07/001632 A2 |00 00O O O

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau

(43) International Publication Date
4 January 2007 (04.01.2007)

) IO O T O A 0

(10) International Publication Number

WO 2007/001632 A2

(51) International Patent Classification:
GOG6F 3/00 (2006.01)

(21) International Application Number:
PCT/US2006/017568

(22) International Filing Date: 5 May 2006 (05.05.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/158,229 21 June 2005 (21.06.2005) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: MAHAJAN, Rajneesh; One Microsoft
Way, Redmond, Washington 98052-6399 (US). LE-
ICHTLING, Ivan, J.; One Microsoft Way, Redmond,
Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, 7ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: ENABLING A GRAPHICAL WINDOW MODIFICATION COMMAND TO BE APPLIED TO A REMOTELY GEN-

ERATED GRAPHICAL WINDOW

100A —

110A:

1124
A 720 1 1>8A

f

Hooo

——————
REMOTE MACHINE 102.

NETWORK
106A

-~ 3\
SERVER REMOTE CLIENT REMOTE
APPLICATION MANAGER 702 APPLICATION MANAGER 710
GRAPHICAL WINDOWS CLIENT APPLICATION
MANAGER 712
704 —
SERVER APPLICATION
706
SERVER OS 708 CLIENT OS 714

\.

(57) Abstract: Techniques relating to enabling a graphical window modification command to be applied to a remotely generated
& graphical window are described. In one instance, a process detects a user command to modify a remotely generated application
graphical window in a remote terminal session. The process determines whether to initiate the user command at a local machine
upon which the remotely generated application graphical window is displayed or at a remote machine which generated the remotely

generated application graphical window.

10

15

20

WO 2007/001632 PCT/US2006/017568

Enabling a Graphical Window Modification Command to be Applied to a

Remotely Generated Graphical Window

BACKGROUND

[0001] Remote terminal session support products, such as the Terminal
Services ™ product offered by Microsoft Corporation, enable a remote terminal
session between a client machine and a server machine. The remote terminal
session (RTS) can enable graphical user interface windows (hereinafter, “graphical
windows”), such as application graphical windows, to be generated on the server
machine. RTS enables a representation, such as a bit map image, of the remotely
generated graphical window to be displayed on the client machine. The client
machine also may itself generate application graphical windows for display on the
client machine. A user of the client machine may engage one or both of the locally
generated application graphical windows and the remotely generated application
graphical windows. A continuing need exists for techniques which offer a similar
functionality for both locally generated application graphical windows and

remotely generated application graphical windows.

SUMMARY

[0002] Techniques relating to enabling a graphical window modification
command to be applied to a remotely generated graphical window are described. In

one instance, a process detects a user command to modify a remotely generated

10

15

20

WO 2007/001632 PCT/US2006/017568

application graphical window in a remote terminal session. The process determines
whether to initiate the user command at a local machine upon which the remotely
generated application graphical window is displayed or at a remote machine which

generated the remotely generated application graphical window.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Figs. 1-6 illustrate an exemplary system for enabling a graphical
window modification command to be applied to a remotely generated graphical

window in accordance with one implementation.

[0004] Fig. 7 illustrates an exemplary system for enabling a graphical
window modification command to be applied to a remotely generated graphical

window in accordance with one implementation.

[0005] Figs. 8-9 illustrate an exemplary process diagram of one system
configuration for enabling a graphical window modification command to be applied

to a remotely generated graphical window in accordance with one implementation.

10006] Fig. 10 illustrates exemplary systems, devices, and components in an
environment for enabling a graphical window modification command to be applied

to a remotely generated graphical window in accordance with one implementation.

[0007] Fig. 11 illustrates an exemplary process diagram for enabling a
graphical window modification command to be applied to a remotely generated

graphical window in accordance with one implementation.

10

15

20

WO 2007/001632 PCT/US2006/017568

DETAILED DESCRIPTION

OVERVIEW

[0008] In a standalone computing scenario, a user engages a machine
configured to generate a user-interface including one or more application graphical
windows. The user may desire to modify individual application graphical
windows. For instance, the user may desire to modify an individual application
graphical window by moving or resizing the graphical window. During the
move/resize process, the machine’s operating system generally provides some
visual indication of the graphical window so that the user can visualize the new
graphical window size and/or position. At least some operating systems allow the
user to select how the application graphical window appears during the move/resize
process. For instance, some operating systems allow the user to select from a full-
window mode or an outline mode. Full-window mode continuously updates
essentially the entire application graphical window during the move/resize process.
The updates end when the user ends the move/resize commands and the
move/resize is completed. In outline mode, a dashed line indicating a new
position/size of the graphical window is generated during the move/resize process.
When the move/resize process is finished (e.g. by lifting the mouse button) the
dashed line disappears and the application graphical window is updated to the new

position/size.

[0009] Remote terminal sessions involve a first remote machine acting as a

server configured to remote data to a second local machine acting as a client. Just
3

10

15

20

WO 2007/001632 PCT/US2006/017568

as in the standalone configuration, the local machine which the user engages may
be configured to generate one or more locally generated application graphical
windows and may further allow the user to specify a mode for move/resize
operations of the locally generated application graphical windows. Applications
operating on the remote machine can generate server application graphical
windows. The remote terminal session is configured to enable output or graphics
of the server application graphical window(s) to be forwarded to the local machine.
A proxy window is created on the local machine and the server application’s
graphics are painted over the proxy graphical window to create a local
representation of the remotely generated server application graphical window. The
present implementations enable the user-selected move/resize mode of the local
machine to be applied to the remotely generated application graphical windows. At
least some implementations achieve seamless move/resize operations such that a
user may be unable to distinguish locally generated application graphical windows
from remotely generated application graphical windows based upon the

move/resize characteristics.

[0010] In a general sense, in at least some of the present implementations,
user commands to modify a graphical window involved in a remote terminal
session are sent from a client machine to a server machine which generated the
graphical window. The commands can be handled at the server machine which
then updates the graphical window accordingly. The updates are subsequently sent
to, and reflected at, the client side. Alternatively, the commands can be sent back to

the client machine. The client machine can implement the commands at the client

4

10

15

20

WO 2007/001632 PCT/US2006/017568

side and send data back to the server to allow the server to resynchronize the

graphical window to reflect the client side modifications.

