Title: NON-TEMPER, TEXTURE PROVIDING FAT COMPOSITIONS

Abstract: The present invention relates to a non-temper, texture providing fat composition comprising 10-65% by weight of one or more vegetable oils having a slip melting point of no more than 25°C and 35-90% by weight of one or more vegetable fats at least 90% by weight of the constituent fatty acid chains longer than C12, the ratio C16:0 / C18:0- C24:0 is no more than 4, and the ratio SSU / SUS is at least 1, and wherein in said composition the content of Ss-type of triglycerides is at least 0.5% by weight, wherein the groups S designates identical or different saturated fatty acids, and the groups U designates identical or different unsaturated fatty acids. The fat compositions provides texture at a similar or higher rate compared to state of the art fats at the same or a lower content of saturated fatty acids in confectionary applications. A method for the production of the fat compositions is described as well as some uses.

![Image of graph](image-url)
w o 2011/161213 A

Published:

— with international search report (Art. 21(3))

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).
Non-temper, texture providing fat compositions

Technical field of the invention

The present invention relates to non-temper fat compositions with a low content of saturated fatty acids and a relatively high content of asymmetrical SSU type triglycerides. The fat compositions provides texture at a similar or higher rate compared to state of the art fats at the same or lower content of saturated fatty acids in confectionary applications.

Background of the invention

In confectionary products cocoa butter (CB) and cocoa butter equivalents (CBE) are well known ingredients. The production of CBEs is based on fractions of fats containing the same triglycerides as CB, e.g. palm oil, shea butter, illipe, etc. The main part of the triglycerides is of the symmetric SUS type (S=saturated fatty acids, U=unsaturated fatty acids) or more specifically, StOSt, POST and POP (P=palmitic acid (C16:0), St=stearic acid (C18:0), O=oleic acid (C18:1)).

CB and CBE exist in a number of polymorphic forms, and the nature of the crystalline form depends on the method of cooling of the liquid fat. If the fat is allowed to crystallize in an unstable form, it recrystallises after a time delay. In the production of chocolate this transformation will cause a change from a nice glossy chocolate to a dull or mould looking chocolate. This phenomenon, "fat-bloom", is avoided by the tempering of the chocolate. In the tempering process the liquid chocolate is cooled down to produce both stable and unstable crystals followed by heating to a temperature above the melting point of the unstable crystals, leaving only stable seed crystals.
Tempering is a complicated and expensive process, and consequently there is a need for non-temper fat compositions that do not require tempering i.e. that solidifies in a stable form.

EP 1 736 059 discloses an edible granular structuring composition suitable for the production of structured food products having a low content of saturated and trans fatty acids comprising a glyceride composition and a non-glyceride composition.

The ratio of asymmetrical and symmetrical triglycerides in the hard or semi hard fat of the glyceride composition is not mentioned, but from the description it is revealed that optimum structuring properties is obtained with at least a content of 55% of the symmetric SUS-triglycerides.

WO 2008/1 38970 discloses a structured food product with a hard texture, containing between 20 and 100% of a fat phase and between 0 and 15% of water.

From the description it appears that the hard fat component is preferred to contain at least 60% symmetric, viz. SUS-triglycerides, which correlates with that the food product is described as being a tempered type.

WO 2006/037341 discloses a low-lauric, low-trans fat composition comprising a triglyceride mixture the constituent fatty acids of which are composed of 40-70 % by weight of palmitic, stearic and arachidic acid residues, 25-60 % by weight of oleic, linoleic, linolenic and C18-trans-unsaturated fatty acid residues.

WO 2007/090477 discloses a structured, fat continuous edible product comprising less than 30 % saturated fatty acids, between 20 and 100 % of a triglyceride composition containing less than 45 % saturated fatty acids and less than 10% trans unsaturated fatty acids. The main parts of triglycerides
are of the symmetric SUS type, the asymmetric SU2 type and the
unsaturated U3 type.

It is well known that the texture providing properties of a fat composition are
related to a variety of properties of the fat i.e. the nature of the fatty acids and
their individual amount, and the type of the triglycerides.

In general, short chain triglycerides are liquid at room temperature, and the
longer the chain length, the higher is the melting point. Furthermore, the U3-
types of triglycerides are liquid, whereas trans-hydrogenated and S3-types
are solid at room temperature.

