

**(19) World Intellectual Property Organization
International Bureau**

A standard linear barcode is located at the bottom of the page, spanning most of the width. It is used for document tracking and identification.

**(43) International Publication Date
23 October 2008 (23.10.2008)**

PCT

(10) International Publication Number
WO 2008/125618 A1

(51) International Patent Classification:
C07D 487/04 (2006.01) A61K 51/02 (2006.01)

(74) **Agent:** CARREIRA-STAUBLI, Andrea; Isler & Pedrazzini AG, Postfach 1772, CH-8027 Zürich (CH).

(21) International Application Number: PCT/EP2008/054409

(22) International Filing Date: 11 April 2008 (11.04.2008)

(25) Filing Language: English

(26) Publication Language: English

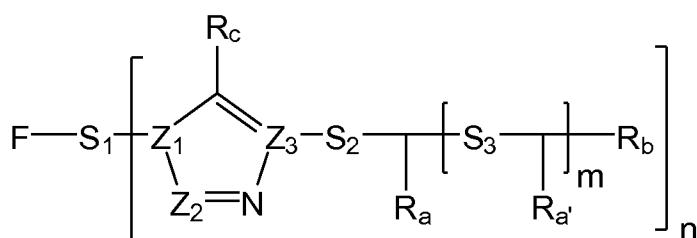
(30) Priority Data: 07105980.2 11 April 2007 (11.04.2007) EP

(71) **Applicant (for all designated States except US): MERCK EPROVA AG [CH/CH]; Im Laternenacker 5, CH-8200 Schaffhausen (CH).**

(72) **Inventors; and**
(75) **Inventors/Applicants (for US only): MOSER, Rudolf**
[CH/CH]; Lahnhalde 11, CH-8200 Schaffhausen
(CH). **SCHIBLI, Roger** [CH/CH]; Weite Gasse 28,
CH-5400 Baden (CH). **MÜLLER, Cristina Magdalena**
[CH/CH]; Haldenstrasse 24, CH-5415 Nussbaumen (CH).
GROEHN, Viola [DE/CH]; Bahnhofstrasse 2, CH-8447
Dachsen (CH). **MICHEL, Urs** [CH/CH]; Eggelerstrasse
31, CH-8492 Wila (CH). **SPARR, Christoph** [CH/CH];
Alpsteinstrasse 6, CH-9050 Appenzell (CH). **MINDT,**
Thomas Leighton [CH/CH]; Sempacherstrasse 22,
CH-4053 Basel (CH).

(81) Designated States (unless otherwise indicated, for every

Designated States (unless otherwise indicated, for kind of national protection available): AE AG AL


AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
 - before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(54) Title: FOLATE-CONJUGATES AND CORRESPONDING METAL-CHELATE COMPLEXES FOR USE IN DIAGNOSTIC IMAGING AND RADIOTHERAPY

and their uses in diagnostic imaging and radiotherapy.

(1)

(57) Abstract: The present invention is directed towards novel folate-conjugates of formula I wherein F is a folate or derivative thereof, Z₁, Z₂, Z₃ are independently of each other C or N, S₁ to S₄ are independently of each other a single bond or a spacer, R_a, R_{a'}, and R_b are donor groups and/or another group F, R_c is optionally another group F and n is 1 or 2. The invention further contemplates the corresponding metal-chelate complexes as well as pharmaceutical compositions thereof,

FOLATE-CONJUGATES AND CORRESPONDING METAL-CHELATE
COMPLEXES FOR USE IN DIAGNOSTIC IMAGING AND RADIOTHERAPY

5 **Field of the Invention**

The present invention relates to novel folate-conjugates and the corresponding metal-chelate complexes as well as pharmaceutical compositions thereof, their method of production and their use in diagnostic and therapeutic medical applications, such as diagnostic imaging and radiotherapy.

Background of the Invention

Cell-specific targeting for delivery of diagnostic or therapeutic agents is a widely researched field and has led to the development of noninvasive diagnostic and/or therapeutic medical applications. In particular in the field of nuclear medicine procedures and treatments, which employ radioactive materials emitting electromagnetic radiations as gamma rays or photons, selective localization of these radioactive materials in targeted cells or tissues is required to achieve either high signal intensity for visualization of specific tissues, assessing a disease and/or monitoring effects of therapeutic treatments, or high radiation dose, for delivering adequate doses of ionizing radiation to a specified diseased site, without the risk of radiation injury in other tissues.

The folate receptor (FR) is a high-affinity membrane-associated protein, which exhibits limited expression on healthy cells, but is frequently overexpressed on a wide variety of specific cell types, such as epithelial tumor cells (e.g. ovarian, endometrial, breast, colorectal, kidney, lung, nasopharyngeal) and activated (but not resting) macrophages, which are involved in

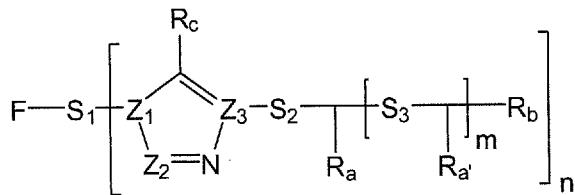
inflammation and autoimmune diseases. This led to the use of folic acid and its derivatives as a targeting agent for the delivery of pharmaceutical and/or diagnostic agents to these specific cell populations to achieve a selective concentration of pharmaceutical and/or diagnostic agents in these specific cells relative to normal cells. Such folate-conjugates include folate radiopharmaceuticals (Leamon and Low, *Drug Discov. Today* 2001; 6:44-51), folate-conjugates of chemotherapeutic agents (Leamon and Reddy, *Adv. Drug Deliv. Rev.* 2004; 56:1127-41; Leamon et al, *Bioconjugate Chem.* 2005; 16:803-11), proteins and protein toxins (Ward et al., *J. Drug Target.* 2000; 8:119-23; Leamon et al, *J. Biol. Chem.* 1993; 268:24847-54; Leamon and Low, *J. Drug Target.* 1994; 2:101-12), antisense oligonucleotides (Li et al, *Pharm. Res.* 1998; 15:1540-45; Zhao and Lee, *Adv. Drug Deliv. Rev.* 2004; 56:1193-204), liposomes (Lee and Low, *Biochim. Biophys. Acta-Biomembr.* 1995; 1233:134-44); Gabizon et al, *Adv. Drug Deliv. Rev.* 2004; 56:1177-92), haptens molecules (Paulos et al, *Adv. Drug Deliv. Rev.* 2004; 56:1205-17); MRI contrast agents (Konda et al, *Magn. Reson. Mat. Phys. Biol. Med.* 2001; 12:104-13) etc.

Known folate radiopharmaceuticals include for example conjugates with ¹²⁵I-labeled histamine (US 4,136,159), with small metal-chelants such as deferoxamine (US 5,688,488), acyclic or cyclic polyaminocarboxylates (e.g. DTPA, DTPA-BMA, DOTA and DO3A; US 6,221,334), bisaminothiol (US 5,919,934), 6-hydrizinonicotinamido-hydrazido (Shuang Liu, *Topics in Current Chemistry*, vol 252 (2005), Springer Berlin/Heidelberg), and ethylenedicysteine (US 7,067,111), and small peptides (US 7,128,893).

However, there is still a need for alternative, highly selective radionuclide conjugates, which can be synthesized easily and which exhibit optimal target (i.e. tumor cell, activated macrophage, etc.) to non-target tissue ratios and are eliminated through the kidneys, for use as tumor imaging agents in highly

selective and non-invasive procedures permitting early detection and treatment of tumor cells, activated macrophages (and other targeted cells exhibiting high FR expression, not yet identified).

5 Applicants have now found novel folate-conjugates that are able to overcome the drawbacks of known conjugates and meet the current needs by showing several advantages, such as improved labeling efficiency at low ligand concentration, stable complex formation, better biodistribution, increased target tissue uptake and better clearance from non-targeted tissues and organs.


10 These novel folate-conjugates comprise a chelating moiety and a pharmacological transport/binding moiety. The novel folate-conjugates can form a stable chelate with various radionuclides suitable for diagnostic imaging and radiotherapeutic applications.

15 More specifically, the novel conjugates are based on five-membered heterocycles and designed such that the affinity of the pharmacological entity for its receptor is not compromised by the binding to at least one radionuclide.

20 **Summary of the Invention**

The present invention relates in a first aspect to novel folate-conjugates, hereinafter also called compounds of the invention, and their complexes with at least one radionuclide, which can overcome one or more of the disadvantages associated with the related art as discussed hereinabove.

In a specific embodiment the present invention is directed to a compound of formula I

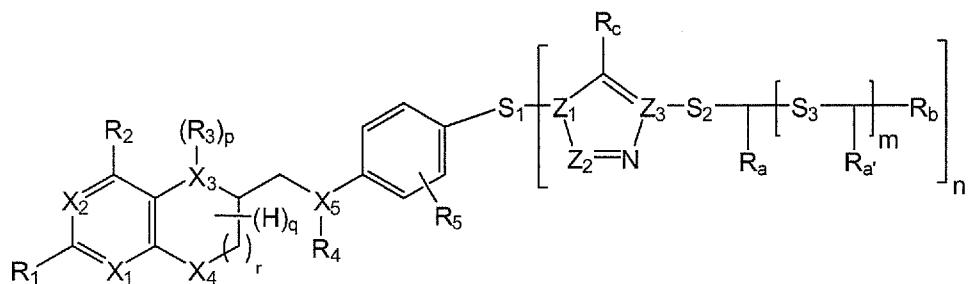
I

wherein

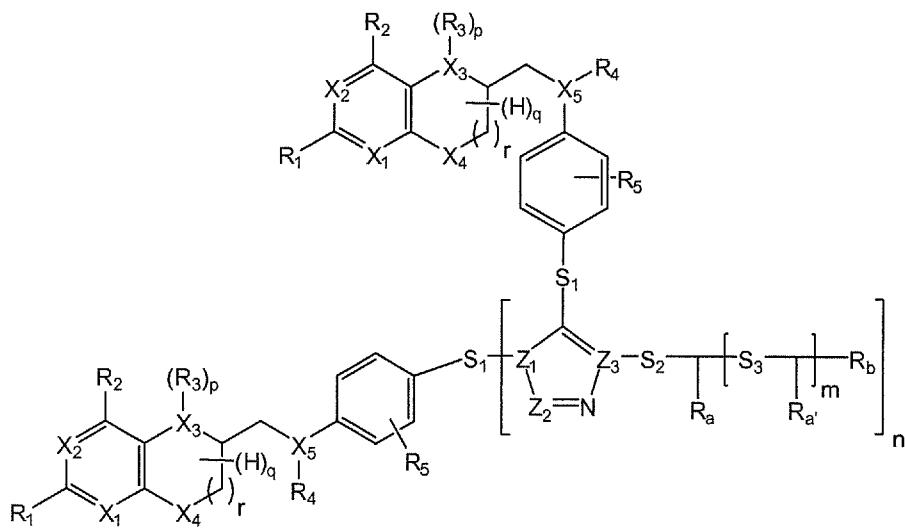
F is a folate or derivative thereof,

5 Z₁, Z₂, Z₃ are independently of each other C or N,

S₁, S₂, S₃ are independently of each other a single bond or a spacer, such as straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-10 adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five-15 or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with -CN, -Hal, -NO₂, -COR' or -COOR', wherein R' represents H or straight chain or branched C₁-C₆ alkyl,


R_a, R_{a'}, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, wherein R' represents H or C₁-C₆ alkyl, or a F as defined hereinabove, and wherein of groups R_a, R_{a'} and R_b at least two adjacent groups are a donor group -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine or a heterocyclic group.

