The invention relates to aqueous dispersion adhesives based on aqueous polyurethane-polyurethane urea dispersions, to a process for their preparation and to the use of the dispersion adhesives in the production of adhesive composites.
Title: DISPERSSION ADHESIVES

Abstract: The invention relates to aqueous dispersion adhesives based on aqueous polyurethane-polyurethane urea dispersions, to a process for their preparation and to the use of the dispersion adhesives in the production of adhesive composites.
Dispersion adhesives

The invention relates to aqueous dispersion adhesives based on aqueous polyurethane-polyurethane urea dispersions, to a process for their preparation and to the use of the dispersion adhesives in the production of adhesive composites.

The preparation of aqueous polyurethane-polyurethane urea dispersions is known. When such dispersions are used as adhesives for the bonding of substrates, the heat activation method is frequently employed. In this method, the dispersion is applied to the substrate and, when the water has evaporated completely, the adhesive layer is activated by heating, for example with an infra-red radiator, and brought into a sticky state. The temperature at which the adhesive film becomes tacky is referred to as the activation temperature. As low an activation temperature as possible is generally desired, because a disadvantageously high outlay in terms of energy is required at high activation temperatures and manual joining becomes difficult to impossible.

Adhesives based on aqueous polyurethane-polyurethane urea dispersions, which are suitable for application of the heat activation method, are described in US-A 4 870 129. According to that specification, it is possible by using specific mixtures of diisocyanates to obtain aqueous polyurethane-polyurethane urea dispersions by the acetone process, and the films obtainable therefrom can readily be activated at 40° to 80°C.

Likewise, EP-A 0 304 718 describes the preparation of aqueous polyurethane-polyurethane urea dispersions which permit the production of films which can readily be activated. This is achieved by the use of specific amino compounds as chain extenders. The amino compounds are primary and/or secondary monoamino compounds, optionally in admixture with primary and/or secondary diamino compounds having a mean amino functionality of from 1 to 1.9. The equivalent ratio of NCO groups in the NCO prepolymer to the total amount of hydrogen atoms
active towards isocyanates is from 0.5:1 to 0.98:1. Mixtures of diamino and
monoamino compounds are preferably used.

A fundamental disadvantage of these dispersion adhesives described in the prior art
is their inadequate initial heat resistance. In addition, they exhibit inadequate final
heat resistance in the case of one-component adhesive bonding, one-component
within the scope of the present invention meaning that an additional polyisocyanate
compound is not added as crosslinker component prior to application.

A further method of preparing aqueous polyurethane-polyurethane urea dispersions
which are suitable as an adhesive in particular according to the heat activation
method is disclosed in DE-A 101 52 405. In this specification, aqueous
polyurethane-polyurethane urea dispersions can be obtained by using specific
polyester polyols comprising aromatic metal sulfonate groups. Films produced
therefrom by removing the water can readily be activated even at 50 to 60°C.
However, these polyesters comprising aromatic metal sulfonate groups can be
obtained only with difficulty or are very expensive owing to the dicarboxylic acids
containing metal sulfonate or sulfonic acid groups which are necessarily to be used
as raw materials.

DE-A 10 2004 023 768 discloses a further method of preparing polyurethane-
polyurethane urea dispersions which are suitable as adhesives having good initial
heat resistance. However, the content of up to 7.5 wt.% of an external emulsifier
adversely affects the possible uses of these adhesives, because they cause high
hydrophilicity and sensitivity of the products to water. In addition, the adhesion and
bonding force can be adversely affected by migration effects of the emulsifier,
which is not chemically bonded.

Accordingly, the object of the present invention was to provide dispersion adhesives
based on polyurethane-polyurethane urea dispersions prepared without need of using
an emulsifier, from which there can be obtained, by evaporating the water or
removing it in another manner (e.g. absorption of the water by the substrate which is itself absorbent or by an absorbent auxiliary agent), films which have improved initial heat resistance and improved, high final heat resistance as compared with the prior art.

Surprisingly, it has now been found that the aqueous polyurethane-polyurea dispersion described hereinbelow, which is prepared without using an emulsifier, is suitable as an adhesive raw material, and that the thermally activatable films obtained therefrom by evaporating the water or removing it in another manner have improved initial heat resistance and an improved, high final heat resistance as compared with the prior art. The dispersion according to the invention is stable as such and does not require any external emulsifiers.

The present invention accordingly provides aqueous polyurethane-polyurethane urea dispersions based on

A) one or more di- or higher-functional polyol(s) having a mean molecular weight of from 400 to 5000 daltons,

B) optionally one or more di- or higher-functional polyol component(s) having a molecular weight of from 62 to 399 daltons,

C) one or more di- or poly-isocyanate component(s), and

D) a mixture D) of primary and/or secondary monoamino compounds D1) and primary and/or secondary diamino compounds D2),

characterised in that

at least one of components D1) and/or D2) carries sulfonate and/or carboxylate groups, and the mean amino functionality of the mixture D) is from 1.65 to 1.95, and
the equivalent ratio of NCO groups in the NCO prepolymer to the total amount of isocyanate-reactive amino and hydroxyl groups of the mixture D) is from 1.04 to 1.9.

5 Suitable di- or higher-functional polyols A) are compounds having at least two hydrogen atoms that are reactive towards isocyanates and a mean molecular weight of from 400 to 5000 daltons. Examples of suitable building blocks are polyethers, polyesters, polycarbonates, polylactones or polyamides. Preferred polyols A) have from 2 to 4, particularly preferably from 2 to 3, hydroxyl groups. Mixtures of different compounds of this type are also suitable.