For mixtures also comprising SU2 and S2U-types the texture providing
properties are in general related to the degree of saturated content and thus
the melting characteristics i.e. the solid fat content at relevant temperatures.

From a functional point the use of fat compositions with a relative high
amount of saturated content is preferable, but due to the health
recommendations to limit the intake of saturated fat, there is a need for fat
compositions with a low content of saturated fatty acids.

From the abovementioned it appears that there is a particular need for non-
temper, texture providing fat compositions having a low content of saturated
fatty acids and at the same time having functional characteristics providing
good texture in the final composition.

Accordingly, the main object of the invention is to provide such new non-
temper fat compositions providing similar or better texture in the final
composition than prior art, non-temper fat compositions at the same or at a
lower content of saturated fatty acids.
Another object is to provide fat compositions, which show similar or better texture in the final confectionery or bakery product at the same or a lower content of saturated fatty acids than that of commercial available, prior art fats.

Yet a further object is to provide products, which have a higher texture index, defined as texture per percent of SAFA, than the commercial available, prior art fats.

Summary of the invention

The present invention relates to a non-temper, texture providing fat composition comprising

- 10-65% by weight of one or more vegetable oils having a slip melting point of no more than 25°C and
- 35-90% by weight of one or more vegetable fats having a slip melting point of more than 25°C;

wherein in said one or more vegetable fats at least 90% by weight of the constituent fatty acid chains are longer than C12, the ratio C16:0 / C18:0-C24:0 is no more than 4, and the ratio SSU / SUS is at least 1, and wherein in said fat composition the content of S3-type of triglycerides is at least 0.5% by weight, wherein the groups S designates identical or different saturated fatty acids, and the groups U designates identical or different unsaturated fatty acids.

It is surprising that by the present invention it is possible to develop non-temper fat compositions that are able to provide texture indexes, defined as texture per percent of total saturated content (SAFA), that are higher than state of the art, non-temper fat compositions.
It is also surprising that the lower the ratio is of C16:0/C18:0-C24:0 in the fat component, the higher is the resulting texture in confectionery products, e.g. fillings, as well as texture index.

Furthermore it is surprising that there is no correlation between the texture indexes and the solid fat content (SFC) of the fat composition used because it is common prior acknowledgement that texture is dependent on SFC, while the sensory perception depends on texture.

It is well known in the art that it is possible to reduce the total saturated content in compositions where symmetrical SUS-type triglycerides are mixed with liquid oils; but they are suffering from the drawback that tempering or seeding is necessary to obtain a suitable texture for the application in confectionery products.

In the compositions of the present invention the fat component has the same or a higher content of asymmetric SSU-type triglycerides compared to the content of SUS-types; viz. the ratio of SSU/SUS is at least 1. At the same time the content of saturated C16:0 fatty acid is relatively low compared to the total content of saturated C18:0-C24:0 fatty acids in the fat component, and the fat composition also has a certain content of tri-saturated triglycerides (S3-types). Normally tri-saturated triglycerides are unwanted, as they tend to give a waxy mouth feel in confectionery products, but in the products of the invention relatively high contents of e.g. 5% or more is well tolerated.

The present invention further relates to a method for the production of a fat composition according to any one of claims 1-5 comprising the following steps:
1) providing one or more vegetable oils having a slip melting point of no more than 25°C
2) providing one or more vegetable fats having a slip melting point of more than 25°C wherein at least 90% by weight of the constituent fatty acid chains are longer than C12, the ratio C16:0 / C18:0-C24:0 is no more than 4, and the ratio SSU / SUS is at least 1, and the content of s3-types of triglycerides is so high that it constitutes at least 0.5% by weight of the final fat composition,
3) mixing 10-65% by weight of component (1) with 35-90% by weight of component (2) at a temperature above the slip melting point of component (2);
4) cooling the mixture to ambient temperature.

Definitions

In the context of the present invention, the following terms are meant to comprise the following, unless defined elsewhere in the description.

About:
The terms "about", "around", or "approximately" are meant to indicate e.g. the measuring uncertainty commonly experienced in the art, which can be in the order of magnitude of e.g. +/- 1, 2, 5, 10%, etc.

Comprising:
The term "comprising" or "to comprise" is to be interpreted as specifying the presence of the stated parts, steps, features, or components, but does not exclude the presence of one or more additional parts, steps, features, or components. E.g., a composition comprising a chemical compound may thus comprise additional chemical compounds, etc.