R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H or C₁-C₆ alkyl, or straight chain or branched C₁-C₁₂ alkyl, which 25 is unsubstituted or substituted by at least one CN, Hal, or NO₂, or a F as defined hereinabove,


m is 0, 1, 2, 3, or 4, and

n is 1 or 2

5 In one embodiment, the present invention is directed to a compound of formula I, wherein F is represented by a pteroyl-derivative as shown in a compound of formula II and II'

II

II'

wherein

X₁, X₂, X₃, X₄ and X₅ are independently of each other C or N,

Z₁, Z₂, Z₃ are independently of each other C or N,

R₁ and R₂ are independently of each other H, Hal, -OR', -NHR',

C₁-C₁₂ alkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkanoyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, (C₁-C₁₂ alkoxy) carbonyl, and (C₁-C₁₂ alkylamino) carbonyl, wherein R' is H or C₁-C₆ alkyl,

R₃ and R₄ are independently of each other H, formyl, iminomethyl, 5 nitroso, C₁-C₁₂ alkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkanoyl, halosubstituted C₁-C₁₂ alkanoyl,

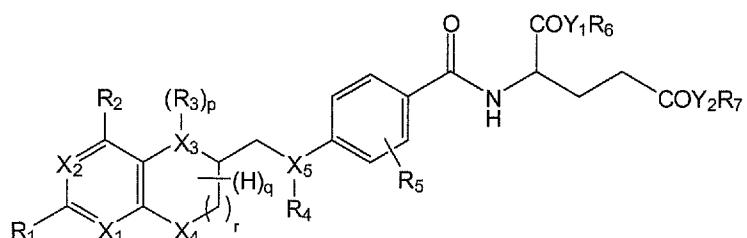
R₅ is H, CN, Hal, NO₂, C₁-C₁₂ alkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkanoyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, (C₁-C₁₂ alkoxy) carbonyl, and (C₁-C₁₂ alkylamino) carbonyl,

10 S₁, S₂, S₃ are independently of each other a single bond or a spacer, such as straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -15 CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', wherein R' represents H or C₁-C₆ alkyl,

20 R_a, R_{a'}, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, wherein R' represents H or C₁-C₆ alkyl, or a F as defined hereinabove, and wherein of groups R_a, R_{a'} and R_b at least two adjacent groups are a donor group -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine or a heterocyclic group,

25 R_c is H, CO₂R', COR', -SO₃R', -NHR', or straight-chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂, wherein R' represents H, C₁-C₆ alkyl,

30 m is 0, 1, 2, 3 or 4,


n is 1 or 2,
 p has a value of 0, 1 or 2,
 q has a value of 1 to 7, and
 r is 0 or 1.

5

The scope of the present invention encompasses all possible permutations (shown or not shown) of groups R_a , R_a' and R_b being a group F within compounds of formula II and II' as further described hereinafter.

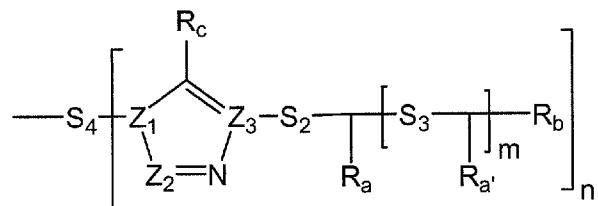
10

In another embodiment, the present invention is directed to a compound of formula I, wherein F is represented by a folic acid (i.e. a pteroyl-glutamic acid) derivative as shown in formula III

III

wherein

X_1 , X_2 , X_3 , X_4 and X_5 are independently of each other C or N;


Y_1 , Y_2 are independently of each other C, O or N,

20 R_1 to R_4 and p , q , and r are defined as hereinabove,

R_5 is H, CN, Hal, NO_2 , C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy) carbonyl, and (C1-C12 alkylamino) carbonyl,

R_6 and R_7 are independently of each other H, straight chain or

branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO₂, or a group of formula IV

IV

5 wherein

Z₁, Z₂, Z₃ are independently of each other C or N,

S₂, S₃, S₄ are independently of each other a single bond or a spacer, such as straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, 10 -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which 15 is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', wherein R' represents H or C₁-C₆ alkyl,

R_a, R_{a'}, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, wherein R' represents H or C₁-C₆ alkyl, or a F as defined hereinabove, and wherein of groups R_a, R_{a'} and R_b at least two adjacent groups are a donor group -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine or a heterocyclic group

R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H or C₁-C₆ alkyl, or straight-chain or branched C₁-C₁₂ alkyl, which 25 is unsubstituted or substituted by at least one CN, Hal, or NO₂,

or a F as defined hereinabove,

m is 0, 1, 2, 3, or 4, and

n is 1 or 2,

with the proviso that at least one of R₆ and R₇ is a group of

5 formula IV.

In one preferred embodiment m is 0. In another preferred embodiment m is 1.

In another aspect, the invention provides complexes comprising compounds of the present invention and ^{99m}Tc, ^{186/188}Re, ¹¹¹In⁺³,
10 ^{67/68}Ga⁺³, ⁹⁰Y⁺³, ¹⁰⁹Pd⁺², ¹⁰⁵Rh⁺³, ¹⁷⁷Lu, ^{64/67}Cu ¹⁶⁶Ho, ²¹³Bi.

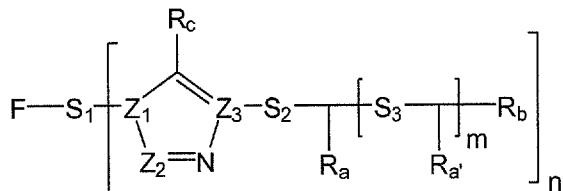
In a further aspect the present invention provides methods for synthesizing a compound of the invention and the corresponding metal-chelate complex thereof.

In yet a further aspect the invention provides pharmaceutical compositions comprising a diagnostic imaging amount or a therapeutically effective amount of at least one complex of the present invention and a pharmaceutically acceptable carrier therefor. In a preferred embodiment, the pharmaceutical compositions contain at least one complex that contains Tc-99m, Re-186 or
20 Re-188.

In a further aspect the present invention provides uses of complexes and/or pharmaceutical compositions of the present invention for convenient and effective administration to a subject in need for diagnostic imaging or radiotherapy. The subject of the
25 methods of the present invention is preferably a mammal, such as an animal or a human, preferably a human.

In a further aspect the present invention provides a single or multi-vial kit containing all of the components needed to prepare the compounds of this invention, other than the radionuclide ion itself.
30

Other features and advantages of the invention will be apparent from the following detailed description thereof and from the claims.


5 Brief Description of Figures

- Fig 1. Generalised synthesis of a compound of the invention of formula III (4) and complexes thereof (5), wherein Z_1 is N and Z_2 and Z_3 are C (LG represents a suitable leaving group and PG represents a suitable protecting group).
- 10 Fig 2. Generalised synthesis of a compound of the invention of formula III (9) and complexes thereof (10), wherein Z_1 and Z_2 are N and Z_3 is C.
- Fig 3 (A) Biodistribution of ^{99m}Tc -His-Folate 4h and 24h p.i.;
15 (B) Biodistribution of ^{99m}Tc -His-Folate 4h p.i. with Pemetrexed preinjected.
- Fig 4 (A) Biodistribution of $^{99m}\text{Tc}(\text{CO})_3$ -Triazole-Folate 1h, 4h and 24h p.i.; (B) Biodistribution of $^{99m}\text{Tc}(\text{CO})_3$ -Triazole-Folate 4h p.i. with Pemetrexed preinjected.
- 20 Fig 5. (A) Ex vivo and (B) in vitro autoradiograms of KB Tumors and Kidneys using ^{99m}Tc -His-folate with or without Pemetrexed.
- Fig 6. SPECT/CT-Picture of biodistribution studies in athymic nude mice using ^{99m}Tc -His-folate.

25 Detailed Description of the Invention

The present invention relates in a first aspect to novel folate-conjugates, hereinafter also called compounds of the invention, and their complexes with a radionuclide, which can overcome one or more of the disadvantages associated with the related art.

In a specific embodiment the present invention is directed to a compound of formula I

I

5 wherein

F is a folate or derivative thereof,

Z₁, Z₂, Z₃ are independently of each other C or N,

S₁, S₂, S₃ are independently of each other a single bond or a spacer, such as straight chain or branched C1-C12 alkyl, which 10 is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- 15 or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with -CN, -Hal, -NO₂, -COR' or -COOR', wherein R' represents H or C1-C6 alkyl,

R_a, R_{a'}, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, 20 wherein R' represents H or C1-C6 alkyl, or a F as defined hereinabove, and wherein of groups R_a, R_{a'} and R_b at least two adjacent groups are a donor group -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine or a heterocyclic group

R_c is H, COOR', COR', -SO₃R', -NHR', wherein R' represents H, 25 C1-C6 alkyl, or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂,

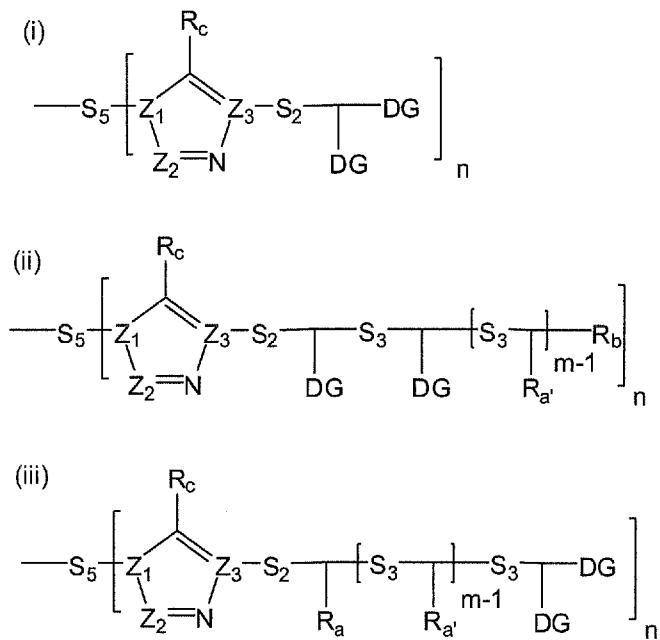
or a F as defined hereinabove ,

m is 0 ,1, 2, 3, or 4, and

n is 1 or 2.

