发明名称
高品质茶叶加工方法及其关键工序专用设备

摘要
本发明涉及一种高品质茶叶加工方法，同时还涉及实现该方法的关键工序专用设备，属于制茶技术领域。本发明的方法包括依次进行的杀青步骤、做形步骤和干燥步骤；在杀青步骤和做形步骤之后增加至少一道急冷步骤，急冷步骤是经过相应步骤后的茶叶在30-120秒时间内迅速急冷至0-20℃，保持1-3分钟。本发明关键工序专用设备是急冷机，包括安装在机架上，除两端开口外其它部位密闭的通道式制冷腔体，制冷腔体的通道内设置有从其两端开口穿越制冷腔体的循环输送带，制冷腔体的外顶部设置有制冷机和循环风机，循环风机通过送风道和回风道与制冷腔体连通，制冷机的换热器安置于回风道内。该方法和设备既能更好地保护茶叶的色、香和味，又能提高茶叶内有益物含量。
1. 一种茶叶加工方法，包括以下步骤：
 1) 杀青 → 将鲜茶叶加热去湿；
 2) 做形 → 对杀青后的茶叶保温施力，使之呈现所需形状；
 3) 干燥 → 将做形后的茶叶继续加热脱水，使之干燥；

其特征在于：在所述做形步骤之后加入至少一道急冷步骤；所述急冷步骤是将经过相应步骤后的茶叶在 30 秒 -120 秒时间内迅速冷却至 0-20℃，保持 1-3 分钟。

2. 一种茶叶加工方法，包括以下步骤：
 1) 杀青 → 将鲜茶叶加热去湿；
 2) 做形 → 对杀青后的茶叶保温施力，使之呈现所需形状；
 3) 干燥 → 将做形后的茶叶继续加热脱水，使之干燥；

其特征在于：在所述杀青步骤和做形步骤之后各加入至少一道急冷步骤；所述急冷步骤是将经过相应步骤后的茶叶在 30 秒 -120 秒时间内迅速冷却至 0-20℃，保持 1-3 分钟。

3. 根据权利要求 2 所述茶叶加工方法，其特征在于：所述杀青步骤将鲜茶叶从杀青机喂料口送入杀青机进行杀青，温度保持在 80-110℃，时间为 1-3 分钟；所述做形步骤将经急冷机冷却后的茶叶通过做形机进行成形，温度保持在 60-80℃，时间为 1-40 分钟；所述干燥步骤将经做形机成形后的茶叶通过干燥机进行干燥脱水，温度保持在 50-70℃，时间为 20-60 分钟。

4. 根据权利要求 1 所述茶叶加工方法，其特征在于：所述急冷步骤紧接所述做形步骤之后，将做形后的茶叶迅速冷却。

5. 根据权利要求 4 所述茶叶加工方法，其特征在于：所述杀青步骤中的杀青机采用微波杀青机，杀青温度是 85℃，时间为 2.5 分钟；所述做形步骤中的做形机采用压扁机，做形温度是 65℃，时间为 2 分钟；所述急冷步骤中将经过做形步骤后的茶叶在 100 秒时间内迅速冷却至 5℃，保持 1.5 分钟；所述干燥步骤中的干燥温度是 60℃，时间为 50 分钟。

6. 根据权利要求 2 所述茶叶加工方法，其特征在于：所述急冷步骤包括第一急冷和第二急冷，所述第一急冷紧接所述杀青步骤之后，将杀青后的茶叶迅速冷却；所述第二急冷紧接所述做形步骤之后，将做形后的茶叶迅速冷却。

7. 根据权利要求 6 所述茶叶加工方法，其特征在于：所述杀青步骤中的杀青机采用微波杀青机，杀青温度是 105℃，时间为 1.5 分钟；所述第一急冷步骤将经过杀青步骤后的茶叶在 75 秒时间内迅速冷却至 9℃，保持 1.5 分钟；所述做形步骤中的做形机采用条形机，做形温度是 65℃，时间为 30 分钟；所述第二急冷步骤将经过做形步骤后的茶叶在 90 秒时间内迅速冷却至 9℃，保持 1.5 分钟；所述干燥步骤中的干燥温度是 55℃，时间为 50 分钟。