Oils and Fats:
These terms are used for esters between fatty acids and glycerol. One molecule of glycerol can be esterified to one, two and three fatty acid molecules resulting in a monoglyceride, a diglyceride or a triglyceride (TAG) respectively. Usually fats consist of mainly triglycerides and minor amounts of lecithin, sterols, etc. If the fat is liquid at room temperature it is normally called oil. If the fat is semisolid at room temperature and of exotic origin it is referred to as butter, e.g. shea butter. If it is solid at room temperature it is called a fat.

It follows from these definitions, that according to the present invention, the component with a slip melting point of no more than 25°C is called an oil, while the component with a slip melting point of more than 25°C is called a fat.

Slip melting point
This term defines the temperature at which a column of fat in an open capillary tube moves up the tube when it is subjected to controlled heating in a water bath.

Mixtures of triglycerides do not have a fixed melting point, and in the description of the present invention the slip melting point according to AOCS Cc 3-25 is used.

SAFA and TFA:
For saturated fatty acid the abbreviation SAFA is used, and for trans-unsaturated fatty acids the abbreviation TFA is used.
S and U-types of fatty acid:
S means a saturated fatty acid, and U means an unsaturated fatty acids. The fatty acids, which are comprised in the triglycerides of formulae SSU, SUS, etc. and referred to in the SSU/SUS ratio, may be identical or different, saturated and unsaturated fatty acids.

Texture:
Texture refers to the properties held in consistency and sensations caused by the external surface of an object. Characterization of texture commonly falls in two main groups, based on sensory and instrumental methods of analysis.

Sensory analysis includes use of the fingers, as well as the lips, tongue and teeth in the mouth. The widely used instrumental method is a cone or needle penetration test. Automatic analyzer equipment used is normally referred to as a texture analyzer.

The analyser used in the present invention was a Texture Analyzer TA-XT2i, and the probe used was the P2N needle set to penetrate 5 mm. The measured penetration force was expressed in grams.

Texture index
The texture index is defined as texture per percent of SAFA

Food products:
Comprise products to feed animals and products for human consumption. An important group of products are those where cocoa butter and cocoa butter-like fats are used. Common applications of such products comprise e.g. confectionery compositions; bakery and dairy products e.g. ice cream coatings.
For products and methods in the confectionery areas, reference is made to
"Chocolate, Cocoa and Confectionery", B. W. Minifie, Aspen Publishers Inc.,

Brief description of the drawings

The invention is further illustrated by the drawings, wherein

Fig. 1: Illustrates the texture providing properties in a model filling of a fat
composition of the invention (Invention A, according to Example 1) in
comparison with two reference fats, Ref. I and Ref. II, with increasing ratio of
C16:0/C18:0-C24:0.

The ratio of C16:0/C18:0-C24:0 in the fat component of the compositions
being:

1. A: 0.1
2. B (Ref. I): 5.4
3. C (Ref. II): 10.4

Detailed description of the invention

The ratio C16:0 / C18:0-C24:0 of the one or more vegetable fats in the fat
composition of the invention is in one embodiment no more than 2.

The slip melting point of the one or more vegetable oils is in another
embodiment no more than 20°C, and/or the slip melting point of the one or
more fats is higher than 30°C.
The content of S₃-type of triglycerides in the fat composition is in one embodiment no more than 12% by weight, and in another embodiment the total content of saturated fatty acids is no more than 65% by weight.

In order to keep the SAFA and TFA content low the fat component of the composition is based on non-hydrogenated vegetable fats and oils for example of the C₁₆/C₁₈-types, e.g. palm oil, shea butter, etc. This result in a composition of the fat component where the saturated fatty acids S are mainly C₁₆:0 and C₁₈:0 i.e. 50%, 75% or more, or 85% or more, or 90% or more of the saturated fatty acids. The unsaturated fatty acids U are mainly C₁₈:1 and C₁₈:2 i.e. 50%, 75% or more, or 85% or more, or 90% or more of the unsaturated fatty acids in said fat component.

In another embodiment of the invention, the oil component of the fat composition is selected according to the ratio of C₁₈:3 / total C₁₈-unsaturated. For a relatively high content of C₁₆:0 in the fat component oils with a ratio of C₁₈:3 / total C₁₈-unsaturated that is less than 0.06 are selected as they provides more texture than those with a higher ratio. Typical examples of suitable oils are sunflower, high oleic sunflower and soybean oils.