5 A skilled person will know which permutations of compounds of formula I in combination with one or more groups F in position(s) R_a, R_{a'}, R_b (and R_c) can be part of this invention (as schematically illustrated in Scheme 1 with DG representing donor group) :

10 (i) Some specific permutations include for example a compound of formula I, wherein m = 0, i.e., wherein the only remaining groups R_a and R_b represent the two adjacent donor groups selected from -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine and a heterocyclic group and R_c may represent a group F.

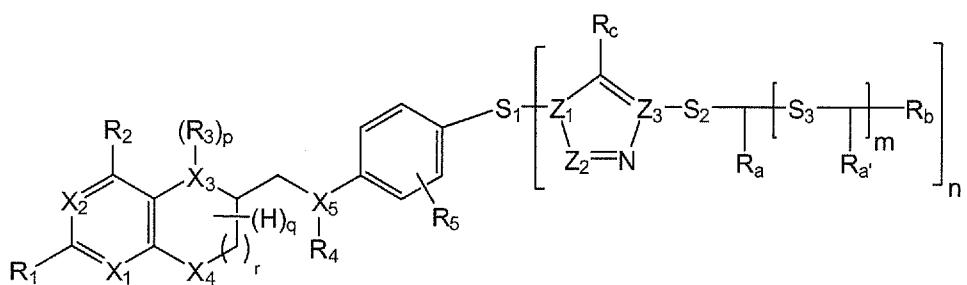

15 (ii) Other permutations include for example a compound of formula I, wherein R_a and its neighbouring R_{a'} (i.e. m ≥ 1) represent two adjacent donor groups selected from -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine and a heterocyclic group, and one or more of R_{a'} (for m > 1), R_b and R_c may independently of each other 20 represent a group F.

(iii) Further specific permutations include for example a compound of formula I, wherein R_b and its neighbouring R_{a'} (i.e. m ≥ 1) represent the two adjacent donor groups selected from -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine and a heterocyclic group 25 and R_a, one or more of R_{a'} (for m > 1), and R_c may independently of each other represent a group F.

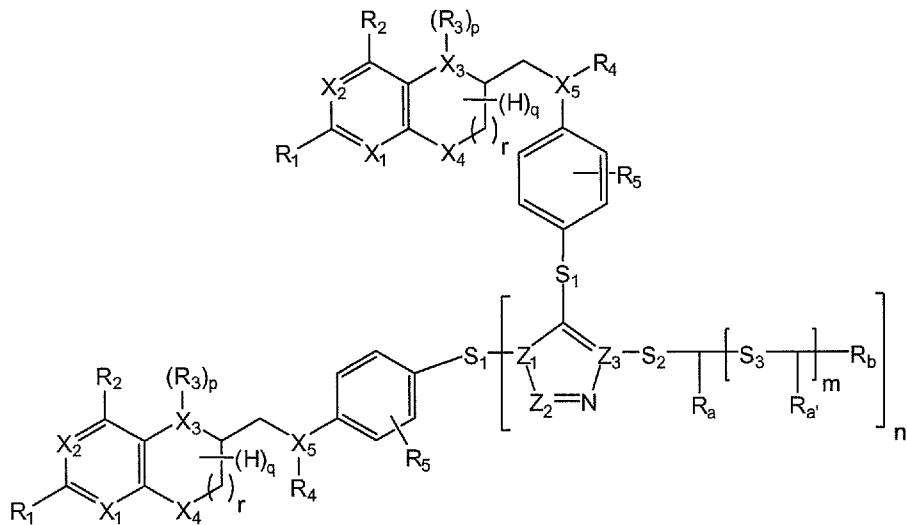
Even further specific permutations (not shown in Scheme 1) include for example a compound of formula I, wherein two neighbouring R_{a'} groups (i.e. m ≥ 2) represent the two adjacent

donor groups selected from -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine, and a heterocyclic group and R_a, one or more of R_{a'} (for m > 2), R_b and R_c may independently of each other represent a group F.

- 5 All of these permutations require the same coupling chemistries are thus they are all synthetically accessible to a skilled person. Thus it is understood that all of these possible permutations (shown or not shown) of compounds of formula I with a group F and two adjacent donor groups are part of this invention.



Scheme 1


- 15 In a preferred embodiment a folate or derivative thereof, also hereinafter simply referred to as "a folate" or "folates", for use in the present invention comprises compounds based on a condensed pyrimidine heterocycle, which is linked to linker S₁ (as defined hereinafter) through a benzoyl moiety. As used herein a "condensed pyrimidine heterocycle" includes a pyrimidine fused with a further 5- or 6-membered heterocycle, such as a pteridine or a pyrrolopyrimidine bicyclic.

Preferred representatives of folates as used herein are based on a folate (pteroyl-glutamic acid) skeleton and include optionally substituted folic acid, folinic acid, pteropolyglutamic acid, and folate receptor-binding pteridines such as tetrahydropterins, dihydrofolates, tetrahydrofolates, and their deaza and dideaza analogs. Folic acid is the preferred conjugate-forming ligands used for the compounds of this invention. The terms "deaza" and "dideaza" analogs refers to the art recognized analogs having a carbon atom substituted for one or two nitrogen atoms in the naturally occurring folic acid structure. For example, the deaza analogs include the 1-deaza, 3-deaza, 5-deaza, 8-deaza, and 10-deaza analogs. The dideaza analogs include, for example, 1,5-dideaza, 5,10-dideaza, 8,10-dideaza, and 5,8-dideaza analogs. Preferred deaza analogs compounds include 15 N-[4-[2-[(6R)-2-amino-1,4,5,6,7,8-hexahydro-4-oxopyrido[2,3-d]pyrimidin-6-yl]ethyl]benzoyl]-L-glutamic acid (Lometrexol) and N-[4-[1-[(2,4-diamino-6-pteridinyl)methyl]propyl]benzoyl]-L-glutamic acid (Edatrexate).

20 In a specific embodiment the present invention is directed to a compound of formula II and II'

II

II'

wherein

X₁, X₂, X₃, X₄ and X₅ are independently of each other C or N,

5 Z₁, Z₂, Z₃ are independently of each other C or N,

R₁ and R₂ are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy) carbonyl, and (C1-C12 alkylamino) carbonyl, wherein R' is H or C1-C6 alkyl,

10 R₃ and R₄ are independently of each other H, formyl, iminomethyl, nitroso, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, halosubstituted C1-C12 alkanoyl,

15 R₅ is H, CN, Hal, NO₂, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy) carbonyl, and (C1-C12 alkylamino) carbonyl,

S₁, S₂, S₃ are independently of each other a single bond or a spacer, such as straight chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-

NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', wherein R' represents H or C1-C6 alkyl,

5 R_a, R_{a'}, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, wherein R' represents H or C1-C6 alkyl, or a F as defined hereinabove, and wherein of groups R_a, R_{a'} and R_b at least two adjacent groups are a donor group -OH, -COOH, -NHR', -CONH₂, -SH, a 10 phosphine or a heterocyclic group

R_c is H, CO₂R', COR', -SO₃R', -NHR', or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂, wherein R' represents H, C1-C6 alkyl,

15 m is 0, 1, 2, 3 or 4,

n is 1 or 2,

p has a value of 0, 1 or 2,

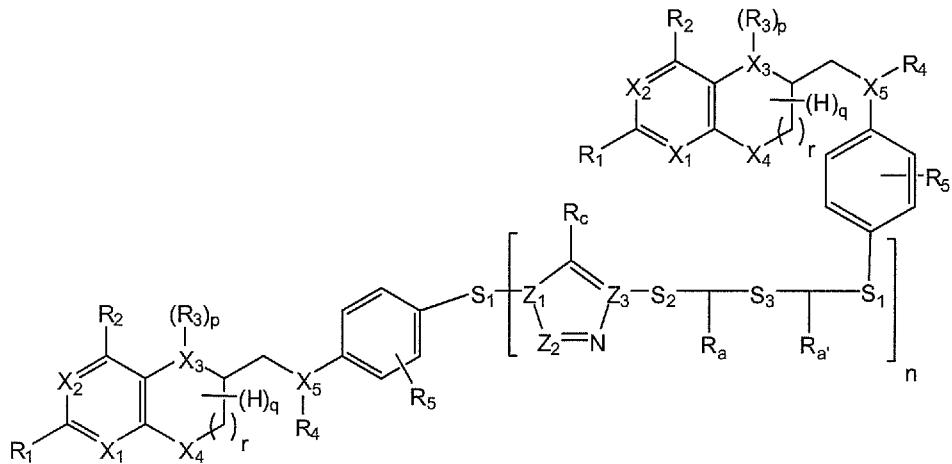
q has a value of 1 to 7, and

r is 0 or 1.