8. 一种用于权利要求 1 或 2 所述茶叶加工方法的关键工序专用设备，其特征在于：所述关键工序专用设备是用于所述急冷步骤的急冷机，所述急冷机包括安装在机架上除两端开口外其它部位密闭的通道式冷却腔体；所述冷却腔体的通道内设置有从其两端开口穿越冷却介质的循环输送带，所述冷却腔体的外顶部设置有制冷机和循环风机，所述循环风机通过送风道和回风道与制冷腔体连通，所述制冷机的换热器安装于所述回风道内。

9. 根据权利要求 8 所述关键工序专用设备，其特征在于：所述制冷腔体的两端装有滚轮，所述输送带套在滚轮上并由滚轮带动，所述滚轮由驱动电机驱动；所述制冷腔体的内部...
由水平隔板隔成上部分内腔体和下部分内腔体，所述下部分内腔体构成制冷腔体的通道；所述输送带从所述下部分内腔体穿过；所述上部分内腔体被垂直隔板纵向隔成送风腔和回风腔两个部分，所述水平隔板开有分别与送风腔和回风腔相对应的送风口和回风口，所述送风腔和回风腔的上部分别与循环风机的送风道和回风道连通；所述制冷机是压缩式空调机，所述换热器是蒸发器。
高品质茶叶加工方法及其关键工序专用设备

技术领域
[0001] 本发明涉及一种茶叶加工方法，尤其是一种茶叶机械加工的方法，同时还涉及实现该方法的关键专用加工设备，属于制茶技术领域。

背景技术
[0002] 中国之饮茶史可追溯至三皇时代，周成王在其《茶经》的“六之饮”中指出：“茶之为饮，发乎神农氏。可见饮茶在我国已有几千年的历史。茶叶含有多种对人体有益的成分，长期以来一直是受到人们普遍喜爱的饮料。使用同样茶芽原料制作的成品茶叶质量，主要取决于茶叶加工技术，尤其是茶叶加工方法。目前所知的茶叶加工方式分为手工加工和机械加工两种，无论手工加工还是机械加工，其主要工艺方法都是由杀青、做形（压扁、理条或揉捻等）和干燥这三道基本工序（步骤）构成。

[0003] 手工加工时，茶叶始终在一口锅里，各工序间并无严格界限，往往交叉进行，规律性较差。而机械加工时，各工序由不同的机械部分完成，所以杀青、做形和干燥工序的界线相对分明，必须按顺序进行。

[0004] 实践证明，机械加工茶叶的关键工序是杀青和做形。所谓杀青，是从杀青机喂料口送入鲜茶叶，在高温的作用下一方面使茶叶中的各种生物酶类丧失活性；以避免在后续的制作过程中茶叶内部发生不利的生物化学反应（如茶多酚在生物氧化酶作用下氧化变色）；另一方面使茶叶丧失部分水分，并经不断的摩擦、翻滚，使茶叶因细胞壁破裂而软化，便于后续做形机械将茶叶制做成各种所需形状。所谓做形则是在高温作用下，根据不同形状的要求，分别通过压扁、揉捻或理条做出直扇形、卷曲形或针形等形状的茶叶；其中揉捻有时也可成为做形的前道工序成为揉做形，其目的是使茶叶因细胞壁进一步破裂而更加软化，同时初步卷曲，便于最终的做形。

[0005] 现在，茶叶机加工的杀青、做形和干燥工序都已有各种专用设备来完成。这些专用设备现有很多，其中有一些可参见申请人在先申请并已公开的专利：1) 02218674.3 茶叶微波杀青干燥设备；2) 02258117.0 多用自动蒸青机；3) 200510038431.8 连续式茶叶杀青理条机；4) 200520139620.X 针扁型名茶连续成型机；5) 200520139621.4 针扁型名茶连续理条机；6) 200610161349.9 扁形茶杀青成形工艺方法及专用设备。