There come into consideration as polyester polyols in particular linear polyester diols or also weakly branched polyester polyols, as can be prepared in known manner from aliphatic, cycloaliphatic or aromatic di- or poly-carboxylic acids, such as, for example, succinic acid, methylsuccinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, nonanedioic acid, decanedioic acid, terephthalic acid, isophthalic acid, o-phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, cyclohexanedioic acid, maleic acid, fumaric acid, malonic acid or trimellitic acid, as well as acid anhydrides, such as o-phthalic anhydride, trimellitic anhydride or succinic anhydride or mixtures thereof with polyhydric alcohols, such as, for example, ethanediol, di-, tri-, tetra-ethylene glycol, 1,2-propanediol, di-, tri-, tetra-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2-dimethyl-1,3-propanediol, 1,4-dihydroxycyclohexane, 1,4-dimethylolcyclohexane, 1,8-octanediol, 1,10-decanediol, 1,12-dodecanediol or mixtures thereof, optionally with the concomitant use of higher-functional polyols, such as trimethylolpropane, glycerol or pentaerythritol. Suitable polyhydric alcohols for the preparation of the polyester polyols are, of course, also cycloaliphatic and/or aromatic di- and poly-hydroxyl compounds. Instead of the free polycarboxylic acid it is also possible to use for the preparation of the polyesters the corresponding
polycarboxylic anhydrides or corresponding polycarboxylic acid esters of lower alcohols or mixtures thereof.

The polyester polyols can, of course, also be homopolymers or mixed polymers of lactones, which are preferably obtained by adding lactones or lactone mixtures, such as butyrolactone, ε-caprolactone and/or methyl-ε-caprolactone, to the suitable di- and/or higher-functional starter molecules, such as, for example, the low molecular weight polyhydric alcohols mentioned above as chain-extension components for polyester polyols. The corresponding polymers of ε-caprolactone are preferred.

Particular preference is given to largely linear polyester polyols which contain adipic acid and 1,4-butandiol and/or 1,6-hexanediol and/or 2,2-dimethyl-1,3-propanediol as building blocks.

Polycarbonates containing hydroxyl groups also come into consideration as polyhydroxyl components, for example those which can be prepared by reacting diols such as 1,4-butandiol and/or 1,6-hexanediol with diaryl carbonates, such as, for example, diphenyl carbonate, dialkyl carbonates, such as, for example, dimethyl carbonate, or phosgene. The hydrolytic stability of the dispersion adhesives according to the invention can be improved by the at least partial use of polycarbonates containing hydroxyl groups.

Preference is given to polycarbonates that have been prepared by reacting 1,6-hexanediol with dimethyl carbonate.

Suitable as polyether polyols are, for example, the polyaddition products of the styrene oxides, of ethylene oxide, propylene oxide, tetrahydrofuran, butylene oxide, epichlorohydrin, as well as mixed addition and graft products thereof, as well as polyether polyols obtained by condensation of polyhydric alcohols or mixtures thereof and polyether polyols obtained by alkoxylation of polyhydric alcohols, amines and amino alcohols. Polyether polyols suitable as components A) are the
homopolymers, mixed polymers and graft polymers of propylene oxide and of ethylene oxide, which are obtainable by adding the mentioned epoxides to low molecular weight diols or triols, as are mentioned above as building blocks for polyester polyols, or to higher-functional low molecular weight polyols such as, for example, pentaerythritol or sugars, or to water.

Particularly preferred di- or higher-functional polyols A) are polyester polyols, polylactones or polycarbonates, the polyester polyols of the above-mentioned type are most particularly preferred.

There are suitable as the chain-extension component B) di- or higher-functional polyol components having a molecular weight of from 62 to 399 daltons, such as, for example, polyethers, polyesters, polycarbonates, polylactones or polyamides, provided they have a molecular weight of from 62 to 399 daltons.

Further suitable components are the polyhydric, in particular dihydric, alcohols mentioned under A) for the preparation of the polyester polyols, and also low molecular weight polyester diols such as, for example, adipic acid bis-(hydroxyethyl) ester, or short-chained homo- and mixed addition products of ethylene oxide or propylene oxide started with aromatic diols. Examples of aromatic diols which can be used as starters for short-chained homopolymers and mixed polymers of ethylene oxide or propylene oxide are, for example, 1,4-, 1,3-, 1,2-dihydroxybenzene or 2,2-bis-(4-hydroxyphenyl)-propane (bisphenol A).

Suitable as components C) are any organic compounds containing at least two free isocyanate groups per molecule. Preference is given to the use of diisocyanates Y(NCO)₂, wherein Y represents a divalent aliphatic hydrocarbon radical having from 4 to 12 carbon atoms, a divalent cycloaliphatic hydrocarbon radical having from 6 to 15 carbon atoms, a divalent aromatic hydrocarbon radical having from 6 to 15 carbon atoms or a divalent araliphatic hydrocarbon radical having from 7 to 15 carbon atoms. Examples of such diisocyanates which are preferably to be used are
tetramethylene diisocyanate, methylpentamethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 1,4-diisocyanato-cyclohexane, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane, 4,4'-diisocyanato-dicyclohexyl-methane, 4,4'-diisocyanato-2,2-dicyclohexylpropane, 1,4-diisocyanatobenzene, 2,4-diisocyanatotoluene, 2,6-diisocyanatotoluene, 4,4'-diisocyanato-diphenylmethane, 2,2'- and 2,4'-diisocyanatodiphenylmethane, tetramethylxylylene diisocyanate, p-xylylene diisocyanate, p-isopropylidene diisocyanate, as well as mixtures consisting of these compounds.