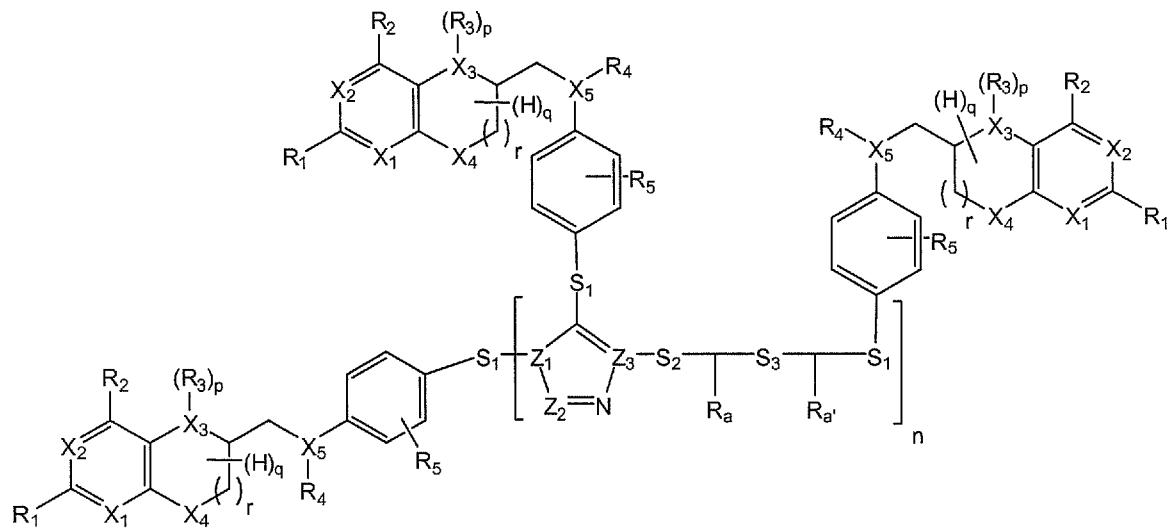
20

It is understood that the scope of the present invention encompasses all possible permutations of groups R_a, R_{a'} and R_b being a group F as defined hereinabove within compounds of formula II and II':

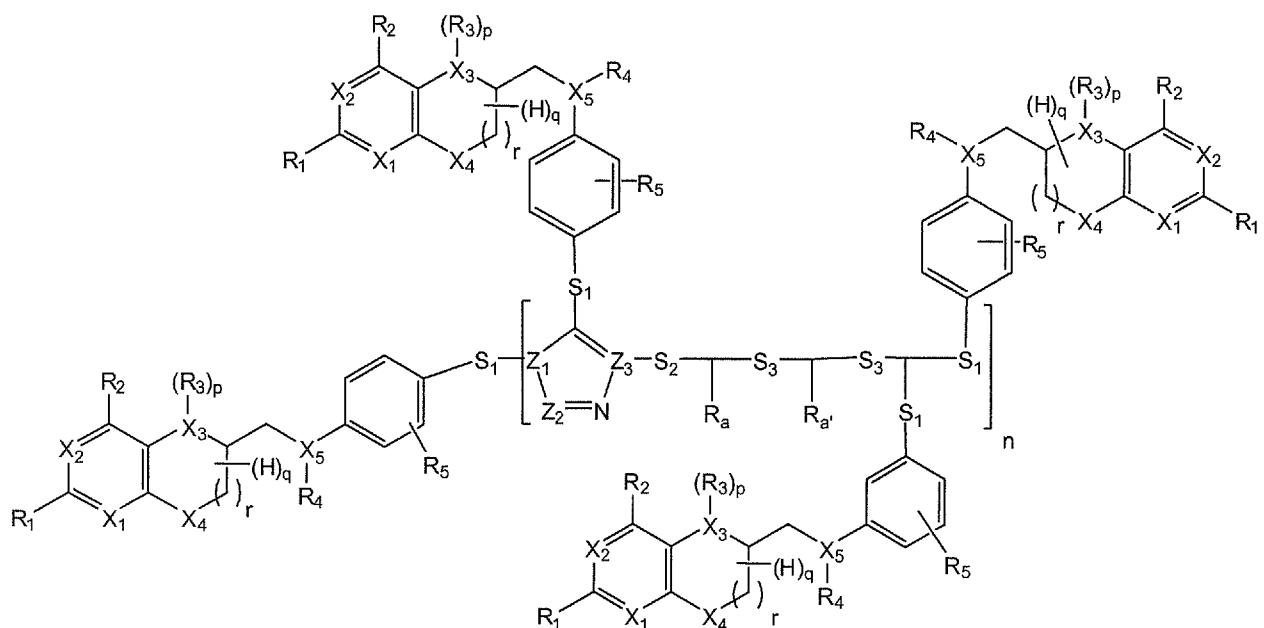
25 First, these permutations include a compound of formula II or II' having one further group F. These include a compound of formula II or II', wherein (i) R_a is a group F, or (ii) R_b is a group F, or (iii) R_{a'} is a group F.

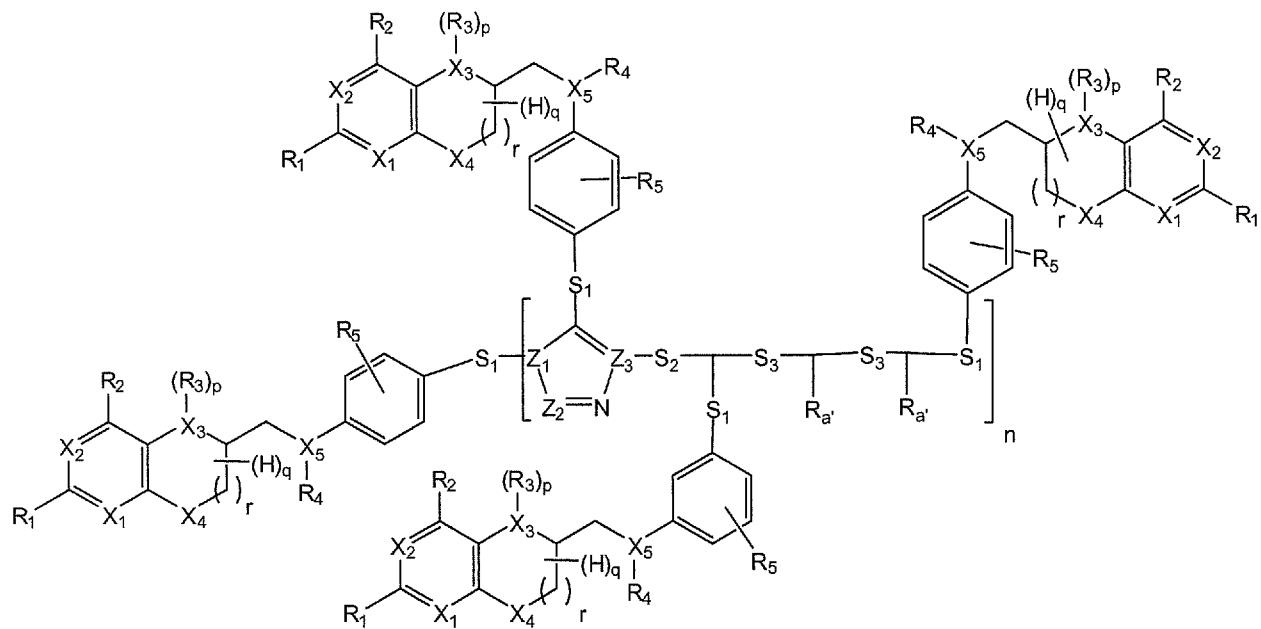

Second, these permutations further include a compound of formula

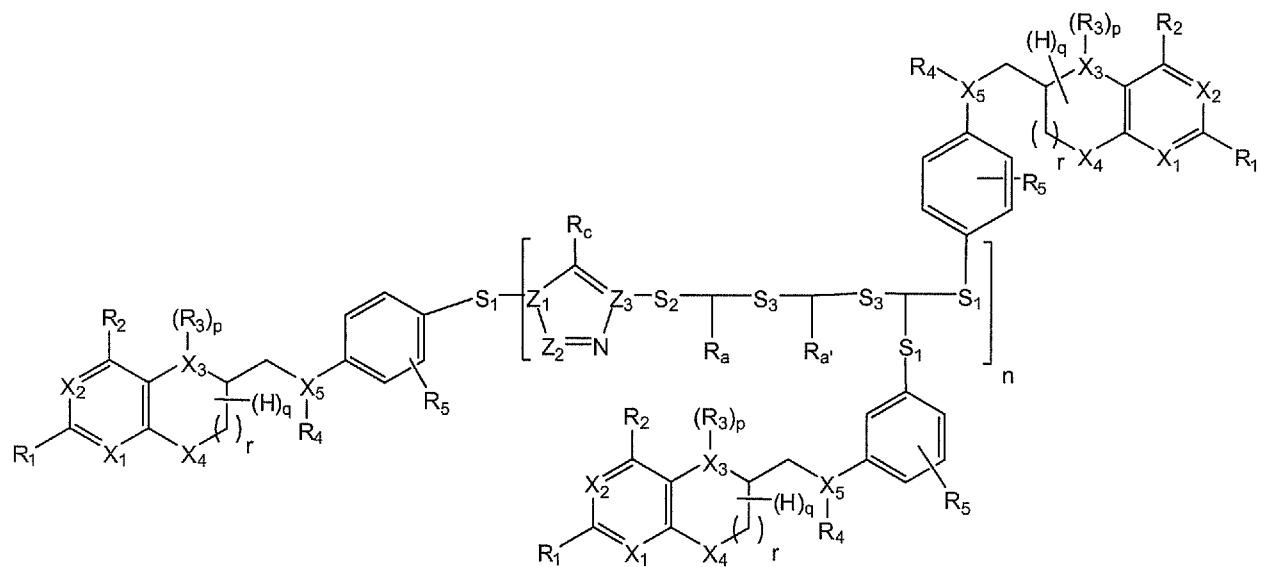
II or II' having two further groups F. These include a compound of formula II or II', wherein (i) R_a and R_{a'} are a group F, or (ii) R_a and R_b are a group F, or (iii) R_{a'} and R_b are a group F.


It is understood that in all of these permutations "m" has to be 5 adjusted such that the requirement of having two adjacent donor groups is still fulfilled.

Selected embodiments of the above described permutations according to the present invention are for example compounds of formulas IIa, IIb, IIc, IId and IIe


10


IIa


IIIb

IIIc

IIId

IIe

5 wherein

X_1 , X_2 , X_3 , X_4 and X_5 are independently of each other C or N,

Z_1 , Z_2 , Z_3 are independently of each other C or N,

R_1 and R_2 are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl, wherein R' is H or C1-C6 alkyl,

5 R_3 and R_4 are independently of each other H, formyl, iminomethyl, nitroso, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, halosubstituted C1-C12 alkanoyl,

10 R_5 is H, CN, Hal, NO₂, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl,

15 S_1 , S_2 , S_3 are independently of each other a single bond or a spacer, such as straight chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', 20 wherein R' represents H or C1-C6 alkyl,

R_a , R_a' , R_b are independently of each other -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine or a heterocyclic group, wherein R' represents H, C1-C6 alkyl,

25 R_c is H, CO₂R', COR', -SO₃R', -NHR', or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂, wherein R' represents H, C1-C6 alkyl,

n is 1 or 2,

p has a value of 0, 1 or 2,

q has a value of 1 to 7, and

r is 0 or 1.

It is understood that the scope of the invention encompasses all
5 possible permutations of formulas II and IIa' (shown or not
shown).