In yet another embodiment that content of linoleic acid in the one or more vegetable fats is no more than 25%.

In another embodiment the one or more vegetable oils or one or more vegetable fats have not been hydrogenated and/or are refined and deodorized.

There are many feasible ways of obtaining the fat component and the oil component to be included in the fat compositions of the invention, and for a person skilled in the art and from the examples this is sufficiently disclosed.
Concerning the liquid oil component they are commodity products in the trade or elains from the fractionation of fats.

In one embodiment the oils and fats or the mixture of those used are refined and deodorized.

In one embodiment of the method of the invention the total content of stearin type of triglycerides in the resulting fat composition is no more than 12% by weight, and/or total content of saturated fatty acids is no more than 65% by weight.

In another embodiment the method further comprises packing said mixture in a suitable container.

Furthermore, in another embodiment the one or more fat is randomized by interestenfication in the presence of a catalyst e.g. sodiummethy late, and in a further embodiment the one or more oils or fats or the mixture of oils and fats is fractionated by solvent or dry fractionation.

In the method it may sometimes be an advantage that the oils and fats have not been hydrogenated and/or are refined and deodorized.

The present invention also relates to the use of a fat composition according to the invention for the manufacture of a processed food product for human and/or animal consumption, and as a component of oils and fats, which are to be incorporated in food products for humans and other mammals.

The invention also relates to the use as an ingredient in confectionery, bakery and dairy fillings in concentrations of 5-60% by weight, e.g. 10-50% by weight, and as an ingredient in coating compounds for confectionery,
bakery and dairy products in concentrations of 1-55% by weight, e.g. 10-40% by weight of the coating compound.

Finally, the present invention relates to a product composed of 5-95% by weight of a fat composition of the invention and 95-5% by weight of other vegetable oils, fats and/or oil soluble food ingredients e.g. phytosterols, vitamins, colorants, flavors, emulsifiers, etc.

Examples

All analytical values specified as ratio and in percent are by weight.

Example 1:

Products of the invention

Table 1 illustrates the composition of some of the products of the invention.

Brief description of the components:
1: Middle fraction from an interesterified blend of shea stearin, shea butter and sunflower oil
2: High oleic sunflower oil
3: Fully hydrogenated rapeseed oil
4: Shea stearin
5: A middle fraction from an interesterified blend of shea butter and sunflower oil

The components were mixed together at a temperature in the range of 50-75 °C and cooled to ambient temperature.

Table 1
Based on the fat component of the fat composition without 3- types of TAGs

<table>
<thead>
<tr>
<th>Product/Parameter</th>
<th>A</th>
<th>A +S₃</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components in %:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>61.0</td>
<td>59.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>39.0</td>
<td>38.2</td>
<td>46.0</td>
<td>46.0</td>
<td>46.0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>5.4</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>54.0</td>
<td>48.6</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td>Ratio SSU/SUS ¹)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1.55</td>
<td>1.10</td>
</tr>
<tr>
<td>Ratio C16:0/C18:0-C24:0 ¹)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Content of S₃ in % ²)</td>
<td>2.7</td>
<td>4.6</td>
<td>2.3</td>
<td>2.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Content of SAFA in % ²)</td>
<td>40.2</td>
<td>41.4</td>
<td>39.6</td>
<td>39.5</td>
<td>39.4</td>
</tr>
</tbody>
</table>

¹) Based on the fat component of the fat composition without S₃ types of TAGs
²) Based on the total fat composition

5 Example 2:

Texture providing properties related to various product parameters tested in a model filling formulation

The model filling formulation used was the following:

40% by weight of a fat composition to be tested
40% by weight of icing sugar
20% by weight of skim milk powder

All the ingredients were mixed and added 0.4% by weight of lecithin in a Hobart N-50 mixer at 50 °C for ten minutes and refined in a Buhler SDY-300 three-roll refiner to a particle size of approximately 20µ, and conched in the Hobart machine for 6 hours. After conching the mass was transferred to
plastic cups containing 50 g. The samples were then cooled for 30 minutes in a cooling tunnel at 12 °C.

The texture of the model fillings was measured after a time delay of one week at measuring temperature. The measurement was performed in a Texture analyzer XT2i with a probe P2N set to penetrate 5 mm. The tabulated values are mean values of five measurements of the penetration force measured in grams.