It is, of course, also possible to use, proportionately, the higher-functional polyisocyanates known per se in polyurethane chemistry or also modified polyisocyanates known per se, for example polyisocyanates containing carbodiimide groups, allophanate groups, isocyanurate groups, urethane groups and/or biuret groups.

Preferred diisocyanates C) are aliphatic and araliphatic diisocyanates, such as hexamethylene diisocyanate, 1,4-diisocyanato-cyclohexane, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane, 4,4'-diisocyanato-dicyclohexyl-methane or 4,4'-diisocyanato-2,2-dicyclohexylpropane, as well as mixtures consisting of these compounds.

Particularly preferred components C) are mixtures of hexamethylene diisocyanate and 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane.

The polymer on which the dispersions according to the invention are based contains ionic or potentially ionic groups for hydrophilisation, which groups can be either cationic or anionic in nature. Sulfonate and carboxylate groups are preferred. Alternatively, groups that can be converted into the above-mentioned ionic groups by salt formation (potentially ionic groups) can also be used. The hydrophilic groups are introduced into the polymer via components D1) and/or D2).
Suitable as the chain-extension component D) is a mixture of primary and/or secondary monoamino compounds D1) and primary and/or secondary diamino compounds D2),

wherein at least one of components D1) and/or D2) carries sulfonic acid and/or carboxyl groups.

Examples of D1) are aliphatic and/or alicyclic primary and/or secondary monoamines, such as ethylamine, diethylamine, the isomeric propyl- and butylamines, higher linear-aliphatic monoamines and cycloaliphatic monoamines such as cyclohexylamine. Further examples of D1) are amino alcohols, that is to say compounds that contain amino and hydroxyl groups in a molecule, such as, for example, ethanolamine, N-methylethanolamine, diethanolamine and 2-propanolamine. Further examples of D1) are monoamino compounds that additionally carry sulfonic acid and/or carboxyl groups, such as, for example, taurine, glycine or alanine. It is, of course, also possible to use mixtures of a plurality of monoamino compounds D1).

Preferred chain-extension components D1) are diethylamine, ethanolamine or diethanolamine. Particularly preferred chain-extension components D1) are ethanolamine or diethanolamine.

Examples of D2) are 1,2-ethanediamine, 1,6-hexamethylenediamine, 1-amino-3,3,5-trimethyl-5-aminomethyl-cyclohexane (isophoronediamine), piperazine, 1,4-diaminocyclohexane or bis-(4-aminocyclohexyl)-methane. Also suitable are adipic acid dihydrazide, hydrazine or hydrazine hydrate. Polyamines such as diethylenetriamine can also be used as the chain-extension component D2) instead of a diamino compound.

Further examples of D2) are amino alcohols, that is to say compounds that contain amino and hydroxyl groups in a molecule, such as, for example, 1,3-diamino-2-
propanol, N-(2-hydroxyethyl)-ethylenediamine or N,N-bis(2-hydroxyethyl)-ethylenediamine.

Compounds D2) which are also suitable are diamino compounds that additionally carry sulfonate and/or carboxylate groups, such as, for example, the sodium or potassium salts of N-(2-aminoethyl)-2-aminoethanesulfonic acid, of N-(3-aminopropyl)-2-aminoethanesulfonic acid, of N-(3-aminopropyl)-2-aminoethanesulfonic acid, of N-(2-aminoethyl)-3-amino propane sulfonic acid or of the analogous carboxylic acids. It is also possible to use mixtures of a plurality of diamino compounds D2).

Preferred chain-extension components D2) are 1,2-ethanediame, 1,6-hexamethylenediamine, 1-amino-3,3,5-trimethyl-5-aminomethyl-cyclohexane (isophoronediamine), piperazine, N-(2-hydroxyethyl)-ethylenediamine, N,N-bis(2-hydroxyethyl)-ethylenediamine, the sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid or the sodium salt of N-(2-aminoethyl)-2-aminoethane-carboxylic acid.

Particularly preferred chain-extension components D2) are N-(2-hydroxyethyl)-ethylenediamine or the sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid.

The mean amino functionality of the mixture D) is from 1.65 to 1.95, preferably from 1.70 to 1.90, particularly preferably from 1.73 to 1.88.

The equivalent ratio of NCO groups in the NCO prepolymer to the total amount of amino and hydroxyl groups in the mixture D) that are reactive towards isocyanate is from 1.04 to 1.9, preferably from 1.05 to 1.70, most particularly preferably from 1.06 to 1.62.
The mixture D) preferably contains monoamino compounds D1), diamino compounds D2) having hydroxyl groups, and diamino compounds D2) having sulfonate or carboxylate groups. Particularly preferably, the mixture D) contains monoamino alcohols D1), diamino alcohols D2) and diamino compounds D2) having sulfonate groups. Most particularly preferably, the mixture D) contains diethanolamine, N-(2-hydroxyethyl)-ethylenediamine and the sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid.

The content of ionic groups is from 10 to 600 mmol per kg of solid, preferably from 20 to 300 mmol, particularly preferably from 30 to 150 mmol per kg of solid.