EXEMPLARY SYSTEMS

[06011] For purposes of explanation, collectively consider Figs. 1-6 which
illustrate a system 100 configured to support a remote terminal session between a
remote machine 102 and a local machine 104 over a network 106. Remote
machine 102 is configured to generate a server application graphical window 110.
The skilled artisan should recognize that although the server application graphical
window 110 is visually represented here for purposes of explanation, the present
implementations function without actually generating a visual image at the remote
machine. The remote terminal session provides a means for a representation of the
remote machine’s server application graphical window 110 to be sent to local
machine 104 over network 106. For instance, the representation may be a bit~map
image, among others. The remote terminal session further causes a proxy graphical
window 112 to be generated at the local machine 104 on a client desktop 114. The
server application graphical window’s representation, designated here as remotely
generated application graphical window 116 can be painted or displayed over proxy
graphical window 112. For purposes of illustration a locally or client generated
application graphical window 118 is also illustrated on client desktop 114 of local
machine 104. For purposes of explanation the terms locally and remotely are used
herein from the point of view of a user positioned at the machine configured to

display both locally and remotely generated application graphical windows.

5

10

15

20

WO 2007/001632 PCT/US2006/017568

Further, for purposes of illustration, remotely generated application graphical
window 116 is illustrated here as occupying a sub-set of the area of proxy graphical
window 112. In many instances, remotely generated application graphical window
116 is painted over essentially all of the proxy graphical window such that the
proxy graphical window is not visible. Further, while the application graphical
windows illustrated here generally approximate rectangles, at least some of the
implementations are suitable for use with any shape of application graphical
window including irregular shapes. System 100 is configured to enable a graphical
window modification command to be applied to remotely generated graphical
window 116. In this particular implementation, system 100 is further configured to
support a user-selected mode for application graphical window move/resize
operations whether the graphical window is locally generated or remotely

generated.

[0012] Assume for purposes of explanation that a user of local machine 104
has selected a graphical window move/resize outline mode for local machine 104.
Assume further that the user desires to expand locally generated application
graphical window 118 from a first size indicated in Fig. 1 to a larger size evidenced
in Fig. 3. The user can accomplish such a move through various user commands
which initiate a graphical window move/resize process. For instance, one type of
user command is a system command via a system menu. Other types of user
commands which can initiate a graphical window move/resize process can include,
yoice recognition, camera based gesture recognition, and keyboard input, among
others. Still another type of user command involves directing a mouse cursor over

6

10

15

20

WO 2007/001632 PCT/US2006/017568

the graphical window and pressing and holding a mouse button while dragging to a
new location. For instance, the user may click on an edge of the locally generated
graphical window, such as the bottom right edge of locally generated application
graphical window 118, as indicated generally at 120. For instance, the user can
depress and hold a mouse button and drag down and to the right, as indicated
generally by arrows 202. Local machine 104 creates an outline 204 of the locally
generated application graphical window 118 which follows the mouse movement
until the mouse button is released, such as is indicated generally at 206. Release of
the mouse button indicates that the user’s resize is complete. Upon completion of
the user’s resize, the locally generated application graphical window 118 is adjusted

to match the outline 204 as can be appreciated from Fig. 3.

[0013] Now further assume that the user wants to accomplish a resize of
remotely generated application graphical window 116. The user may or may not be
able to distinguish whether remotely generated application graphical window 116 is
a locally generated application graphical window or a remotely generated
application graphical window. For instance, the user can click on what the user
perceives to be the bottom right corner of remotely generated application graphical
window 116 as indicated generally at 402. The user sees remotely generated
application graphical window 116, but from a remote terminal session perspective,
the user is clicking on the underlying proxy window 112 upon which remotely
generated application graphical window 116 is painted. System 100 is configured
to detect user commands relating to moving/resizing the proxy graphical window
112 and to forward the commands to the server side.

7

10

15

20

WO 2007/001632 PCT/US2006/017568

[0014] In this instance, the user down clicks on the mouse on the bottom
right edge or corner of the remotely generated application graphical window 116
and/or underlying proxy graphical window 112. Assume that the user clicks at 402
and begins to drag down and to the right as indicated generally by arrows 502.
System 100 responsively generates an outline 504 of proxy graphical window 112
which follows the user’s cursor 506 until the user releases or up-clicks the cursor
such as at the location indicated by the presence of cursor 506 in Fig. 5. During the
drag operation, part of outline 504 is outside the remote application’s graphical
Window area. As such, in this instance, where the user has selected outline mode,
user commands for move/resize are handled on the local machine 104 to begin a

move/resize corresponding to the client commands.

[0015] Upon completion of the user’s resize command, the proxy graphical
window 112 is updated to the size of outline 504. The remote machine then
updates application graphical window 110 relative to the updated proxy graphical
window size/location. A corresponding updated remotely generated application
graphical window 116 is sent to local machine 104 to synchronize the remotely
generated application graphical window 116 with the proxy graphical window 112
as can be appreciated from Fig. 6. System 100 enables move/resize functionality
for a remotely generated application graphical window which approximates or
mimics a move/resize functionality of a locally generated application graphical
window. While a graphical window resize is described above for purposes of

explanation, a graphical window move can be handled in a similar manner.

10

15

20

WO 2007/001632 PCT/US2006/017568

[0016] The implementations described above and below are described in the
context of a computing environment as commonly encountered at the present point
in time. Various examples can be implemented by computer-executable
instructions or code means, such as program modules, that are executed by a
computer, such as a personal computer or PC. Generally, program modules include
routines, programs, objects, components, data structures and the like that perform

particular tasks or implement particular abstract data types.

[0017] Various examples may be implemented in computer system
configurations other than a PC. For example, various implementations may be
realized in hand-held devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs, minicomputers, mainframe
computers, cell phones and the like. Further, as technology continues to evolve,
various implementations may be realized on yet to be identified classes of devices.
For example, as the cost of a unit of processing power continues to drop and
wireless technologies expand, computing devices resembling today’s cell phones
may perform the functionalities of today’s PC, video camera, cell phone, and more
in a single mobile device. This single device may in one scenario act as a server
and in another scenario act as a client. This is but one of many existing and

developing examples for the described implementations.

[0018] The terms server and client as used herein do not connotate any
relative capabilities of the two devices. The client may have more, less, or equal
processing capabilities than the server. Rather, in this document, the names server

and client describe the relative relationship of the two components. For example, a
9

10

15

20

WO 2007/001632 PCT/US2006/017568

computing experience of a first or server device is remoted to a second or client

device.

[0019] Although the various implementations may be incorporated into
many types of operating environments as suggested above, a description of but one
exemplary environment appears in Fig. 11 in the context of an exemplary general-
purpose computing device and which is described in more detail later in this

document under the heading “Exemplary Operating Environment”.