2.1 Correlation between texture, the ratio C16:0/C18:0-C24:0 and solid fat content (SFC).

Product A is a fat composition of the invention prepared according to example 1. Product B and C are reference fat compositions prepared like the products of the invention but with higher ratios of C16:0/C18:0-C24:0 in the fat component.

Table 2.1

<table>
<thead>
<tr>
<th>Product / Parameter</th>
<th>A</th>
<th>B Ref. I</th>
<th>C Ref. II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio C16:0/C18:0-C24:0</td>
<td>0.1</td>
<td>5.4</td>
<td>10.4</td>
</tr>
<tr>
<td>Ratio SSU/SUS</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Content of S₃ - type of TAGs in %</td>
<td>2.7</td>
<td>6.4</td>
<td>3.1</td>
</tr>
<tr>
<td>Total content of SAFA in %</td>
<td>40.2</td>
<td>39.9</td>
<td>40.3</td>
</tr>
<tr>
<td>SFC at 20 °C in %</td>
<td>24</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>Texture after one week at 20 °C in gram</td>
<td>397</td>
<td>180</td>
<td>86</td>
</tr>
<tr>
<td>Texture index after one week at 20 °C pr. % SAFA</td>
<td>9.9</td>
<td>4.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>

1) Based on the fat component of the fat composition without S₃ - types of TAGs
2) Based on the total fat composition
3) Measured on the total fat composition according to IUPAC 2.150a at 20 °C
4) Texture measured in the model filling containing the fat composition in test

From the figures in table 2.1 it can surprisingly be seen that increasing the ratio C16:0/C18:0-C24:0 leads to lower resulting texture of the model filling as well as lower texture index pr. percent of total saturated content (SAFA). Furthermore it is surprising that there is no correlation between the texture of the model filling and the SFC value of the fat composition used.

2.2 Correlation between texture and the ratio SSU/SUS

Products of the invention D, E and F were prepared according to example 1. The results of tests in the model filling are illustrated in the following table.

Table 2.2

<table>
<thead>
<tr>
<th>Product / Parameter</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio SSU/SUS 1)</td>
<td>2.00</td>
<td>1.55</td>
<td>1.10</td>
</tr>
<tr>
<td>Ratio C16:0/C18:0-C24:0 1)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Content of S₃ - type of TAGs in % 2)</td>
<td>2.3</td>
<td>2.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Total content of SAFA in % 2)</td>
<td>39.6</td>
<td>39.5</td>
<td>39.4</td>
</tr>
<tr>
<td>Texture after one week at 20 °C in gram 3)</td>
<td>353</td>
<td>292</td>
<td>225</td>
</tr>
<tr>
<td>Texture index after one week at 20 °C pr. % SAFA</td>
<td>8.9</td>
<td>7.4</td>
<td>5.7</td>
</tr>
<tr>
<td>Texture after one week at 23 °C in gram 3)</td>
<td>278</td>
<td>212</td>
<td>189</td>
</tr>
<tr>
<td>Texture index after one week at 23 °C pr. % SAFA</td>
<td>7.0</td>
<td>5.4</td>
<td>4.8</td>
</tr>
</tbody>
</table>

1) Based on the fat component of the fat composition without S₃ - types of TAGs
2) Based on the total fat composition
3) Texture measured in the model filling containing the fat composition in test

From the results it can be seen that the ratio SSU/SUS has a big influence on the texture providing properties of the fat composition both at 20 and 23 °C. A higher ratio leads to better texture properties.
2.3 Correlation between texture and \(S_3 \) content

To the products described in 2.1 were added \(S_3 \) type of TAGs, and the test was repeated. The results can be found in the following table:
Based on the fat component of the fat composition without S₃-types of TAGs

Based on the total fat composition

Texture measured in the model filling containing the fat composition in test

From the results it can be seen that the texture is increased by the addition of S₃-types of TAGs. The increase in texture is relatively higher for products with lower texture providing properties.

Example 3:

Test as a coating compound of a product of the invention vs. a reference and a commercial available product

The model coating composition used was the following:

- 35% by weight of the fat composition to be tested
- 15% by weight of cocoa powder
- 44% by weight of sugar
- 6% by weight of skim milk powder
All the ingredients were mixed and added 0.4% by weight of lecithin in a Hobart N-50 mixer at 50 °C for ten minutes and refined in a Buhler SDY-300 three-roll refiner to a particle size of approximately 20μ, and conched in the Hobart machine for 6 hours. After conching the mass was used as a coating on biscuits, and tested as further described.