[0006] 申请对传统茶叶加工方法，尤其是茶叶机加工方法的规律及存在的问题进行了较深入的探讨。通过反复试验发现，上述传统茶叶加工方法包括现有茶叶机加工方法的过程中，始终需借助较高的温度，即杀青、做形和干燥这三道基本步骤始终是在高温条件下进行的。而高温总是无法避免对茶叶叶色、香、味的损伤，尤其是长时间的高温还容易降低茶叶中的可溶性内含物（如茶多酚和游离氨基酸）等有益成分的含量。

发明内容
[0007] 本发明要解决的技术问题是；针对上述现有茶叶加工尤其是现有机加工的基本方法中存在的问题，提出一种能有效避免损伤茶叶的色、香、味，并且可以有效保持茶叶有益
成分含量的高品质茶叶加工方法，同时提出实现该方法的关键工序专用设备。

【0008】为了解决上述的技术问题，本发明的高品质茶叶加工方法包括以下步骤：

【0009】1）杀青 — 将鲜茶叶加热去湿；
【0010】2）做形 — 对杀青后的茶叶保温施力，使之呈现所需形状；
【0011】3）干燥 — 将做形后的茶叶继续加热脱水，使之干燥；
【0012】改进之处在于：在所述杀青步骤和做形步骤之后加入至少一道急冷步骤；所述急冷步骤是将经过相应步骤后的茶叶在30秒 -120秒时间内迅速急冷至0-20℃，保持1-3分钟。

【0013】本发明的高品质茶叶加工方法一改千年以来传统茶叶加工方法过程中只使用高温的偏见，突破性地在高温步骤后增加了迅速低温处理，既不影响原有高温步骤对茶叶应有的处理效果，又杜绝了原有高温步骤必然存在的高温滞后影响这一“后遗症”对茶叶色、香、味的损伤及对茶叶有益成分含量的不利影响。也就是说，在茶叶加工中既应用了高温处理有利的一面，又避免了高温处理有弊的一面，彻底使传统茶叶加工中的高温处理变成有利无弊的处理，让传统茶叶加工工艺方法焕发了崭新的生命力。

【0014】实验也证明，茶叶经过上述三种方法步骤后，即主要经过高温杀青和/或做形再经急冷处理后，茶叶的最终品味效果确实优于没经过急冷处理的茶叶；其成品茶的色、香、味形状审评师审评分数明显高于没经过急冷处理加工出的茶叶；同时，主要内含物成分的含量也优于传统工艺加工出的茶叶。具体审评结果和实验数据参见具体实施方式。

【0015】由于上述高品质茶叶加工方法与传统茶叶加工方法的区别在于增加急冷这一关键工序（步骤），因此在围绕该茶叶加工方法各工序所配置的设备中，主要不同的是对茶叶进行急冷处理工序的设备，而其他基本工序的实施设备与现有的相同（部分设备请参见前面背景技术中所述申请人已申请并公开的专利）。因此，急冷处理工序的实施设备是实现本发明高品质茶叶加工方法的关键工序专用设备，该关键工序专用设备是指可以与现有各种茶叶加工设备（手工或机械加工设备）任意配套使用的急冷机，所述急冷机包括安在机架上除两端开口外其它部位密闭的通道式制冷腔体，所述制冷腔体的通道内设置有从其端开口穿越制冷腔体的循环输送带，所述制冷腔体的外顶部设置有制冷机和循环风机，所述循环风机通过送风道和回风道与制冷腔体连通，所述制冷机的换热器安装于所述回风道内。