The present invention further provides a process for the preparation of the aqueous polyurethane-polyurethane urea dispersions according to the invention, characterised in that, in a first step, some or all of components A), B) and C), optionally in the presence of a solvent that is miscible with water but inert towards isocyanate groups, are placed in a reactor and heated to temperatures in the range from 50 to 120°C, and then any of constituents A), B) or C) that were not added at the beginning of the reaction are metered in, in a second step the chain extension with the mixture D) is carried out at temperatures of from 15 to 60°C and, before, during or after the chain extension, conversion into the aqueous phase is carried out and the solvent optionally used is removed.

The preparation of the aqueous polyurethane-polyurea dispersions according to the invention can be carried out in one or more steps in homogeneous phase or, in the case of a multi-step reaction, partially in disperse phase. When the polyaddition has been carried out partially or completely, a dispersing, emulsifying or dissolving step takes place. Following this there is optionally a further polyaddition or modification in disperse phase. All the processes known from the prior art can be used for the preparation. The acetone process is preferably used.
Suitable solvents are, for example, acetone, butanone, tetrahydrofuran, dioxane, acetonitrile, dipropylene glycol dimethyl ether and 1-methyl-2-pyrrolidone; preference is given to butanone or acetone, acetone is particularly preferred. The solvents can be added not only at the beginning of the preparation but optionally partly also later. It is possible to carry out the reaction under normal pressure or elevated pressure.

For the preparation of the prepolymer, the amounts of the individual components A) to C) that are used are such that an isocyanate number of from 1.05 to 2.5, preferably from 1.1 to 1.5, is obtained. The isocyanate content of the prepolymer is from 0.3 to 3.0 %, preferably from 0.7 to 1.5 %, particularly preferably from 0.9 to 1.5 %.

From 50 to 96 parts by weight, preferably from 75 to 96 parts by weight, of component A), from 0 to 10 parts by weight, preferably from 0 to 5 parts by weight, of component B) and from 3 to 30 parts by weight, preferably from 5 to 18 parts by weight, of component C) are used, with the proviso that the sum of the components is 100.

The reaction of components A) and B) with C) takes place partially or completely, but preferably completely, based on the total amount of groups reactive with isocyanates. The degree of reaction is usually monitored by following the NCO content of the reaction mixture. To this end, both spectroscopic measurements, for example infra-red or near-infra-red spectra, determinations of the refractive index, as well as chemical analyses, such as titrations of removed samples, can be carried out.

In order to accelerate the isocyanate addition reaction it is possible to use conventional catalysts such as are known to the person skilled in the art for accelerating the NCO-OH reaction. Examples are triethylamine, 1,4-diazabicyclo-[2,2,2]-octane, dibutyltin oxide, tin dioctoate or dibutyltin dilaurate, tin bis-(2-ethyl-hexanoate) or other organometallic compounds.
The chain extension with the mixture D) can be carried out before the dispersion, during the dispersion or after the dispersion. The chain extension is preferably carried out before the dispersion.

The chain extension is carried out at temperatures of from 15 to 60°C, preferably from 25 to 55°C, particularly preferably from 40 to 50°C.

The expression chain extension within the scope of the present invention also includes the reactions of the monoamino compounds D1) which, owing to their monofunctionality, act as chain terminators and accordingly result not in an increase but in a decrease in the molecular weight. This is true in particular also for the amino alcohols D1), because their hydroxyl groups do not react, or react to only a very small degree, with the isocyanate groups in the chosen temperature range.

Component D) can be added to the reaction mixture in a form diluted with organic solvents and/or with water. The aminic compounds D1) and D2) can be added in succession in any desired sequence or simultaneously by addition of a mixture.

For the purposes of preparing the dispersion according to the invention, the prepolymer, optionally with strong shear, such as, for example, vigorous stirring, is either introduced into the dispersing water or, vice versa, the dispersing water is added to the prepolymer. The chain extension can then be carried out, if it has not taken place in the homogeneous phase.

After the dispersion, the organic solvent that has optionally been used, for example acetone, is removed by distillation.

Preferably no external emulsifiers are used in the process according to the invention.
The dispersions have a solids content of from 10 to 70 wt.%, preferably from 25 to 60 wt.% and particularly preferably from 35 to 60 wt.%.

The dispersion adhesives according to the invention can be used on their own or with binders, auxiliary substances and additives known in coatings and adhesives technology, in particular emulsifiers or light stabilisers, such as UV absorbers or sterically hindered amines (HALS), also antioxidants, fillers or auxiliary agents, for example anti-settling agents, antifoams and/or wetting agents, flow agents, reactive diluents, plasticisers, catalysts, auxiliary solvents and/or thickeners and additives, such as, for example, pigments, colourings or mattifying agents. Tackifying resins (tackifiers) can also be added.

The additives can be added to the coating system according to the invention immediately before processing. However, it is also possible to add at least some of the additives before, during or after the dispersion of the binder.

The present invention also provides adhesive compositions comprising the polyurethane-polyurethane urea dispersions according to the invention and polyisocyanate compounds having at least two isocyanate groups per molecule. The crosslinkers can be added prior to use (2K processing). In this case, preference is given to polyisocyanate compounds which are emulsifiable in water. These are, for example, the compounds described in EP-A 0 206 059, DE-A 31 12 117 or DE-A 100 24 624. The polyisocyanate compounds are used in an amount of from 0.1 to 20 wt.%, preferably from 0.5 to 10 wt.%, particularly preferably from 1.5 to 6 wt.%, based on the aqueous dispersion.