[0020] Consider Fig. 7 which illustrates a system 100A configured to provide
a similar appearance or user-interface for user modification commands relative to
locally generated application graphical windows and remotely generated
application graphical windows. System 100A is configured to support a remote
terminal session between a remote machine 102A and a local machine 104A over a

network 106A.

[0021] Remote machine 102A includes a server remote application manager
702, a graphical windows manager 704, and one or more server applications 706
operating on a server operating system (OS) 708. Local machine 104A includes a
client remote application manager 710, and may include one or more client
applications 712 operating on a client operating system (OS) 714. Examples of
server applications 706 and client applications 712, as used herein, can include any
code means that opens a graphical interface. For instance, such applications can
include word processing applications, spreadsheet applications, messaging

applications, notepad type applications, graphics applications, file browser tools

10

10

15

20

WO 2007/001632 PCT/US2006/017568

such as Windows Explorer brand file browser offered by Microsoft Corporation,
control panel tools, graphical tools for adding hardware, network connections, and

video games, among others.

[0022] System 100A is configured such that a user at the local machine 104A
can modify, such as move/resize, locally generated application graphical windows,
such as application graphical window 118A, and remotely generated application
graphical windows, such as remotely generated application graphical window 116A
and receive a similar or identical user-interface in both instances. For instance, if
the user has selected an outline mode for move/resize graphical window operations,
then system 100A is configured to provide outline mode move/resize operations for
both locally generated application graphical windows and remotely generated

application graphical windows.

[0023] System 100A is configured to determine a user-selected move/resize
mode of the local machine. System 100A is then configured to handle user
graphical window move/resize commands based upon the user selected mode for
application graphical window move/resize operations whether the graphical
window is locally generated or remotely generated. User commands relating to
locally generated application graphical windows are handled at the local machine in
a traditional manner. System 100A is configured to handle user commands relating
to a remotely generated application graphical window based upon the user selected
mode. If the user has selected full-image mode, the commands are handled on the
server side with the results evidenced on the client side. If the user has selected

outline mode, then system 100A is configured to initiate move/resize commands

11

10

15

20

WO 2007/001632 PCT/US2006/017568

upon the client proxy graphical window 112A and then the server side application
graphical window 110A is updated accordingly to resynchronize the proxy
graphical window 112A and the remotely generated application graphical window
116A. Several components of system 100A are described below in relation to

achieving the above mentioned functionality.

[0024] Server remote application manager 702 is configured to facilitate a
remote terminal session functionality on the server side. The server remote
application manager is configured to manage server application 706 such that a
representation of the server application graphical window 110A can be sent to the
local machine 104A in a remote terminal session. The server remote application
manager 702 is also configured to facilitate transfer of data related to the server
application graphical window 110A from the server to the client. For instance,
multiple applications may be running on the server while only one of the
applications is being remoted to client 104A. In some implementations, the server
remote application manager 702 is configured to ensure that data from the

appropriate application window is sent to the client.

[0025] Graphical windows manager 704 is configured to handle user
interactions relative to individual server graphical windows. The graphical
windows manager handles interactions with individual graphical windows
beginning with launching an individual graphical window through a user command,
such as a mouse click on an application’s icon. The graphical windows manager
opens the graphical window responsive to the user command and subsequent user

commands relating to the graphical window are directed through the graphical
12

10

15

20

WO 2007/001632 PCT/US2006/017568

windows manager. In this instance, the server remote application manager 702 is
further configured to ask the graphical windows manager 704 to inform the server
remote application manager 702 about any graphical window related events. The
graphical windows manager then informs the server remote application manager
when new graphical windows are launched, when graphical windows are moved
and/or resized, and minimized, among other events. The server remote application
manager 702 is configured to analyze the information that it receives from the
graphical windows manager 704 and to determine what, if any, of the information
relates to graphical windows which are being remoted to the client in a remote
terminal session. The server remote application manager also is configured to relay
information to the client relating to the graphical window(s) involved in the remote
terminal session. For instance, the server remote application manager 702 may
send information to the client to facilitate synchronization between the server
application graphical window and the corresponding client proxy graphical

window.

[0026] The client remote application manager 710 is configured to establish
a remote terminal session with the server and to handle interconnections with the
server related to the remote terminal session. The client remote application
manager is also configured to cause a proxy graphical window 112A to be
generated on local machine 104A and to cause the representation of the server
application graphical window 110A to be painted over the proxy graphical window
112A in the form of remotely generated application graphical window 116A. The

client remote application manager 710 is further configured to handle details

13

10

15

20

WO 2007/001632 PCT/US2006/017568

relating to the size and dimensions of the client’s proxy graphical window 112A
based, at least in part, on information received from the server remote application

manager 702 regarding the corresponding server application graphical window

110A.

[0027] The client remote application manager 710 is also configured to
receive information regarding a move/resize mode of local machine 104A. For
instance, and as mentioned above, in some implementations, the local machine can
be in outline mode or full-window mode. The client remote application manager
710 is configured to share the move/resize mode of the local machine with server

remote application manager 702.

[0028] The client remote application manager 710 is also configured to
forward client commands regarding an individual proxy graphical window to
remote machine 102A where the commands are received by server remote
application manager 702. The server remote application manager is configured to
implement the client commands on the server side in cooperation with the graphical

windows manager 704,

[0029] System 100A is configured to detect user commands relating to
modifying a graphical window involved in a remote terminal session, such as proxy
graphical window 112A. For instance, such detection can be accomplished by the
client remote application manager 710 or on the server side, such as by the server
remote application manager 702. For instance, the server remote application

manager 702 can be configured to evaluate the window commands relating to

14

10

15

20

WO 2007/001632 PCT/US2006/017568

proxy graphical window 112A to detect if the user is instigating a graphical window
move or resize relative to proxy graphical window 112A. A user can start a
graphical window move/resize utilizing one of multiple potential avenues. For
instance, the user can send a graphical window move/resize appropriate system-
command, such as by using a system menu. In another example the user can press
the mouse button on a graphical window caption/border and then drag the graphical
window. For instance, to accomplish a graphical window move/resize command a
user can mouse click on a non-workspace portion of the graphical window. Such
non-workspace portions can include among others, an edge (illustrated Figs. 1-6) or
a caption 720, as indicated in respect to proxy graphical window 112A. In many
configurations, a user clicks on an edge of the graphical window if the user desires
to resize the graphical window and clicks on the caption if the user desires to move

the graphical window.