【0016】具体使用时，可将上述本发明的关键工序专用设备 - 急冷机与现有的各种茶叶加工设备进行任何组合配合，例如：1）该急冷机与现有的微波杀青机组合配套后即形成微波杀青急冷一体机；2）该急冷机与现有的连续式茶叶杀青理条机组合配套后即形成杀青理条急冷一体机；3）该急冷机与现有的手工炒条组合配套后，可将手工炒制杀青或做形后的茶叶迅速送入急冷机进行急冷，等等。这样，当经过其他茶叶加工工序后的茶叶进入该急冷机后，可迅速由高温降低到低温，在此降温过程中即能实现对茶叶的色、香和味更好地保护，并有效保持和提高茶叶的内含有益物质含量。

附图说明

【0017】下面结合附图对本发明作进一步的说明。
【0018】图1是本发明实施例一中急冷机的结构示意图。
具体实施方式

实施例一

本实施例的高品质茶叶加工方法包括以下步骤：
1) 微波杀青 — 将鲜茶叶从微波杀青机喂料口送入杀青机进行杀青，温度保持在85℃，时间保持2.5分钟；
2) 急冷 — 经微波杀青机杀青后的茶叶迅速通过急冷机经60秒冷却至温度4℃，保持时间1分钟；
3) 压扁 — 经急冷机急冷后的茶叶通过压扁机进行压扁做形，温度保持在60℃，时间保持2分钟；
4) 干燥 — 经压扁机成形后的茶叶通过干燥机进行干燥脱水，温度保持在55℃，时间保持55分钟。

本实施例的关键工序专用设备是急冷机，如图1所示。该急冷机包括安装在机架1上，除两端开口外其它部位密闭的通道式制冷腔体2。制冷腔体2的通道内设置有从其两端开口穿越整个制冷腔体2的循环输送带3，制冷腔体2的外顶部设置有制冷机4和循环风机5。

如图1所示，制冷腔体2的两端装有滚轮6，输送带3套在滚轮6上并由滚轮6带动，滚轮6又由驱动电机驱动。制冷腔体2的内部由水平隔板7隔成上下两个内腔体—上部分内腔体8和下部分内腔体9。输送带3从构成制冷腔体2通道的下部分内腔体9穿过。

如图2、图3所示，上部分内腔体8被垂直隔板10纵向隔成送风道11和回风道12两个部分，与送风道11和回风道12相对应的水平隔板7上分别开有送风口13和回风口14。送风道11和回风道12的上部分别与循环风机5的送风道和回风道连通，这样，循环风机5即与制冷腔体相连通。制冷机4是使用致冷剂（如R22等）的压缩机式空调机，其含有的蒸发器15置于循环风机5的回风道内。

本实施例的关键工序专用设备—急冷机工作时，输送带4在滚轮3的带动下连续的从制冷腔的一端进入，从另一端出来。茶叶在输送带的带动下进入制冷腔体2内的下部分内腔体9。经制冷机4设在循环风机5回风道内的蒸发器15冷却的冷风由循环风机5经送风道送入送风道11，再经水平隔板7上的送风口13进入下部分内腔体9，从而快速冷却放置在输送带3上的茶叶；冷却茶叶后的热风，经水平隔板7上的回风口14进入回风道12，再回到循环风机5回风道内，通过蒸发器15重新进行制冷。如此反复循环，即完成对高温茶叶的急冷处理。

具体使用本实施例的关键工序专用设备—急冷机对茶叶进行机加工时，可以将所述制冷腔体2的进口端与所述微波杀青机的出口端彼此封闭接合，再将制冷腔体2的出口端与所述压扁机的进口端彼此封闭接合，所述输送带3顺次穿过微波杀青机、急冷机和压扁机。这样，即可按本实施例高品质茶叶加工方法的步骤完成茶叶机加工作业。