The films obtained from the aqueous polyurethane-polyurethane urea dispersions according to the invention are distinguished by low activation temperatures in the range from 40°C to 80°C, very good initial heat resistances of ≤ 2 mm/min, preferably ≤ 1.5 mm/min, and high final heat resistances ≥ 90°C, preferably ≥ 100°C, particularly preferably ≥ 110°C. In addition, they exhibit excellent adhesion to a
very wide variety of substrates such as, for example, wood, leather, textiles, various polyvinyl chloride grades (rigid, plasticised PVC), rubbers or polyethyl vinyl acetate.

The adhesive compositions comprising the dispersions according to the invention are suitable for bonding any desired substrates, such as, for example, paper, cardboard, wood, textiles, metal, leather or mineral materials. The adhesive compositions according to the invention are suitable in particular for the bonding of rubber materials, such as, for example, natural and synthetic rubbers, various plastics materials such as polyurethanes, polyvinyl acetate, polyvinyl chloride, in particular plasticised polyvinyl chloride. They are particularly preferably used for bonding soles made of these materials, preferably based on polyvinyl chloride, particularly preferably plasticised polyvinyl chloride, or based on polyethylvinyl acetate or polyurethane elastomeric foam, to shoe shafts of leather or synthetic leather. The adhesive compositions according to the invention are also particularly suitable for bonding films based on polyvinyl chloride or plasticised polyvinyl chloride to wood.

The adhesive compositions according to the invention are also suitable for use as primers.

The present application also provides adhesive composites containing substrates adhesively bonded using the polyurethane-polyurethane urea dispersions according to the invention.

The adhesive compositions according to the invention are processed by the known methods of adhesives technology in respect of the processing of aqueous dispersion adhesives.
Examples

The invention is explained in detail hereinbelow by means of the examples. The initial heat resistance and the heat final resistance can be determined by the following methods:

A) Determination of the initial heat resistance

The initial heat resistance test is carried out in one-component form (without a crosslinker).

Test material/Test specimen

a) Renolit film (32052096 Strukton; Rhenolit AG, 67547 Worms / Germany)
Dimensions: 50 x 300 x 0.2 mm

b) Beech wood (planed)
Dimensions: 50 x 140 x 4.0 mm

Bonding and measurement

The adhesive dispersion is applied to the wood test specimen using a 200 μm knife. The bonding area is 50 x 110 mm. The drying time of the applied adhesive is at least 3 hours at room temperature. The two test specimens are then placed one above the other and joined for 10 seconds at 77°C with a pressure of 4 bar. Immediately after, the test specimen is tempered for 3 minutes at 80°C without a weight, and a 2.5 kg load is then applied perpendicularly to the glued joint for 5 minutes at 80°C (180° peel). The amount by which the bond has detached is measured in millimetres. The initial heat resistance is given in mm/minute.
B) Determination of the final heat resistance

1K adhesion: adhesive without crosslinker

2K adhesion: adhesive with an emulsifiable isocyanate crosslinker

3 parts of Desmodur® DN to 100 parts of adhesive are homogenised intensively.

Recommended weighed portion: 25 g of adhesive and 0.75 g of crosslinker

Test material/Test specimen

10 a) Rigid PVC covering film (Benelitfolie, Benecke-Kaliko AG, Hanover/Germany)
Dimensions: 50 x 210 x 0.4 mm
b) Beech wood (planed), dimensions: 50 x 140 x 4.0 mm

Bonding and measurement

15 The adhesive dispersion (1K) or the mixture of adhesive dispersion and isocyanate crosslinker (2K) is applied to the beech wood test specimen using a brush. The bonding area is 50 x 110 mm. After a drying time of 30 minutes at room temperature, a second adhesive layer is applied over the first and then drying is carried out for 60 minutes at room temperature. The two test specimens are then placed one above the other and joined for 10 seconds at 90°C with a pressure of 4 bar.

After storing the test specimens for three days at room temperature, a 0.5 kg load is applied to the test specimens at an angle of 180° relative to the bonded joint. The starting temperature is 50°C; after 60 minutes the temperature is increased by 10°C per hour to a maximum of 120°C. The temperature at which an adhesive bond separates completely is measured in each case.
Materials used

Polyester I: 1,4-butandiol polyadipate diol of OH number = 50
Polyester II: polyester diol of 1,6-hexanediol, neopentyl glycol and adipic acid of OH number = 66
Desmophen® C2200: aliphatic polycarbonate diol of hexanediol and dimethyl carbonate of OH number = 56 (Bayer MaterialScience AG, Leverkusen/Germany)
Desmodur® H: 1,6-hexamethylene diisocyanate (Bayer MaterialScience AG, Leverkusen/Germany)
Desmodur® I: isophorone diisocyanate (Bayer MaterialScience AG, Leverkusen/Germany)
Desmodur® DN: hydrophilic, aliphatic polyisocyanate based on hexamethylene diisocyanate (Bayer MaterialScience AG, Leverkusen/Germany)

Example 1 (according to the invention):