[0030] In an instance where a move/resize is detected, system 100A is
further configured to differentiate a graphical window move from a graphical
window resize. Based upon whether the local machine is in a full-image mode or
outline mode as mentioned above, system 100A is configured to take an appropriate
action to accomplish the user command. In one such example of a particular
system configuration, the server remote application manager 702 is configured to
detect a user move/resize command relative to a proxy graphical window of a
remote terminal session between remote machine 102A and local machine 104A.

The server remote application manager 702 is also configured to take appropriate

15

10

15

20

WO 2007/001632 PCT/US2006/017568

actions to accomplish the move/resize command consistent with a user selected

move/resize mode of either full-image mode or outline mode.

[0031] In this instance, the server remote application manager 702 is
configured to determine whether the user command relates to a window/resize
operation relative to a graphical window involved in the remote terminal session.
Once a determination is made that a move resize command is being initiated, the
server remote application manager 702 takes an action based on the user selected
graphical window move/resize mode. In this particular implementation, if the
move/resize mode is full-image, then server remote application manager 702
handles the command at the server and updates the server application graphical
window 110A accordingly. As the server application graphical window is updated,
corresponding representations are sent to the client, and the representations are
manifested as an updated remotely generated application graphical window 116A.
The size or location of the proxy graphical window 112A is adjusted to correspond

to the updated remotely generated application graphical window 116A.

[0032] Further, in this implementation, in an event that the user selected
move/resize mode is outline mode, the server remote application manager 702 is
configured to send the user commands to the client remote application manager
710. An outline of the proxy graphical window 112A reflecting the user command
is generated on client desktop 116A. Upon completion of the client command,
positional data relating to the new size and/or location of the proxy graphical
window is sent to the remote machine where the server application graphical

window is updated to synchronize with the new proxy graphical window. An

16

10

15

20

WO 2007/001632 PCT/US2006/017568

updated representation is sent to the local machine and manifested as an updated
remotely generated application graphical window 116A which is painted over the

proxy graphical window 112A.

[0033] Alternatively or additionally, to the implementation mentioned above
which distinguishes between outline and full-image modes, system 100A can
handle both full screen and outline modes in the same manner. For instance,
regardless of a user selected mode, such as outline or full screen, system 100 can
receive the user move/resize commands at the server, and send the user move/resize
commands and/or related data to the client. The user commands can be initiated on
the client side, with the server side being subsequently updated to re-synchronize
the server and the client. Similarly, system 100A may, in some instances, decide to
initiate all user commands on the server side regardless of a ‘user-selected

modification mode.

[0034] Consider Figs. 8-9 which collectively illustrate a process 800 which
provides an example of how system 100A can provide a similar user-interface for
user move/resize commands relative to locally generated application graphical
windows and remotely generated application graphical windows. Of course,
system 100A provides but one structural configuration which can honor a user
selected move/resize mode for both locally generated and remotely generated
application graphical windows. Figs. 8-9 involve a scenario where the user of local
machine 104A has selected an outline move/resize mode for application graphical
windows of local machine 104A. As mentioned above, other implementations may

handle outline mode and full-image mode in the same manner rather than

17

10

15

20

WO 2007/001632 PCT/US2006/017568

distinguishing between the two. Similarly, while this example is provided in the
context of a window/move resize scenario, the process can be applied to other user

commands to modify a remotely generated application window.

[0035] At step 802 a user’s mouse button down command is detected on the
proxy graphical window of the local machine. At step 804 a mouse button down
notification is sent to the client remote application manager 710. Since the server
remote application manager 702 has not yet instructed the client remote application
manager to initiate a client side resize, the process proceeds to forward the mouse

button down information to the server side at step 806.

[0036] At step 806 the mouse button down notification is sent from the client
side to the server side. In this particular configuration, the mouse button down
notification is sent from the client remote application manager 710 to the server
remote application manager 702. The server remote application manager forwards
the mouse button down notification to the server application graphical window

110A at step 808.

[0037] At step 810 the graphical window resize is started at the server
application window 110A. In at least some implementations, detection of the user
action occurs after the user action occurs. For instance, a user may click on a
corner of a window and begin to drag the window with the mouse, the window
resize process starts at a time subsequent to the user click. As such, the graphical
window resize is not started on the server application window until after the user

action actually begins from the perspective of the user. Such implementations

18

10

15

20

WO 2007/001632 PCT/US2006/017568

avoid scenarios in which a process erroneously predicts that a user intends to start a

resize command and starts an associated resize.

[0038] At step 812 the process sends a notification to the server remote
application manager 702 stating that a particular graphical window is being resized.
Some implementations may send a notification stating that a graphical window is
being moved or resized with appropriate parameters to distinguish whether a move
or resize is occurring. In some configurations, associated parameters for this event

can indicate the type of move/resize.

[0039] At step 814 a get graphical window parameters request is sent from
server remote application manager 702 to server application graphical window
110A. The get graphical window parameters request is utilized to ensure that the
proxy graphical window is not resized at the client beyond limits imposed by the
server. At step 816, the process sends graphical window parameters from the server

application graphical window 710 to server remote application manager 702.

[0040] At step 818, the process sends the graphical windows parameters
from the server side to the client side. In this particular configuration, the graphical
window parameters are sent from server remote application manager 702 to the

client remote application manager 710.

[0041] At step 820 the process calculates the desired mouse position. This
step addresses potential latency issues associated with communications between the
local and remote machines. For instance, when the user clicked the mouse button

on the client side in a first position over the proxy graphical window and started to

19

10

15

20

WO 2007/001632 PCT/US2006/017568

move the mouse to a new position, latency or delay may result in the user having
moved or dragged the mouse to a second position. To avoid erroneous results, the
mouse is effectively put back in the first position before the mouse input detected at
the server is imposed back upon the client. This step effectively restores the state

to the point when the user ‘clicked’ the mouse.

[0042] For purposes of explanation, assume that the mouse was at xpy, on
the local machine when the client clicked the mouse, and because of latency, at a
subsequent time when the data comes back to the client from the server, the mouse
is at x,y;. This step moves the mouse back to XYy, initiates the click and theﬁ
quickly drags the mouse back to x;y;. Such a process is generally too fast for the
user to detect. This step serves to avoid a situation where the user clicks on one
application graphical window and drags the mouse onto another graphical window,
and lacking such a latency adjustment, the process may miss the first application
graphical window entirely and start dragging the second application graphical
window. This step restores the mouse back to the original position and then moves
it to the new position. In many instances this process happens so fast that the user

simply sees a drag graphical window appear at the last place the mouse occurred.