In one embodiment Z_1 is N, Z_3 is C and Z_2 is C or N.

In another embodiment Z_1 is C and Z_2 and Z_3 are N.

10 S_1 is preferably a single bond or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, OH, NH₂, SH, SO₃H or NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -NR'-CO-, -CO-NR'-, -CH=CH-, -C≡C-,
15 or a five- or six-membered aromatic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', wherein R' represents H or C1-C6 alkyl, or a combination thereof.

More preferably S_1 is a single bond or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least
20 one CN, Hal, or NO₂, and wherein one or more of non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -NR'-,
-NR'-CO-, -CO-NR'-, wherein R' represents H or C1-C6 alkyl.

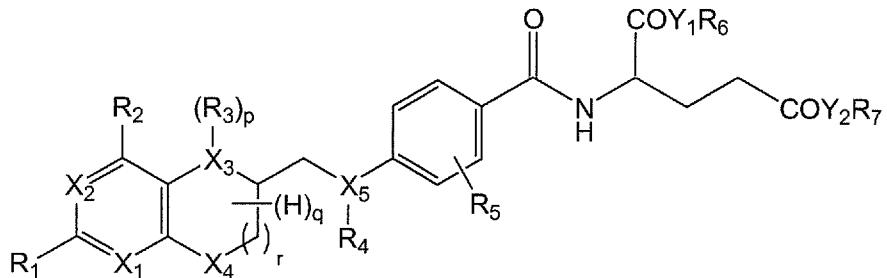
25 S_2 , S_3 are independently of each other preferably a single bond or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, OH, NH₂ or NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -NR'-, -NR'-CO-, -CO-NR'-, -CH=CH-, -C≡C-, wherein R' represents H or C1-C6 alkyl.

More preferably S_2 , S_3 are independently of each other

straight-chain or branched C1-C8 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -NR'-, -NR'-CO-, -CO-NR'-, wherein 5 R' represents H or C1-C6 alkyl, most preferably S₂, S₃ are independently of each other straight-chain or branched C1-C6 alkyl, which is unsubstituted or substituted by at least one CN, Hal, OH, or NO₂.

In one preferred embodiment m = 0, in another preferred embodiment 10 m = 1.

In a further preferred embodiment R_c is H, CO₂R', COR', -NHR' or unsubstituted C1-C6 alkyl, wherein R' represents H or C1-C6 alkyl.


Preferred embodiments of S₁ and R_c include amino acids, short 15 peptides, sugar molecules. A person skilled in the art would know how to choose.

Thus, in a further preferred embodiment the present invention is directed to a compound of formula II, wherein S₁ is an amino acid moiety, i.e. wherein F represents a folate structure comprising 20 a pteroyl moiety linked to an amino acid moiety. As used herein the term "amino acid" includes compounds with both an amino group (e.g., NH₂ or NH₃⁺) and a carboxylic acid group (e.g., COOH or COO⁻). In a specific embodiment, the amino acid may be an α-amino acid, a β-amino acid, a D-amino acid or an L-amino acid. 25 The amino acid may be a naturally occurring amino acid (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, tryptophan, methionine, glycine, serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartic acid, glutamic acid, lysine, arginine, or histidine, etc.) or it may be a derivative 30 thereof. Examples of derivatives include optionally substituted amino acids, e.g. having one or more substituents selected from

CN, Hal, and/or NO₂. The amino acid may also include any other non-naturally occurring amino acids, such as e.g. norleucine, norvaline, L- or D- naphthalanine, ornithine, homoarginine and others well known in the peptide art (see for example in M. Bodanzsky, "Principles of Peptide Synthesis," 1st and 2nd revised ed., Springer- Verlag, New York, NY, 1984 and 1993, and Stewart and Young, "Solid Phase Peptide Synthesis," 2nd ed., Pierce Chemical Co., Rockford, IL, 1984, both of which are incorporated herein by reference). Amino acids and amino acid analogs/derivatives can be purchased commercially (Sigma Chemical Co.; Advanced Chemtech) or synthesized using methods known in the art. In another specific embodiment, the amino acid may also be part of a polyamino acid (also termed polypeptide), wherein a plurality of same or different amino acids as defined hereinabove are covalently linked, i.e. linked through conventional peptide or other bonds.

Preferred amino acids include for example glutamic acid, aspartic acid, glutamine, aspartine, lysine, arginine, cystein, and derivatives thereof and preferred polyamino acids include homopolymers the respective homopolymers thereof (i.e. polyglutamic acid, polyaspartic acid, etc). Most preferred are optionally substituted aspartic and glutamic acid.

Thus in a more specific embodiment the present invention is directed to a compound of formula II, wherein F represents a pteroyl glutamic acid (or folic acid) skeleton having two attachment sites as represented by compound of formula III,

III

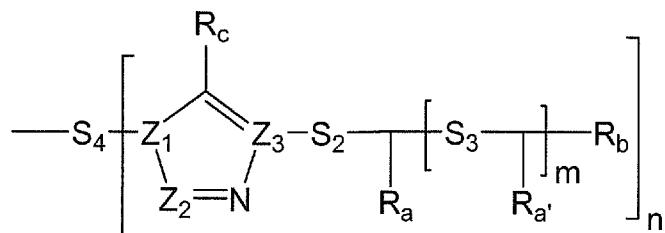
wherein

X_1 , X_2 , X_3 , X_4 and X_5 are independently of each other C or N;

Y_1 , Y_2 are independently of each other C, O or N,

5 R_1 and R_2 are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl, wherein R' is H or C1-C6 alkyl,

10 R_3 and R_4 are independently of each other H, formyl, iminomethyl, nitroso, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, halosubstituted C1-C12 alkanoyl,


15 R_5 is H, CN, Hal, NO₂, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl,

p has a value of 0, 1 or 2,

q has a value of 1 to 7,

r is 0 or 1,

20 R_6 and R_7 are independently of each other H, straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO₂, or a group of formula IV

IV

wherein

Z_1 , Z_2 , Z_3 are independently of each other C or N,
S₂, S₃, S₄ are independently of each other a single bond or a
spacer, such as straight chain or branched C1-C12 alkyl, which
is unsubstituted or substituted by at least one -CN, -Hal, -OH,
5 -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-
adjacent CH₂ groups may independently be replaced by -O-, -CO-, -
CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-
NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five-
10 or six-membered aromatic carbocyclic or heterocyclic ring, which
is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR',
wherein R' represents H or C1-C6 alkyl,

R_a, R_{a'}, R_b are independently of each other H, -OR', -COOR', -
NHR', -CONHR', -SR', a phosphine or a heterocyclic group,
wherein R' represents H or C1-C6 alkyl, or a F as defined herein-
15 above, and wherein of groups R_a, R_{a'} and R_b at least two adjacent
groups are a donor group -OH, -COOH, -NHR', -CONH₂, -SH, a
phosphine or a heterocyclic group.

R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H,
C1-C6 alkyl, or straight-chain or branched C1-C12 alkyl, which
20 is unsubstituted or substituted by at least one CN, Hal, or NO₂,
or a F as defined hereinabove,

m is 0, 1, 2, 3, or 4, and

n is 1 or 2,

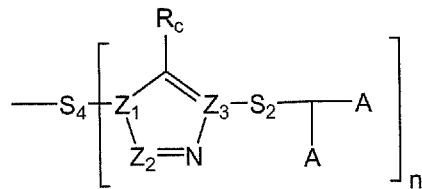
25 with the proviso that at least one of R₆ and R₇ is a group of
formula IV.

In a specific embodiment, either (i) Z_1 is N, Z_3 is C and Z_2 is C
or N, or (ii) Z_1 is C and Z_2 and Z_3 are N.

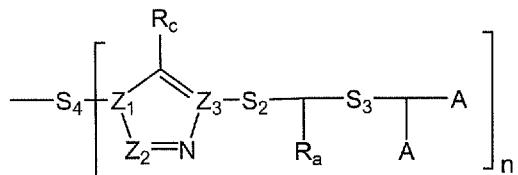
In a preferred embodiment, S₂, S₃, S₄ are independently of each
other a single bond or straight-chain or branched C1-C12 alkyl,

which is unsubstituted or substituted by at least one CN, Hal, OH, NH₂ or NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -NR'-, -NR'-CO-, -CO-NR'-, -CH=CH-, -C≡C-, wherein R' represents H or 5 C1-C6 alkyl.

More preferably S₂, S₃, S₄ are independently of each other straight-chain or branched C1-C8 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -NR'-, -NR'-CO-, -CO-NR'-, wherein 10 R' represents H or C1-C6 alkyl.

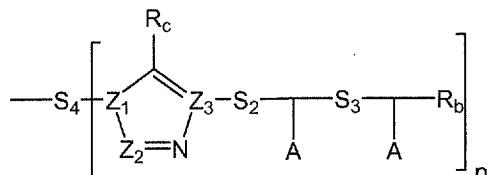

Most preferably S₂, S₃, S₄ are independently of each other straight-chain or branched C1-C6 alkyl, which is unsubstituted or substituted by at least one CN, Hal, OH, or NO₂.

15 In a further preferred embodiment R_c is H, CO₂R', COR', -SO₃R', -NHR' or C1-C12 alkyl, wherein R' represents H or C1-C6 alkyl.


In a specific embodiment the present invention is directed to a compound of formula III, wherein (a) R₆ is H, straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by 20 at least one CN, Hal or NO₂, and R₇ is a group of formula IV, (b) R₆ is a group of formula IV, and R₇ is H, straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO₂, or (c) both R₆ and R₇ are a group of formula IV.