450 g of polyester I are dewatered for 1 hour at 110°C and 15 mbar. At 80°C, 30.24 g of Desmodur® H and then 19.98 g of Desmodur® I are added. The mixture is stirred at 80 to 90°C until a constant isocyanate content of 1.15 % (which corresponds to 5.8 g of NCO or 0.14 mol of NCO) is achieved. The reaction mixture is dissolved in 1000 g of acetone and thereby cooled to 50°C. A solution of 6.49 g of sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid (0.034 mol), 1.12 g of diethanolamine (0.011 mol) and 1.12 g of N-(2-hydroxyethyl)-ethylenediamine (0.011 mol) in 85 g of water is added to the homogeneous solution with vigorous stirring. After 15 minutes, dispersion is carried out by addition of 700 g of water. After separating off the acetone by distillation, a solvent-free, aqueous polyurethane-polyurea dispersion having a solids content of 40.1 wt.% and a mean particle size of the disperse phase, determined by laser correlation, of 128 nm is obtained.
Mean amino functionality: 1.80
NCO groups / (amino + hydroxyl groups) = 0.14 / (0.101 + 0.033) = 1.06

Example 2 (according to the invention):

A mixture of 292.5 g of polyester I, 55.3 g of polyester II and 260.0 g of Desmophen® C2200 is dewatered for 1 hour at 110°C and 15 mbar. At 80°C, 2.93 g of 1,4-butanediol, 48.79 g of Desmodur® H and then 32.24 g of Desmodur® I are added. The mixture is stirred at 80 to 90°C until a constant isocyanate content of 1.28 % (which corresponds to 8.9 g of NCO or 0.21 mol of NCO) is achieved. The reaction mixture is dissolved in 955 g of acetone and thereby cooled to 50°C. A solution of 8.08 g of sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid (0.043 mol), 1.60 g of diethanolamine (0.015 mol) and 1.59 g of N-(2-hydroxyethyl)-ethylenediamine (0.015 mol) in 110 g of water is added to the homogeneous solution with vigorous stirring. After 15 minutes, dispersion is carried out by addition of 610 g of water. After separating off the acetone by distillation, a solvent-free, aqueous polyurethane-polyurea dispersion having a solids content of 49.9 wt.% and a mean particle size of the disperse phase, determined by laser correlation, of 204 nm is obtained.

Mean amino functionality: 1.79
NCO groups / (amino + hydroxyl groups) = 0.21 / (0.131 + 0.045) = 1.19

Example 3 (according to the invention):

A mixture of 292.5 g of polyester I, 55.3 g of polyester II and 260.0 g of Desmophen® C2200 is dewatered for 1 hour at 110°C and 15 mbar. At 80°C, 2.93 g of 1,4-butanediol, 48.79 g of Desmodur® H and then 32.24 g of Desmodur® I are added. The mixture is stirred at 80 to 90°C until a constant isocyanate content of 1.28 % (which corresponds to 8.9 g of NCO or 0.21 mol of NCO) is achieved. The reaction mixture is dissolved in 955 g of acetone and thereby cooled to 50°C. A
solution of 8.08 g of sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid (0.043 mol), 0.96 g of diethanolamine (0.009 mol) and 2.22 g of N-(2-hydroxyethyl)-ethylenediamine (0.021 mol) in 110 g of water is added to the homogeneous solution with vigorous stirring. After 15 minutes, dispersion is carried out by addition of 610 g of water. After separating off the acetone by distillation, a solvent-free, aqueous polyurethane-polyurea dispersion having a solids content of 50.7 wt.% and a mean particle size of the disperse phase, determined by laser correlation, of 196 nm is obtained.

Mean amino functionality: 1.88
NCO groups / (amino + hydroxyl groups) = 0.21 / (0.137 + 0.039) = 1.19

Example 4 (according to the invention):

450 g of polyester I are dewatered for 1 hour at 110°C and 15 mbar. At 80°C, 30.24 g of Desmodur® H and then 19.98 g of Desmodur® I are added. The mixture is stirred at 80 to 90°C until a constant isocyanate content of 1.13 % (which corresponds to 5.65 g of NCO or 0.13 mol of NCO) is achieved. The reaction mixture is dissolved in 1000 g of acetone and thereby cooled to 50°C. A solution of 6.44 g of sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid (0.034 mol), 0.65 g of ethanolamine (0.011 mol) and 1.11 g of N-(2-hydroxyethyl)-ethylenediamine (0.011 mol) in 85 g of water is added to the homogeneous solution with vigorous stirring. After 15 minutes, dispersion is carried out by addition of 650 g of water. After separating off the acetone by distillation, a solvent-free, aqueous polyurethane-polyurea dispersion having a solids content of 40.6 wt.% and a mean particle size of the disperse phase, determined by laser correlation, of 133 nm is obtained.

Mean amino functionality: 1.80
NCO groups / (amino + hydroxyl groups) = 0.13 / (0.101 + 0.022) = 1.06
Example 5 (according to the invention):

450 g of polyester I are dewatered for 1 hour at 110°C and 15 mbar. At 80°C, 30.58 g of Desmodur® H and then 20.20 g of Desmodur® I are added. The mixture is stirred at 80 to 90°C until a constant isocyanate content of 1.19 % (which corresponds to 5.96 g of NCO or 0.14 mol of NCO) is achieved. The reaction mixture is dissolved in 750 g of acetone and thereby cooled to 50°C. A solution of 4.76 g of sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid (0.025 mol), 1.17 g of diethylamine (0.016 mol) and 1.98 g of N-(2-hydroxyethyl)-ethylenediamine (0.019 mol) in 90 g of water is added to the homogeneous solution with vigorous stirring. After 15 minutes, dispersion is carried out by addition of 450 g of water. After separating off the acetone by distillation, a solvent-free, aqueous polyurethane-polyurea dispersion having a solids content of 49.8 wt.% and a mean particle size of the disperse phase, determined by laser correlation, of 223 nm is obtained.