[0043] At step 822 the process sends move/resize start information from the
server side to the client side, such as from the server remote application manager
702 to the client remote application manager 710. This step serves to send the

proper mouse position from the server side to the client side.

20

WO 2007/001632 PCT/US2006/017568

[0044] At step 824 the process gets data relating to the server side graphical
window position. The data in relation to the graphical window may indicate a right
edge, left edge, corner, caption, among others. The process utilizes this data, at
least in part to determine if a resize should be undertaken. So this step provides
5 information which allows the process to determine the intended user command.
For instance, did the user intend to extend the right side of the graphical window, or

did the user intend to extend the graphical window to the bottom and to the right.

[0045] At step 826 the process compares the client side proxy window
location to the server side graphical window position. The mouse position that the
10 server sends contains coordinates relative to the server. This process converts the
server coordinates to client coordinates. This step may be eliminated in some
instances. The mouse position sent by the server is translated to map the mouse
position on the client proxy graphical window. For instance, in at least some
implementations, this translation is done as follows for a rectangular window

15 shape:

e Mouse cursor X = Client window rectangle left + offset X of window

and mouse position on server

e Mouse cursor Y = Client window rectangle top + offset Y of window

and mouse position on server

20 A rectangular graphical window shape is a common shape and provides a
foundation for explanation. The skilled artisan should recognize that the process

also lends itself to be utilized with other graphical window shapes.

21

10

15

20

WO 2007/001632 PCT/US2006/017568

[0046] At step 828 the process blocks graphical window updates to the
server side. By this time, the process recognizes that a resize is happening, or is
going to happen, on the client side. This step can be accomplished among other
ways, by setting some type of flag which tells the server side to stop updating the
application graphical window until the resize is completed. From the server’s point
of view, the resize would still be happening but the user would have stopped

moving the mouse. Such a step can serve to save processing resources.

[0047] At step 830, the process sends a simulated mouse button down
command from the client remote application manager 710 to the proxy graphical
window 112A. This step serves to accomplish the original mouse button down
command detected at step 802. Recall that at step 802 the mouse button down
command was not enacted, but was ultimately sent to the server side. Step 830
serves to accomplish, at the client, the original mouse button down detected at step

802.

[0048] At step 832, the process requests a relative graphical window position
corresponding to the original mouse button down position detected at step 802. For
example, the request is directed to correlating the mouse button down position to a
relative graphical window position. For instance, does this point correspond to the

graphical window’s right edge, left edge, bottom right corner, etc?

[0049] At step 834 the process queries the client remote application manager
for mouse positional data translated from the mouse position corresponding to the

mouser button down position of step 806. At step 836 the client remote application

22

10

15

20

WO 2007/001632 PCT/US2006/017568

manager 710 returns the mouse positional data corresponding to the mouse

position.

[0050] At step 838 the process starts the graphical window resize on the
client side. At step 840 the process ends the graphical window resize on the client

side.

[0051] At step 842 the process receives notification that the graphical
window resize is complete. At step 844 the process exits the resize state. For
instance, the client remote application manager 710 may receive notification to exit

the resize process in the form of a mouse button up command.

[0052] At step 846, the mouse button up command is sent from the client
side to the server side, such as from the client remote application manager 710 to
the server remote application manager 702. At step 848, the client remote
application manager provides the mouse button up command to the server
application graphical window. This series of steps (844-848) corresponds to the
mouse button down command described in relation to steps 804-808 and serves to

restore a system or process normal condition.

[0053] At step 850 the process ends the graphical window resize on the
server application graphical window. At step 852 the process restarts server
updates regarding the server application graphical window. At step 854 the process

provides a graphical window change location notification.

23

10

15

20

WO 2007/001632 PCT/US2006/017568

[0054] At step 856 the process updates the proxy graphical window position
and/or size from the server side to the client side. At step 858 the process updates

the position and/or size of the remote application proxy graphical window 112A.

[0055] The steps described in relation to Figs. 8-9 provide but one exemplary
implementation for achieving a similar user-interface for user move/resize
commands relative to locally generated application graphical windows and
remotely generated application graphical windows. Other implementations may

have fewer or more steps to achieve a similar functionality.

EXEMPLARY SYSTEM ENVIRONMENT

[0056] Fig. 10 represents an exemplary system or computing environment
1000 configured to enable a graphical window modification mode to be applied to a
remotely generated graphical window. System 1000 includes a general-purpose
computing system in the form of a first machine 1001 and a second machine 1002.
In this instance, the first and second machines are configured to support a remote
terminal session such that either of the first and second machines can act as a local
machine upon which a user operates and the other of the first and second machines

can act as the remote or server machine.

[0057] The components of first machine 1001 can include, but are not
Jimited to, one or more processors 1004 (e.g., any of microprocessors, controllers,
and the like), a system memory 1006, and a system bus 1008 that couples the

various system components. The one or more processors 1004 process various

24

10

15

20

WO 2007/001632 PCT/US2006/017568

computer executable instructions to control the operation of first machine 1001 and
to communicate with other electronic and computing devices. The system bus 1008
represents any number of several types of bus structures, including a memory bus
or memory controller, a peripheral bus, an accelerated graphics port, and a

processor or local bus using any of a variety of bus architectures.

[0058] System 1000 includes a variety of computer readable media which
can be any media that is accessible by first machine 1001 and includes both volatile
and non-volatile media, removable and non-removable media. The system memory
1006 includes computer-readable media in the form of volatile memory, such as
random access memory (RAM) 1010, and/or non-volatile memory, such as read
only memory (ROM) 1012. A basic input/output system (BIOS) 1014 maintains
the basic routines that facilitate information transfer between components within
first machine 1001, such as during start-up, and is stored in ROM 1012. RAM
1010 typically contains data and/or program modules that are immediately

accessible to and/or presently operated on by one or more of the processors 1004.

[0059] First machine 1001 may include other removable/non-removable,
volatile/non-volatile computer storage media. By way of example, a hard disk
drive 1016 reads from and writes to a non-removable, non-volatile magnetic media
(not shown), a magnetic disk drive 1018 reads from and writes to a removable,
non-volatile magnetic disk 1020 (e.g., a “floppy disk™), and an optical disk drive
1022 reads from and/or writes to a removable, non-volatile optical disk 1024 such
as a CD-ROM, digital versatile disk (DVD), or any other type of optical media. In

this example, the hard disk drive 1016, magnetic disk drive 1018, and optical disk
25

10

15

20

WO 2007/001632 PCT/US2006/017568

drive 1022 are each connected to the system bus 1008 by one or more data media
interfaces 1026. The disk drives and associated computer readable media provide
non-volatile storage of computer readable instructions, data structures, program

modules, and other data for first machine 1001.