25 In a further specific embodiment m is 0 or 1.

Thus the present invention is directed towards compounds of formula III, wherein at least one of R₆ and R₇ is a group of formula IVa, IVb and/or a group of formula IVb'



IVa

5

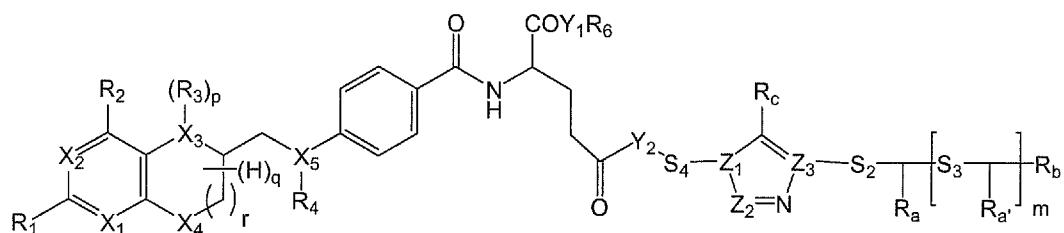
IVb

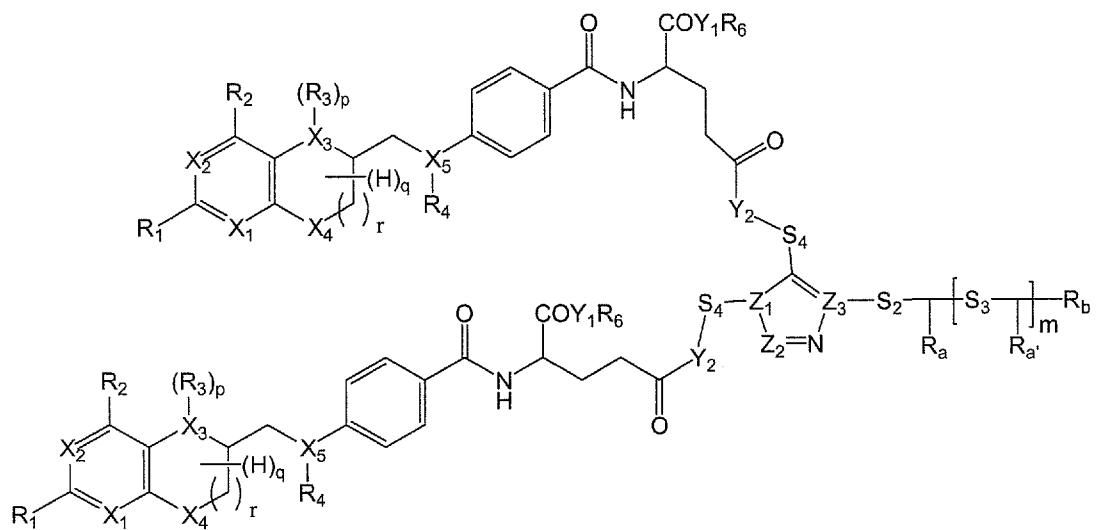
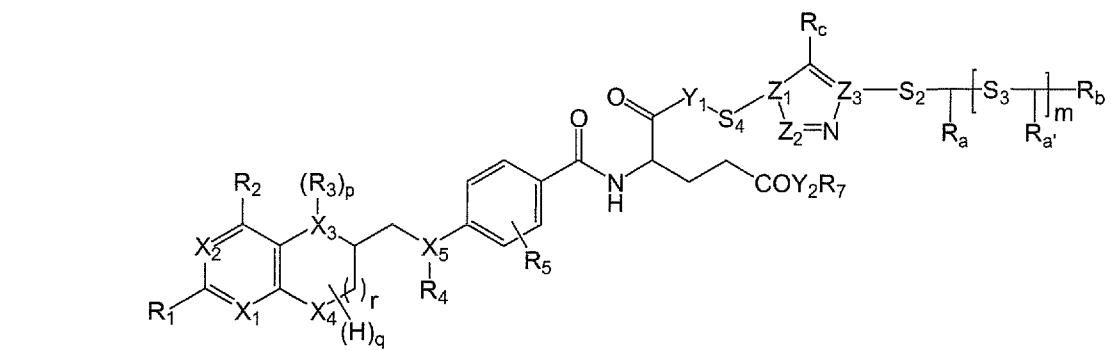
IVb'

wherein

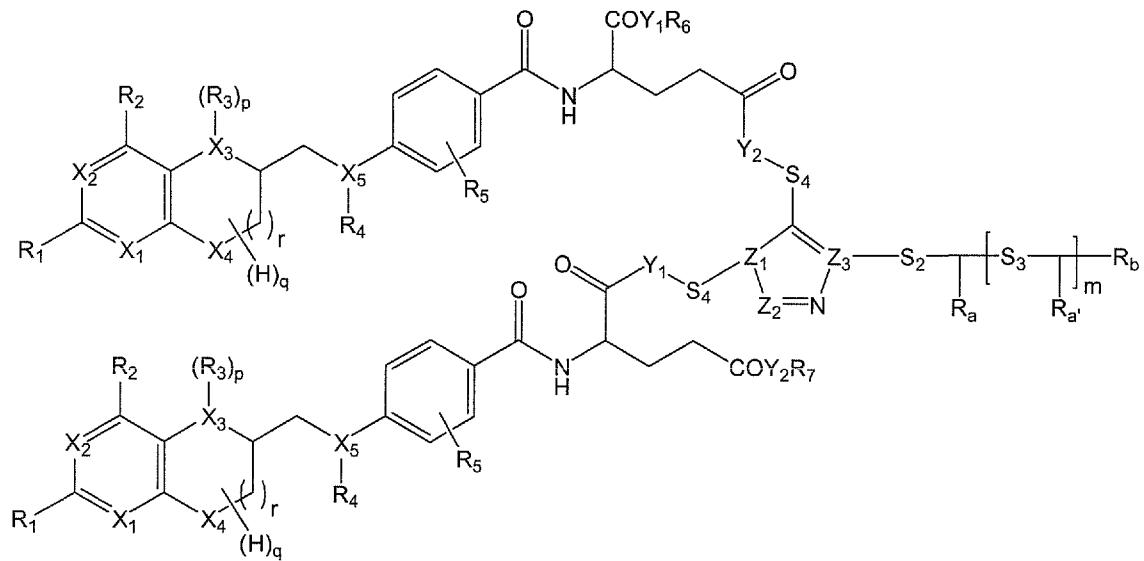
Z_1 , Z_2 , Z_3 are independently of each other C or N,

S_2 , S_3 , S_4 are independently of each other a single bond or a 10 spacer, such as straight chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', wherein R' represents H or C1-C6 alkyl,

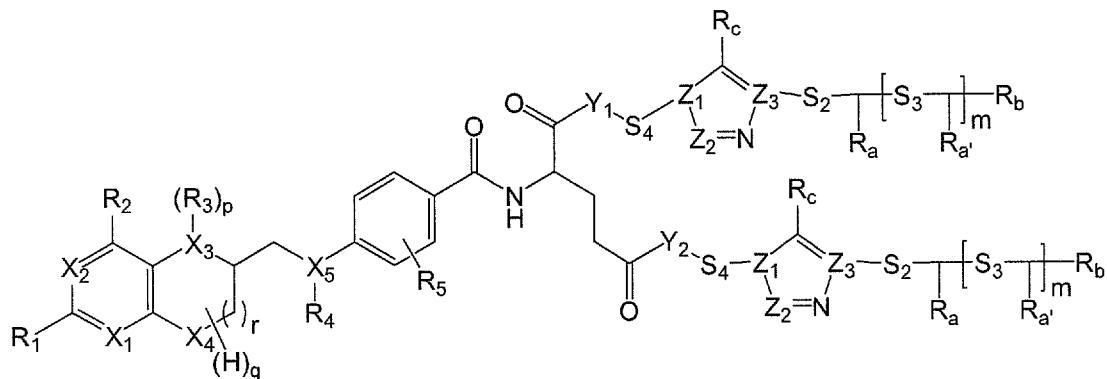

A represents independently of each other -COOH, -NH₂, -CONH₂, 20 or -SH,



R_a, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, wherein R' represents H or C1-C6 alkyl, or a F as defined hereinabove,

R_c is H, CO_2R' , COR' , $-SO_3R'$, $-NHR'$, wherein R' represents H, C1-C6 alkyl, or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO_2 , or a F as defined hereinabove, and

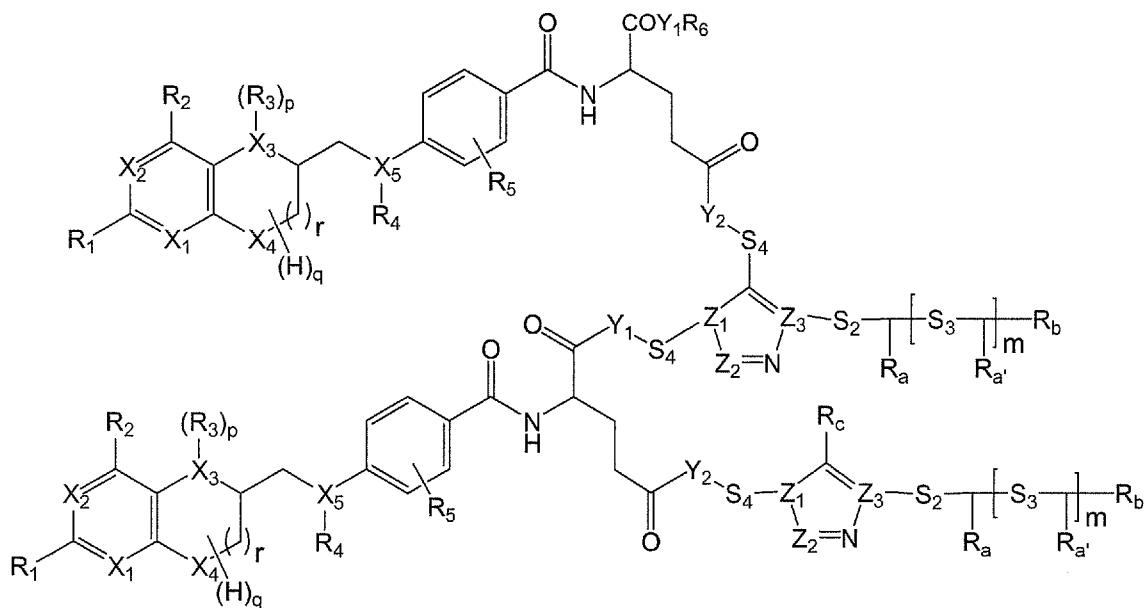

5 n is 1 or 2.

It is understood that all possible permutations (shown or not shown) of compounds of formula III together with a group of formula IV in combination with a group F and two adjacent donor groups are part of this invention. These include a compound of formula III, wherein either R_6 or R_7 or both are a group of formula IV, and wherein R_a , $R_{a'}$, R_b , and/or R_c in each of these compounds may represent a group F (whereby two of R_a , $R_{a'}$, R_b are adjacent donor groups, as e.g. shown in the specific embodiment 10 of group of formulae IVa, IVb and IVb'). Selected compounds are depicted by formulas V and V', Va and Va', Vb and Vb', wherein the possibility of R_c being a group F is illustrated. It is understood that all other permutations with R_a , $R_{a'}$ and R_b being a group F and which are not illustrated are also within the scope 15 of invention.