实施例二
说明书

[0034] 本实施例的高品质茶叶加工方法与实施例一基本相同，所不同的是：

[0035] 第1步）的杀青温度保持在95℃，时间保持2分钟；

[0036] 第2步）的急冷时间80秒，温度保持在10℃，时间保持1.5分钟；

[0037] 第3步）步骤中，压扁机由理条机替代，温度保持在70℃，时间保持30分钟；

[0038] 第4步）步骤的干燥温度保持在60℃，时间保持40分钟。

具体使用本实施例的关键工序专用设备——急冷机对茶叶进行机加工时，可以将所述制冷腔体2的进口端与所述微波杀青机的出口端彼此封闭衔接，再将所述输送带3的出口端与所述理条机的进料口彼此衔接，所述输送带3顺次穿过微波杀青机和急冷机后将茶叶输送到理条机的进料口。这样，即可按本实施例高品质茶叶加工方法的步骤完成茶叶机加工作业。

[0040] 实施例三

[0041] 本实施例的高品质茶叶加工方法与实施例一基本相同，所不同的是：

[0042] 第1步）的杀青温度保持在105℃，时间保持1.2分钟；

[0043] 第2步）的急冷时间65秒，温度保持在17℃，时间保持2.5分钟；

[0044] 第3步）步骤中，压扁机由揉捻机替代，揉捻时的温度保持在65℃，时间保持35分钟；

[0045] 第4步）步骤的干燥温度保持在70℃，时间保持30分钟。

具体使用本实施例的关键工序专用设备——急冷机对茶叶进行机加工时，可以将所述制冷腔体2的进口端与所述微波杀青机的出口端彼此封闭衔接，再将所述输送带3的出口端与所述揉捻机的进料口彼此衔接，所述输送带3顺次穿过微波杀青机和急冷机后将茶叶输送到揉捻机的进料口。这样，即可按本实施例高品质茶叶加工方法的步骤完成茶叶机加工作业。

[0047] 申请人用传统制茶方法并通过上述实施例一、实施例二和实施例三的高品质茶叶加工方法分别制出两组形形茶，经专业评审人员对茶叶成品的色、香、味、形进行评审；评审方法参见茶叶感官评审标准SB/T10157-1993茶；评审结果如下表一：

[0048] 表一 杀青后急冷与对照成品茶感官评审结果比较

<table>
<thead>
<tr>
<th>制茶方法</th>
<th>外形及分值20%</th>
<th>整碎及分值10%</th>
<th>色泽及分值20%</th>
<th>香气及分值10%</th>
<th>汤色及分值20%</th>
<th>滋味及分值20%</th>
<th>叶底及分值20%</th>
<th>总分</th>
</tr>
</thead>
<tbody>
<tr>
<td>传统方法</td>
<td>扁平光润、挺直</td>
<td>19.5</td>
<td>9.1</td>
<td>18.8</td>
<td>9.0</td>
<td>19.1</td>
<td>9.2</td>
<td>93.7</td>
</tr>
<tr>
<td>杀青后急冷</td>
<td>扁平挺直</td>
<td>19.4</td>
<td>9.3</td>
<td>19.8</td>
<td>9.2</td>
<td>19.2</td>
<td>9.7</td>
<td>96.2</td>
</tr>
</tbody>
</table>

[0050] 申请人再对用传统制茶方法和通过上述实施例一、实施例二和实施例三的高品质茶叶加工方法制出的两组扁形茶成品进行内含量测定，测定结果如下表二。经急冷处理后，茶叶中大部分内含量成分均发生了较大的变化。为了简化分析，这里仅选用对茶叶营养价值和鲜爽度两项品质指标有重要影响的茶多酚含量和游离氨基酸含量，来分析急冷制茶工
艺对茶叶品质的影响。下表二列出了用不同制茶手段和不同处理温度对茶叶中的茶多酚和游离氨基酸含量的影响。其中茶多酚和游离氨基酸数据为茶叶溶于标准水中后所测的溶解量占茶汤中所有可溶性物质量的质量百分比。茶多酚测定方法参见茶多酚测定标准 GB/T8313—2002 茶，游离氨基酸测定方法参见游离氨基酸总量测定标准 GB8314—2002 茶。