[0060] Any number of program modules can be stored on the hard disk 1016,
magnetic disk 1020, optical disk 1024, ROM 1012, and/or RAM 1010, including by
way of example, an operating system 1026, one or more application programs
1028, other program modules 1030, and program data 1032. Each of such
operating system 1026, application programs 1028, other program modules 1030,
and program data 1032 (or some combination thereof) may include an embodiment

of the systems and methods described herein.

[0061] A user can interface with first machine 1001 via any number of
different input devices such as a keyboard 1034 and pointing device 1036 (e.g., a
“mouse”). Other input devices 1038 (not shown specifically) may include a
microphone, joystick, game pad, controller, satellite dish, serial port, scanner,
and/or the like. These and other input devices are connected to the processors 1004
via input/output interfaces 1040 that are coupled to the system bus 1008, but may
be connected by other interface and bus structures, such as a parallel port, game

port, and/or a universal serial bus (USB).

[0062] A monitor 1042 or other type of display device can be connected to
the system bus 1008 via an interface, such as a video adapter 1044. In addition to

the monitor 1042, other output peripheral devices can include components such as

26

10

15

20

WO 2007/001632 PCT/US2006/017568

speakers (not shown) and a printer 1046 which can be connected to first machine

1001 via the input/output interfaces 1040.

[0063] First machine 1001 can operate in a networked environment using
logical connections to one or more remote computers, such as second machine
1002. By way of example, the second machine 1002 can be a personal computer,
portable computer, a server, a router, a network computer, a peer device or other
common network node, and the like. The second machine 1002 is illustrated as a
portable computer that can include many or all of the elements and features

described herein relative to first machine 1001.

[0064] Logical connections between first machine 1001 and the second
machine 1002 are depicted as a local area network (LAN) 1050 and a general wide
area network (WAN) 1052. Such networking environments are commonplace in
offices, enterprise-wide computer networks, intranets, and the Internet. When
implemented in a LAN networking environment, the first machine 1001 is
connected to a local network 1050 via a network interface or adapter 1054. When
implemented in a WAN networking environment, the first machine 1001 typically
includes a modem 1056 or other means for establishing communications over the
wide area network 1052. The modem 1056, which can be internal or external to
first machine 1001, can be connected to the system bus 1008 via the input/output
interfaces 1040 or other appropriate mechanisms. The illustrated network
connections are exemplary and other means of establishing communication link(s)

between the first and second machines 1001, 1002 can be utilized.

27

10

15

20

WO 2007/001632 PCT/US2006/017568

[0065] In a networked environment, such as that illustrated with System
1000, program modules depicted relative to the first machine 1001, or portions
thereof, may be stored in a remote memory storage device. By way of example,
remote application programs 1058 are maintained with a memory device of second
machine 1002. For purposes of illustration, application programs and other
executable program components, such as the operating system 1026, are illustrated
herein as discrete blocks, although it is recognized that such programs and
components reside at various times in different storage components of the first

machine 1001, and are executed by the processors 1004 of the first machine.

EXEMPLARY PROCESSES

[0066] Fig. 11 illustrates an exemplary process 1100 for enabling a graphical
window modification command to be applied to a remotely generated graphical
window. The order in which the process is described is not intended to be
construed as a limitation, and any number of the described process blocks can be
combined in any order to implement the process. Furthermore, the process can be

implemented in any suitable hardware, software, firmware, or combination thereof.

[0067] At block 1102, the process detects a user command to modify a
remotely generated application graphical window in a remote terminal session. A
remote terminal session can provide remote application capabilities. The remote
terminal session serves to remote an application graphical window from a first or

server machine to a second or client machine. A proxy window is created on the

28

10

15

20

WO 2007/001632 PCT/US2006/017568

client machine and display data from the server application graphical window is
painted over this proxy window to create the remotely generated application
graphical window. Various avenues are available for a user to issue commands
relating to modifying a graphical window. For instance, the user may send a
window appropriate system-command by using the system menu as should be
recognized by the skilled artisan. In another example, the user may press a mouse
button on the graphical window’s caption or border and then drag the graphical
window. Various other examples of user input can include, voice recognition

commands, and camera detected movements of the user, among others.

[0068] In some implementations, user modification commands related to the
proxy graphical window are detected at the client machine. In other
implementations, user input or commands related to the proxy graphical window
are automatically sent to the server machine as part of the remote terminal session.
In such instances, detection of the user commands relating to window modification
may occur at the server machine. But one example of a system configured to detect
the user window modification commands relating to the remotely generated

application graphical window is described above in relation to Fig. 7.

[0069] At block 1104, the process determines whether to initiate the user
command at a local machine upon which the remotely generated application
graphical window is displayed or a remote machine which generated the remotely
generated application graphical window. In some implementations, all
modifications may be initiated at the server. In other implementations, all

modifications may be initiated at the client. Still other implementations, initiate
29

10

15

20

WO 2007/001632 PCT/US2006/017568

some user modification commands on the server, while user modification
commands are initiated at the client. Blocks 1106-1116 provide but one exemplary
example of how such a determination can be achieved and how the client
modification command can be accomplished such that in a first scenario the user
commands are initiated at the server, and in a second scenario the user commands

are initiated at the client.

[0070] The process described in relation to blocks 1106-1116 adjusts the
process based upon a user selected mode for a client modification mode, such as
full-image or outline. Such implementations, in some circumstances, may be able
to offer a more aesthetically pleasing user-interface when compared with other
processes. As noted above, other exemplary processes treat all modification modes
the same rather than distinguish between the available modes and tailoring the

response accordingly.

[0071] In this particular implementation, at block 1106, the process
establishes whether the client machine is in outline mode. In some instances, the
user has previously selected a graphical window move/resize mode, or lacking such
a user selection the client machine may default to a particular mode. In either case,
the graphical window move/resize mode can be distributed from the client machine
to the server machine. For example, the client machine may automatically report
its graphical window move/resize mode. In other configurations, the server
machine may query the client machine about the window move/resize mode. In
instances, where the client machine is in outline mode, then the process proceeds to

block 1108, otherwise the process proceeds to block 1110.
30

10

15

20

WO 2007/001632 PCT/US2006/017568

[0072] At block 1108, the process communicates data to the client machine

relating to the user move/resize command. The process then proceeds to block

1112.

[0073] At block 1110, the process initiates the user move/resize command on
the server machine. For instance, the server application graphical window may be
updated to reflect the user command. Communications for updating the client
proxy graphical window are utilized to update the client side and the updated server
application graphical window is remoted and painted over the updated proxy

graphical window.