 V'

5


 V_a

Va'

Vb

5

Vb'

wherein

X₁, X₂, X₃, X₄ and X₅ are independently of each other C or N;10 Y₁, Y₂ are independently of each other C, O or N,Z₁, Z₂, Z₃ are independently of each other C or N;R₁ and R₂ are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl,

C₂-C₁₂ alkynyl, (C₁-C₁₂ alkoxy)carbonyl, and (C₁-C₁₂ alkylamino)carbonyl, wherein R' is H or C₁-C₆ alkyl,

R₃ and R₄ are independently of each other H, formyl, iminomethyl, nitroso, C₁-C₁₂ alkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkanoyl, halosubstituted C₁-C₁₂ alkanoyl,

R₅ is H, CN, Hal, NO₂, C₁-C₁₂ alkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkanoyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, (C₁-C₁₂ alkoxy)carbonyl, and (C₁-C₁₂ alkylamino)carbonyl,

R₆, R₇ are independently of each other H, straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO₂,

S₂, S₃, S₄ are independently of each other a single bond or a spacer, such as straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', wherein R' represents H or C₁-C₆ alkyl,

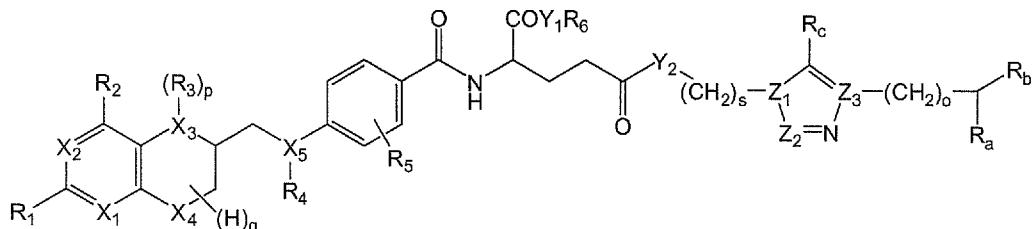
R_a, R_{a'}, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, wherein R' represents H or C₁-C₆ alkyl, or a F as defined hereinabove, and wherein of groups R_a, R_{a'} and R_b at least two adjacent groups are a donor group -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine or a heterocyclic group

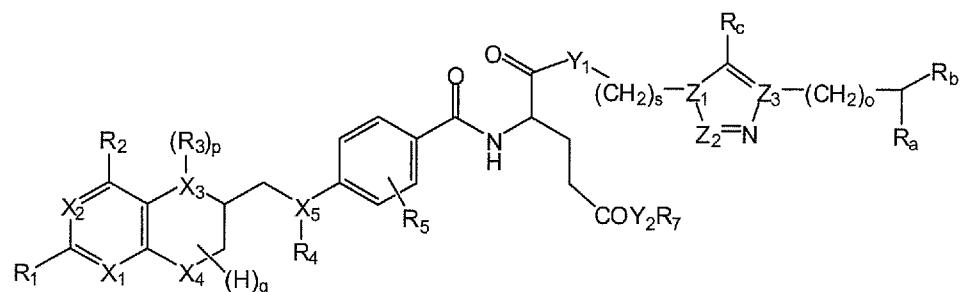
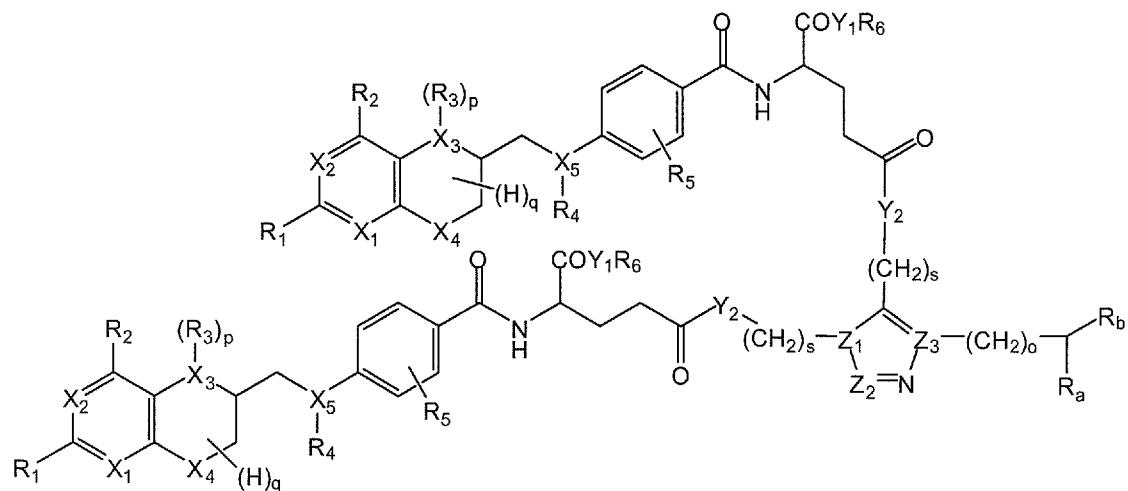
R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H, C₁-C₆ alkyl, or straight-chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂,

or a F as defined hereinabove,

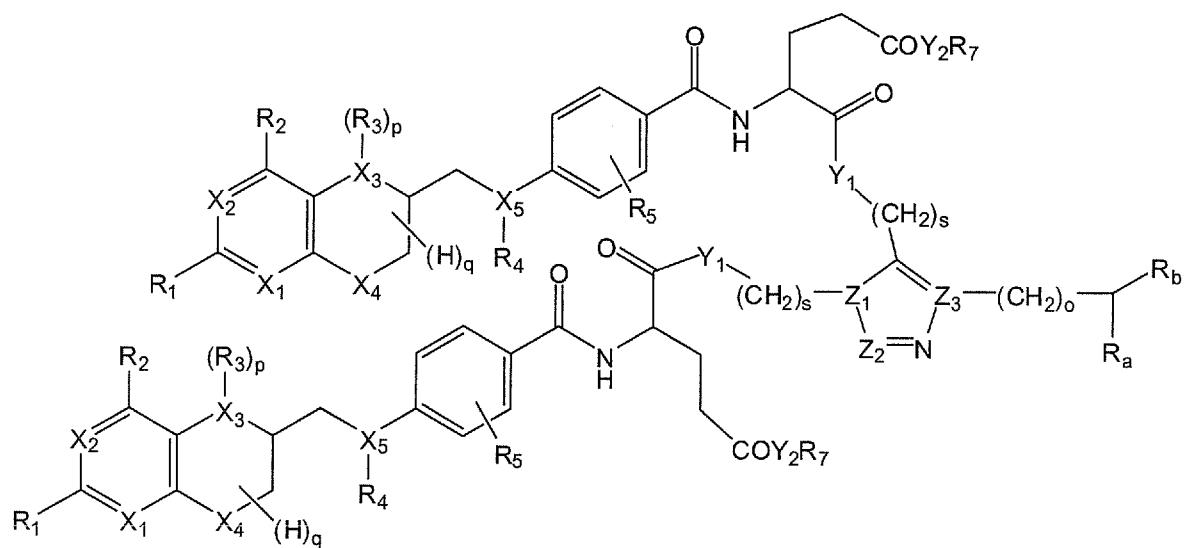
m is 0, 1, 2, 3, or 4,

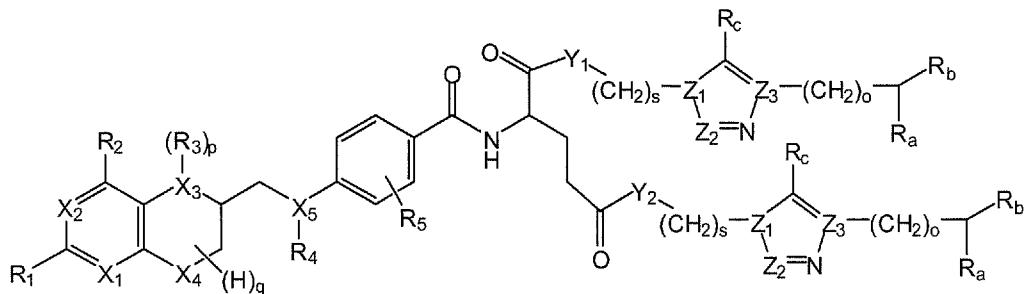
p has a value of 0, 1 or 2,

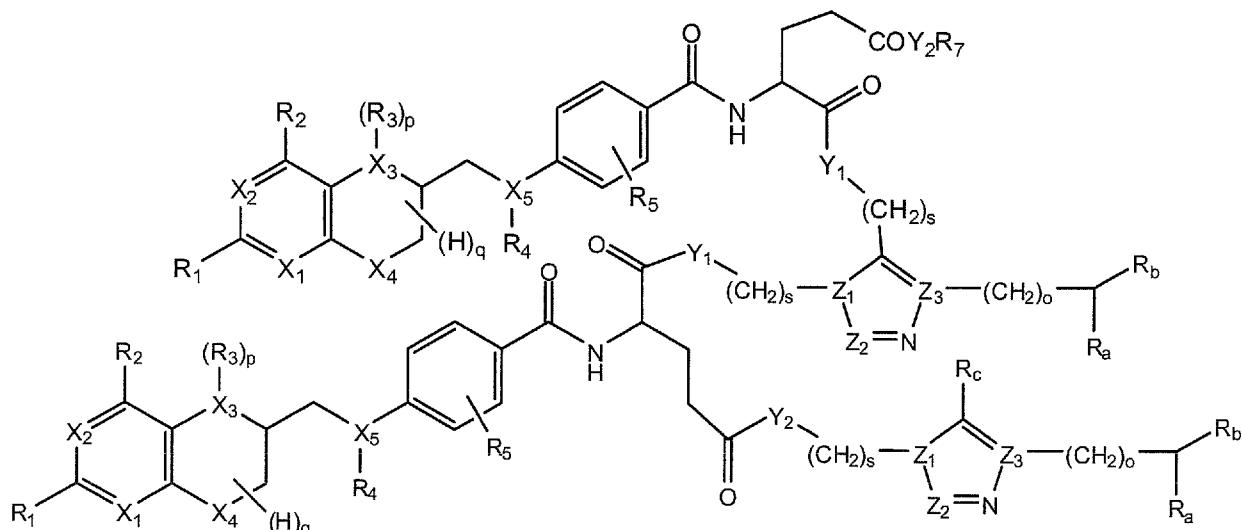

q has a value of 1 to 7, and



5 r is 0 or 1.

In a more preferred embodiment the present invention contemplates compounds wherein S_2 , S_3 , S_4 are independently of each other straight-chain or branched C1-C8 alkyl, which is unsubstituted or substituted by at least one CN, Hal, OH, or NO_2 and wherein one or more of non-adjacent CH_2 groups may independently be replaced by -O-, -CO-, -CO-O-, -NR'-, -NR'-CO-, -CO-NR'-, wherein R' represents H or C1-C6 alkyl.


