

Update SW based on
transition rules defined
for the compatibility
classes

610
/_

'

End

FiG. 6

PCT/US2009/000967

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2009/000967

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/44(20006.01)i, GOGF 15/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC : GOGF

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility Models and applications for utility models since 1975
Japanese Utility Models and applications for utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal), Google, IEEE xpl : version, migration, rule

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2006-0010175 A1 (KWONG MICHAEL YIUPUN) 12 January 2006 1,3,5,7-8,12-14,16,18,

See abstract, Figures 3-6, description [0014], [0034]-[0044], claims 21-24

A US 6185734 B1 (SABOFF MICHAEL L. et al.) 06 February 2001 1-25

See abstract, claims

A US 2005-0053091 A1 (LEE MAN-HO LAWRENCE) 10 March 2005 1-25
See abstract, claims

A US 2003-0140134 A1 (SWANSON SHELDON KEITH JOHN. et al.) 24 July 2003 1-25
See abstract, claims

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
21 JULY 2009 (21.07.2009) 22 JULY 2009 (22.07.2009)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo- LEE, Jong Ick
. gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8373

Form PCT/ISA/210 (second sheet) (July 2008)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2009/000967

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2006-0010175 A1 12.01.2006 NONE

US 6185734 B1 06.02.2001 NONE

US 2005-0053091 A1 10.03.2005 NONE

US 2003-0140134 A1 24.07.2003 EP 1335283 A2 13.08.2003
US 073208434 B2 05.02.2008

Form PCT/ISA/210 (patent family annex) (July 2008)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report