[0074] At block 1112, the process initiates graphical window move/resize on
the client machine’s proxy graphical window. In one implementation, the client
receives move/resize start information from the server machine and starts a
corresponding move/resize on the proxy graphical window of the remote
application. The manner in which the graphical window move/resize is started can
depend on how the user issued move/resize command was started originally. For
instance, if the user started move/resize utilizing a system menu, then a system
command message can be posted to the proxy graphical window with an
appropriate system-command. For mouse initiated move/resize, the client performs

the corresponding action on the proxy graphical window.

[0075] At block 1114, the process updates the server application graphical
window responsive to completion of the user command on the client side proxy

graphical window. At block 1116, the process transmits the updated server

31

10

WO 2007/001632 PCT/US2006/017568

application graphical window to resynchronize the remotely generated application

window and the client proxy graphical window.

[0076] Although implementations relating to enabling a graphical window
modification command to be applied to a remotely generated graphical window
have been described in language specific to structural features and/or methods, it is
to be understood that the subject of the appended claims is not necessarily limited
to the specific features or methods described. Rather, the specific features and
methods provide examples of implementations for the concepts described above

and below.

32

10

15

20

WO 2007/001632 PCT/US2006/017568

CLAIMS

1. A method, comprising:

generating an application graphical window at a first machine;

sending a representation of the application graphical window to a second
machine consistent with a remote terminal session;

detecting a user command from the second machine to modify the
representation;

communicating data relating to the user command to the second machine to
allow the second machine to modify a corresponding client proxy graphical
window;

responsive to completion of the user command upon the client proxy
window, updating the application window to correspond to the proxy window; and,

transmitting an updated representation of the application window to the

second machine.

2. The method as recited in claim 1, wherein the detecting comprises detecting

an on-going user command.

3. The method as recited in claim 1, wherein the detecting comprises detecting a

user mouse button down click.

33

10

15

WO 2007/001632 PCT/US2006/017568

4. The method as recited in claim 3, wherein the communicating comprises
communicating data relating to a first position of a mouse where the mouse button

down click occurred and a second updated mouse position.

5. The method as recited in claim 1, wherein the updating comprises receiving
parameters related to the proxy graphical window and correspondingly updating the

application graphical window.

6. The method as recited in claim 1, wherein the user command to modify the

representation comprises a user command to resize the representation.

7. The method as recited in claim 1 further comprising receiving a
communication indicating a user-selected graphical window modification mode of

the second machine.
8. The method as recited in claim 7, wherein the user-selected graphical

window modification mode relates to at least one of a graphical window move or a

graphical window resize.

34

10

15

20

WO 2007/001632 PCT/US2006/017568

9. The method as recited in claim 7 further comprising determining whether to
initiate the user command on the first machine or the second machine based at least

in part on the user-selected graphical window modification mode.

10. A computer-readable media comprising computer-executable instructions
that, when executed, perform acts, comprising:

detecting a user command to modify a remotely generated application
graphical window in a remote terminal session; and,

determining whether to initiate the user command at a local machine upon
which the remotely generated application graphical window is displayed or a
remote machine which generated the remotely generated application graphical

window.

11. The computer-readable media of claim 10, wherein the user command to
modify the remotely generated application graphical window comprises a user
command to move or resize (move/resize) the remotely generated application

graphical window.

12. The computer-readable media of claim 10, wherein the detecting and the

determining occur at the remote machine.

35

10

15

20

WO 2007/001632 PCT/US2006/017568

13. The computer-readable media of claim 10, wherein the detecting comprises

detecting an ongoing user command.

14. The computer-readable media of claim 10, wherein the determining is

dependent, at least in part, on a graphical window modification mode of the local

machine.

15. The computer-readable media of claim 14, wherein in an instance where the
modification mode comprises an outline mode, sending information relating to the
user command to the local machine to allow a corresponding modification process

to be initiated at the local machine.

16. The computer-readable media of claim 15 further comprising receiving
information regarding actions taken at the local machine upon the remotely

generated application graphical window.

17. A system, comprising:

means for receiving a remotely generated application graphical window
from a remote machine and for generating a proxy graphical window upon which
the remotely generated application graphical window can be painted;

means for relaying user window modification commands relating to the
proxy window to the remote machine;

means for receiving parameters relating to the user modification command

from the remote machine; and,
36

10

WO 2007/001632 PCT/US2006/017568
means for initiating the user window modification command upon the proxy

window based upon the parameters.

18. The system as recited in claim 17, wherein the means for receiving

parameters comprises a remote terminal session component.
19. The system as recited in claim 17, wherein the user graphical window
modify command relates to at least one of a graphical window move or a graphical

window resize.

20. The system as recited in claim 17 further comprising means for relaying

data relating to the updated proxy graphical window to the remote machine.

37

WO 2007/001632

PCT/US2006/017568

100 ™~
REMOTE MACHINE 102 LOCAL MACHINE 104
APPLICATION ED] 12 116 118
1
WINDOW 110 N J I 1! If?___ﬁcl 2
I I
NETWORK 10§ 1] | .
A~ O] A= } 0
i =
R o (e
= 120
™ CLIENT DESKTOP 114J (-
/— 4;
, L i1 I T 1
100 ™~
REMOTE MACHINE 102 LocAL MACHINE 104
]
APPLICATION M 112 116 118 204
winNDow 110 N N (P I |
| % : : ;
NETWORK 10 l | .
A -« el IS1Y Y B B
[:] | | \l
—-F———- Tt Hleme ' |
O 202N _ 2}
L 206
o CLIENT DESKTOP 114—_) =
T / I /

1/8

WO 2007/001632 PCT/US2006/017568

100 ™~
REMOTE MACHINE 102 LOCAL MACHINE 104
[
APPLICATION O 112 116 118 204
WINDOW 110 = L _._E]L,—_Z-—_, -
| \
‘ < NETWORK 106» % ; A-F\- : .
=) :)
—_— e I LRI B !
T O
4 B
- CLIENT DESKTOP 114—J)
/ /—
[[| |
[[| 1
100 N
REMOTE MACHINE _LO_Z LOCAL MACHINE lgé
APPLICATION %l 112 116 118
WINDOW 110 e B ﬂd_{:Ll__ﬁ_~%
LT |
‘ < NETWORK 106> % i . : .
I : w
S Y I, L L |
[
= 402
- CLIENT DESKTOP 114 —
I rjj‘) ij

{] {]