15 In a further specific embodiment m is 0 or 1.


Thus, in a further preferred embodiment the present invention is for example directed to a compound of formulas VI and VI', VIa and VIa', and VIb and VIb',



5

VIb

5

VIb'

wherein

X₁, X₂, X₃, X₄ and X₅ are independently of each other N or C,

10 Z₁, Z₂, Z₃ are independently of each other C or N,

Y₁, Y₂ are independently of each other C, O or N,

R₁ and R₂ are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy) carbonyl, and (C1-C12 alkylamino) carbonyl, wherein R' is H or C1-C6 alkyl,

R₃ and R₄ are independently of each other H, formyl, iminomethyl,

nitroso, C₁-C₁₂ alkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkanoyl, halosubstituted C₁-C₁₂ alkanoyl,

R₅ is H, CN, Hal, NO₂, C₁-C₁₂ alkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkanoyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, (C₁-C₁₂ alkoxy)carbonyl, 5 and (C₁-C₁₂ alkylamino)carbonyl,

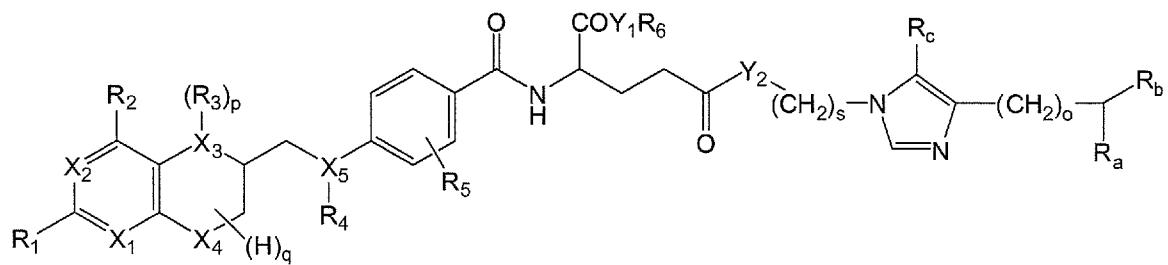
R₆, R₇ are independently of each other H or straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO₂,

R_a, R_b are independently of each other a donor group such as -OH, 10 -COOH, -NHR', -CONH₂, -SH, or a heterocyclic group selected from pyridyl, pyrrolyl, and thiazolyl, wherein R' represents H or C₁-C₆ alkyl

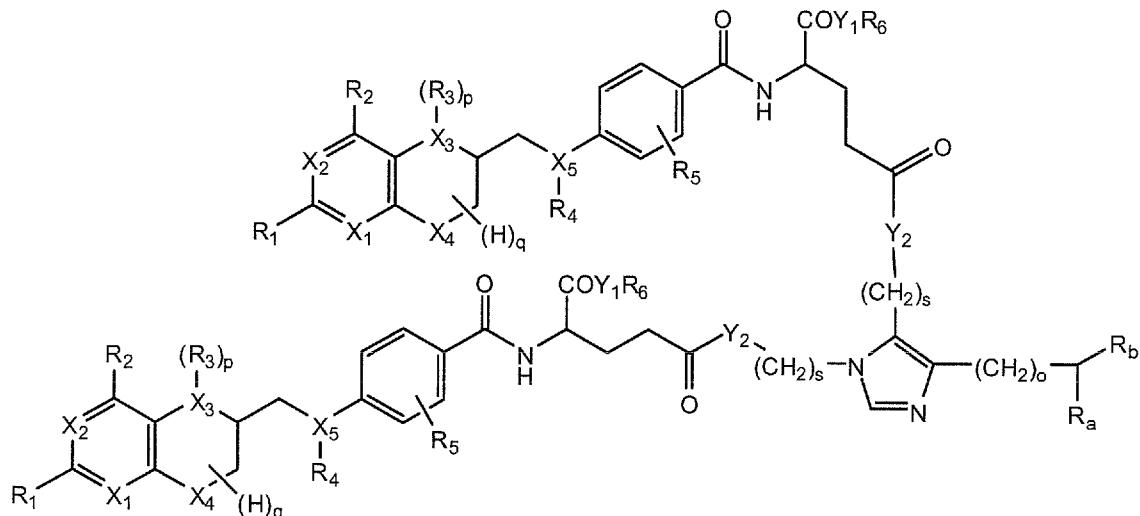
R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H or 15 C₁-C₆ alkyl, or straight-chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂,

p has a value of 0, 1 or 2,

q has a value of 1 to 7,

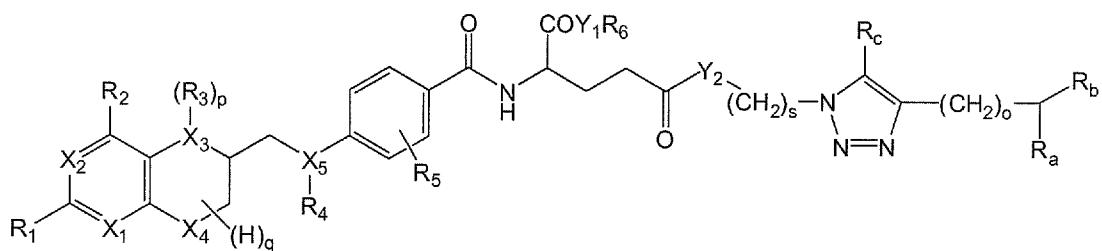

s is 1 to 8, and

o is 1 to 6.

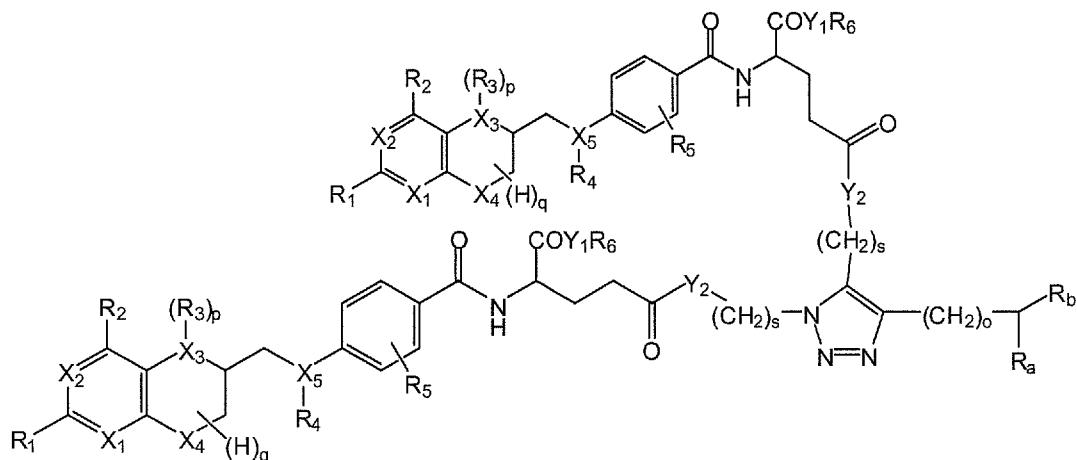

20

Preferably either (i) Z₁ is N, Z₃ is C and Z₂ is C or N, or (ii) Z₁ is C and Z₂ and Z₃ are N.

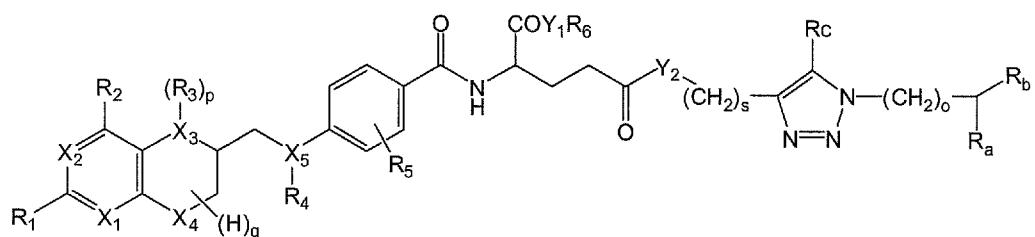
Thus, in a further preferred embodiment the the present invention 25 is directed to a compound of formulae VII and VII', VIIa and VIIa', and VIIb and VIIb'

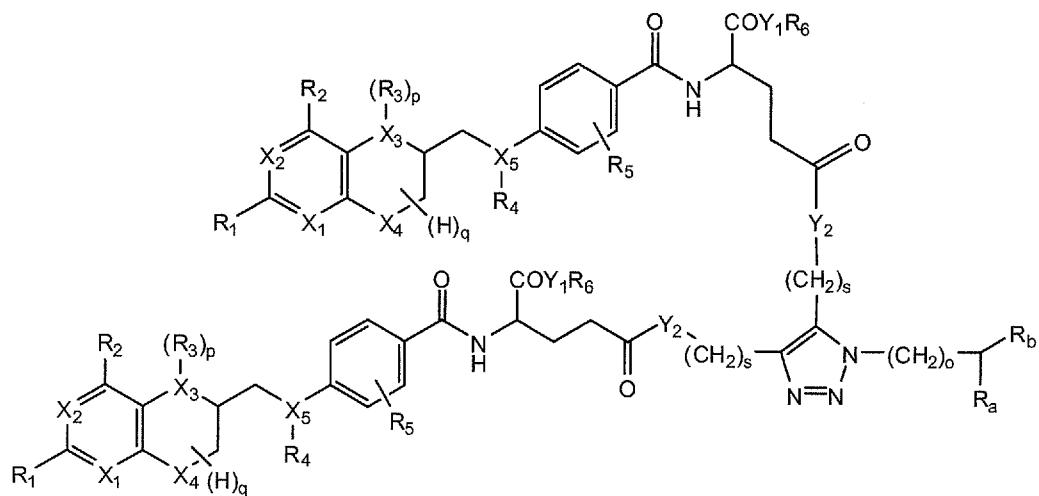


VII



5


VII'


VIIa

VIIa'

VIIa

VIIb'

wherein

X_1 , X_2 , X_3 , X_4 and X_5 are independently of each other N or C,

Y_1 , Y_2 are independently of each other C, O or N,

R_1 and R_2 are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl, wherein R' is H or C1-C6 alkyl,

R_3 and R_4 are independently of each other H, formyl, iminomethyl, nitroso, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, halosubstituted C1-C12 alkanoyl,

R_5 is H, CN, Hal, NO₂, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl,

R_6 is H or straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO