My invention relates to a device for conveying the exhaust sounds from an internal combustion engine exhaust pipe to and through the radio carried by the automobile in which the engine is mounted.

An object of my invention is to provide a system and device for conveying the exhaust sounds directly to the radio installed in the automobile, whereby the objects contemplated are attained, as hereinafter more fully set forth, pointed out in my claims, and illustrated in the accompanying drawings, in which:

Figure 1 is a generally plan and schematic view of my invention.

Figure 2 is a sectional view taken generally along the lines 2—2 of Figure 1.

Figure 3 is a sectional view taken generally along the lines 3—3 of Figure 1, and

Figure 4 is a circuit diagram of the arrangement.

The principal objective of my invention is to provide an attachment wherein the exhaust sounds of an internal combustion engine are transmitted through the radio receiver in the automobile, so that the operator can readily cause such sounds to pass through the radio, and can be heard from the interior of the automobile by the operator, to cause a realistic throbbing exhaust effect which is both interesting and also in many cases is somewhat fascinating to certain drivers. It is a more or less well known fact that certain drivers enjoy hearing the exhausts of their particular automobile, and in many cases will use certain devices for exaggerating the exhaust sounds, whereas in my invention the exhaust sounds can be carried directly through the radio, without the automobile, and with the exhaust sounds being suitably regulated so as to provide the above mentioned pleasing throbbing effect. It will be equally obvious that the device can also be used for more clearly analyzing the performance of the engine such as regularity of the exhaust sounds etc.

I have used the character 10 to designate the rear exhaust pipe of an automobile, and secured to the member 10 I provide a cylindrical member 11 which is open at 12 and includes the resilient leaves 13, which leaves are suitably slipped onto the exhaust pipe to thereby support the member 11, being noted that the end 14 of the pipe 10 extends slightly beyond a side opening 15 provided in the member 11, the opening 15 including the neck 16 to which is secured by means of the clamp 17 a flexible hollow tube 18.

The tube 18 is secured by means of a further clamp 19 to a hollow neck 20 which communicates with the opening 21 in the box 22, which box 22 is suitably secured by any desired means to any convenient portion of the automobile frame, and secured within the box 22 is a microphone member 23, the character 24 indicating cotton or any other substance which can be used to regulate the sound volume.

The microphone 23 includes the lead 25 which communicates to a simple jack type switch 26, with the further lead 27 passing to a suitable jack member 28 which is provided in the side wall of the radio 29, the radio 29 being of any standard type and including the control buttons 30, knobs 31 and knobs 32, etc.

The lead 27 after passing through the jack is suitably connected at 33 to the top of one of the radio tubes 34. The antenna lead 35 can also be suitably connected to a jack 36, the lead 35 passing to the further jack type switch 37 which includes a further lead 38 passing to the radio antenna 39.

It will be observed from the electrical circuit diagram of Figure 4, that when the jack switch 26 is pushed inwardly to close the circuit, the sounds from the exhaust pipe 10 will pass from the member 11 through the neck 16, thence through the tube 18, thence through the further neck 20 and thence into the microphone 23 whereby such sounds will be transmitted through the lead 25 and the switch 26 to the radio tube 34 whereby the sound of the exhaust will thus be transmitted with the amplified volume through the radio loud speaker portion 32. The switch 37 is opened when it is desired to hear the exhaust sounds, and when it is desired to operate the radio only, the antenna switch 38 is closed and the switch 26 is opened, or if desired, both circuits can be operated simultaneously.

The switches can be suitably attached to the dashboard in any desired manner.

It will thus be noted from the foregoing description and structure that my invention provides all of the objects mentioned, and provides the various effects stated and includes other advantages readily apparent.

Some changes may be made in the construction and arrangement of the parts of my invention without departing from the real spirit and purpose of my invention, and it is my intention to cover by my claims any modified forms of structure or use of mechanical equivalents which may be reasonably included within their scope.

I claim as my invention:

1. A radio connected system for exhaust sounds of an internal combustion engine, and the automobile driven by said engine, comprising an engine exhaust pipe, a hollow member attached to the end of said exhaust pipe, a tube communicating with said hollow member, a microphone to which said tube communicates, a radio in said automobile to which said microphone communicates.

2. A radio connected system for exhaust sounds of an internal combustion engine, and the automobile driven by said engine, comprising an engine exhaust pipe, a hollow member attached to the end of said exhaust pipe, a tube communicating with said hollow member, a microphone to which said tube communicates, a radio in said automobile to which said microphone communicates, said hollow member being generally cylindrical and having an open end.

3. A radio connected system for exhaust sounds of an internal combustion engine, and the automobile driven by said engine, comprising an engine exhaust pipe, a hollow member attached to the end of said exhaust pipe, a tube communicating with said hollow member, a microphone to which said tube communicates, a radio in said
automobile to which said microphone communicates, said hollow member being generally cylindrical and having an open end, a box for enclosing said microphone, said box being attached to a portion of the automobile framework.

4. A radio connected system for exhaust sounds of an internal combustion engine, and the automobile driven by said engine, comprising an engine exhaust pipe, a hollow member attached to the end of said exhaust pipe, a tube communicating with said hollow member, a microphone to which said tube communicates, a radio in said automobile to which said microphone communicates, a hollow member being generally cylindrical and having an open end, a box for enclosing said microphone, said box being attached to a portion of the automobile framework, a switch member for establishing contact between said microphone and said radio, a lead communicating from said switch member to one of said radio tubes.

5. A radio connected system for exhaust sounds of an internal combustion engine, and the automobile driven by said engine, comprising an engine exhaust pipe, a hollow member attached to the end of said exhaust pipe, a tube communicating with said hollow member, a microphone to which said tube communicates, a radio in said automobile to which said microphone communicates, said hollow member being generally cylindrical and having an open end, a box for enclosing said microphone, said box being attached to a portion of the automobile framework, a switch member for establishing contact between said microphone and said radio, a lead communicating from said switch member to one of said radio tubes.

References Cited in the file of this patent

UNITED STATES PATENTS
1,693,756 Jordan Dec. 4, 1928
2,619,544 Satterfield Nov. 25, 1952

FOREIGN PATENTS
758,829 France Jan. 24, 1934