2/8

WO 2007/001632 PCT/US2006/017568

100 ™
REMOTE MACHINE 102 LOCAL MACHINE 104
APPLICATION
WINDOW 110 —
=] CLIENT DESKTOP 114~jK
— —
I i 8 1 l I | 1
100 N
REMOTE MACHINE 102 LOCAL MACHINE 104
APPLICATION % 112 1165/04 118
WINDOW 110 \ e - —] --Dl_i__J_l 2
Cli |
‘ NETWORK 10§ S : A i .
Foy kel n
mp| |
Y I L]
i = N
O CLIENT DESKTOP 114j
, — , —
I [| L]

3/8

PCT/US2006/017568

WO 2007/001632

¥IL SO INAI'T)

~

TIL

NOILVOI'lddV LNAI'T)

J

\f

0T dEDYNVIN ZOHHA\UH\E@
HIONHY INAITO
/)

OO0
(nn
—
=
=)

VH0T ENIHOVIA TVO0]

A/

[oooaoo
e I
HHOMIIN]
=]
|
—
(=

4 —
R0/ SO ¥IA¥AS
d —
90,)
NOILVOI'TddV JIAYAS
_ J
é P0L)
HdHOVNVIA
f SMOANIM TVOIHAVYD))
J
Noh IOVNVIN NOLLVOI'IddV
JLOWTT JHAEIS
rf k\ ")

V20T aNIHOVIN LONTY

|]]
J 1

—

LI

{
V8il

0¢L wvyz11

-

yﬂm*

VoLl

L OtE

*— V00l

4/8

PCT/US2006/017568

WO 2007/001632

- NOILISOd
S OLH
| IALYTIIY
“Isano3y
w\,mn\Mm_w\, ovwowwwﬁmm NMOA NOLLng 3snow | %8
.\/\1 aaLyInmwis 0eg
3aIS INANO
OL 3aIS ¥IANIS
IYVdNOD 928
NOILISOd v1lva 3ais m
3SNOW YIAYAS 139 28
asxisaa
LIV TYO O4NI 18V1S 3ZIS
0z8 A JAOW AN3S 228
SYILINVHVd .
MOGNIM aN3S 918 R SyaLaNvyvd
MOGNIM aN3S 818
h NEIE B
MOGNIM 13D ¥1.8 <
QEINYIS NOILYDIZILON
EYAREY an3s 18
MOGNIM Q1.8 J
) NMOQ NOLLNng) NMOG NOLLNE
3SNON 808 NMOQ NOLLNg 3ISNOW 708
3SNON 90g
NMOQ NOLLNg
3SNOW Z08
YOI MOANIM 0L FADVNYIN NOLLVOITddVY (017 dIDVNYI NOILVOITddV VZIl
NOLLVOI'TddV ALOWTY YHAYAS HLOWHY LNATTD MOANIM AXOUJ
008 —" ¥3ANTS INEIO

5/8

PCT/US2006/017568

WO 2007/001632

azis3d m

OONIM AN3 068 |

6 0L

3Zis
/NOLLISOd MOUNIM

3zis
INOILISOd MOGNIM

A 4

AX0Odd 31vadn 868

AXOHd 31vadn 998

NOLLVOI4iLON
Alln"lcll
AONVHO MOANIM 63

S3.1vddn
1Hv1sS3d 268

3137dNOD
dn NOLLNg 3ISNOW 88 ’ aLvLS S| 37ISTY
dn NOLLNg ISNOW 9bg B 37i1S3Y 1IX3 $y8 MOANIM LVHL
- NOILYOIILON
A||...||I¢
rA%5]
IN3ITD NO 3ZIS3Y
MOGNIM QN3 oqw.\\/\y
IN3IMD NO JZISTY
MOGNIM LHV1S €8 NOLLISOd
NOILISOd "I MOGNIM
ISNON NYNLIY 9¢8 IALYITY
NOILISOd LS3N03d
ISNOW AYIND $E8 [A%S]
VOIT MOaNIM 70, SAOVNVIA NOILVOITddVY) (017 JIOVNVIN NOLLVOI'IddY VZII
NOILVOI'TddY TLOWHY A4S ALOWHY INAITD MOANIM AXO¥d
00g —* NERWELS IN3ID

6/8

WO 2007/001632

1000

PCT/US2006/017568

Printer

i

Mouse
1046

1018 1020 1002
1022 — (Y 1024 \
=1l L1
1052
1042 —
Monitor [
S {0 0s0
~——7 10000000~ \ LAN 1058 j{‘ Remote |
' ! 7 N Application
/ N\ 1001
P
) // AN . T 1006 __\\ rograms 1
1044 (R
-/ 1054 X‘ I System Memory
ReEE2 M N Ea,uflfﬂ S
|| ooooa [<)ﬁ ;‘“”‘“‘k Operating
‘ etwor
1026 Video Adapter Adapter System 1026
\ 1008 Application
[Data Media \ | | System Bus | Programs1028}
Interfaces .
1004 [Other Program
A T ™\ Modules 1030}
Operating 40 1016 .:-:‘5\ = Program |
System — JV ' -F}“ = Data 1032
Application Processing | 1p10 RAM
Programslgz—& > Unit ————————— -
Program 1040 [BIOS
Modules 1222 U/ 1014
=
Program ., Tl Mo =35 012 ROM
\Data —) u aoa0o L__l \
\ [/O Interfaces
I

Keyboard

[

1036 1034

7/8

Other Device(s

'Fig. 10

WO 2007/001632

1102 —

PCT/US2006/017568

\

DETECT A USER COMMAND TO MODIFY A REMOTELY)
GENERATED APPLICATION GRAPHICAL WINDOW IN A
REMOTE TERMINAL SESSION

,— 1100

1104 — v

-

DETERMINE WHETHER TO INITIATE THE USER COMMAND
LOCALLY OR REMOTELY

R

1106
YES

1108 — v
)

COMMUNICATE DATA TO THE CLIENT
MACHINE RELATING TO THE USER
MOVE/RESIZE COMMAND

A

1112 — l

INITIATE WINDOW MOVE/RESIZE ON THE
CLIENT MACHINE'S PROXY WINDOW

e

1114 — i
'a I
UPDATE THE SERVER APPLICATION
WINDOW
1116 — l
()

TRANSMIT UPDATED SERVER
APPLICATION WINDOW

S THE CLIENT MACHINE IS IN
OUTLINE MODE

8/8

1110 — v

INITIATE THE USER MOVE/RESIZE
COMMAND ON THE SERVER MACHINE

Fig. 11

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings

