
JP 6092904 B2 2017.3.8

10

20

(57)【特許請求の範囲】
【請求項１】
　メモリサブシステムから単一の二重乗算命令をフェッチする命令フェッチユニットであ
り、前記二重乗算命令は３つのソースオペランド値を有する、命令フェッチユニットと、
　前記二重乗算命令をデコードして、単一のマイクロオペレーション（μｏｐ）を生成す
るデコードユニットと、
　前記μｏｐを１回目に実行して、前記３つのソースオペランド値のうちの第１のソース
オペランド値および第２のソースオペランド値を乗算して中間結果を生成し、前記μｏｐ
を２回目に実行して、前記中間結果を前記３つのソースオペランド値のうちの第３のソー
スオペランド値を用いて乗算して、最終結果を生成する実行ユニットと、
を備えるプロセッサ。
【請求項２】
　前記実行ユニットは、前記μｏｐの前記２回目の実行の前に前記μｏｐを遅延する遅延
バッファを含み、請求項１に記載のプロセッサ。
【請求項３】
　前記実行ユニットは、さらに、少なくとも１つの機能ユニットによる実行のために、前
記二重乗算命令をスケジュールするリザベーションステーションを含み、前記μｏｐは、
前記リザベーションステーションから第１の機能ユニットに送信され、機能ユニットによ
る前記実行の前に前記遅延バッファにも提供される、請求項２に記載のプロセッサ。
【請求項４】

(2) JP 6092904 B2 2017.3.8

10

20

30

40

50

　前記機能ユニットは、融合乗算および加算機能ユニットを有する、請求項３に記載のプ
ロセッサ。
【請求項５】
　前記μｏｐは、さらに、前記第１の機能ユニットが前記μｏｐの１回目の実行を完了し
、前記中間結果を生成したときに前記遅延バッファから第２の機能ユニットに送信され、
前記第２の機能ユニットは、前記中間結果を前記３つのソースオペランド値のうちの前記
第３のソースオペランド値により乗算して、前記最終結果を生成する、請求項３または４
に記載のプロセッサ。
【請求項６】
　前記二重乗算命令の第１のソースオペランド値、第２のソースオペランド値、および第
３のソースオペランド値は、浮動小数点値である、請求項１から５のいずれか一項に記載
のプロセッサ。
【請求項７】
　前記浮動小数点値は、単精度または倍精度浮動小数点値を有する、請求項６に記載のプ
ロセッサ。
【請求項８】
　前記二重乗算命令は、第１のソースオペランド値、第２のソースオペランド値、および
第３のソースオペランド値のそれぞれの符号を示す即値を有する、請求項１から７のいず
れか一項に記載のプロセッサ。
【請求項９】
　前記即値は、前記第１のソースオペランド値、前記第２のソースオペランド値、および
前記第３のソースオペランド値の符号を示す各ビットの値を有する３ビット値を有する、
請求項８に記載のプロセッサ。
【請求項１０】
　前記リザベーションステーションは、第１の実効ポートを介して前記μｏｐの前記１回
目の実行をスケジュールするための第１のリザベーションステーション部分と、第２の実
効ポートを介して前記μｏｐの前記２回目の実行をスケジュールするための第２のリザベ
ーションステーション部分と、を含む、請求項３に記載のプロセッサ。
【請求項１１】
　プロセッサにより実行される方法であって、
　前記プロセッサにより、メモリサブシステムから単一の二重乗算命令をフェッチする段
階であり、前記二重乗算命令は３つのソースオペランド値を有する、段階と、
　前記プロセッサにより、単一のマイクロオペレーション（μｏｐ）を生成するべく前記
二重乗算命令をデコードする段階と、
　前記プロセッサにより、前記３つのソースオペランド値のうちの第１のソースオペラン
ド値および第２のソースオペランド値を乗算して中間結果を生成するべく前記μｏｐを１
回目に実行し、前記中間結果を前記３つのソースオペランド値のうちの第３のソースオペ
ランド値を用いて乗算して、最終結果を生成するべく前記μｏｐを２回目に実行する段階
と、
を備える方法。
【請求項１２】
　前記プロセッサにより、前記μｏｐの前記２回目の実行の前に遅延バッファで前記μｏ
ｐを遅延する段階をさらに備える、請求項１１に記載の方法。
【請求項１３】
　前記プロセッサにより、少なくとも１つの機能ユニットによる実行のために、前記二重
乗算命令をスケジュールする段階をさらに備え、前記μｏｐは、第１の機能ユニットに送
信され、機能ユニットによる前記実行の前に前記遅延バッファにも提供される、請求項１
２に記載の方法。
【請求項１４】
　前記機能ユニットは、融合乗算および加算機能ユニットを有する、請求項１３に記載の

(3) JP 6092904 B2 2017.3.8

10

20

30

40

50

方法。
【請求項１５】
　前記μｏｐは、さらに、前記第１の機能ユニットが前記μｏｐの１回目の実行を完了し
、前記中間結果を生成したときに前記遅延バッファから第２の機能ユニットに送信され、
前記第２の機能ユニットは、前記中間結果を前記３つのソースオペランド値のうちの前記
第３のソースオペランド値により乗算して、前記最終結果を生成する、請求項１３または
１４に記載の方法。
【請求項１６】
　前記二重乗算命令の第１のソースオペランド値、第２のソースオペランド値、および第
３のソースオペランド値は、浮動小数点値である、請求項１１から１５のいずれか一項に
記載の方法。
【請求項１７】
　前記浮動小数点値は、単精度または倍精度浮動小数点値を有する、請求項１６に記載の
方法。
【請求項１８】
　前記二重乗算命令は、第１のソースオペランド値、第２のソースオペランド値、および
第３のソースオペランド値のそれぞれの符号を示す即値を有する、請求項１１から１７の
いずれか一項に記載の方法。
【請求項１９】
　前記即値は、前記第１のソースオペランド値、前記第２のソースオペランド値、および
前記第３のソースオペランド値の符号を示す各ビットの値を有する３ビット値を有する、
請求項１８に記載の方法。
【請求項２０】
　前記スケジュールする段階は、第１の実効ポートを介して前記μｏｐの前記１回目の実
行をスケジュールするための第１のリザベーションステーション部分と、第２の実効ポー
トを介して前記μｏｐの前記２回目の実行をスケジュールするための第２のリザベーショ
ンステーション部分と、を含むリザベーションステーションにより実行され、請求項１３
に記載の方法。

【発明の詳細な説明】
【技術分野】
【０００１】
　この発明は、概して、コンピュータプロセッサの分野に関する。より具体的には、発明
は、複数の乗算演算を実行するための方法及び装置に関する。
【背景技術】
【０００２】
　命令セット、または命令セットアーキテクチャ（ＩＳＡ）は、本来のデータタイプ、命
令、レジスタアーキテクチャ、アドレスモード、メモリアーキテクチャ、割り込み及び例
外処理、及び外部入出力（Ｉ／Ｏ）を含むプログラミングに関するコンピュータアーキテ
クチャの一部である。ここでは、用語「命令」は、概して、マイクロ命令に対立するもの
としてのマクロ命令（実行するためにプロセッサに提供される命令）またはマイクロオペ
レーション（プロセッサのデコーダがマクロ命令をデコードした結果）を参照することに
留意すべきである。
【０００３】
　ＩＳＡは、命令セットを実装するために用いられるプロセッサ設計技術のセットである
マイクロアーキテクチャから区別される。異なるマイクロアーキテクチャを有する複数の
プロセッサは、共通の命令セットを共有する。例えば、Ｉｎｔｅｌ（登録商標）Ｐｅｎｔ
ｉｕｍ（登録商標）４プロセッサ、Ｉｎｔｅｌ（登録商標）Ｃｏｒｅ（商標）プロセッサ
、およびカリフォルニア州サニーベールのアドバンスドマイクロデバイセズからのプロセ
ッサは、ｘ８６命令セット（より新しいバージョンが追加された幾つかのエクステンショ
ンを有する）のほぼ同じバージョンを実装するが、異なる内部設計を有する。例えば、Ｉ

(4) JP 6092904 B2 2017.3.8

10

20

30

40

50

ＳＡの同じレジスタアーキテクチャは、専用の物理レジスタ、レジスタリネームメカニズ
ム（例えば、レジスタエイリアステーブル（ＲＡＴ）、リオーダバッファ（ＲＯＢ）、及
びリタイアメントレジスタファイルの使用）を用いて動的に割り当てられた１または複数
の物理レジスタを含む周知の技術を用いて異なるマイクロアーキテクチャに異なる態様で
実装されてよい。特に指定されない限り、レジスタアーキテクチャ、レジスタファイル、
およびレジスタなるフレーズは、ここでは、ソフトウェア／プログラマにビジブルである
それ、および複数の命令が複数のレジスタを特定する方法を参照するために用いられる。
区別が必要の場合、「論理」、「アーキテクチャ上」、または「ソフトウェアビジブル」
なる形容詞が、レジスタアーキテクチャにおけるレジスタ／ファイルを示すために用いら
れるとともに、異なる形容詞が、与えられたマイクロアーキテクチャにおいてレジスタを
指定するために用いられる（例えば、物理レジスタ、リオーダバッファ、リタイヤメント
レジスタ、レジスタプール）。
【０００４】
　命令セットは、１または複数の命令フォーマットを含む。与えられた命令フォーマット
は、とりわけ、実行される演算およびその演算が実行されるオペランドを特定するために
、様々なフィールド（ビットの数、ビットの位置）を定義する。幾つかの命令フォーマッ
トは、さらに、複数の命令テンプレート（または複数のサブフォーマット）の定義を介し
て分解される。例えば、与えられた命令フォーマットの複数の命令テンプレートは、命令
フォーマットの複数のフィールド（より少ない含まれたフィールドがあるので、含まれる
フィールドは、一般的に、同じ順序であり、しかし少なくとも幾つかは異なるビット位置
を有する。）の異なるサブセットを有するために定義されてよく、および／または異なっ
て解釈される与えられたフィールドを有するために定義されてよい。与えられた命令は、
与えられた命令フォーマットを用いて（および、定義されている場合には、その命令フォ
ーマットの複数の命令テンプレートの与えられた１つにおいて）表され、演算および複数
のオペランドを特定する。命令ストリームは、複数の命令の固有のシーケンスである。た
だし、シーケンス内の各命令は、命令フォーマットにおける命令の発生である（および、
定義されている場合には、その命令フォーマットの複数の命令テンプレートの与えられた
１つである）。
【０００５】
　科学、金融、自動ベクトル化の汎用、ＲＭＳ（認識、採鉱、および合成）、およびビジ
ュアルおよびマルチメディアアプリケーション（例えば、２Ｄ／３Ｄグラフィック、画像
処理、ビデオ圧縮／解凍、音声認識アルゴリズム、およびオーディオ操作）は、頻繁に、
多数のデータアイテム（「データ並列処理」として参照される）上で実行される同じ演算
を必要とする。単一命令複数データ（ＳＩＭＤ）は、プロセッサに複数のデータアイテム
上の演算を実行させる命令のタイプを参照する。ＳＩＭＤ技術は、特に、レジスタ内の複
数のビットを、それぞれが別個の値を表す固定サイズのデータ要素の数に論理的に分割で
きるプロセッサに好適である。例えば、６４ビットレジスタ内の複数のビットは、それぞ
れが別個の１６ビット値を表す４つの別個の１６ビットデータ要素として操作されるソー
スオペランドとして特定されてよい。このタイプのデータは、パックドデータタイプまた
はベクトルデータタイプとして参照され、このデータタイプの複数のオペランドは、パッ
クドデータオペランドまたはベクトルオペランドとして参照される。言い換えると、パッ
クドデータアイテムまたはベクトルは、パックドデータ要素のシーケンスを参照し、パッ
クドデータオペランドまたはベクトルオペランドは、ＳＩＭＤ命令（パックドデータ命令
またはベクトル命令としても知られる）のソースまたはデスティネーションオペランドで
ある。
【０００６】
　例として、ＳＩＭＤ命令の一タイプは、２つのソースベクトルオペランド上で垂直式に
実行されて、同じ数のデータ要素を有する同じサイズおよび同じデータエレメントの順序
にあるデスティネーションベクトルオペランド（結果ベクトルオペランドとしても参照さ
れる）を生成するシングルベクトル演算を特定する。複数のソースベクトルオペランドに

(5) JP 6092904 B2 2017.3.8

10

20

30

40

50

おける複数のデータ要素は、複数のソースデータエレメントとして参照されるとともに、
デスティネーションベクトルオペランド内の複数のデータ要素は、デスティネーションま
たは結果データ要素と参照される。これらのソースベクトルオペランドは、同じサイズで
あり、同じ幅の複数のデータ要素を含み、従って、それらは同じ数のデータ要素を含む。
２つのソースベクトルオペランド内の複数の同じビット位置内の複数のソースデータエレ
メントは、複数の組のデータ要素（対応するデータ要素としても参照される）を形成する
。そのＳＩＭＤ命令により指定される演算は、これらの組のソースデータエレメントのそ
れぞれで別個に実行されて、マッチング数の結果データ要素を生成し、従って、各組のソ
ースデータエレメントは対応する結果データ要素を有する。演算は垂直であるので、また
結果ベクトルオペランドは同じ数のデータ要素を有する同じサイズであり、結果データ要
素は複数のソースベクトルオペランドとして同じデータエレメントの順序で格納されるの
で、複数の結果データ要素は、複数のソースベクトルオペランド内の複数のソースデータ
エレメントのそれらの対応する組として、結果ベクトルオペランドの複数の同じビット位
置内にある。この典型的なタイプのＳＩＭＤ命令に加えて、様々な他のタイプのＳＩＭＤ
命令がある（例えば、１つのみまたは２以上のソースベクトルオペランドを有する、垂直
式に演算する、異なるサイズの結果ベクトルオペランドを生成する、異なるサイズのデー
タ要素を有する、および／または異なるデータエレメントの順序を有する）。用語デステ
ィネーションベクトルオペランド（またはデスティネーションオペランド）は、命令によ
り指定される演算を実行することの直接の結果として、位置（そのレジスタ又はその命令
により特定されるメモリアドレス）でそのデスティネーションオペランドのストレージを
含めて定義され、それにより、それは別の命令により（別の命令によるその同じ位置の仕
様により）ソースオペランドとしてアクセスされてよいことを理解されるべきである。
【０００７】
　ｘ８６、ＭＭＸ、ストリーミングＳＩＭＤエクステンション（ＳＳＥ）、ＳＳＥ２、Ｓ
ＳＥ３、ＳＳＥ４．１、およびＳＳＥ４．２命令を含む命令セットを有するＩｎｔｅｌ（
登録商標）Ｃｏｒｅ（商標）プロセッサにより使用されるようなＳＩＭＤ技術は、アプリ
ケーションの性能の大幅な改善を可能にした（ＣｏｒｅおよびＭＭＸは、カリフォルニア
州サンタクララのインテルの登録商標または商標である）。アドバンスドベクトルエクス
テンション（ＡＶＸ）と参照され、ＶＥＸコーディングスキームを用いる複数のＳＩＭＤ
エクステンションの追加的なセットも、設計され、公開されている。
【０００８】
　本出願に特に関連する１つの命令は、乗算命令である。高性能コンピューティングプラ
ットフォームにおける幾つかのアルゴリズムは、幾つかの演算値を乗算する。一般に、各
乗算演算は、１つの命令の実行を必要とする。
【図面の簡単な説明】
【０００９】
　本発明のより良い理解は、次の図面と併せて次の詳細な説明から得られることができる
。
【図１Ａ】発明の実施形態に係る典型的なインオーダフェッチ、デコード、リタイヤパイ
プライン、および典型的なレジスタリネーム、アウトオブオーダ発行／実行パイプライン
の両方を示すブロック図である。
【図１Ｂ】発明の実施形態に係るインオーダフェッチ、デコード、リタイヤコアの典型的
な実施形態、およびプロセッサ内に含まれる典型的なレジスタリネーム、アウトオブオー
ダ発行／実行アーキテクチャコアの両方を示すブロック図である。
【図２】発明の実施形態に係るシングルコアプロセッサおよび統合メモリコントローラお
よびグラフィックを有するマルチコアプロセッサのブロック図である。
【図３】本発明の一実施形態によるシステムのブロック図を示す。
【図４】本発明の実施形態による第２システムのブロック図を示す。
【図５】本発明の実施形態による第３システムのブロック図を示す。
【図６】本発明の実施形態によるシステムオンチップ（ＳｏＣ）のブロック図を示す。

(6) JP 6092904 B2 2017.3.8

10

20

30

40

50

【図７】発明の実施形態に係る、ソース命令セットにおけるバイナリ命令をターゲット命
令セットにおけるバイナリ命令に変換するソフトウェア命令コンバータの使用を対比する
ブロック図を示す。
【図８】発明の実施形態が使用されてよいプロセッサアーキテクチャの一実施形態を示す
。
【図９Ａ】複数の乗算演算を実行するためのアーキテクチャの一実施形態を示す。
【図９Ｂ】複数の乗算演算を実行するためのアーキテクチャの別の実施形態を示す。
【図１０】複数の乗算演算を実行するための方法の一実施形態を示す。
【図１１Ａ】発明の実施形態に係る総称ベクトル向け命令フォーマットおよびその命令テ
ンプレートを示すブロック図である。
【図１１Ｂ】発明の実施形態に係る総称ベクトル向け命令フォーマットおよびその命令テ
ンプレートを示すブロック図である。
【図１２Ａ】発明の実施形態に係る典型的な特定ベクトル向け命令フォーマットのブロッ
ク図を示す。
【図１２Ｂ】発明の実施形態に係る典型的な特定ベクトル向け命令フォーマットのブロッ
ク図を示す。
【図１２Ｃ】発明の実施形態に係る典型的な特定ベクトル向け命令フォーマットのブロッ
ク図を示す。
【図１２Ｄ】発明の実施形態に係る典型的な特定ベクトル向け命令フォーマットのブロッ
ク図を示す。
【図１３】発明の一実施形態に係るレジスタアーキテクチャのブロック図である。
【発明を実施するための形態】
【００１０】
　次の説明では、説明の目的のために、多くの特定の詳細が、以下に記載される発明の複
数の実施形態の完全な理解を提供するために明らかにされる。しかし、発明の複数の実施
形態はこれらの特定の詳細の一部がなくても実施されてよいことは、当業者には明らかで
あろう。他の複数の例において、既知の構造およびデバイスは、発明の実施形態の基礎と
なる原理を分かりにくくしないようにブロック図形式で示される。
【００１１】
　典型的なプロセッサアーキテクチャおよびデータタイプ
　図１Ａは、発明の実施形態に係る典型的なインオーダフェッチ、デコード、リタイヤパ
イプライン、および典型的なレジスタリネームアウトオブオーダ発行／実行パイプライン
の両方を示すブロック図である。図１Ｂは、発明の実施形態に係るインオーダフェッチ、
デコード、リタイヤコアの典型的な実施形態、およびプロセッサ内に含まれる典型的なレ
ジスタリネーム、アウトオブオーダ発行／実行アーキテクチャコアの両方を示すブロック
図である。図１Ａおよび図１Ｂにおける実線のボックスは、パイプラインおよびコアのイ
ンオーダ部分を示し、一方、破線のボックスの任意の追加は、レジスタリネーム、アウト
オブオーダ発行／実行パイプライン、およびコアを示す。
【００１２】
　図１Ａにおいて、プロセッサパイプライン１００は、フェッチステージ１０２、レング
スデコードステージ１０４、デコードステージ１０６、割り当てステージ１０８、リネー
ムステージ１１０、スケジューリング（ディスパッチ又は発行としても知られる）ステー
ジ１１２、レジスタ読み出し／メモリ読み出しステージ１１４、実行ステージ１１６、ラ
イトバック／メモリ書き込みステージ１１８、例外ハンドリングステージ１２２、および
コミットステージ１２４を含む。
【００１３】
　図１Ｂは、実行エンジンユニット１５０に連結されるフロントエンドユニット１３０を
含むプロセッサコア１９０を示し、両方がメモリユニット１７０に連結される。コア１９
０は、縮小命令セットコンピューティング（ＲＩＳＣ）コア、複合命令セットコンピュー
ティング（ＣＩＳＣ）コア、超長命令語（ＶＬＩＷ）コア、又はハイブリッドまたは代替

(7) JP 6092904 B2 2017.3.8

10

20

30

40

50

的コアタイプであってよい。さらに別のオプションとして、コア１９０は、例えば、ネッ
トワークまたは通信コア、圧縮エンジン、コプロセッサコア、汎用コンピュータグラフィ
ックプロセッシングユニット（ＧＰＧＰＵ）コア、グラフィックコアなどのような特定の
目的のコアであってよい。
【００１４】
　フロントエンドユニット１３０は、命令キャッシュユニット１３４に連結される分岐予
測ユニット１３２を含む。命令キャッシュユニット１３４は、命令変換索引バッファ（Ｔ
ＬＢ）１３６に連結される。ＴＬＢ１３６は、命令フェッチユニット１３８に連結される
。命令フェッチユニット１３８は、デコードユニット１４０に連結される。デコードユニ
ット１４０（またはデコーダ）は、複数の命令をデコードし、出力として、１または複数
のマイクロ演算、複数のマイクロコードエントリポイント、複数のマイクロ命令、その他
の複数の命令、または元の複数の命令からデコードされる、そうでなければそれらを反映
する、またはそれらから導出されるその他の複数の制御信号を生成してよい。デコードユ
ニット１４０は、様々な異なるメカニズムを用いて実装されてよい。適当なメカニズムの
例は、これに限定されるものではないが、複数のルックアップテーブル、複数のハードウ
ェア実装、複数のプログラマブルロジックアレイ（ＰＬＡ）、複数のマイクロコードリー
ドオンリメモリ（ＲＯＭ）などを含む。一実施形態では、コア１９０は、特定の複数のマ
イクロ命令のマイクロコードを（例えば、デコードユニット１４０内に、そうでなければ
フロントエンドユニット１３０内に）格納するマイクロコードＲＯＭまたは他の媒体を含
む。デコードユニット１４０は、実行エンジンユニット１５０内でリネーム／割り当てユ
ニット１５２に連結される。
【００１５】
　実行エンジンユニット１５０は、リタイアメントユニット１５４および１または複数の
スケジューラユニット１５６のセットに連結されたリネーム／割り当てユニット１５２を
含む。スケジューラユニット１５６は、複数の予約ステーション、中央の命令ウィンドウ
などを含む任意の数の異なるスケジューラを表す。スケジューラユニット１５６は、物理
レジスタファイルユニット１５８に連結される。複数の物理レジスタファイルユニット１
５８のそれぞれは、１または複数の物理レジスタファイル、スカラ整数、スカラ浮動小数
点、パックド整数、パックド浮動小数点、ベクトル整数、ベクトル浮動小数点、ステータ
ス（例えば、実行される次の命令のアドレスである命令ポインタ）などのような１または
複数の異なるデータタイプを格納する異なるものを表す。一実施形態では、物理レジスタ
ファイルユニット１５８は、ベクトルレジスタユニット、書き込みマスクレジスタユニッ
ト、およびスカラレジスタユニットを備える。これらのレジスタユニットは、複数のアー
キテクチャベクトルレジスタ、複数のベクトルマスクレジスタ、及び複数の汎用レジスタ
を提供してよい。物理レジスタファイルユニット１５８は、リタイアメントユニット１５
４により重ねられて、（例えば、リオーダバッファ及びリタイアメントレジスタファイル
を用いて、将来のファイル、ヒストリバッファ、及びリタイアメントレジスタファイルを
用いて、レジスタマップおよび複数のレジスタのプールを用いるなど）レジスタリネーム
およびアウトオブオーダ実行が実装されてよい様々な態様を示す。リタイアメントユニッ
ト１５４および物理レジスタファイルユニット１５８は、実行クラスタ１６０に連結され
る。実行クラスタ１６０は、１または複数の実行ユニット１６２のセットおよび１または
複数のメモリアクセスユニット１６４のセットを含む。実行ユニット１６２は、様々な演
算（例えば、シフト、加算、減算、乗算）を様々なタイプのデータ（例えば、スカラ浮動
小数点、パックド整数、パックド浮動小数点、ベクトル整数、ベクトル浮動小数点）につ
いて実行してよい。幾つかの実施形態は、複数の特定の機能または複数の機能の複数のセ
ットに専用の多くの実行ユニットを含んでよいとともに、他の実施形態は、すべての機能
をすべて実行する実行ユニットの１つのみ又は複数の実行ユニットを含んでよい。特定の
実施形態は、特定のタイプのデータ／複数の演算に対する別個のパイプラインを生成する
ので（例えば、それら自体のスケジューラユニットをそれぞれ有するスカラ整数パイプラ
イン、スカラ浮動小数点／パックド整数／パックド浮動小数点／ベクトル整数／ベクトル

(8) JP 6092904 B2 2017.3.8

10

20

30

40

50

浮動小数点パイプライン、および／またはメモリアクセスパイプライン、物理レジスタフ
ァイルユニット、および／または実行クラスタ。別個のメモリアクセスパイプラインの場
合、特定の実施形態は、このパイプラインの実行クラスタのみがメモリアクセスユニット
１６４を有するように実装される。）、スケジューラユニット１５６、物理レジスタファ
イルユニット１５８、及び実行クラスタ１６０は、場合により、複数あるように示される
。別個のパイプラインが用いられる場合、これらのパイプラインのうちの１または複数が
アウトオブオーダ発行／実行され、残りがインオーダ発行／実行されてよいことは、理解
されるべきでもある。
【００１６】
　複数のメモリアクセスユニット１６４のセットは、メモリユニット１７０に連結される
。メモリユニット１７０は、データＴＬＢユニット１７２を含む。データＴＬＢユニット
１７２は、データキャッシュユニット１７４に連結される。データキャッシュユニット１
７４は、レベル２（Ｌ２）キャッシュユニット１７６に連結される。一典型的な実施形態
では、複数のメモリアクセスユニット１６４は、ロードユニット、ストアアドレスユニッ
ト、およびストアデータユニットを含んでよく、それぞれがメモリユニット１７０内のデ
ータＴＬＢユニット１７２に連結される。命令キャッシュユニット１３４は、さらに、メ
モリユニット１７０内のレベル２（Ｌ２）キャッシュユニット１７６に連結される。Ｌ２
キャッシュユニット１７６は、１または複数の他のレベルのキャッシュおよび最終的には
メインメモリに連結される。
【００１７】
　例として、典型的なレジスタリネームアウトオブオーダ発行／実行コアアーキテクチャ
は、次のようにパイプライン１００を実装してよい。１）命令フェッチ１３８が、フェッ
チおよびレングスデコードステージ１０２および１０４を実行する。２）デコードユニッ
ト１４０が、デコードステージ１０６を実行する。３）リネーム／割り当てユニット１５
２が、割り当てステージ１０８およびリネームステージ１１０を実行する。４）スケジュ
ーラユニット１５６が、スケジュールステージ１１２を実行する。５）物理レジスタファ
イルユニット１５８およびメモリユニット１７０が、レジスタ読み出し／メモリ読み出し
ステージ１１４を実行する。実行クラスタ１６０が、実行ステージ１１６を実行する。６
）メモリユニット１７０および物理レジスタファイルユニット１５８が、ライトバック／
メモリ書き込みステージ１１８を実行する。７）様々なユニットが、例外ハンドリングス
テージ１２２に関与されてよい。８）リタイアメントユニット１５４および物理レジスタ
ファイルユニット１５８が、コミットステージ１２４を実行する。
【００１８】
　コア１９０は、ここに記載される命令を含め、１または複数の命令セット（例えば、ｘ
８６命令セット（複数のより新しいバージョンに追加された幾つかの拡張を有する））、
カリフォルニア州サニーベールのＭＩＰＳテクノロジーズのＭＩＰＳ命令セット、カリフ
ォルニア州サニーベールのＡＲＭホールディングスのＡＲＭ命令セット（ＮＥＯＮのよう
な任意追加の複数の拡張を有する））をサポートしてよい。一実施形態では、コア１９０
は、パックドデータ命令セットの拡張（例えば、ＡＶＸ１、ＡＶＸ２、および／または後
述する総称ベクトル向け命令フォーマット（Ｕ＝０および／またはＵ＝１）の幾つかの形
式）をサポートするロジックを含み、それにより、多くのマルチメディアアプリケーショ
ンにより用いられる複数の演算をパックドデータを用いて実行されるようにする。
【００１９】
　コアは、マルチスレッド（演算又はスレッドの２またはそれより多いパラレルセットを
実行）をサポートしてよいし、時間スライスされたマルチスレッド、同時マルチスレッド
（ただし、単一物理コアは、物理コアが同時にマルチスレッドする複数のスレッドのそれ
ぞれに対して論理コアを提供する）、またはそれらの組み合わせ（例えば、インテルハイ
パースレッド技術におけるような時間スライスされたフェッチおよびデコードおよびその
あとの同時マルチスレッド）を含む様々な態様においてそうしてよいことが理解されるべ
きである。

(9) JP 6092904 B2 2017.3.8

10

20

30

40

50

【００２０】
　レジスタリネームがアウトオブオーダ実行のコンテキストにおいて記載される限り、レ
ジスタリネームがインオーダアーキテクチャにおいて用いられてよいことが理解されるべ
きである。プロセッサの示された実施形態が、別個の命令およびデータキャッシュユニッ
ト１３４／１７４および共有Ｌ２キャッシュユニット１７６も含むのに対して、代替的な
実施形態は、例えばレベル１（Ｌ１）内部キャッシュまたは複数レベルの内部キャッシュ
のような命令およびデータの両方に対する単一の内部キャッシュを有してよい。幾つかの
実施形態では、システムは、内部キャッシュとコアおよび／またはプロセッサの外部にあ
る外部キャッシュとの組み合わせを含んでよい。代替的に、キャッシュのすべては、コア
および／またはプロセッサの外部にあってよい。
【００２１】
　図２は、発明の実施形態に係る、１より多いコアを有してよく、統合メモリコントロー
ラを有してよく、また統合グラフィクスを有してよいプロセッサ２００のブロック図であ
る。図２における実線のボックスは、シングルコア２０２Ａ、システムエージェント２１
０、および１または複数のバスコントローラユニット２１６のセットを有するプロセッサ
２００を示すとともに、任意の追加の破線のボックスは、複数のマルチコア２０２Ａ－Ｎ
、システムエージェントユニット２１０内の１または複数の統合メモリコントローラユニ
ット２１４のセット、および専用ロジック２０８を有する代替例のプロセッサ２００を示
す。
【００２２】
　従って、プロセッサ２００の異なる実装は、１）統合グラフィクスおよび／または科学
（スループット）ロジックである専用ロジック２０８を有するＣＰＵ（１または複数のコ
アを含んでよい）、および１または複数の汎用コアであるコア２０２Ａ－Ｎ（例えば、汎
用インオーダコア、汎用アウトオブオーダコア、２つの組み合わせ）、２）グラフィック
および／または科学（スループット）を主に意図する多数の専用コアであるコア２０２Ａ
－Ｎを有するコプロセッサ、および３）多数の汎用インオーダコアであるコア２０２Ａ－
Ｎを有するコプロセッサを含んでよい。従って、プロセッサ２００は、例えば、ネットワ
ークまたは通信プロセッサ、圧縮エンジン、グラフィクスプロセッサ、ＧＰＧＰＵ（汎用
グラフィック処理ユニット）、高スループット多集積コア（ＭＩＣ）コプロセッサ（３０
またはそれより多いコアを含む）、組み込みプロセッサなどのような汎用プロセッサ、コ
プロセッサ、または専用プロセッサであってよい。プロセッサは、１または複数のチップ
上に実装されてよい。プロセッサ２００は、１または複数の基板の一部であってよいし、
および／または、例えばＢｉＣＭＯＳ、ＣＭＯＳ、またはＮＭＯＳのような多くの処理技
術のうちのいずれを用いてそれらの上に実装されてよい。
【００２３】
　メモリ階層は、複数の統合メモリコントローラユニット２１４のセットに連結される複
数のコア、セットまたは１または複数の共有キャッシュユニット２０６、および外部メモ
リ（不図示）内に１または複数のレベルのキャッシュを含む。共有キャッシュユニット２
０６のセットは、レベル２（Ｌ２）、レベル３（Ｌ３）、レベル４（Ｌ４）、または他の
レベルのキャッシュ、最後のレベルのキャッシュ（ＬＬＣ）、および／またはそれらの組
み合わせのような１または複数の中間レベルキャッシュを含んでよい。一実施形態では、
リングベースのインターコネクトユニット２１２は、統合グラフィクスロジック２０８、
共有キャッシュユニット２０６のセット、およびシステムエージェントユニット２１０／
統合メモリコントローラユニット２１４を相互接続するのに対して、代替的な実施形態は
、そのような複数のユニットを相互接続する任意の数の周知の技術を用いてよい。一実施
形態では、一貫性が、１または複数のキャッシュユニット２０６および複数のコア２０２
Ａ－Ｎの間で維持される。
【００２４】
　幾つかの実施形態では、１または複数のコア２０２Ａ－Ｎはマルチスレッドすることが
できる。システムエージェント２１０は、コア２０２Ａ－Ｎを調整および操作するそれら

(10) JP 6092904 B2 2017.3.8

10

20

30

40

50

の複数のコンポーネントを含む。システムエージェントユニット２１０は、例えば、電力
制御ユニット（ＰＣＵ）および表示ユニットを含んでよい。ＰＣＵは、コア２０２Ａ－Ｎ
および統合グラフィクスロジック２０８の電力状態をレギュレートするのに必要なロジッ
クおよび複数のコンポーネントであってもまたは含んでもよい。表示ユニットは、１また
は複数の外部接続されたディスプレイを駆動するためのものである。
【００２５】
　複数のコア２０２Ａ－Ｎは、アーキテクチャ命令セットの観点において同種または異種
であってよい。すなわち、コア２０２Ａ－Ｎのうちの２またはそれより多いコアは同じ命
令セットを実行できてよく、その他はその命令セットまたは異なる命令セットのサブセッ
トのみを実行できてよい。一実施形態では、複数のコア２０２Ａ－Ｎは、異種であり、後
述する複数の「小さい」コアおよび複数の「大きい」コアの両方を含む。
【００２６】
　図３から図６は、典型的なコンピュータアーキテクチャのブロック図である。ラップト
ップ、デスクトップ、ハンドヘルドＰＣ、携帯用情報端末、エンジニアリングワークステ
ーション、サーバ、ネットワークデバイス、ネットワークハブ、スイッチ、組み込みプロ
セッサ、デジタルシグナルプロセッサ（ＤＳＰ）、グラフィックデバイス、ビデオゲーム
デバイス、セットトップボックス、マイクロコントローラ、携帯電話、ポータブルメディ
アプレーヤ、ハンドヘルドデバイス、および様々な他の電子デバイスの技術分野において
既知の他のシステム設計及び構成も適当である。一般的に、ここに開示されるようなプロ
セッサおよび／または他の実行ロジックを組み込むことができる様々なシステムまたは電
子デバイスが一般に適当である。
【００２７】
　ここで図３を参照すると、本発明の一実施形態によるシステム３００のブロック図が示
される。システム３００は、コントローラハブ３２０に連結される１または複数のプロセ
ッサ３１０、３１５を含んでよい。一実施形態では、コントローラハブ３２０は、グラフ
ィックスメモリコントローラハブ（ＧＭＣＨ）３９０および入出力ハブ（ＩＯＨ）３５０
（別個の複数のチップ上にあってよい）を含む。ＧＭＣＨ３９０は、メモリ３４０および
コプロセッサ３４５に連結されるメモリおよびグラフィクスコントローラを含む。ＩＯＨ
３５０は、入出力（Ｉ／Ｏ）デバイス３６０をＧＭＣＨ３９０に接続する。代替的に、メ
モリおよびグラフィクスコントローラのうちの１つまたは両方は、プロセッサに（ここに
記載されるように）集積され、メモリ３４０およびコプロセッサ３４５は、ＩＯＨ３５０
を有する単一チップ内でプロセッサ３１０およびコントローラハブ３２０に直接連結され
る。
【００２８】
　複数の追加のプロセッサ３１５の任意の特性は、破線を用いて図３内に示される。各プ
ロセッサ３１０、３１５は、ここに記載される処理コアの１または複数を含んでよく、ま
たプロセッサ２００の幾つかのバージョンであってよい。
【００２９】
　メモリ３４０は、例えば、ダイナミックランダムアクセスメモリ（ＤＲＡＭ）、相変化
メモリ（ＰＣＭ）、または２つの組み合わせであってよい。少なくとも１つの実施形態に
対して、コントローラハブ３２０は、フロントサイドバス（ＦＳＢ）のようなマルチドロ
ップバス、ＱｕｉｃｋＰａｔｈインターコネクト（ＱＰＩ）のようなポイントツーポイン
トインターフェース、または同様の接続３９５を介してプロセッサ３１０、３１５と通信
する。
【００３０】
　一実施形態では、コプロセッサ３４５は、例えば、高スループットＭＩＣプロセッサ、
ネットワークまたは通信プロセッサ、圧縮エンジン、グラフィクスプロセッサ、ＧＰＧＰ
Ｕ、組み込みプロセッサなどのような専用プロセッサである。一実施形態では、コントロ
ーラハブ３２０は、統合グラフィクスアクセラレータを含んでよい。
【００３１】

(11) JP 6092904 B2 2017.3.8

10

20

30

40

50

　アーキテクチャ、マイクロアーキテクチャ、熱、電力消費特性などを含むメリットメト
リクスの範囲の観点において、物理リソース３１０、３１５の間に様々な差があるはずで
ある。
【００３２】
　一実施形態では、プロセッサ３１０は、一般タイプのデータ処理演算を制御する複数の
命令を実行する。複数のコプロセッサ命令は、複数の命令内に組み込まれてよい。プロセ
ッサ３１０は、これらのコプロセッサ命令を、付属のコプロセッサ３４５により実行され
るべきタイプとして認識する。従って、プロセッサ３１０は、これらのコプロセッサ命令
（または複数のコプロセッサ命令を表す複数の制御信号）を、コプロセッサバスまたは他
のインターコネクト上でコプロセッサ３４５に発する。コプロセッサ３４５は、受信した
複数のコプロセッサ命令を受け入れて実行する。
【００３３】
　ここで図４を参照すると、本発明の実施形態による、第１のより具体的な典型的なシス
テム４００のブロック図を示す。図４に示されるように、マイクロプロセッサシステム４
００は、ポイントツーポイントインターコネクトシステムであり、ポイントツーポイント
インターコネクト４５０を介して連結された第１のプロセッサ４７０および第２のプロセ
ッサ４８０を含む。プロセッサ４７０および４８０のそれぞれは、プロセッサ２００の幾
つかのバージョンであってよい。発明の一実施形態では、プロセッサ４７０および４８０
はそれぞれプロセッサ３１０および３１５であり、コプロセッサ４３８はコプロセッサ３
４５である。別の実施形態では、プロセッサ４７０および４８０は、それぞれ、プロセッ
サ３１０およびコプロセッサ３４５である。
【００３４】
　プロセッサ４７０および４８０は、それぞれ統合メモリコントローラ（ＩＭＣ）ユニッ
ト４７２および４８２を含めて示されている。プロセッサ４７０は、その複数のバスコン
トローラユニットの一部として、ポイントツーポイント（Ｐ－Ｐ）インターフェース４７
６および４７８も含む。同様に、第２のプロセッサ４８０は、Ｐ－Ｐインターフェース４
８６および４８８を含む。プロセッサ４７０、４８０は、ポイントツーポイント（Ｐ－Ｐ
）インターフェース４５０を介して、Ｐ－Ｐインターフェース回路４７８、４８８を用い
て情報を交換してよい。図４に示されるように、ＩＭＣ４７２および４８２は、複数のプ
ロセッサをそれぞれメモリ、すなわちそれぞれのプロセッサにローカルに付属するメイン
メモリの一部であってよいメモリ４３２およびメモリ４３４に接続する。
【００３５】
　プロセッサ４７０、４８０は、それぞれ、ポイントツーポイントインターフェース回路
４７６、４９４、４８６、４９８を用いて、個々のＰ－Ｐインターフェース４５２、４５
４を介してチップセット４９０と情報を交換してよい。チップセット４９０は、必要に応
じて、高性能インターフェース４３９を介してコプロセッサ４３８と情報を交換してよい
。一実施形態では、例えば、高スループットＭＩＣプロセッサ、ネットワークまたは通信
プロセッサ、圧縮エンジン、グラフィクスプロセッサ、ＧＰＧＰＵ、組み込みプロセッサ
などのようなコプロセッサ４３８は、専用プロセッサである。
【００３６】
　共有キャッシュ（不図示）は、どちらかのプロセッサまたは両方のプロセッサの外部に
含まれ、さらにＰ－Ｐインターコネクトを介して複数のプロセッサに接続され、それによ
り、プロセッサが低電力モードに配置されると、どちらかまたは両方のプロセッサのロー
カルキャッシュ情報が共有キャッシュ内に格納されてよい。
【００３７】
　チップセット４９０は、インターフェース４９６を介して、第１のバス４１６に連結さ
れてよい。一実施形態では、第１のバス４１６は、ペリフェラルコンポーネントインター
コネクト（ＰＣＩ）バス、またはＰＣＩエクスプレスバスまたは別の第３世代Ｉ／Ｏイン
ターコネクトバスのようなバス、であってよいが、本発明の範囲はこれに限定されるもの
ではない。

(12) JP 6092904 B2 2017.3.8

10

20

30

40

50

【００３８】
　図４に示すように、様々なＩ／Ｏデバイス４１４は、第１のバス４１６を第２のバス４
２０に接続するバスブリッジ４１８とともに、第１のバス４１６に連結されてよい。一実
施形態では、複数のコプロセッサ、複数の高スループットＭＩＣプロセッサ、ＧＰＧＰＵ
の複数のアクセラレータ（例えば、複数のグラフィクスアクセラレータまたは複数のデジ
タル信号処理（ＤＳＰ）ユニット）、複数のフィールドプログラマブルゲートアレイ、ま
たはいずれの他のプロセッサのような１または複数の追加のプロセッサ４１５は、第１の
バス４１６に連結される。一実施形態では、第２のバス４２０は、ローピンカウント（Ｌ
ＰＣ）バスであってよい。一実施形態では、様々なデバイスは、例えば、キーボードおよ
び／またはマウス４２２、複数の通信デバイス４２７、および命令／コードおよびデータ
４３０を含んでよいディスクドライブまたは他の大容量ストレージデバイスのようなスト
レージユニット４２８を含めて、第２のバス４２０に連結されてよい。さらに、オーディ
オＩ／Ｏ　４２４は、第２のバス４２０に連結されてよい。なお、他のアーキテクチャも
可能である。例えば、図４のポイントツーポイントアーキテクチャに代えて、システムは
、マルチドロップバスまたは他のそのようなアーキテクチャを実装してよい。
【００３９】
　ここで図５を参照すると、本発明の実施形態による第２のより具体的な典型的なシステ
ム５００のブロック図が示される。図４および図５における同じ要素は同じ参照番号を与
え、図４の特定の態様は、図５の他の態様を分かりにくくしないように図５から省略され
ている。
【００４０】
　図５は、プロセッサ４７０、４８０が、統合メモリおよびそれぞれＩ／Ｏ制御ロジック
（「ＣＬ」）４７２および４８２を含んでよいことを示す。従って、ＣＬ４７２、４８２
は、複数の統合メモリコントローラユニットを含み、Ｉ／Ｏ制御ロジックを含む。図５は
、メモリ４３２、４３４がＣＬ４７２、４８２に連結されるだけでなく、Ｉ／Ｏデバイス
５１４も制御ロジック４７２、４８２に連結されることも示す。複数のレガシＩ／Ｏデバ
イス５１５は、チップセット４９０に連結される。
【００４１】
　ここで図６を参照すると、本発明の実施形態によるＳｏＣ６００のブロック図が示され
る。図２内の同様の要素は、同じ参照番号を与える。また、破線のボックスは、より高度
なＳｏＣの任意の特徴である。図６において、インターコネクトユニット６０２は、１ま
たは複数のコア５０２Ａ－Ｎおよび共有キャッシュユニット５０６のセットを含むアプリ
ケーションプロセッサ６１０、システムエージェントユニット５１０、バスコントローラ
ユニット５１６、統合メモリコントローラユニット５１４、統合グラフィクスロジック、
イメージプロセッサ、オーディオプロセッサ、およびビデオプロセッサを含んでよい１ま
たは複数のコプロセッサ６２０のセット、スタティックランダムアクセスメモリ（ＳＲＡ
Ｍ）ユニット６３０、ダイレクトメモリアクセス（ＤＭＡ）ユニット６３２、および１ま
たは複数の外部ディスプレイに連結するための表示ユニット６４０、に連結される。一実
施形態では、コプロセッサ６２０は、例えば、ネットワークまたは通信プロセッサ、圧縮
エンジン、ＧＰＧＰＵ、高スループットＭＩＣプロセッサ、組み込みプロセッサなどのよ
うな専用プロセッサを含む。
【００４２】
　ここに開示されるメカニズムの実施形態は、ハードウェア、ソフトウェア、ファームウ
ェア、またはそのような複数の実装アプローチの組み合わせにおいて実装されてよい。発
明の実施形態は、少なくとも１つのプロセッサ、ストレージシステム（揮発性および不揮
発性メモリおよび／またはストレージ要素を含む）、少なくとも１つの入力デバイス、お
よび少なくとも１つの出力デバイスを備える複数のプログラマブルシステム上で実行する
複数のコンピュータプログラムまたはプログラムコードとして実装されてよい。
【００４３】
　図４に示されるコード４３０のようなプログラムコードは、ここに記載の複数の機能を