Mean amino functionality: 1.73
NCO groups / (amino + hydroxyl groups) = 0.14 / (0.104 + 0.019) = 1.14

Example 6 (according to the invention):

A mixture of 450 g of polyester I and 42.5 g of polyester II is dewatered for 1 hour at 110°C and 15 mbar. At 80°C, 6.76 g of 1,4-butanediol, 45.38 g of Desmodur® H and then 29.98 g of Desmodur® I are added. The mixture is stirred at 80 to 90°C until a constant isocyanate content of 1.47 % (which corresponds to 8.45 g of NCO or 0.20 mol of NCO) is achieved. The reaction mixture is dissolved in 800 g of acetone and thereby cooled to 50°C. A solution of 6.25 g of sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid (0.033 mol), 0.86 g of ethanolamine (0.014 mol) and 1.04 g of N-(2-hydroxyethyl)-ethylenediamine (0.010 mol) in 100 g of water is added to the homogeneous solution with vigorous stirring. After 15 minutes, dispersion is carried out by addition of 580 g of water. After separating
off the acetone by distillation, a solvent-free, aqueous polyurethane-polyurea dispersion having a solids content of 50.3 wt.% and a mean particle size of the disperse phase, determined by laser correlation, of 285 nm is obtained.

Mean amino functionality: 1.75
NCO groups / (amino + hydroxyl groups) = 0.20 / (0.100 + 0.024) = 1.61

Example 7 (comparison, according to EP 0 304 718, Example 1):

360 g of polyester I are dewatered for 1 hour at 110°C and 15 mbar. At 80°C, 23.4 g of Desmodur® H and then 15.3 g of Desmodur® I are added. The mixture is stirred at 80 to 90°C until a constant isocyanate content of 0.95 % (which corresponds to 3.8 g of NCO or 0.09 mol of NCO) is achieved. The reaction mixture is dissolved in 800 g of acetone and thereby cooled to 50°C. A solution of 5.8 g of sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid (0.031 mol) and 2.1 g of diethanolamine (0.02 mol) in 55 g of water is added to the homogeneous solution with vigorous stirring. After 7 minutes, dispersion is carried out by addition of 565 g of water. After separating off the acetone by distillation, a solvent-free, aqueous polyurethane-polyurea dispersion having a solids content of 40.1 wt.% and a mean particle size of the disperse phase, determined by laser correlation, of 115 nm is obtained.

Mean amino functionality: 1.61
NCO groups / (amino + hydroxyl groups) = 0.09 / (0.082 + 0.04) = 0.74

Example 8 (comparison):

450 g of polyester I are dewatered for 1 hour at 110°C and 15 mbar. At 80°C, 30.11 g of Desmodur® H and then 20.14 g of Desmodur® I are added. The mixture is stirred at 80 to 90°C until a constant isocyanate content of 1.02 % (which corresponds to 5.1 g of NCO or 0.12 mol of NCO) is achieved. The reaction mixture is dissolved in 750 g of acetone and thereby cooled to 50°C. A solution of 4.7 g of
sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid (0.025 mol), 2.6 g of diethanolamine (0.025 mol) and 0.65 g of N-(2-hydroxyethyl)-ethylenediamine (0.006 mol) in 75 g of water is added to the homogeneous solution with vigorous stirring. After 15 minutes, dispersion is carried out by addition of 560 g of water.

After separating off the acetone by distillation, a solvent-free, aqueous polyurethane-polyurea dispersion having a solids content of 50.6 wt.% and a mean particle size of the disperse phase, determined by laser correlation, of 197 nm is obtained.

Mean amino functionality: 1.55

\[
\text{NCO groups} / (\text{amino + hydroxyl groups}) = 0.12 / (0.087 + 0.056) = 0.84
\]

Example 9 (comparison):

450 g of polyester I are dewatered for 1 hour at 110°C and 15 mbar. At 80°C, 30.11 g of Desmodur® H and then 20.14 g of Desmodur® I are added. The mixture is stirred at 80 to 90°C until a constant isocyanate content of 1.12 % (which corresponds to 5.60 g of NCO or 0.13 mol of NCO) is achieved. The reaction mixture is dissolved in 750 g of acetone and thereby cooled to 50°C. A solution of 5.9 g of sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid (0.031 mol), 1.58 g of diethanolamine (0.015 mol) and 0.66 g of ethylenediamine (0.011 mol) in 85 g of water is added to the homogeneous solution with vigorous stirring. After 15 minutes, dispersion is carried out by addition of 650 g of water. After separating off the acetone by distillation, a solvent-free, aqueous polyurethane-polyurea dispersion having a solids content of 40.2 wt.% and a mean particle size of the disperse phase, determined by laser correlation, of 148 nm is obtained.

Mean amino functionality: 1.74

\[
\text{NCO groups} / (\text{amino + hydroxyl groups}) = 0.13 / (0.099 + 0.030) = 1.01
\]
Example 10 (comparison):

450 g of polyester I are dewatered for 1 hour at 110°C and 15 mbar. At 80°C, 30.24 g of Desmodur® H and then 19.98 g of Desmodur® I are added. The mixture is stirred at 80 to 90°C until a constant isocyanate content of 1.09 % (which corresponds to 5.45 g of NCO or 0.13 mol of NCO) is achieved. The reaction mixture is dissolved in 1000 g of acetone and thereby cooled to 50°C. A solution of 6.44 g of sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid (0.034 mol), and 1.31 g of ethanolamine (0.021 mol) in 85 g of water is added to the homogeneous solution with vigorous stirring. After 15 minutes, dispersion is carried out by addition of 650 g of water. After separating off the acetone by distillation, a solvent-free, aqueous polyurethane-polyurea dispersion having a solids content of 39.6 wt.% and a mean particle size of the disperse phase, determined by laser correlation, of 173 nm is obtained.

