发明名称
车辆航位推算定位方法及定位模块

摘要
本发明公开了一种结合卫星定位数据的车辆航位推算定位方法，该方法包括有对 GPS 信号的接收，同时连续检测车辆变化的角度和速度，根据设定的有效的卫星数量和水平误差值，结合车辆航位推算的经纬度变化值误差，来判断定位的 GPS 数据流的可靠性，从而确定车辆的准确位置；还提出一种依此方法的定位模块。本发明能实现车辆连续准确的定位，具有良好的自主性和可靠的精度，将在未来的卫星导航定位技术和车辆行驶记录技术发展中占有十分重要的地位。
1. 一种结合卫星定位数据的车辆航位推算定位方法，该定位方法包括以下步骤：

启动车辆和对 GPS 信息的接收，对在设定的时间内接收到的 GPS 数据完整性进行判断：

a. 收到完整的 GPS 数据，以 GPS 数据流的周期作为航位推算的计算周期，并保留航位推算有关的有效信息：时间、经度、纬度、水平误差、高度误差、卫星数量、航位、速度、DGPS；

b. 不能收到完整的 GPS 数据，同时启动内部时钟作为航位推算时钟；

连续检测车辆变化的角度和速度，利用角度和速度的数值进行航位推算计算出车辆的相关方位变化，得到车辆的经度、纬度、航向的变化值；

根据设定的有效的卫星数量和水平误差值，结合车辆航位推算的经纬度变化值误差，来判断定位的 GPS 数据流的可靠性：

a. GPS 定位数据可靠，将此值保留作为航位推算的基准点进行输出；

b. GPS 定位数据不可靠，以航位推算计算出的车辆的经度、纬度、航向的值作为定位数据输出。

2. 根据权利要求 1 所述的结合卫星定位数据的车辆航位推算定位方法，其特征在于：所述的定位方法还包括利用电子地图匹配的数据，来判断 GPS 数据流的可靠性。

3. 一种用于权利要求 1 所述的定位方法的定位模块，其特征在于：该定位模块还包括有陀螺仪、电源管理部件、MCU 中央处理器、数据信号接口和与车辆里程倒车信号匹配的接收电路，所述的 MCU 中央处理器与陀螺仪、与车辆里程倒车信号匹配的接收电路、数据信号接口和电源管理部件相连，所述电源管理部件与陀螺仪相连。

4. 根据权利要求 3 所述的定位模块，其特征在于：所述数据信号接口设有标准的 RS232 接口和 TTL 电平接口。
车辆航位推算定位方法及定位模块

技术领域

本发明涉及一种结合卫星定位数据的车辆航位推算定位方法以及相应的定位模块。

背景技术

在现代车辆卫星导航和定位的技术中，广泛使用了卫星定位技术，例如美国的全球定位系统（GPS）、俄罗斯的GLONASS、中国的北斗定位系统；特别是GPS，已经广泛使用，只要在车辆上装载GPS接收机，只要在车辆上装载GPS接收机，如果能保证良好地接收到四个卫星信号，就能准确知道车辆位置、速度、运动方向等要素，控制系统比照电子地图，实现导航。

使用角速度传感器和加速度传感器的传统惯导技术能够实现车辆的自主定位，其优点是在短时间内有相当高的精度，而且能够连续给出定位信号，但是由于汽车在行驶过程中的频繁启动、刹车，加速度的累计误差会很大，一般使用汽车里程表来测量汽车速度。

由于汽车的普及和GPS的成熟，汽车使用的卫星导航系统越来越多，车辆卫星导航系统的基础是能准确连续地对汽车定位，但在实际应用中，由于大都市高架、隧道、立交桥等原因，许多地区卫星信号接收不到；而且由于城市大建筑物带来的无线电波多路效应，大大降低了GPS的定位精度；在丛林地区或在有树木高大的城市内，由于树叶对无线电波的影响，GPS的定位不可靠；这样的后果是不能提供连续准确的车辆定位，影响了卫星导航系统的使用；在山区和隧道多的公路，对使用GPS作为行驶记录的依据时，同样会产生行驶数据记录的不全或错误。

发明内容

本发明所要解决的技术问题在于避免上述现有技术中的不足，而提出一
种连续准确地对车辆进行定位的结合卫星定位数据的车辆航位推算定位方法，以及相应的定位模块。

本发明所提供的技术方案是：一种结合卫星定位数据的车辆航位推算定位方法，该定位方法包括有以下步骤：

启动车辆和对 GPS 信息的接收，对在设定的时间内接收到的 GPS 数据完整性进行判断：

a. 收到完整的 GPS 数据，以 GPS 数据流的周期作为航位推算的计算周期，并保留航位推算有关的有效信息：时间、经度、纬度、水平误差、高度误差、卫星数量、航位、速度、DGPS；

b. 不能收到完整的 GPS 数据，同时启动内部时钟作为航位推算时钟；

连续检测车辆变化的角度和速度，利用角度和速度的数值进行航位推算计算出车辆的相对方位变化，得到车辆的经度、纬度、航向的变化值；

根据设定的有效卫星数量和水平误差值，结合车辆航位推算的经纬度变化值误差，来判断定位的 GPS 数据流的可靠性：

a. GPS 定位数据可靠，将此值保留作为航位推算的基准点进行输出；

b. GPS 定位数据不可靠，以航位推算计算出的车辆的经度、纬度、航向的值作为定位数据输出。

进一步地，所述的定位方法还包括利用电子地图匹配的数据，来判断 GPS 数据流的可靠性。

一种用于上述的定位方法的定位模块，该模块包括有陀螺仪、电源管理部件、MCU 中央处理器、数据信号接口和与车辆里程倒车信号匹配的接收电路，MCU 中央处理器与陀螺仪、与车辆里程倒车信号匹配的接收电路、数据信号接口和电源管理部件相连，电源管理部件与陀螺仪相连。