The products tested were the following:

Product K is a fat composition of the invention prepared according to example 1. Product L is a reference fat composition prepared like the products of the invention but with a higher ratio of C16:0/C18:0-C24:0 in the fat component. Product M is a commercial available non-temper product with the trade name Akopol NH 60 from AarhusKarlshamn.

The parameters of the products are tabulated in table 3:

<table>
<thead>
<tr>
<th>Product / Parameter</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio C16:0/C18:0-C24:0 (^1)</td>
<td>0.1</td>
<td>11.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Ratio SSU/SUS (^1)</td>
<td>2.0</td>
<td>2.0</td>
<td>0.95</td>
</tr>
<tr>
<td>Content of S(_3) types of TAGs in % (^2)</td>
<td>4.2</td>
<td>5.5</td>
<td>13.0</td>
</tr>
<tr>
<td>Total content of SAFA in % (^2)</td>
<td>52.0</td>
<td>52.0</td>
<td>65.0</td>
</tr>
</tbody>
</table>

\(^1\) Based on the fat component of the fat composition without S\(_3\)\^- types of TAGs

\(^2\) Based on the total fat composition
3.1 Texture of the coating composition

The texture of the coating composition was measured as described in example 2.

Table 3.1

<table>
<thead>
<tr>
<th>Product / Parameter</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture after one week at 20 °C in gram ¹)</td>
<td>466</td>
<td>270</td>
<td>364</td>
</tr>
<tr>
<td>Texture index after one week at 20 °C pr. % SAFA</td>
<td>9.0</td>
<td>5.2</td>
<td>5.6</td>
</tr>
</tbody>
</table>

¹) Texture measured in the coating composition containing the fat composition in test

From the results it can be seen that the fat K of the invention provides a much higher texture and texture index than the reference fat and the commercial available fat M, despite the fact that the fat M has a much higher content of saturated fatty acids.

3.2 Solidification and gloss test

Biscuits were coated with the three coatings at 45°C in a Nielsen enrobing machine followed by cooling in a three zone cooling tunnel at 15°C, 12°C and 15°C. The time for total solidification and gloss was monitored.

Table 3.2

<table>
<thead>
<tr>
<th>Product/Parameter</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling time in minutes ¹)</td>
<td>4.5</td>
<td>7.5</td>
<td>6.0</td>
</tr>
<tr>
<td>Gloss ²)</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

¹) Visual evaluation for cooling time until ready for packing
²) Visual evaluation of coated biscuits after 30 minutes storage at 20°C. Higher number indicates higher gloss on a scale from 0-10
The coating based on fat K has the fastest solidification time and the best gloss.

3.3 Aeration test

The three coatings were aerated in a Hobart N-50 mixer. All coatings were heated to 40°C before whipping, and the water jacket of the Hobart N-50 pot was kept at 18°C during the whipping test. Whipping time was 6 minutes and a spatula-type of stirrer was used for whipping.

Table 3.3

<table>
<thead>
<tr>
<th>Product/Parameter</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density before whipping in grams/liter</td>
<td>1150</td>
<td>1150</td>
<td>1150</td>
</tr>
<tr>
<td>Density after whipping in grams/liter</td>
<td>730</td>
<td>870</td>
<td>1120</td>
</tr>
</tbody>
</table>

From the results it can be seen that a coating based on fat K of the invention showed the best aeration properties of the fats tested.
Claims

1. A non-temper, texture providing fat composition comprising

- 10-65% by weight of one or more vegetable oils having a slip melting point of no more than 25°C and
- 35-90% by weight of one or more vegetable fats having a slip melting point of more than 25°C;

wherein in said one or more vegetable fats at least 90% by weight of the constituent fatty acid chains are longer than C12, the ratio C16:0 / C18:0-C24:0 is no more than 4, and the ratio SSU / SUS is at least 1, and wherein in said composition the content of S3-type of triglycerides is at least 0.5% by weight, wherein the groups S designates identical or different saturated fatty acids, and the groups U designates identical or different unsaturated fatty acids.

2. A fat composition according to claim 1, wherein the ratio C16:0 / C18:0-C24:0 in said one or more vegetable fats is no more than 2.