(13) JP 6092904 B2 2017.3.8

10

20

30

40

50

実行し、出力情報を生成する複数の命令を入力するために適用されてよい。出力情報は、
１または複数の出力デバイスに既知の様式で適用されてよい。このアプリケーションの目
的のために、処理システムは、例えば、デジタルシグナルプロセッサ（ＤＳＰ）、マイク
ロコントローラ、特定用途向け集積回路（ＡＳＩＣ）、またはマイクロプロセッサのよう
なプロセッサを有するいずれのシステムを含む。
【００４４】
　プログラムコードは、処理システムと通信するために、高級手続型またはオブジェクト
指向型プログラミング言語において実装されてよい。プログラムコードは、必要に応じて
、アセンブリまたは機械言語において実装されてもよい。実際、ここに記載の複数のメカ
ニズムは、いずれの特定のプログラミング言語の範囲に限定されるものではない。いずれ
の場合において、言語は、コンパイル型またはインタプリタ型言語であってよい。
【００４５】
　少なくとも１つの実施形態の１または複数の態様は、機械により読み込まれると、機械
に、ここに記載の技術を実行するロジックを組み立てさせるプロセッサ内の様々なロジッ
クを表す、機械可読媒体上に格納された典型的な複数の命令により実装されてよい。「Ｉ
Ｐコア」として知られるそのような表現は、実際にロジックまたはプロセッサを製造する
複数の製造機械にロードするために、有形の機械可読媒体上に格納されて、様々な顧客ま
たは製造施設に供給されてよい。
【００４６】
　そのような機械可読記憶媒体は、これらに限定されないが、ハードディスク、フロッピ
ー（登録商標）ディスクを含む他のタイプのディスク、光ディスク、コンパクトディスク
リードオンリメモリ（ＣＤ－ＲＯＭ）、コンパクトディスクリライタブル（ＣＤ－ＲＷ）
、及び磁気光ディスクのようなストレージメディア、リードオンリメモリ（ＲＯＭ）、ダ
イナミックランダムアクセスメモリ（ＤＲＡＭ）のようなランダムアクセスメモリ（ＲＡ
Ｍ）、スタティックランダムアクセスメモリ（ＳＲＡＭ）、消去可能プログラマブルリー
ドオンリメモリ（ＥＰＲＯＭ）、フラッシュメモリ、電気的消去可能プログラマブルリー
ドオンリメモリ（ＥＥＰＲＯＭ）、相変化メモリ（ＰＣＭ）、磁気または光カードのよう
な半導体デバイス、または電子命令を格納するのに好適ないずれの他のタイプのメディア
を含む、機械またはデバイスにより製造または形成される複数の物品の非一時的で有形の
装置を含んでよい。
【００４７】
　従って、発明の実施形態は、複数の命令を含む、またはここに記載の構造、回路、装置
、プロセッサ、および／またはシステム特徴を規定するハードウェア記述言語（ＨＤＬ）
のような設計データを含む非一時的な有形の機械可読媒体も含む。そのような実施形態は
、プログラム製品と参照されてもよい。
【００４８】
　幾つかの場合では、命令コンバータは、ソース命令セットからの命令をターゲット命令
セットに変換するために用いられてよい。例えば、命令コンバータは、命令を、コアによ
り処理される１または複数の他の命令に翻訳（例えば、静的バイナリトランスレーション
、動的コンパイルを含む動的バイナリトランスレーションを用いて）、モーフィング、エ
ミュレート、そうでなければ変換してよい。命令コンバータは、ソフトウェア、ハードウ
ェア、ファームウェア、またはそれらの組み合わせにおいて実装されてよい。命令コンバ
ータは、プロセッサ上に、プロセッサ外に、または一部がプロセッサ上に、一部がプロセ
ッサ外にあってよい。
【００４９】
　図７は、発明の実施形態に係る、ソース命令セットにおけるバイナリ命令をターゲット
命令セットにおけるバイナリ命令に変換するソフトウェア命令コンバータの使用を対比す
るブロック図である。示された実施形態では、命令コンバータは、ソフトウェア命令コン
バータであるが、代替的に、命令コンバータは、ソフトウェア、ファームウェア、ハード
ウェア、またはそれらの様々な組み合わせにおいて実装されてよい。図７は、高級言語７

(14) JP 6092904 B2 2017.3.8

10

20

30

40

50

０２におけるプログラムが、ｘ８６コンパイラ７０４を用いてコンパイルされて、少なく
とも１つのｘ８６命令セットコア７１６を用いて、プロセッサにより、本来的に実行され
てよいｘ８６バイナリコード７０６を生成してよいことを示す。少なくとも１つのｘ８６
命令セットコア７１６を有するプロセッサは、互換実行する、そうでなければ、少なくと
も１つのｘ８６命令セットコアを用いるＩｎｔｅｌプロセッサと実質的に同じ結果を達成
するよう、（１）インテルｘ８６命令セットコアの命令セットの相当の部分、または（２
）少なくとも１つのｘ８６命令セットコアを用いてＩｎｔｅｌプロセッサ上で実行するこ
とを目標とされたアプリケーションまたは他のソフトウェアのオブジェクトコードのバー
ジョンを処理することにより、少なくとも１つのｘ８６命令セットコアを有するＩｎｔｅ
ｌプロセッサと同じ機能を実質的に達成できるいずれのプロセッサを表す。ｘ８６コンパ
イラ７０４は、追加的なリンケージ処理を用いてまたは用いないで、少なくとも１つのｘ
８６命令セットコア７１６を有するプロセッサ上で実行されることができるｘ８６バイナ
リコード７０６（例えば、オブジェクトコード）を生成するよう動作可能なコンパイラを
表す。同様に、図７は、高級言語７０２におけるプログラムが、代替の命令セットコンパ
イラ７０８を用いてコンパイルされて、少なくとも１つのｘ８６命令セットコア７１４を
用いないでプロセッサ（例えば、カリフォルニア州サニーベールのＭＩＰＳテクノロジー
ズのＭＩＰＳ命令セットを実行する、および／またはカリフォルニア州サニーベールのＡ
ＲＭホールディングスのＡＲＭ命令セットを実行する複数のコアを有するプロセッサ）に
より本来的に実行されてよい代替の命令セットバイナリコード７１０を生成してよいこと
を示す。命令コンバータ７１２は、ｘ８６バイナリコード７０６を、ｘ８６命令セットコ
ア７１４を用いないで、プロセッサにより本来的に実行されてよいコードに変換するため
に用いられる。この変換されたコードは、これが可能な命令コンバータは作るのが困難で
あるので、代替の命令セットバイナリコード７１０と同じである可能性は低い。しかし、
変換されたコードは、一般的な演算を遂行し、代替の命令セットからの複数の命令から構
成される。従って、命令コンバータ７１２は、エミュレーション、シミュレーション、ま
たはいずれの他の処理を通じて、プロセッサまたはｘ８６命令セットプロセッサまたはコ
アを有さない他の電子デバイスに、ｘ８６バイナリコード７０６を実行させるソフトウェ
ア、ファームウェア、ハードウェア、またはそれらの組み合わせを表す。
【００５０】
　複数の乗算演算を実行するための方法および装置
　以下に記載の発明の実施形態は、単一の命令において２つの乗算を実行する乗算命令の
ファミリーに対する複数のアーキテクチャ上の拡張を提供する。一実施形態では、複数の
アーキテクチャ上の拡張は、インテル（登録商標）アーキテクチャ（ＩＡ）に提供される
が、発明の基礎となる原理はいずれの特定のＩＳＡに限定されるものではない。
【００５１】
　既存のプロセッサアーキテクチャでは、各乗算命令は、単一の乗算演算を実行する。例
えば、インテル（登録商標）アーキテクチャでは、ＶＭＵＬＳＳおよびＶＭＵＬＰＳは、
２つの単精度浮動小数点値を乗算し、ＶＭＵＬＳＤおよびＶＭＵＬＰＤは、２つの倍精度
浮動小数点値を乗算する。対照的に、ここに記載の二重乗算命令のファミリー（一実施形
態においてＶＭＵＬ３命令とラベルされる）は、単一の命令において２つの乗算を実行し
、それにより、電力を低減し、他の複数の命令の複数のデコードスロットを解放する。一
実施形態では、２つの乗算は、３つのソースオペランド上で実行される。第２及び第３の
ソースオペランドは、まず乗算されて、そして第１のソースオペランドにより乗算される
中間結果を生成する。
【００５２】
　図８に示されるように、発明の実施形態が実装されてよい典型的なプロセッサ８５５は
、ここに記載の複数のＶＭＵＬ３命令を実行するＶＭＵＬ３実行ロジック８４１とともに
実行ユニット８４０を含む。実行ユニット８４０が命令ストリームを実行するので、レジ
スタセット８０５は、複数のオペランド、制御データ、および他のタイプのデータに対す
るレジスタストレージを提供する。

(15) JP 6092904 B2 2017.3.8

10

20

30

40

50

【００５３】
　簡単のため、単一のプロセッサコア（「コア０」）の詳細が図８に示される。しかし、
図８に示される各コアは、コア０のように、ロジックの同じセットを有してよいことが理
解される。示されるように、各コアは、特定のキャッシュ管理ポリシーに従って複数の命
令およびデータをキャッシュするための専用のレベル１（Ｌ１）キャッシュ８１２および
レベル２（Ｌ２）キャッシュ８１１を含んでよい。Ｌ１キャッシュ８１２は、複数の命令
を格納するための別個の命令キャッシュ８２０およびデータを格納するための別個のデー
タキャッシュ８２１を含む。様々なプロセッサキャッシュ内に格納される複数の命令およ
びデータは、固定サイズ（例えば、６４、１２８、５１２バイト長）であってよい複数の
キャッシュラインの粒度で管理される。この典型的な実施形態の各コアは、メインメモリ
８００および／または共有レベル３（Ｌ３）キャッシュ８１６から複数の命令をフェッチ
するための命令フェッチユニット８１０、複数の命令をデコードする（例えば、複数のプ
ログラム命令を複数のマイクロ演算または複数の「μｏｐ」にデコードする）ためのデコ
ードユニット８３０、複数の命令（例えば、ここに記載されるような複数のＶＭＵＬ３命
令）を実行するための実行ユニット８４０、および複数の命令をリタイヤし、複数の結果
をライトバックするためのライトバックユニット８５０を有する。
【００５４】
　命令フェッチユニット８１０は、メモリ８００（または複数のキャッシュのうちの１つ
）からフェッチされる次の命令のアドレスを格納するための次の命令ポインタ８０３、最
近用いられた仮想物理命令アドレスのマップを格納して、アドレス変換の速度を向上する
ための命令変換索引バッファ（ＩＴＬＢ）８０４、命令分岐アドレスを投機的に予測する
ための分岐予測ユニット８０２、および分岐アドレスおよび目標アドレスを格納するため
の複数の分岐目標バッファ（ＢＴＢ）８０１を含む様々な既知のコンポーネントを含む。
フェッチされると、複数の命令は、デコードユニット８３０、実行ユニット８４０、およ
びライトバックユニット８５０を含む命令パイプラインの残りのステージにストリームさ
れる。これらのユニットのそれぞれの構造および機能は、当業者に良く理解されており、
発明の異なる実施形態の適切な態様を分かりにくくしないようにここでは詳細に記載され
ない。
【００５５】
　発明の一実施形態では、ＶＭＵＬ３実行ロジック８４１は、次のファミリーの命令を実
行する。
　VMUL3SS xmm1{k1}{z}, xmm2, xmm3/mV{er}
　VMUL3PS zmm1{k1}{z}, zmm2, zmm3/B32(mV){er}
　VMUL3SD xmm1{k1}{z}, xmm2, xmm3/mV{er}
　VMUL3PD zmm1{k1}{z}, zmm2, zmm3/B64(mV){er}
　ここで、ｘｍｍ１－３およびｚｍｍ１－３は、単精度（３２ビット）または倍精度（６
４ビット）浮動小数点フォーマットのいずれかで、パックドまたはスカラ浮動小数点値を
格納するレジスタセット８０５内のレジスタである。
【００５６】
　特に、一実施形態では、ＶＭＵＬ３ＳＳは、ｘｍｍ１、ｘｍｍ２、およびｘｍｍ３に格
納される３つのスカラ、単精度浮動小数点値を乗算する。演算において、（ｘｍｍ２から
の）第２のオペランドは（ｘｍｍ３からの）第３のオペランドにより乗算されてよく、結
果は（ｘｍｍ１からの）第１のオペランドにより（中間丸めを有して）乗算され、デステ
ィネーションレジスタに格納されてよい。一実施形態では、デスティネーションレジスタ
は、第１のオペランド（例えば、ｘｍｍ１）を格納するために用いられる同じレジスタで
ある。
【００５７】
　一実施形態では、ＶＭＵＬ３ＰＳは、ｚｍｍ１、ｚｍｍ２、およびｚｍｍ３に格納され
た３つのパックド、単精度浮動小数点値を乗算する。演算において、（ｚｍｍ２からの）
第２のオペランドは（ｚｍｍ３からの）第３のオペランドにより乗算されてよく、結果は

(16) JP 6092904 B2 2017.3.8

10

20

30

40

50

（ｚｍｍ１からの）第１のオペランドにより（中間丸めを有して）乗算され、デスティネ
ーションレジスタに格納されてよい。一実施形態では、デスティネーションレジスタは、
第１のオペランド（例えば、ｚｍｍ１）を格納するために用いられる同じレジスタである
。
【００５８】
　一実施形態では、ＶＭＵＬ３ＳＤは、ｘｍｍ１、ｘｍｍ２、およびｘｍｍ３に格納され
た３つのスカラ、倍精度浮動小数点値を乗算する。演算において、（ｘｍｍ２からの）第
２のオペランドは（ｘｍｍ３からの）第３のオペランドにより乗算されてよく、結果は（
ｘｍｍ１からの）第１のオペランドにより（中間丸めを有して）乗算され、デスティネー
ションレジスタに格納されてよい。一実施形態では、デスティネーションレジスタは、第
１のオペランド（例えば、ｘｍｍ１）を格納するために用いられる同じレジスタである。
【００５９】
　最後に、一実施形態では、ＶＭＵＬ３ＰＤは、ｚｍｍ１、ｚｍｍ２、およびｚｍｍ３に
格納された３つのパックド、倍精度浮動小数点値を乗算する。演算において、（ｚｍｍ２
からの）第２のオペランドは（ｚｍｍ３からの）第３のオペランドにより乗算されてよく
、結果は（ｚｍｍ１からの）第１のオペランドにより（中間丸めを有して）乗算され、デ
スティネーションレジスタに格納されてよい。一実施形態では、デスティネーションレジ
スタは、第１のオペランド（例えば、ｚｍｍ１）を格納するために用いられる同じレジス
タである。
【００６０】
　一実施形態では、複数のＶＭＵＬ３命令のそれぞれの３つの即値ビット［２：０］は、
複数の乗算の符号を制御するために用いられる。例えば、即値のビット０の値は、第１の
オペランドの符号を制御してよい（例えば、１＝負および０＝正、またはその逆）。即値
のビット１の値は、第２のオペランドの符号を制御してよい。また、即値のビット２の値
は、第３のオペランドの符号を制御してよい。
【００６１】
　一実施形態では、第１および第２のオペランドは、複数の単一命令複数データ（ＳＩＭ
Ｄ）レジスタから読まれ、第３のオペランドは、ＳＩＭＤレジスタまたはメモリ位置から
読まれることができる。
【００６２】
　図９Ａは、各ＶＭＵＬ３の複数のμｏｐに複数のリソースを割り当てるためのアロケー
タ９４０、および複数の機能ユニット９１２により実行されるＶＭＵＬ３の複数のμｏｐ
をスケジュールするためのリザベーションステーション９０２を含むＶＭＵＬ３実行ロジ
ック８４１の一実施形態に関連する追加的な詳細を示す。演算では、各ＶＭＵＬ３命令が
複数のμｏｐにデコードされるデコードステージ８３０に続いて、命令デコーダ８０６は
、複数のμｏｐをレジスタエイリアステーブル（ＲＡＴ）９４１を含むアロケータユニッ
ト９４０に転送する。アウトオブオーダパイプラインにおいて、アロケータユニット９４
０は、各入力μｏｐをリオーダバッファ（ＲＯＢ）９５０内の位置に割り当て、それによ
り、μｏｐの論理デスティネーションアドレスをＲＯＢ９５０内の対応する物理デスティ
ネーションアドレスにマッピングする。ＲＡＴ９４１は、このマッピングを維持する。
【００６３】
　ＲＯＢ９５０の複数のコンテンツは、最終的に、リアルレジスタファイル（ＲＲＦ）９
５１内の複数の位置にリタイヤされてよい。ＲＡＴ９４１は、論理アドレスにより示され
た値が、リタイヤの後に、ＲＯＢ９５０内またはＲＲＦ９５１内の物理アドレスで見つか
るかどうかを示すリアルレジスタファイルの有効ビットを格納してもよい。ＲＲＦ内に見
つかると、値は、現在のプロセッサのアーキテクチャ状態の一部と考えられる。このマッ
ピングに基づいて、ＲＡＴ９４１は、また、すべての論理ソースアドレスをＲＯＢ９５０
またはＲＲＦ９５１内の対応する位置に結合する。
【００６４】
　各入力μｏｐは、また、アロケータ９４０により割り当てられて、リザベーションステ

(17) JP 6092904 B2 2017.3.8

10

20

30

40

50

ーション（ＲＳ）９０２内のエントリに書き込まれる。リザベーションステーション９０
２は、機能ユニット９１２による実行を待つＶＭＵＬ３の複数のμｏｐを組み立てる。簡
単な場合において、２つの融合乗算および加算（ＦＭＡ）機能ユニットＦＭＡ０　９１０
およびＦＭＡ１　９１１は、以下に記載されるように複数のＶＭＵＬ３命令を実行する複
数の乗算演算を実行する。必要に応じて、複数の結果は、ライトバックバスを介してＲＳ
９０２にライトバックされてよい。
【００６５】
　一実施形態では、複数のリザベーションステーションエントリは、複数のグループに論
理的に細分され、複数のエントリを読み出すおよび書き込むためにそれぞれ必要とされる
リードおよびライトポートの数を減らす。図９Ａに示される実施形態では、２つのリザベ
ーションステーションのグループＲＳ０　９００およびＲＳ１　９０１は、それぞれポー
ト０および１を介してＦＭＡ０　９１０およびＦＭＡ１　９１１機能ユニットによるＶＭ
ＵＬ３の複数のμｏｐの実行をスケジュールする。
【００６６】
　一実施形態では、複数のＶＭＵＬ３命令のいずれかは、パイプラインを介して単一のμ
ｏｐとして実行されてよい。特に、μｏｐは、まず、第２および第３のオペランドの第１
の乗算を実行して（例えば、上述のようにｘｍｍ２／ｘｍｍ３またはｚｍｍ２／ｚｍｍ３
から）、中間結果を生成するＦＭＡ０　９１０（ＲＳ０　９００を介して）により実行さ
れる。μｏｐは、バッファユニット９０５内で遅延され、そして、ＦＭＡ１　９１１（Ｒ
Ｓ１　９０１を介して）により２回目に実行されて、中間結果と第１のオペランド（例え
ば、ｘｍｍ１／ｚｍｍ１から）とを乗算する。前述のように、最終結果は、ｘｍｍ１／ｚ
ｍｍ１内に格納されてよい。更に、述べたように、ＶＭＵＬ３命令の即値は、３つのソー
スオペランドのそれぞれの符号を特定してよい。一実施形態では、μｏｐの第２の発行は
、命令を再発行する前に、正確にＦＭＡレイテンシ（例えば、５クロックサイクル）待た
される（バッファ９０５を介して）。
【００６７】
　様々な既存のデータバイパスは、ポート１のＦＭＡ１　９１１に中間結果を提供するた
めに用いられてよい。一実施形態では、中間結果は、ＲＯＢ　９５０、またはＦＭＡ１　
９１１によりそこから読み出され、用いられてよいいずれの他の記憶位置内に一時的に格
納される。一実施形態では、ライトバックバスは、中間結果をポート１を介してＦＡＭ１
　９１１に利用できるようにするＲＳ１　９０１に中間結果を提供するために用いられて
よい。しかし、発明の基礎となる原理は、中間結果をＦＡＭ１　９１１に提供する任意の
特定のやり方に限定されない。さらに、ＲＯＢ９５０が図９Ａに示されるように、幾つか
のプロセッサの実装（例えば、複数のインオーダパイプライン）において、ＲＯＢ　９５
０は用いられず、異なる形式のストレージが、中間結果および実行に続く最終結果を格納
するために用いられてよいことが理解される。
【００６８】
　図９Ｂに示されるように、２つの機能ユニットは、発明の基礎となる原理を実装するの
に必要ではない。詳細には、この実施形態において、同じ機能ユニット（ＦＭＡ０　９１
０）は、続けて２回、ＶＭＵＬ３のμｏｐを実行して、最終結果を生成する。すなわち、
ＦＭＡ０　９１０は、第２および第３のオペランドの間の第１の乗算を実行し、中間結果
およびμｏｐをそれ自体を介して戻して再循環して、第２の乗算（完了すると、パイプラ
インの残りを通過する）を実行する。一実施形態では、μｏｐの第２の反復は、リザベー
ションステーション９０２を介して送信するよう示され、再循環は、単に、機能ユニット
ステージ９１２内で実行される（すなわち、機能ユニットステージ９１２内で一時バッフ
ァストレージを用いてＦＭＡ０　９１０からそれ自体に直接）。さらに、別の実装では、
複数の機能ユニット９１２のセット内の新しい専用の機能ユニットは、ＶＭＵＬ３命令を
独立して（すなわち、融合乗算および加算機能ユニットを用いないで）実行する。
【００６９】
　上記の実施形態は、１つの命令のみがデコードされたような、２つのＶＭＵＬ命令を用

(18) JP 6092904 B2 2017.3.8

10

20

30

40

50

いる場合より改善された電力消費を提供する。さらに、一時的なソースが複数のバイパス
を介して読み出されることが保証されたことで、データはレジスタファイルから読み出さ
れる必要はない。
【００７０】
　幾つかの要素がともに乗算される複数のアプリケーションでは、乗算命令の数は、ここ
に記載の複数のＶＭＵＬ３命令を利用することで２で除算されることができる。例として
、ベクトル化されることができる、ただし複数の浮動小数点値が乗算される長いループに
対して、ＶＭＵＬ３は、命令数を仮想的に２減らすのに用いられてよい。
【００７１】
　複数の乗算演算を実行するための方法の一実施形態が、図１０に示される。１００１に
て、単一のＶＭＵＬ３命令が、メモリサブシステムからフェッチされる。述べたように、
ＶＭＵＬ３命令は、第１、第２、第３のソースオペランド、デスティネーションオペラン
ド、および即値を含む。１００２にて、ＶＭＵＬ３命令は、複数のμｏｐにデコードされ
る。上述のように、一実施形態では、単一の乗算μｏｐが生成されてよい（および、ＶＭ
ＵＬ３命令を完了するのに必要とされる２つの乗算演算のために２回実行されてよい）。
【００７２】
　１００３にて、複数のソースオペランド値が、複数の機能ユニットによる実行のための
準備として取り出される。この演算は、例えば、リザベーションステーション９０２およ
び／またはアロケータユニット９４０により実行されてよい。
【００７３】
　１００４にて、ＶＭＵＬ３命令が実行される。一実施形態では、乗算μｏｐが、一度、
第２及び第３のオペランドを用いて実行されて、中間結果を生成する。μｏｐは、そして
２回目に、中間結果および第１のオペランドを用いて実行されて、最終結果（すなわち、
第１、第２、及び第３のソースオペランドの乗算）を生成する。述べたように、複数のソ
ースオペランドのそれぞれの符号は、３ビット中間値として提供されてよい。
【００７４】
　１００５にて、ＶＭＵＬ３命令の結果が、１または複数の続く演算のためにそこから読
み出されてよいデスティネーションオペランドの位置（例えば、レジスタ）に格納される
。
【００７５】
　典型的な命令フォーマット
　ここに記載の命令の複数の実施形態は、異なるフォーマットで実施されてよい。更に、
典型的な複数のシステム、複数のアーキテクチャ、および複数のパイプラインが以下に詳
述される。命令の複数の実施形態は、そのような複数のシステム、複数のアーキテクチャ
、および複数のパイプライン上で実行されてよいが、詳述されるそれらに限定されるもの
ではない。
【００７６】
　ベクトル向け命令フォーマットは、複数のベクトル命令（例えば、複数のベクトル演算
に固有の特定の複数のフィールドがある）に好適な命令フォーマットである。複数の実施
形態は、ベクトルおよびスカラ演算の両方がベクトル向け命令フォーマットを通じてサポ
ートされるよう記載され、代替的な複数の実施形態は、ベクトル向け命令フォーマットを
通じてサポートされるベクトル演算のみを用いる。
【００７７】
　図１１Ａおよび図１１Ｂは、発明の実施形態に係る総称ベクトル向け命令フォーマット
およびそれの複数の命令テンプレートを示すブロック図である。図１１Ａは、発明の実施
形態に係る総称ベクトル向け命令フォーマットおよびそれのクラスＡの複数の命令テンプ
レートを示すブロック図であり、図１１Ｂは、発明の実施形態に係る総称ベクトル向け命
令フォーマットおよびそれのクラスＢの複数の命令テンプレートを示すブロック図である
。詳細には、総称ベクトル向け命令フォーマット１５００に対して、両方が非メモリアク
セス１５０５の命令テンプレートおよびメモリアクセス１５２０の命令テンプレートを含

(19) JP 6092904 B2 2017.3.8

10

20

30

40

50

むクラスＡおよびクラスＢの命令テンプレートが定義される。ベクトル向け命令フォーマ
ットのコンテキストにおける総称（generic）なる用語は、いずれの固有の命令セットに
関連付けられていない命令フォーマットを意味する。
【００７８】
　発明の複数の実施形態は、ベクトル向け命令フォーマットが以下をサポートするように
記載される。３２ビット（４バイト）または６４ビット（８バイト）データ要素幅（また
はサイズ）を有する６４バイトベクトルオペランド長（またはサイズ）（従って、１６ダ
ブルワードサイズ要素または代替的に８クワッドワードサイズ要素のいずれからなる６４
バイトベクトル）。１６ビット（２バイト）または８ビット（１バイト）データ要素幅（
またはサイズ）を有する６４バイトベクトルオペランド長（またはサイズ）。３２ビット
（４バイト）、６４ビット（８バイト）、１６ビット（２バイト）、または８ビット（１
バイト）データ要素幅（またはサイズ）を有する３２バイトベクトルオペランド長（また
はサイズ）。および３２ビット（４バイト）、６４ビット（８バイト）、１６ビット（２
バイト）、または８ビット（１バイト）データ要素幅（またはサイズ）を有する１６バイ
トベクトルオペランド長（またはサイズ）。また、代替的な複数の実施形態は、より多い
、より少ない、または異なるデータ要素幅（例えば、１６８ビット（１６バイト）データ
要素幅）を有するより多い、より少ない、および／または異なるベクトルオペランドサイ
ズ（例えば、２５６バイトベクトルオペランド）をサポートしてよい。
【００７９】
　図１１Ａ内のクラスＡの複数の命令テンプレートは、１）非メモリアクセス１５０５の
複数の命令テンプレート内に示される非メモリアクセス、完全ラウンド制御型演算１５１
０の命令テンプレートおよび非メモリアクセス、データ変換型演算１５１５の命令テンプ
レート、および２）メモリアクセス１５２０の複数の命令テンプレート内に示されるメモ
リアクセス、一時的１５２５の命令テンプレートおよびメモリアクセス、非一時的１５３
０の命令テンプレートを含む。図１１Ｂ内のクラスＢの複数の命令テンプレートは、１）
非メモリアクセス１５０５の複数の命令テンプレート内に示される非メモリアクセス、書
き込みマスク制御、部分ラウンド制御型演算１５１６の命令テンプレートおよび非メモリ
アクセス、書き込みマスク制御、ＶＳＩＺＥ型演算１５１７の命令テンプレート、および
２）メモリアクセス１５２０の複数の命令テンプレート内に示されるメモリアクセス、書
き込みマスク制御１５２７の命令テンプレートを含む。
【００８０】
　総称ベクトル向け命令フォーマット１５００は、図１１Ａおよび図１１Ｂに順に示され
、以下に列挙される次の複数のフィールドを含む。
【００８１】
　フォーマットフィールド１５４０－このフィールド内の特定の値（命令フォーマット識
別子値）は、ベクトル向け命令フォーマットを、従って、命令ストリームにおけるベクト
ル向け命令フォーマット内の複数の命令の複数の発生をユニークに特定し。そのように、
このフィールドは、総称ベクトル向け命令フォーマットのみを有する命令セットに必要と
されないという意味において任意である。
【００８２】
　ベース演算フィールド１５４２－そのコンテンツは、異なるベース演算を区別する。
【００８３】
　レジスタインデックスフィールド１５４４－そのコンテンツは、直接またはアドレス生
成を介して、複数のレジスタ内またはメモリ内にあるソースおよびデスティネーションオ
ペランドの位置を特定する。これらは、ＰｘＱ（例えば、３２ｘ５１６、１６ｘ１６８、
３２ｘ１０２４、６４ｘ１０２４）レジスタファイルからＮのレジスタを選択するのに十
分な数のビットを含む。一実施形態では、Ｎは３つのソースおよび１つのデスティネーシ
ョンレジスタに及んでよく、代替的な複数の実施形態はより多いまたはより少ないソース
およびデスティネーションレジスタをサポートしてよい（例えば、２つのソースまでサポ
ートしてよい。ただし、これらのソースのうちの１つはデスティネーションとしてもふる

(20) JP 6092904 B2 2017.3.8

10

20

30

40

50

まう。また、３つのソースまでサポートしてよい。ただし、これらのソースのうちの１つ
はデスティネーションとしてもふるまう。また、２つのソースおよび１つのデスティネー
ションまでサポートしてよい。）
【００８４】
　修飾子フィールド１５４６－そのコンテンツは、そうでないものから、すなわち非メモ
リアクセス１５０５の複数の命令テンプレートおよびメモリアクセス１５２０の複数の命
令テンプレートの間で、メモリアクセスを特定する総称ベクトル命令フォーマット内の複
数の命令の複数の発生を区別する。複数のメモリアクセス演算は、（幾つかのケースでは
、複数のレジスタ内の複数の値を用いてソースおよび／またはデスティネーションアドレ
スを特定する）メモリ階層を読み出すおよび／または書き込み、複数の非メモリアクセス
演算はそれをしない（例えば、ソースおよび複数のデスティネーションはレジスタである
）。一実施形態では、このフィールドは、また、３つの異なる態様の間で選択して、複数
のメモリアドレス算出を実行し、代替的な複数の実施形態はより多い、より少ない、また
は異なる態様をサポートして、複数のメモリアドレス算出を実行してよい。
【００８５】
　増加演算フィールド１５５０－そのコンテンツは、様々な異なる演算のうちのどの１つ
がベース演算に加えて実行されるかを区別する。このフィールドは、コンテキスト固有で
ある。発明の一実施形態では、このフィールドは、クラスフィールド１５６８、アルファ
フィールド１５５２、およびベータフィールド１５５４に分割される。増加演算フィール
ド１５５０は、２、３、または４つの命令ではなく単一の命令において実行される複数の
演算の共通グループを可能とする。
【００８６】
　スケールフィールド１５６０－そのコンテンツは、メモリアドレス生成のためのインデ
ックスフィールドのコンテンツのスケーリングを可能とする（例えば、アドレス生成に対
して２のスケール乗のインデックス+ベースを用いる）。
【００８７】
　変位フィールド１５６２Ａ－そのコンテンツは、メモリアドレス生成の一部として用い
られる（例えば、アドレス生成に対して２のスケール乗のインデックス+ベース+変位を用
いる）。
【００８８】
　変位ファクタフィールド１５６２Ｂ（なお、変位ファクタフィールド１５６２Ｂの直上
の変位フィールド１５６２Ａの並置は１または他が用いられることを示す）－そのコンテ
ンツは、アドレス生成の一部として用いられる。それは、メモリアクセスのサイズ（Ｎ）
によりスケールされる変位ファクタを特定する。ただし、Ｎは、メモリアクセスにおける
バイト数である（例えば、アドレス生成に対して２のスケール乗のインデックス+ベース+
スケールされた変位を用いる）。冗長下位ビットは無視され、従って、変位ファクタフィ
ールドのコンテンツは、複数のメモリオペランドの総サイズ（Ｎ）により乗算されて、実
効アドレスの計算において用いられる最終変位を生成する。Ｎの値は、（ここに記載の）
フルオペコードフィールド１５７４およびデータ操作フィールド１５５４Ｃに基づいて、
実行時に、プロセッサハードウェアにより決定される。変位フィールド１５６２Ａおよび
変位ファクタフィールド１５６２Ｂは、それらは非メモリアクセス１５０５の複数の命令
テンプレートに対して用いられないという意味において任意であり、および／または異な
る実施形態は２つのうちの１つのみを実装してよい、またはいずれも実装しなくてよい。
【００８９】
　データ要素幅フィールド１５６４－そのコンテンツは、多くのデータ要素幅のうちのど
の１つが用いられるかを区別する（幾つかの実施形態では、すべての命令に対して、他の
複数の実施形態では、複数の命令のうちの幾つかのみに対して）。このフィールドは、複
数のオペコードの幾つかの態様を用いて、１つのデータ要素幅のみがサポートされる、お
よび／または複数のデータ要素幅がサポートされる場合、必要とされないという意味にお
いて任意である。

(21) JP 6092904 B2 2017.3.8

10

20

30

40

50

【００９０】
　書き込みマスクフィールド１５７０－そのコンテンツは、データ要素の位置に基づいて
、デスティネーションベクトルオペランド内のそのデータ要素の位置がベース演算および
増加演算の結果を反映するかどうかを制御する。クラスＡの複数の命令テンプレートは、
差込みライトマスクをサポートし、クラスＢの複数の命令テンプレートは、差込みおよび
ゼロ化ライトマスクの両方をサポートする。複数の差込み、ベクトルマスクは、デスティ
ネーション内の複数の要素のいずれのセットに、いずれの演算（ベース演算および増加演
算により特定される）の実行中のアップデートからプロテクトされることを可能とする。
他の一実施形態では、対応するマスクビットが０を有するデスティネーションの各要素の
古い値を保存する。対照的に、ゼロ化ベクトルマスクは、デスティネーション内の複数の
要素のいずれのセットに、いずれの演算（ベース演算および増加演算により特定される）
の実行中にゼロ化されることを可能とする。一実施形態では、対応するマスクビットが０
値を有するとき、デスティネーションの要素が０にセットされる。この機能性のサブセッ
トは、実行されている演算のベクトル長を制御する能力である（すなわち、複数の要素の
スパンが１つめから最後の１つまで変更される）。しかし、変更される複数の要素が連続
する必要はない。従って、書き込みマスクフィールド１５７０は、複数のロード、複数の
ストア、算術、論理等を含む複数の部分的なベクトル演算を可能とする。発明の複数の実
施形態は、書き込みマスクフィールド１５７０のコンテンツが、用いられる書き込みマス
クを含む多くの書き込みマスクレジスタのうちの１つを選択する（従って、書き込みマス
クフィールド１５７０のコンテンツは、間接的に、実行されるマスキングを特定する）よ
うに記載され、代替的な実施形態は、代わりにまたは追加的に、書き込みマスクフィール
ド１５７０のコンテンツに、直接、実行されるマスキングを特定させる。
【００９１】
　即値フィールド１５７２－そのコンテンツは、即値の指定を可能とする。このフィール
ドは、即値をサポートしない総称ベクトル向けフォーマットの実装において存在せず、即
値を用いない複数の命令において存在しないという意味において任意である。
【００９２】
　クラスフィールド１５６８－そのコンテンツは、異なるクラスの複数の命令の間で区別
する。図１１Ａおよび図１１Ｂを参照して、このフィールドのコンテンツは、クラスＡお
よびクラスＢの複数の命令の間で選択する。図１１Ａおよび図１１Ｂにおいて、複数の丸
角の正方形は、フィールド内に特定の値があることを示すために用いられる（例えば、図
１１Ａおよび図１１Ｂのそれぞれにクラスフィールド１５６８に対してクラスＡ１５６８
Ａ及びクラスＢ１５６８Ｂ）。
【００９３】
　クラスＡの命令テンプレート
　クラスＡの非メモリアクセス１５０５の複数の命令テンプレートの場合、アルファフィ
ールド１５５２は、そのコンテンツが、複数の異なる増加演算型のどの１つが実行される
かを区別するＲＳフィールド１５５２Ａとして解釈され（例えば、ラウンド１５５２Ａ．
１およびデータ変換１５５２Ａ．２はそれぞれ非メモリアクセス、ラウンドタイプ演算１
５１０および非メモリアクセス、データ変換型演算１５１５の複数の命令テンプレートに
対して特定される）、ベータフィールド１５５４は、指定される型の複数の演算のうちの
いずれが実行されるかを区別する。非メモリアクセス１５０５の複数の命令テンプレート
内には、スケールフィールド１５６０、変位フィールド１５６２Ａ、および変位スケール
フィールド１５６２Ｂは存在しない。
【００９４】
　非メモリアクセスの命令テンプレート－完全ラウンド制御型演算
　非メモリアクセスの完全ラウンド制御型演算１５１０の命令テンプレートにおいて、ベ
ータフィールド１５５４は、そのコンテンツが静的丸め込みを提供するラウンド制御フィ
ールド１５５４Ａとして解釈される。発明の記載の複数の実施形態では、ラウンド制御フ
ィールド１５５４Ａは、浮動小数点例外（ＳＡＥ）フィールド１５５６およびラウンド演

(22) JP 6092904 B2 2017.3.8

10

20

30

40

50

算制御フィールド１５５８のすべての抑制を含み、代替的な複数の実施形態は、これらの
コンセプトの両方をサポートし、同じフィールドにエンコードしてよく、またはこれらの
コンセプト／フィールドの１つまたは他を単に有する（例えば、ラウンド演算制御フィー
ルド１５５８のみを有してよい）。
【００９５】
　ＳＡＥフィールド１５５６－そのコンテンツは、例外イベント報告をディスエーブルす
るか否かを区別する。ＳＡＥフィールド１５５６のコンテンツが可能な抑制を示すと、与
えられた命令はすべての種類の浮動小数点例外フラグを報告せず、すべての浮動小数点例
外処理部を立ち上げない。
【００９６】
　ラウンド演算制御フィールド１５５８－そのコンテンツは、複数のラウンド演算のグル
ープのどの１つが実行するかを区別する（例えば、切り上げ、切り捨て、ゼロへの丸め、
および最近接丸め）。従って、ラウンド演算制御フィールド１５５８は、命令に基づいて
ラウンド演算モードの変更を可能とする。プロセッサが複数のラウンド演算モードを指定
するための制御レジスタを含む発明の一実施形態では、ラウンド演算制御フィールド１５
５０のコンテンツは、そのレジスタ値を上書きする。
【００９７】
　非メモリアクセスの命令テンプレート：データ変換型演算
　非メモリアクセスのデータ変換型演算１５１５の命令テンプレートにおいて、ベータフ
ィールド１５５４は、そのコンテンツが多くのデータ変換（例えば、データ変換なし、ス
ウィズル、ブロードキャスト）のうちのどの１つが実行されるかを区別するデータ変換フ
ィールド１５５４Ｂとして解釈される。
【００９８】
　クラスＡのメモリアクセス１５２０の命令テンプレートの場合、アルファフィールド１
５５２は、そのコンテンツが複数の追い出し示唆のうちのどの１つが用いられるかを区別
する追い出し示唆フィールド１５５２Ｂとして解釈され（図１２Ａでは、一時的１５５２
Ｂ．１および非一時的１５５２Ｂ．２は、それぞれ、メモリアクセス、一時的１５２５の
命令テンプレートおよびメモリアクセス、非一時的１５３０の命令テンプレートに対して
特定される）、ベータフィールド１５５４は、そのコンテンツが多くのデータ操作演算（
プリミティブとも知られる）のうちのどの１つが実行されるかを区別するデータ操作フィ
ールド１５５４Ｃとして解釈される（例えば、操作なし、ブロードキャスト、ソースのア
ップコンバージョン、デスティネーションのダウンコンバージョン）。メモリアクセス１
５２０の複数の命令テンプレートは、スケールフィールド１５６０、任意で変位フィール
ド１５６２Ａまたは変位スケールフィールド１５６２Ｂを含む。
【００９９】
　複数のベクトルメモリ命令は、変換サポートを用いて、メモリからのベクトルロードお
よびメモリへのベクトルストアを実行する。正規の複数のベクトル命令を用いるように、
複数のベクトルメモリ命令は、データ要素ごとの様式で、実際に転送され、書き込みマス
クとして選択されるベクトルマスクの複数のコンテンツにより命令される複数の要素を用
いて、メモリから／へデータを転送する。
【０１００】
　メモリアクセスの命令テンプレート－一時的
　一時的なデータは、キャッシュにより利益を得るのに十分にすぐに再利用され得るデー
タである。しかし、これは示唆であり、異なるプロセッサは、示唆を完全に無視すること
を含め、それを異なる態様で実装してよい。
【０１０１】
　メモリアクセスの命令テンプレート－非一時的
　非一時的データは、第１レベルキャッシュにキャッシュすることより利益を得るのに十
分にすぐに再利用され得るデータであり、削除の優先度を与えられるべきである。しかし
、これは示唆であり、異なるプロセッサは、示唆を完全に無視することを含め、それを異

(23) JP 6092904 B2 2017.3.8

10

20

30

40

50

なる態様で実装してよい。
【０１０２】
　クラスＢの命令テンプレート
　クラスＢの命令テンプレートの場合、アルファフィールド１５５２は、そのコンテンツ
が、書き込みマスクフィールド１５７０により制御される書き込みマスキングが差込みま
たはゼロ化であるべきかどうかを区別する書き込みマスク制御（Ｚ）フィールド１５５２
Ｃとして解釈される。
【０１０３】
　クラスＢの非メモリアクセス１５０５の複数の命令テンプレートの場合、ベータフィー
ルド１５５４の一部は、そのコンテンツが、異なる増加演算型のうちのどの１つが実行さ
れるかを区別するＲＬフィールド１５５７Ａとして解釈され（例えば、ラウンド１５５７
Ａ．１およびベクトル長（ＶＳＩＺＥ）１５５７Ａ．２は、それぞれ、非メモリアクセス
、書き込みマスク制御の部分ラウンド制御型演算１５１６の命令テンプレートおよび非メ
モリアクセス、書き込みマスク制御、ＶＳＩＺＥ型演算１５１７の命令テンプレートに対
して特定される）、ベータフィールド１５５４の残りは、指定される型の複数の演算のう
ちのどれが実行されるかを区別する。非メモリアクセス１５０５の複数の命令テンプレー
トには、スケールフィールド１５６０、変位フィールド１５６２Ａ、および変位スケール
フィールド１５６２Ｂは存在しない。
【０１０４】
　非メモリアクセス、書き込みマスク制御の部分ラウンド制御型演算１５１６の命令テン
プレートでは、ベータフィールド１５５４の残りは、ラウンド演算フィールド１５５９Ａ
として解釈され、例外イベント報告がディスエーブルされる（与えられた命令は、すべて
の種類の浮動小数点例外フラグを報告せず、すべての浮動小数点例外処理部を立ち上げな
い）。
【０１０５】
　ラウンド演算制御フィールド１５５９Ａ－ラウンド演算制御フィールド１５５８と同じ
ように、そのコンテンツは、複数のラウンド演算のグループのどの１つが実行するかを区
別する（例えば、切り上げ、切り捨て、ゼロへの丸め、および最近接丸め）。従って、ラ
ウンド演算制御フィールド１５５９Ａは、命令に基づいて、ラウンド演算モードの変更を
可能とする。プロセッサがラウンド演算モードを指定するための制御レジスタを含む発明
の一実施形態では、ラウンド演算制御フィールド１５５０のコンテンツはそのレジスタ値
を上書きする。
【０１０６】
　非メモリアクセス、書き込みマスク制御、ＶＳＩＺＥ型演算１５１７の命令テンプレー
トにおいて、ベータフィールド１５５４の残りは、そのコンテンツが多くのデータベクト
ル長のどの１つが実行されるか（例えば、１６８、２５６、または５１６バイト）を区別
するベクトル長フィールド１５５９Ｂとして解釈される。
【０１０７】
　クラスＢのメモリアクセス１５２０の命令テンプレートの場合、ベータフィールド１５
５４の一部は、そのコンテンツがブロードキャストタイプのデータの操作演算が実行され
るか否かを区別するブロードキャストフィールド１５５７Ｂとして解釈され、ベータフィ
ールド１５５４の残りはベクトル長フィールド１５５９Ｂとし解釈される。メモリアクセ
ス１５２０の複数の命令テンプレートは、スケールフィールド１５６０、および任意で変
位フィールド１５６２Ａまたは変位スケールフィールド１５６２Ｂを含む。
【０１０８】
　総称ベクトル向け命令フォーマット１５００に関連して、フルオペコードフィールド１
５７４は、フォーマットフィールド１５４０、ベース演算フィールド１５４２、およびデ
ータ要素幅フィールド１５６４を含んで示される。一実施形態は、フルオペコードフィー
ルド１５７４がこれらのフィールドのすべてを含むように示され、フルオペコードフィー
ルド１５７４は、それらのすべてをサポートしない複数の実施形態では、これらのフィー

(24) JP 6092904 B2 2017.3.8

10

20

30

40

50

ルドのすべてより少ないフィールドを含む。フルオペコードフィールド１５７４は、演算
コード（オペコード）を提供する。
【０１０９】
　増加演算フィールド１５５０、データ要素幅フィールド１５６４、および書き込みマス
クフィールド１５７０は、これらの特徴を、命令に基づいて、総称ベクトル向け命令フォ
ーマットにおいて特定されるようにする。
【０１１０】
　書き込みマスクフィールドおよびデータ要素幅フィールドの組み合わせは、それらがマ
スクを異なるデータ要素幅に基づいて適用されることを可能とする型付けされた複数の命
令を生成する。
【０１１１】
　クラスＡおよびクラスＢ内の様々な命令テンプレートは、異なる状況において有益であ
る。発明の幾つかの実施形態では、異なるプロセッサまたはプロセッサ内の異なるコアは
、クラスＡのみ、クラスＢのみ、または両クラスをサポートしてよい。例えば、汎用コン
ピューティングのために意図された高性能汎用アウトオブオーダコアは、クラスＢのみを
サポートしてよく、主にグラフィックおよび／または科学（スループット）コンピューテ
ィングのために意図されたコアは、クラスＡのみをサポートしてよく、両方のために意図
されたコアは、両方をサポートしてよい（もちろん、両方のクラスからのすべてのテンプ
レートおよび命令ではなく、両方のクラスからの複数のテンプレートおよび複数の命令の
幾つかのミックスを有するコアは発明の範囲内である）。また、単一のプロセッサは、す
べてが同じクラスをサポートする、または異なるコアが異なるクラスをサポートするマル
チコアを含んでよい。例えば、別個のグラフィックおよび複数の汎用コアを有するプロセ
ッサにおいて、主にグラフィックおよび／または科学コンピューティングのために意図さ
れた複数のグラフィックコアの１つは、クラスＡのみをサポートしてよく、複数の汎用コ
アのうちの１または複数は、クラスＢのみをサポートする汎用コンピューティングのため
に意図されたアウトオブオーダ実行およびレジスタリネームを有する高性能汎用コアであ
ってよい。別個のグラフィックコアを有さない別のプロセッサは、クラスＡおよびクラス
Ｂの両方をサポートする１または複数の汎用インオーダまたはアウトオブオーダコアを含
んでよい。もちろん、１つのクラスからの複数の機能は、発明の異なる実施形態において
他のクラスに実装されてもよい。高級言語で書かれた複数のプログラムは、１）実行のた
めに目標プロセッサによりサポートされるクラスの複数の命令のみを有する形式、または
２）すべてのクラスの複数の命令の異なる組み合わせを用いて書かれた代替的な複数のル
ーチンを有し、現在コードを実行しているプロセッサによりサポートされる複数の命令に
基づいて実行する複数のルーチンを選択する制御フローコードを有する形式を含む、様々
な異なる実行可能な形式に入れられる（例えば、ジャストインタイムにコンパイルされる
または静的にコンパイルされる）。
【０１１２】
　図１２Ａから図１２Ｄは、発明の複数の実施形態に係る典型的な特定ベクトル向け命令
フォーマットを示すブロック図である。図１２Ａから図１２Ｄは、複数のフィールドの位
置、サイズ、解釈、および順序と、それらのフィールドの幾つかに対する複数の値を特定
するという意味において固有である特定ベクトル向け命令フォーマット１６００を示す。
特定ベクトル向け命令フォーマット１６００は、ｘ８６命令セットを拡張するために用い
られてよく、従って、複数のフィールドのうちの幾つかは、既存のｘ８６命令セットおよ
びそのエクステンション（例えば、ＡＶＸ）において用いられるそれらと同様または同じ
である。このフォーマットは、複数のエクステンションを有する既存のｘ８６命令セット
のプレフィックス符号化フィールド、実オペコードバイトフィールド、ＭＯＤ　Ｒ／Ｍフ
ィールド、ＳＩＢフィールド、変位フィールド、および複数の即値フィールドとの一致を
維持する。図１２Ａから図１２Ｄからの複数のフィールドがマップされる図１１Ａおよび
図１１Ｂからの複数のフィールドが示される。
【０１１３】

(25) JP 6092904 B2 2017.3.8

10

20

30

40

50

　発明の複数の実施形態は、説明の目的のため、総称ベクトル向け命令フォーマット１５
００のコンテキストにおいて特定ベクトル向け命令フォーマット１６００を参照して記載
されるが、発明は、特許請求の範囲に記載されたものを除いて特定ベクトル向け命令フォ
ーマット１６００に限定されるものではないことが理解されるべきである。例えば、総称
ベクトル向け命令フォーマット１５００は、様々なフィールドの様々な可能なサイズを予
想し、特定ベクトル向け命令フォーマット１６００は、固有の複数のサイズの複数のフィ
ールドを有するように示される。具体的な例として、データ要素幅フィールド１５６４は
、特定ベクトル向け命令フォーマット１６００内の１つのビットフィールドとして示され
るが、発明はこれに限定されない（すなわち、総称ベクトル向け命令フォーマット１５０
０は、データ要素幅フィールド１５６４の他の複数のサイズを予想する）。
【０１１４】
　総称ベクトル向け命令フォーマット１５００は、図１２Ａに順に示され、以下に列挙さ
れる次の複数のフィールドを含む。
【０１１５】
　ＥＶＥＸ　Ｐｒｅｆｉｘ（バイト０－３）１６０２は、４バイト形式でエンコードされ
る。
【０１１６】
　フォーマットフィールド１６４０（ＥＶＥＸバイト０、ビット［７：０］）－第１バイ
ト（ＥＶＥＸバイト０）はフォーマットフィールド１６４０であり、０ｘ６２（発明の一
実施形態において、ベクトル向け命令フォーマットを区別するために用いられるユニーク
な値）を含む。
【０１１７】
　第２から第４バイト（ＥＶＥＸバイト１－３）は、固有の機能を提供する多くのビット
フィールドを含む。
【０１１８】
　ＲＥＸフィールド１６０５（ＥＶＥＸバイト１、ビット［７－５］は、ＥＶＥＸ．Ｒビ
ットフィールド（ＥＶＥＸバイト１、ビット７－Ｒ）、ＥＶＥＸ．Ｘビットフィールド（
ＥＶＥＸバイト１、ビット［６］－Ｘ）、および１５５７ＢＥＸバイト１、ビット［５］
－Ｂ）からなる。ＥＶＥＸ．Ｒ、ＥＶＥＸ．Ｘ、およびＥＶＥＸ．Ｂビットフィールドは
、対応する複数のＶＥＸビットフィールドと同じ機能性を提供し、１の補数形式を用いて
エンコードされる、すなわち、ＺＭＭ０は１６１１Ｂとしてエンコードされ、ＺＭＭ１５
は００００Ｂとしてエンコードされる。当該分野において知られているように、複数の命
令の他の複数のフィールドは、複数のレジスタインデックスのより低い３つのビット（ｒ
ｒｒ、ｘｘｘ、およびｂｂｂ）をエンコードし、それにより、Ｒｒｒｒ、Ｘｘｘｘ、およ
びＢｂｂｂはＥＶＥＸ．Ｒ、ＥＶＥＸ．Ｘ、およびＥＶＥＸ．Ｂを加えることにより形成
されてよい。
【０１１９】
　ＲＥＸ'フィールド１６０５－これは、ＲＥＸ'フィールド１５１０の第１部分であり、
拡張３２レジスタセットの上位１６または下位１６のいずれかをエンコードするために用
いられるＥＶＥＸ．Ｒ'ビットフィールド（ＥＶＥＸバイト１、ビット［４］－Ｒ'）であ
る。発明の一実施形態では、このビットは、以下に示されるように他とともに、その実オ
ペコードバイトが６２であるＢＯＵＮＤ命令から区別するためにビット反転フォーマット
で（既知のｘ８６　３２ビットモードで）格納され、しかし、ＭＯＤ　Ｒ／Ｍフィールド
内で、ＭＯＤフィールド内の１１の値を受け入れない。発明の代替的な複数の実施形態は
、これと反転フォーマットで以下に示される他のビットを格納しない。１の値は、下位の
１６のレジスタをエンコードするために用いられる。言い換えると、Ｒ'Ｒｒｒｒは、Ｅ
ＶＥＸ．Ｒ'、ＥＶＥＸ．Ｒ、および他の複数のフィールドからの他のＲＲＲを結合する
ことにより形成される。
【０１２０】
　オペコードマップフィールド１６１５（ＥＶＥＸバイト１、ビット［３：０］－ｍｍｍ

(26) JP 6092904 B2 2017.3.8

10

20

30

40

50

ｍ）－そのコンテンツは、暗黙の主要なオペコードバイト（０Ｆ、０Ｆ　３８、または０
Ｆ　３）をエンコードする。
【０１２１】
　データ要素幅フィールド１６６４（ＥＶＥＸバイト２、ビット［７］－Ｗ）は、標記Ｅ
ＶＥＸ．Ｗにより表される。ＥＶＥＸ．Ｗは、データタイプ（３２ビットデータ要素また
は６４ビットデータ要素のいずれ）の粒度（サイズ）を定義するために用いられる。
【０１２２】
　ＥＶＥＸ．ｖｖｖｖ１６２０（ＥＶＥＸバイト２、ビット［６：３］－ｖｖｖｖ）。Ｅ
ＶＥＸ．ｖｖｖｖの役割は、以下を含んでよい。１）ＥＶＥＸ．ｖｖｖｖは、反転（１の
補数）形式で特定される第１のソースレジスタオペランドをエンコードし、２またはそれ
より多いソースオペランドを有する複数の命令に対して有効である。２）ＥＶＥＸ．ｖｖ
ｖｖは、あるベクトルシフトに対して１の補数形式で特定されるデスティネーションレジ
スタオペランドをエンコードする。または、３）ＥＶＥＸ．ｖｖｖｖは、いずれのオペラ
ンドもエンコードせず、フィールドは残される。従って、ＥＶＥＸ．ｖｖｖｖフィールド
１６２０は、反転（１の補数）形式で格納された第１のソースレジスタ指定子の４つの下
位ビットをエンコードする。命令に応じて、余分の異なるＥＶＥＸビットフィールドは、
指定子サイズを３２のレジスタに拡張するために用いられる。
【０１２３】
　ＥＶＥＸ．Ｕ１６６８クラスフィールド（ＥＶＥＸバイト２、ビット［２］－Ｕ）－Ｅ
ＶＥＸ．Ｕ＝０の場合、それはクラスＡまたはＥＶＥＸ．Ｕ０を示す。ＥＶＥＸ．Ｕ＝１
の場合、それはクラスＢまたはＥＶＥＸ．Ｕ１を示す。
【０１２４】
　プレフィックス符号化フィールド１６２５（ＥＶＥＸバイト２、ビット［１：０］－ｐ
ｐ）は、ベース演算フィールドに対して追加的な複数のビットを提供する。ＥＶＥＸプレ
フィックスフォーマットにおける複数のレガシＳＳＥ命令に対するサポートを提供するこ
とに加えて、これは、ＳＩＭＤプレフィックスをコンパクトにする利益も有する（ＳＩＭ
Ｄプレフィックスを表すバイトを必要とするのではなく、ＥＶＥＸプレフィックスは２ビ
ットのみを必要とする）。一実施形態では、レガシフォーマットおよびＥＶＥＸプレフィ
ックスフォーマットの両方においてＳＩＭＤプレフィックス（６６Ｈ、Ｆ２Ｈ、Ｆ３Ｈ）
を用いる複数のレガシＳＳＥ命令をサポートするために、これらのレガシＳＩＭＤプレフ
ィックスは、ＳＩＭＤプレフィックス符号化フィールドにエンコードされ、デコーダのＰ
ＬＡに提供される前に、実行時に、レガシＳＩＭＤプレフィックスに拡張される（従って
、ＰＬＡは、これらのレガシ命令のレガシおよびＥＶＥＸフォーマットの両方を変更する
ことなく実行することができる）。より新しい複数の命令は、ＥＶＥＸプレフィックス符
号化フィールドのコンテンツを直接、オペコード拡張として用いることができたが、ある
実施形態は、一貫性のために、しかしこれらのレガシＳＩＭＤプレフィックスにより特定
される異なる意味を認める同様の様式で拡張する。代替的な実施形態は、２ビットＳＩＭ
ＤプレフィックスエンコードをサポートするＰＬＡを再設計してよく、従って、拡張を必
要としない。
【０１２５】
　アルファフィールド１６５２（ＥＶＥＸバイト３、ビット［７］－ＥＨ、ＥＶＥＸ．Ｅ
Ｈ、ＥＶＥＸ．ｒｓ、ＥＶＥＸ．ＲＬ、ＥＶＥＸ．ｗｒｉｔｅ　ｍａｓｋ　ｃｏｎｔｒｏ
ｌ、およびＥＶＥＸ．Ｎとしても知られ、またαを用いて示される）－先述の通り、この
フィールドはコンテキスト固有である。
【０１２６】
　ベータフィールド１６５４（ＥＶＥＸバイト３、ビット［６：４］－ＳＳＳ、ＥＶＥＸ
．ｓ２－０、ＥＶＥＸ．ｒ２－０、ＥＶＥＸ．ｒｒ１、ＥＶＥＸ．ＬＬ０、ＥＶＥＸ．Ｌ
ＬＢとしても知られ、またβββを用いて示される）－先述の通り、このフィールドはコ
ンテキスト固有である。
【０１２７】

(27) JP 6092904 B2 2017.3.8

10

20

30

40

50

　ＲＥＸ'フィールド１６１０－これは、ＲＥＸ'フィールドの残りであり、拡張３２レジ
スタセットの上位１６または下位１６のいずれかをエンコードするために用いられてよい
ＥＶＥＸ．Ｖ'ビットフィールド（ＥＶＥＸバイト３、ビット［３］－Ｖ'）である。この
ビットは、ビット反転フォーマットで格納される。１の値は、下位１６のレジスタをエン
コードするために用いられる。言い換えると、Ｖ'ＶＶＶＶは、ＥＶＥＸ．Ｖ'、ＥＶＥＸ
．ｖｖｖｖ．を結合することにより形成される。
【０１２８】
　書き込みマスクフィールド１６７０（ＥＶＥＸバイト３、ビット［２：０］－ｋｋｋ）
－そのコンテンツは、前述のとおり、複数の書き込みマスクレジスタ内のレジスタのイン
デックスを特定する。発明の一実施形態では、特定の値ＥＶＥＸ．ｋｋｋ＝０００は、特
定の命令に対して書き込みマスクが用いられないことを暗示する特別な振る舞いを有する
（これは、マスキングハードウェアをバイパスするすべてのものまたはハードウェアに配
線される書き込みマスクの使用を含む様々な態様において実装されてよい）。
【０１２９】
　リアルオペコードフィールド１６３０（バイト４）は、オペコードバイトとしても知ら
れる。オペコードの一部は、このフィールド内で特定される。
【０１３０】
　ＭＯＤ　Ｒ／Ｍフィールド１６４０（バイト５）は、ＭＯＤフィールド１６４２、Ｒｅ
ｇフィールド１６４４、およびＲ／Ｍフィールド１６４６を含む。前述のとおり、ＭＯＤ
フィールド１６４２のコンテンツは、メモリアクセスおよび非メモリアクセス演算の間を
区別する。Ｒｅｇフィールド１６４４の役割は、２つの状況にまとめられることができる
。すなわち、デスティネーションレジスタオペランドまたはソースレジスタオペランドの
いずれかをエンコードすること、またはオペコード拡張として扱われ、いずれの命令オペ
ランドをエンコードするために用いられない。Ｒ／Ｍフィールド１６４６の役割は、次を
含んでよい。すなわち、メモリアドレスを参照する命令オペランドをエンコードすること
、またはデスティネーションレジスタオペランドまたはソースレジスタオペランドのいず
れかをエンコードすること。
【０１３１】
　スケール、インデックス、ベース（ＳＩＢ）バイト（バイト６）－前述のとおり、スケ
ールフィールド１６５０のコンテンツは、メモリアドレス生成のために用いられる。ＳＩ
Ｂ．ｘｘｘ１６５４およびＳＩＢ．ｂｂｂ１６５６－これらのフィールドのコンテンツは
、前に、レジスタインデックスＸｘｘｘおよびＢｂｂｂに関連して参照された。
【０１３２】
　変位フィールド１６６２Ａ（バイト７―１０）－ＭＯＤフィールド１６４２が１０を含
むと、バイト７－１０は変位フィールド１６６２Ａであり、それはレガシ３２ビット変位
（ｄｉｓｐ３２）と同じように機能し、バイト粒度で機能する。
【０１３３】
　変位ファクタフィールド１６６２Ｂ（バイト７）－ＭＯＤフィールド１６４２が０１を
含むとき、バイト７は変位ファクタフィールド１６６２Ｂである。このフィールドの位置
は、バイト粒度で機能するレガシｘ８６命令セットの８ビット変位（ｄｉｓｐ８）のそれ
と同じである。ｄｉｓｐ８は符号拡張されるので、それは、１６８および１６７バイトオ
フセットの間でのみアドレスすることができる。６４バイトキャッシュラインの観点にお
いて、ｄｉｓｐ８は、－１６８、－６４、０、および６４のたった４つの実に有用な値に
セットされることができる８ビットを用いる。より大きい範囲が頻繁に必要とされるので
、ｄｉｓｐ３２が用いられる。しかし、ｄｉｓｐ３２は４バイトを必要とする。ｄｉｓｐ
８およびｄｉｓｐ３２と対照的に、変位ファクタフィールド１６６２Ｂはｄｉｓｐ８の再
解釈である。変位ファクタフィールド１６６２Ｂを用いると、実際の変位は、メモリオペ
ランドアクセスのサイズ（Ｎ）により乗算された変位ファクタフィールドのコンテンツに
より決定される。このタイプの変位は、ｄｉｓｐ８×Ｎとして参照される。これは、平均
命令長を減らす（変位に対して用いられた、しかしはるかにより大きい範囲を有する単一

(28) JP 6092904 B2 2017.3.8

10

20

30

40

50

バイト）。そのような圧縮された変位は、有効な変位がメモリアクセスの粒度の倍数であ
るという仮定に基づくので、従って、アドレスオフセットの冗長下位ビットは、エンコー
ドされる必要はない。言い換えると、変位ファクタフィールド１６６２Ｂは、レガシｘ８
６命令セットの８ビット変位を代替する。従って、変位ファクタフィールド１６６２Ｂは
、ｄｉｓｐ８はｄｉｓｐ８×Ｎに上書きされる例外のみを用いて、ｘ８６命令セットの８
ビット変位と同じ態様でエンコードされる（ＭｏｄＲＭ／ＳＩＢエンコードルールに変更
はない）。言い換えると、（変位をメモリオペランドのサイズによりスケールして、バイ
ト単位のアドレスオフセットを得る必要がある）ハードウェアによる変位値の解釈のみを
除いて、複数のエンコードルールまたは複数のエンコード長に変更はない。即値フィール
ド１６７２は、前述のように動作する。
【０１３４】
　フルオペコードフィールド
　図１２Ｂは、発明の一実施形態に係るフルオペコードフィールド１６７４を作成する特
定ベクトル向け命令フォーマット１６００の複数のフィールドを示すブロック図である。
詳細には、フルオペコードフィールド１６７４は、フォーマットフィールド１６４０、ベ
ース演算フィールド１６４２、およびデータ要素幅（Ｗ）のフィールド１６６４を含む。
ベース演算フィールド１６４２は、プレフィックス符号化フィールド１６２５、オペコー
ドマップフィールド１６１５、およびリアルオペコードフィールド１６３０を含む。
【０１３５】
　レジスタインデックスフィールド
　図１２Ｃは、発明の一実施形態に係るレジスタインデックスフィールド１６４４を作成
する特定ベクトル向け命令フォーマット１６００の複数のフィールドを示すブロック図で
ある。詳細には、レジスタインデックスフィールド１６４４は、ＲＥＸフィールド１６０
５、ＲＥＸ'フィールド１６１０、ＭＯＤＲ／Ｍ．ｒｅｇフィールド１６４４、ＭＯＤＲ
／Ｍ．ｒ／ｍフィールド１６４６、ＶＶＶＶフィールド１６２０、ｘｘｘフィールド１６
５４、およびｂｂｂフィールド１６５６を含む。
【０１３６】
　増加演算フィールド
　図１２Ｄは、発明の一実施形態に係る増加演算フィールド１６５０を生成する特定ベク
トル向け命令フォーマット１６００の複数のフィールドを示すブロック図である。クラス
（Ｕ）フィールド１６６８が０を含むと、それはＥＶＥＸ．Ｕ０（クラスＡ１６６８Ａ）
を示す。それが１を含むと、それはＥＶＥＸ．Ｕ１（クラスＢ１６６８Ｂ）を示す。Ｕ＝
０且つＭＯＤフィールド１６４２が１１（非メモリアクセス演算を示す）を含むと、アル
ファフィールド１６５２（ＥＶＥＸバイト３、ビット［７］－ＥＨ）はｒｓフィールド１
６５２Ａとして解釈される。ｒｓフィールド１６５２Ａが１（ラウンド１６５２Ａ．１）
を含むと、ベータフィールド１６５４（ＥＶＥＸバイト３、ビット［６：４］－ＳＳＳ）
は、ラウンド制御フィールド１６５４Ａとして解釈される。ラウンド制御フィールド１６
５４Ａは、１ビットのＳＡＥフィールド１６５６および２ビットのラウンド演算フィール
ド１６５８を含む。ｒｓフィールド１６５２Ａが０（データ変換１６５２Ａ．２）を含む
と、ベータフィールド１６５４（ＥＶＥＸバイト３、ビット［６：４］－ＳＳＳ）は、３
ビットのデータ変換フィールド１６５４Ｂとして解釈される。Ｕ＝０且つＭＯＤフィール
ド１６４２が００、０１、または１０（メモリアクセス演算を示す）を含むと、アルファ
フィールド１６５２（ＥＶＥＸバイト３、ビット［７］－ＥＨ）は、追い出し示唆（ＥＨ
）フィールド１６５２Ｂとして解釈され、ベータフィールド１６５４（ＥＶＥＸバイト３
、ビット［６：４］－ＳＳＳ）は、３ビットデータ操作フィールド１６５４Ｃとして解釈
される。
【０１３７】
　Ｕ＝１のとき、アルファフィールド１６５２（ＥＶＥＸバイト３、ビット［７］－ＥＨ
）は、書き込みマスク制御（Ｚ）フィールド１６５２Ｃとして解釈される。Ｕ＝１且つＭ
ＯＤフィールド１６４２が１１（非メモリアクセス演算を示す）を含むと、ベータフィー

(29) JP 6092904 B2 2017.3.8

10

20

ルド１６５４の一部（ＥＶＥＸバイト３、ビット［４］－Ｓ０）は、ＲＬフィールド１６
５７Ａとして解釈される。それが１（ラウンド１６５７Ａ．１）を含むと、ベータフィー
ルド１６５４の残り（ＥＶＥＸバイト３、ビット［６－５］－Ｓ２－１）は、ラウンド演
算フィールド１６５９Ａとして解釈され、ＲＬフィールド１６５７Ａが０（ＶＳＩＺＥ１
６５７．Ａ２）を含むと、ベータフィールド１６５４の残り（ＥＶＥＸバイト３、ビット
［６－５］－Ｓ２－１）は、ベクトル長フィールド１６５９Ｂ（ＥＶＥＸバイト３、ビッ
ト［６－５］－Ｌ１－０）として解釈される。Ｕ＝１且つＭＯＤフィールド１６４２が０
０、０１、または１０（メモリアクセス演算を示す）を含むと、ベータフィールド１６５
４（ＥＶＥＸバイト３、ビット［６：４］－ＳＳＳ）は、ベクトル長フィールド１６５９
Ｂ（ＥＶＥＸバイト３、ビット［６－５］－Ｌ１－０）およびブロードキャストフィール
ド１６５７Ｂ（ＥＶＥＸバイト３、ビット［４］－Ｂ）として解釈される。
【０１３８】
　図１３は、発明の一実施形態に係るレジスタアーキテクチャ１７００のブロック図であ
る。示される実施形態では、５１６ビット幅の３２のベクトルレジスタ１７１０がある。
これらのレジスタは、ｚｍｍ０からｚｍｍ３１として参照される。より低い１６のｚｍｍ
レジスタの下位の２５６ビットは、レジスタｙｍｍ０－１６上に上書きされる。より低い
１６のｚｍｍレジスタの下位の１６８ビット（ｙｍｍレジスタの下位の１６８ビット）は
、レジスタｘｍｍ０－１５上に上書きされる。特定ベクトル向け命令フォーマット１６０
０は、下の表に示されるように、これらの上書きレジスタファイル上で動作する。
【０１３９】

(30) JP 6092904 B2 2017.3.8

10

20

30

40

50

【表１】

【０１４０】
　言い換えると、ベクトル長フィールド１５５９Ｂは、最大長さと１または複数の他のよ
り短い長さとの間で選択する。ただし、そのようなより短い長さのそれぞれは、前長の長
さの半分であり、ベクトル長フィールド１５５９Ｂを有さない複数の命令テンプレートは
、最大ベクトル長で動作する。さらに、一実施形態では、特定ベクトル向け命令フォーマ
ット１６００のクラスＢの複数の命令テンプレートは、パックドまたはスカラ単／倍精度
浮動小数点データおよびパックドまたはスカラ整数データで動作する。複数のスカラ演算
は、ｚｍｍ／ｙｍｍ／ｘｍｍレジスタ内の最下位データ要素位置で実行される演算である
。より高位の複数のデータ要素位置は、命令の前のそれらと同じ状態のままにされる、ま
たは実施形態に応じてゼロ化される。
【０１４１】
　書き込みマスクレジスタ１７１５－示される実施形態では、それぞれが６４ビットサイ
ズの８つの書き込みマスクレジスタ（ｋ０からｋ７）がある。代替的な実施形態では、書
き込みマスクレジスタ１７１５は１６ビットサイズである。前述のとおり、発明の一実施
形態では、ベクトルマスクレジスタｋ０は、書き込みマスクとして用いられない。通常ｋ
０を示すエンコードが書き込みマスクに対して用いられると、それは、その命令に対する

(31) JP 6092904 B2 2017.3.8

10

20

30

40

50

書き込みマスキングを効率的にディスエーブルする０ｘＦＦＦＦのハードワイヤ書き込み
マスクを選択する。
【０１４２】
　複数の汎用レジスタ１７２５－示される実施形態では、複数のメモリオペランドをアド
レスする既存の複数のｘ８６アドレスモードとともに用いられる１６の６４ビット汎用レ
ジスタがある。これらのレジスタは、ＲＡＸ、ＲＢＸ、ＲＣＸ、ＲＤＸ、ＲＢＰ、ＲＳＩ
、ＲＤＩ、ＲＳＰ、およびＲ８からＲ１５の名前で参照される。
【０１４３】
　ＭＭＸパックド整数フラットレジスタファイル１７５０がエイリアスされるスカラ浮動
小数点のスタックレジスタファイル（ｘ８７スタック）１７４５－示される実施形態では
、ｘ８７スタックは、ｘ８７命令セットエクステンションを用いて３２／６４／８０ビッ
ト浮動小数点データで複数のスカラ浮動小数点演算を実行するために用いられる８要素ス
タックである。複数のＭＭＸレジスタは、６４ビットパックド整数データで複数の演算を
実行するため、同様にＭＭＸおよびＸＭＭレジスタの間で実行される同じ複数の演算に対
して複数のオペランドを保持するために用いられる。
【０１４４】
　発明の代替的な実施形態は、より広いまたはより狭い複数のレジスタを用いてよい。更
に、発明の代替的な実施形態は、より多い、より少ない、または異なるレジスタファイル
およびレジスタを用いてよい。
【０１４５】
　前述の明細書では、発明は、固有の典型的な複数の実施形態を参照して記載されている
。しかし、様々な修正および変更が、添付の特許請求の範囲に記載されたように発明のよ
り広い精神及び範囲から逸脱することなくなされてよいことは明らかであろう。従って、
明細書及び図面は、限定の意味ではなく例示の意味として捉えられるべきである。
【０１４６】
　発明の複数の実施形態は、上述した様々なステップを含む。複数のステップは、汎用ま
たは専用プロセッサに複数のステップを実行させるために用いられてよい複数の機械実行
可能命令において実装されてよい。代替的に、これらのステップは、複数のステップを実
行するためのハードワイヤードロジックを含む特定の複数のハードウェアコンポーネント
により、またはプログラムされたコンピュータコンポーネントおよびカスタムハードウェ
アコンポーネントの任意の組み合わせにより、実行されてよい。
【０１４７】
　ここに記載されたように、複数の命令は、特定の複数の演算を実行するよう構成された
、または所定の機能性または非一時的コンピュータ可読媒体に実装されるメモリに格納さ
れた複数のソフトウェア命令を有する特定用途向け集積回路（ＡＳＩＣ）のようなハード
ウェアの特定の複数の構成を参照してよい。従って、複数の図に示された複数の技術は、
１または複数の電子デバイス（例えば、エンドステーション、ネットワーク要素等）上で
格納および実行されるコードおよびデータを用いて実装されることができる。そのような
電子デバイスは、非一時的コンピュータ機械可読記憶媒体（例えば、磁気ディスク、光デ
ィスク、ランダムアクセスメモリ、リードオンリメモリ、フラッシュメモリデバイス、相
変化メモリ）および一時的コンピュータ機械可読通信媒体（例えば、搬送波、赤外線信号
、デジタル信号などのような伝搬信号の電気、光、音、又は他の形式）のような、コンピ
ュータ機械可読媒体を用いてコードおよびデータを（内部で、および／またはネットワー
クを介して他の電子デバイスを用いて）格納および通信する。さらに、そのような電子デ
バイスは、一般的に、１または複数のストレージデバイス（非一時的機械可読記憶媒体）
、ユーザ入力／出力デバイス（例えば、キーボード、タッチスクリーン、および／または
ディスプレイ）、およびネットワーク接続のような１または複数の他のコンポーネントと
連結された１または複数のプロセッサのセットを含む。複数のプロセッサのセットおよび
他の複数のコンポーネントの連結は、一般的に、１または複数のバスおよびブリッジ（バ
スコントローラとも呼ばれる）を介される。ストレージデバイスおよびネットワークトラ

(32) JP 6092904 B2 2017.3.8

10

フィックを搬送する複数の信号は、それぞれ、１または複数の機械可読記憶媒体および機
械可読通信媒体を表す。従って、与えられた電子デバイスのストレージデバイスは、一般
的に、その電子デバイスの１または複数のプロセッサのセット上で実行するためのコード
および／またはデータを格納する。もちろん、発明の実施形態の１または複数の部分は、
ソフトウェア、ファームウェア、および／またはハードウェアの異なる複数の組み合わせ
を用いて実装されてよい。この発明の詳細な説明を通じて、説明の目的のために、多くの
特定の詳細が、本発明の完全な理解を提供するために記載された。しかし、これらの特定
の複数の詳細の幾つかが無くても本発明が実施されてよいことは、当業者に明らかである
。特定の例において、周知の構造及び機能は、本発明の主題を分かりにくくしないよう精
巧に詳細に記載されなかった。従って、発明の範囲および精神は、次の特許請求の範囲の
観点において判断されるべきである。

【図１Ａ】 【図１Ｂ】

(33) JP 6092904 B2 2017.3.8

【図２】 【図３】

【図４】 【図５】

(34) JP 6092904 B2 2017.3.8

【図６】 【図７】

【図８】 【図９Ａ】

(35) JP 6092904 B2 2017.3.8

【図９Ｂ】 【図１０】

【図１１Ａ】 【図１１Ｂ】

(36) JP 6092904 B2 2017.3.8

【図１２Ａ】 【図１２Ｂ】

【図１２Ｃ】

【図１２Ｄ】 【図１３】

(37) JP 6092904 B2 2017.3.8

10

フロントページの続き

(72)発明者 ソレ、グイレム
 アメリカ合衆国　９５０５４　カリフォルニア州・サンタクララ・ミッション　カレッジ　ブーレ
 バード・２２００　インテル・コーポレーション内
(72)発明者 フェルナンデス、マネル
 アメリカ合衆国　９５０５４　カリフォルニア州・サンタクララ・ミッション　カレッジ　ブーレ
 バード・２２００　インテル・コーポレーション内

 審査官 田中　幸雄

(56)参考文献 特開２０１１－１３４３０５（ＪＰ，Ａ）　　　
 Hideaki KOBAYASHI，A FAST MULTI-OPERAND MULTIPLICATION SCHEME，Proceedings of the IEEE
 5th Symposium on Computer Arithmetc，IEEE，１９８１年　５月１６日，Pages 246-250

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０６Ｆ　　　９／３０５　　　
 Ｇ０６Ｆ　　　７／４８７　　　
 Ｇ０６Ｆ　　１７／１０　　　　

	biblio-graphic-data
	claims
	description
	drawings
	overflow