所述数据信号接口设有标准的 RS232 接口和 TTL 电平接口。

本发明有如下优点：能实现车辆连续准确的定位，利用 GPS 的定位数据，自动标定里程表，消除了车胎变化对定位精度的影响，也可以自动校准陀螺
仪的精度，消除安装位置水平度的影响；也可以利用陀螺传感器测量角度，利用里程表得到当前的速度，通过基于参数估计的多传感器信息融合技术可有效地确定移动车辆的精确位置，具有良好的自主性和可靠的高度，将在未来的卫星导航定位技术和车辆行驶记录技术发展中占有十分重要的地位。

定位模块能自行定位，在短时间内具有良好的定位精度；同时本模块在卫星信号良好时，利用卫星信号消除惯导定位模块的定位误差；这样，即使在卫星信号不好的地方，也能得到稳定、连续、准确的车辆定位信息；本模块具有接收电子地图匹配命令地数据接口，能接收这种辅助定位方式来提高定位精度；通过 MCU 中央处理器的处理，通过增强型卡尔曼滤波器，实现最优定位信号输出；能提供给 GPS 接收机生产厂家、车辆导航仪生产厂家、车辆行驶记录仪厂家、GPS 定位技术系统集成商等广泛采用。

附图说明

图 1 为本发明的流程框图；
图 2 为定位模块的结构原理框图；
图 3 为定位模块中的电源管理电路示意图；
图 4 为航位推算原理图。

具体实施方式

下面结合附图说明本发明的具体实施方式。

如图 1 所示的一种结合卫星定位数据的车辆航位推算定位方法，该定位方法包括有以下步骤：启动车辆和对 GPS 信号的接收，对在设定的时间内接收到的 GPS 数据完整性进行判断：

a. 收到完整的 GPS 数据，以 GPS 数据流的周期作为航位推算的计算周期，并保留航位推算有关的有效信息：时间、经度、纬度、水平误差、高度误差、卫星数量、航位、速度、DGPS；

b. 不能收到完整的 GPS 数据，同时启动内部时钟作为航位推算时钟；

然后连续检测车辆变化的角度和速度，利用角度和速度的数值进行航位
推算计算出车辆的相对方位变化，得到车辆的经度、纬度、航向的变化值；根据设定的有效卫星数量和水平误差值，结合车辆航位推算的经纬度变化值误差，来判断定位的 GPS 数据流的可靠性：

a. GPS 定位数据可靠，将此值保留作为航位推算的基准点进行输出；
b. GPS 定位数据不可靠，以航位推算计算出的车辆的经度、纬度、航向的值作为定位数据输出。

如图 2 所示的一种定位模块的结构原理图，该模块包括有陀螺仪、电源管理部件、MCU 中央处理器、数据信号接口和与车辆里程倒车信号匹配的接收电路，MCU 中央处理器与陀螺仪、与车辆里程倒车信号匹配的接收电路、数据信号接口和电源管理部件相连，电源管理部件与陀螺仪相连。陀螺仪信号为角度位移信号，为了准确计算角度，经 V/F 变换后送到 MCU 中央处理器。直接使用车辆本体的里程表信号来代替加速度传感器测速，通过里程表与前进/倒车的综合测试得倒车辆的位移信号。

MCU 中央处理器采用 16 位微处理器（MSP430F11），能降低功耗，保证运算速度。MCU 中央处理器包括航位推算（DR）、坐标系转换、组合滤波、接口管理 4 个子模块组成，对卫星电文进行接收、分析和处理，当卫星信号稳定，定位精度满足定位条件时，自动消除自主导航的定位误差。无论何时，MCU 中央处理器一直在对里程表信号和陀螺仪信号进行处理，计算出自主定位数据；如果 MCU 中央处理器判断 GPS 定位精度不够或者卫星定位失效，MCU 中央处理器将输出自主定位数据。

而数据信号接口设有标准的 RS232 接口和 TTL 电平接口，MCU 中央处理器数据流可以通过 RS232 接口电路直接连接计算机，也可以通过 TTL 电平接口连接通信模块或其它管理模块。如果长时间收不到 GPS 信号或者说 GPS 定位无效，本定位模块还可通过 RS232 接口接收外部计算机的电子地图匹配数据校准。

如图 3 所示的定位模块中的电源管理部件，设有二级电源管理，对应单一车载电源，用户使用时不需要另行加装外部电源电路；使用车载电源直接供电，两级电源转换电路产生+5V 和+3.3V 电源：+5V 供陀螺仪使用，+3.3V
电源供 MCU 使用。

如图 4 所示的航位推算原理图，算法如下：在基准点确认后，基于航位推算（DR）的原理如下，知道上一次定位的坐标和方向后，可以根据两点间的位移和角度变化来推算出当前点的坐标位置和方向。公式如下，

\[X_1 = X_0 + S_0 \cos (L_0), \quad Y_1 = Y_0 + S_0 \sin (L_0),\]

依次类推各点。计算时也可以采用极坐标方式；推算完后，需要换算成与 NEMA0183 格式相同的数据格式。