3. A fat composition according to any one of claims 1 or 2, wherein the slip melting point of said one or more vegetable oils is no more than 20°C, and/or the slip melting point of said one or more vegetable fats is more than 30°C.

4. A fat composition according to any one of claims 1-3, wherein the content of S3-type of triglycerides is no more than 12% by weight.

5. A fat composition according to any one of claims 1-4, wherein the total content of saturated fatty acids is no more than 65% by weight.
6. A method for the production of a fat composition according to any one of claims 1-5 comprising the following steps:

1) providing one or more vegetable oils having a slip melting point of no more than 25°C

2) providing one or more vegetable fats having a slip melting point of more than 25°C, wherein at least 90% by weight of the constituent fatty acid chains are longer than C12, the ratio C16:0 / C18:0-C24:0 is no more than 4, and the ratio SSU / SUS is at least 1, and the content of s3-types of triglycerides is so high that it constitutes at least 0.5% by weight of the final fat composition,

3) mixing 10-65% by weight of component (1) with 35-90% by weight of component (2) at a temperature above the slip melting point of component (2);

4) cooling the mixture to ambient temperature.

7. A method according to claim 6 further comprising packing said mixture in a suitable container.

8. A method according to claims 6 or 7, wherein said component (2), before the mixing in step (3), is randomized by interesterification in the presence of a catalyst, e.g. sodiummethylate.

9. A method according to any one of claims 6-8, where said one or more vegetable oils or said one or more vegetable fats or said mixture of oils and fats are fractionated by solvent or dry fractionation.

10. A method according to any one of claims 6-9, where said one or more vegetable oils or said one or more vegetable fats have not been hydrogenated and/or are refined and deodorized.
11. Use of a fat composition according to any one of claims 1-5 or produced by any one of claims 6-10 for the manufacture of a processed food product for human and/or animal consumption.

12. Use of a fat composition according to any one of claims 1-5 or produced by any one of claims 6-10 as a component of oils and fats which are to be incorporated in food products for humans and other mammals.

13. Use of a fat composition according to any one of claims 1-5 or produced by any one of claims 6-10 as an ingredient in confectionery, bakery and dairy fillings in concentrations of 5-60% by weight, e.g. 10-50% by weight.

14. Use of a fat composition according to any one of claims 1-5 or produced by any one of claims 6-10 as an ingredient in coating compounds for confectionery, bakery and dairy products in concentrations of 1-55% by weight, e.g. 10-40% by weight of the coating compound.

15. A product composed of 5-95% by weight of a fat composition according to any one of claims 1-5 or produced by any one of claims 6-10 and 5-95% by weight of other vegetable oils, fats and/or oil soluble food ingredients.
Fig. 1
Texture of a model filling formulation – force in gram

A - Product of the invention
C16:0/C18:0-C24:0 ratio = 0.1 of fat component

B - Reference product
C16:0/C18:0-C24:0 ratio = 5.4

C - Reference product
C16:0/C18:0-C24:0 ratio = 10.4
A. CLASSIFICATION OF SUBJECT MATTER
INV. A23D9/00 C11C3/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
A23D CIIC

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, BIOSIS, FSTA, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.
See patent family annex.

** Special categories of cited documents:

* A document defining the general state of the art which is not considered to be of particular relevance

* E earlier document but published on or after the international filing date

* L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

* O document referring to an oral disclosure, use, exhibition or other means

* P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search: 23 August 2011
Date of mailing of the international search report: 31/08/2011

Name and mailing address of the ISA/Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016
Rooney, Kevin

Form PCT/ISA210 (second sheet) (April 2003)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2007090477 AI</td>
<td>16-08-2007</td>
<td>AT 466482 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 447330 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2006337928 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2007213687 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2641706 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2007214 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1998628 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2007214 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1998628 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007090869 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2345402 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2336040 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009525735 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009525739 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009092713 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009068318 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0687142 BI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 147583 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 685780 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6139994 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2156169 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69401498 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69401498 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 687142 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9419953 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0687142 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5718938 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5968584 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004126475 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1507323 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60317879 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1477070 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03061397 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5762990 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69511382 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69511382 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0744133 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9617528 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3589412 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010081835 A</td>
</tr>
</tbody>
</table>

Form PCT/ISA210 (patent family annex) (April 2005)