<table>
<thead>
<tr>
<th>方法种类</th>
<th>温度</th>
<th>茶多酚含量（水中溶解量占干茶质量百分比）</th>
<th>标准差</th>
<th>aa（游离氨基酸）含量（水中溶解量占干茶质量百分比）</th>
<th>标准差</th>
</tr>
</thead>
<tbody>
<tr>
<td>传统</td>
<td>高温</td>
<td>34.92</td>
<td>0.65</td>
<td>1.00</td>
<td>0.04</td>
</tr>
<tr>
<td>减杀气急冷</td>
<td>4℃</td>
<td>40.17</td>
<td>0.20</td>
<td>1.21</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>10℃</td>
<td>39.93</td>
<td>0.55</td>
<td>1.10</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>17℃</td>
<td>39.68</td>
<td>0.52</td>
<td>0.98</td>
<td>0.02</td>
</tr>
</tbody>
</table>

实施例四

本实施例的高品质茶叶加工方法包括以下步骤：

1) 微波杀青—将鲜茶叶从微波杀青机喂料口送入杀青机进行杀青，温度保持在 85℃，时间是 2.5 分钟；
2) 压扁—经急冷机急冷后的茶叶通过压扁机进行成形，温度保持在 65℃，时间是 2 分钟；
3) 急冷—经压扁机压扁成形后的茶叶迅速通过急冷机经 100 秒冷却至温度为 5℃，保持时间 1.5 分钟；
4) 干燥—经急冷后的茶叶通过干燥机进行干燥脱水，温度保持在 60℃，时间是 50 分钟。

具体使用本实施例的关键工序专用设备—急冷机对茶叶进行机加工时，可以将所述制冷腔体 2 的进口端与所述压扁机的出口端彼此封闭衔接，所述输送带 3 频次穿过微波杀青机、压扁机和急冷机。这样，即可按本实施例高品质茶叶加工方法的步骤完成茶叶机加工作业。

实施例五

本实施例的高品质茶叶加工方法与实施例四基本相同，所不同的是：

1) 第 1) 步骤的微波杀青温度保持在 95℃，时间保持 2 分钟；
2) 第 2) 步骤的压扁机由理条机替代，温度保持在 75℃，时间保持 25 分钟；
3) 第 3) 步骤的急冷时间 110 秒，温度保持在 1℃，时间保持 1 分钟；
4) 第 4) 步骤的干燥温度保持在 55℃，时间保持 60 分钟。

具体使用本实施例的关键工序专用设备—急冷机对茶叶进行机加工时，可以将所述制冷腔体 2 的进口端与所述理条机的出料口彼此衔接，经理条后的茶叶从理条机的出料口送到所述输送带 3 上，再由输送带 3 送入急冷机进行急冷处理。这样，即可按本实施例高品质茶叶加工方法的步骤完成茶叶机加工作业。

申请人用传统制茶方法和通过上述实施例四和实施例五高品质茶叶加工方法分别制出两组扁形茶，同上述评审方法一样，对茶叶成品的色、香、味、形进行评审，评审结果
如下表三:

<table>
<thead>
<tr>
<th>制茶方法</th>
<th>外形及分值20%</th>
<th>整碎及分值10%</th>
<th>色泽及分值10%</th>
<th>香气及分值20%</th>
<th>汤色及分值10%</th>
<th>滋味及分值20%</th>
<th>叶底及分值10%</th>
<th>总分</th>
</tr>
</thead>
<tbody>
<tr>
<td>传统方法</td>
<td>扁平光润、挺直19.5</td>
<td>匀整9.1</td>
<td>深绿尚润9.0</td>
<td>清香18.8</td>
<td>嫩绿尚亮9.0</td>
<td>较浓尚厚19.1</td>
<td>细嫩、较匀9.2</td>
<td>93.7</td>
</tr>
<tr>
<td>做形后急冷</td>
<td>扁平光润19.5</td>
<td>匀整9.4</td>
<td>嫩绿鲜润9.8</td>
<td>清香持久19.9</td>
<td>嫩绿19.1</td>
<td>醇厚微鲜爽18.8</td>
<td>嫩绿、明亮9.8</td>
<td>96.3</td>
</tr>
</tbody>
</table>

申请人在对用传统制茶方法和通过上述实施例四和实施例五的高品質茶叶加工方法制出的两组扁形茶，同上述测定方法一样，对茶叶成品进行内含物测定，测定结果如下表四:

如下表四:

<table>
<thead>
<tr>
<th>方法种类</th>
<th>温度</th>
<th>茶多酚含量（水中溶解量占干茶质量百分比）</th>
<th>标准差</th>
<th>SSA（游离氨基酸）含量（水中溶解量占干茶质量百分比）</th>
<th>标准差</th>
</tr>
</thead>
<tbody>
<tr>
<td>传统</td>
<td>高温</td>
<td>34.92</td>
<td>0.65</td>
<td>1.00</td>
<td>0.04</td>
</tr>
<tr>
<td>经做形后急冷</td>
<td>5℃</td>
<td>40.17</td>
<td>0.20</td>
<td>1.21</td>
<td>0.10</td>
</tr>
<tr>
<td>1℃</td>
<td>43.32</td>
<td>0.50</td>
<td>1.12</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

实施例六

本实施例的高品质茶叶加工方法包括以下步骤：

1) 微波杀青 -- 将茶鲜叶从微波杀青机喂料口送入杀青机进行杀青，温度保持在90℃，时间保持2.5分钟；
2) 第一急冷 -- 经杀青机杀青后的茶叶迅即通过第一急冷机经40秒冷却至温度12℃，保持时间1.5分钟；
3) 压扁 -- 经急冷机急冷后的茶叶通过压扁机进行成形，温度保持在70℃，时间保持2分钟；
4) 第二急冷 -- 经压扁机成形后的茶叶迅即通过第二急冷机经65秒冷却至温度12℃，保持时间1.5分钟；
5) 干燥 -- 经压扁机成形后的茶叶通过干燥机进行干燥脱水，温度保持在60℃，时间保持45分钟。

本实施例的关键工序专用设备——急冷机采用两台，分为第一急冷机和第二急冷机。具体使用该两台急冷机对茶叶进行机加工时，将第一急冷机的第一制冷腔体的进口端与所述微波杀青机的出口端彼此封闭连接，再将第一制冷腔体的出口端与所述压扁机的进口端彼此封闭连接，然后将第二急冷机的第二制冷腔体的进口端与所述压扁机的出口端彼
此封闭衔接，所述输送带3 顺次穿过微波杀青机、第一急冷机、压扁机和第二急冷机。这样，即可按本实施例高品质茶叶加工方法的步骤完成茶叶机加工作业。

【0081】实施例七

【0082】本实施例的高品质茶叶加工方法与实施例六基本相同，所不同的是：

【0083】第1步的杀青温度保持在105℃，时间保持1.5分钟；

【0084】第2步的第一次急冷时间75秒，温度保持在9℃，时间保持1.5分钟；

【0085】第3步的压扁机由理条机替代，温度保持在65℃，时间保持30分钟；

【0086】第4步的第二次急冷时间90秒，温度保持在9℃，时间保持1.5分钟；

【0087】第5步的干燥温度保持在55℃，时间保持50分钟。

【0088】本实施例具体使用关键工序专用设备－急冷机的情况与实施例六除相同以外所不同的是，第一制冷腔体的出口端是与所述理条机的进料口衔接，第二制冷腔体的进口端是与所述理条机的出料口衔接，第一急冷机和第二急冷机各设第一循环输送带和第二循环输送带，第一循环输送带顺次穿过微波杀青机和第一急冷机后，将茶叶从理条机的进料口送入理条机，理条后的茶叶从理条机的出料口送至第二循环输送带，再送入第一急冷机。这样，即可按本实施例高品质茶叶加工方法的步骤完成茶叶机加工作业。

【0089】申请人用传统制茶方法和通过上述实施例六和实施例七高品质茶叶加工方法分别制出两组扁形茶，同上述评审方法一样，对茶叶成品的色、香、味、形进行评审，评审结果如下表五：

【0090】表五 杀青后急冷和做形后急冷与传统处理成品茶感官审评结果比较

<table>
<thead>
<tr>
<th>制茶方法</th>
<th>外形及分值</th>
<th>整碎及分值</th>
<th>色泽及分值</th>
<th>香气及分值</th>
<th>汤色及分值</th>
<th>滋味及分值</th>
<th>叶底及分值</th>
<th>总分</th>
</tr>
</thead>
<tbody>
<tr>
<td>传统方法</td>
<td>扁平光润 挺直 19.5</td>
<td>匀整 9.1</td>
<td>深绿尚亮 9.0</td>
<td>清香 18.8</td>
<td>嫩绿尚厚 19.1</td>
<td>细嫩、较匀 9.2</td>
<td>93.7</td>
<td></td>
</tr>
<tr>
<td>杀青后急冷</td>
<td>扁平光润 19.8</td>
<td>匀整 9.6</td>
<td>嫩绿、较鲜绿 9.7</td>
<td>清香持久 19.8</td>
<td>鲜绿 9.5</td>
<td>嫩绿、明亮 9.9</td>
<td>97.6</td>
<td></td>
</tr>
</tbody>
</table>

【0092】申请人再用传统制茶方法和通过上述实施例六和实施例七的高品质茶叶加工方法制出的两组扁形茶，同上述测定方法一样，对茶叶成品进行内含物测定，测定结果如下表六：

【0093】表六 杀青后急冷和做形后急冷对茶叶中部分可溶性内含物成分含量的影响

【0094】
方法
种类	温度	茶多酚含量（水中溶解量占干茶质量百分比）	标准差	aa（游离氨基酸）含量（水中溶解量占干茶质量百分比）	标准差
传统 | 高温 | 34.92 | 0.65 | 1.00 | 0.04
经做形后急冷 | 12°C | 40.11 | 0.22 | 1.18 | 0.08
 | 9°C | 37.82 | 0.30 | 1.07 | 0.05

从上述表一至表六可知，在杀青和做形后再经过一次以上急冷工序处理的茶叶，在色、香、味、形四个方面以及整体评价分数明显高于传统没有急冷处理方法的茶叶；尤其是杀青和做形后同时增加二道急冷工序时，茶叶整体评价分数更高。同时从实验结果还可以看出，无论是在杀青或做形后单独进行急冷处理，还是杀青与做形后同时进行急冷处理，茶叶可溶性内含物中茶多酚和游离氨基酸在水中的溶解量比传统制茶方法处理的茶叶均有明显的提高；而且随着急冷温度的降低，内含物成份有增加的趋势。由此可见说明，采用本发明的高品质茶叶加工方法及其关键工序专用设备（急冷机）加工出来的茶叶，不仅实现了对茶叶的色、香、味更好地保护，而且还有效提高茶叶内含有益物质的含量；从而为人们的健康生活又提供了一种高品质的饮用茶叶。

显然，手工加工茶叶时也完全可以采用上述实施例中所述高品质茶叶加工方法的各步骤，只是各步骤中所使用的工具或设备不同。

除上述实施例外，本发明还可以有其他实施方式。比如，1）现有手工加工茶叶或机加工茶叶时，常常采用杀青和做形同时或交替进行，这只是将现有茶叶加工的杀青和做形这两个步骤的顺序进行组合变化，步骤本身并不缺少。本发明不排除这种步骤顺序的变化；2）急冷机中的制冷机4也可以是设置于制冷腔体2附近的冷水机或采用其它的制冷机，冷水机的外排器（冷水盘管）设于循环风机5的回风道内；等等。凡采用等同替换或等效变换形成的技术方案，均落在本发明要求的保护范围内。