Mean amino functionality: 1.62

NCO groups / (amino + hydroxyl groups) = 0.13 / (0.089 + 0.021) = 1.18
Table 1

<table>
<thead>
<tr>
<th></th>
<th>Initial heat resistance [mm/min]</th>
<th>Final heat resistance 1K [°C]</th>
<th>Final heat resistance 2K [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1 according to the invention</td>
<td>0.3</td>
<td>110</td>
<td>> 120</td>
</tr>
<tr>
<td>Example 2 according to the invention</td>
<td>0.9</td>
<td>> 120</td>
<td>> 120</td>
</tr>
<tr>
<td>Example 3 according to the invention</td>
<td>0.6</td>
<td>> 120</td>
<td>> 120</td>
</tr>
<tr>
<td>Example 4 according to the invention</td>
<td>0.1</td>
<td>110</td>
<td>> 120</td>
</tr>
<tr>
<td>Example 5 according to the invention</td>
<td>0.8</td>
<td>110</td>
<td>> 120</td>
</tr>
<tr>
<td>Example 6 according to the invention</td>
<td>0.6</td>
<td>110</td>
<td>> 120</td>
</tr>
<tr>
<td>Example 7 comparison</td>
<td>14.5</td>
<td>65</td>
<td>> 120</td>
</tr>
<tr>
<td>Example 8 comparison</td>
<td>13.4</td>
<td>90</td>
<td>> 120</td>
</tr>
<tr>
<td>Example 9 comparison</td>
<td>2.1</td>
<td>100</td>
<td>> 120</td>
</tr>
<tr>
<td>Example 10 comparison</td>
<td>2.6</td>
<td>100</td>
<td>> 120</td>
</tr>
</tbody>
</table>
1. Aqueous polyurethane-polyurethane urea dispersion based on
 A) one or more di- or higher-functional polyol(s) having a mean molecular weight of from 400 to 5000 daltons,
 B) optionally one or more di- or higher-functional polyol component(s) having a molecular weight of from 62 to 399 daltons,
 C) one or more di- or poly-isocyanate component(s), and
 D) a mixture D) of primary and/or secondary monoamino compounds D1) and primary and/or secondary diamino compounds D2),

characterised in that at least one of components D1) and/or D2) carries sulfonate and/or carboxylate groups, and the mean amino functionality of the mixture D) is from 1.65 to 1.95, and the equivalent ratio of NCO groups in the NCO prepolymer to the total amount of isocyanate-reactive amino and hydroxyl groups of the mixture D) is from 1.04 to 1.9.

2. Aqueous polyurethane-polyurethane urea dispersion according to claim 1, characterised in that component C) is a mixture of hexamethylene diisocyanate and 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane.

3. Aqueous polyurethane-polyurethane urea dispersion according to claim 1, characterised in that component D1) is diethyamine, ethanolamine or diethanolamine.
4. Aqueous polyurethane-polyurethane urea dispersion according to claim 1, characterised in that component D2 is 1,2-ethanediame, 1,6-hexamethylenediamine, 1-amino-3,3,5-trimethyl-5-aminomethyl-cyclohexane (isophoronediame), piperazine, N-(2-hydroxyethyl)-ethylenediamine, N,N-bis(2-hydroxyethyl)-ethylenediamine, the sodium salt of N-(2-aminoethyl)-2-aminoethanesulfonic acid or the sodium salt of N-(2-aminoethyl)-2-aminoethanecarboxylic acid.

5. Process for the preparation of the aqueous polyurethane-polyurethane urea dispersions according to claim 1, characterised in that, in a first step, some or all of components A), B) and C), optionally in the presence of a solvent that is miscible with water but inert towards isocyanate groups, are placed in a reactor and heated to temperatures in the range from 50 to 120°C, and then any of constituents A), B) or C) that were not added at the beginning of the reaction are metered in, in a second step the chain extension with the mixture D) is carried out at temperatures of from 15 to 60°C and, before, during or after the chain extension, conversion into the aqueous phase is carried out and the solvent optionally used is removed.

6. Process according to claim 5, characterised in that in the preparation of the prepolymer the amounts of the individual components A) to C) that are used are such that an isocyanate number of from 1.05 to 2.5 is obtained.

7. Process according to claim 5, characterised in that the isocyanate content of the prepolymers is from 0.3 to 3.0 %.

8. Process according to claim 5, characterised in that no external emulsifiers are added.
9. Adhesive compositions comprising the aqueous polyurethane-polyurethane urea dispersions according to claim 1 as well as polyisocyanate compounds having at least two isocyanate groups per molecule.

10. Use of the aqueous polyurethane-polyurethane urea dispersions according to claim 1 in the production of adhesive composites.

11. Use according to claim 10, characterised in that the adhesive composites comprise rubber and/or plastics materials as substrates.

12. Use according to claim 10, characterised in that the adhesive composites comprise a shoe sole and a shoe shaft.

13. Use according to claim 10, characterised in that the adhesive composites comprise films and wood.

14. Adhesive composite containing substrates adhesively bonded with aqueous polyurethane-polyurea dispersions according to claim 1.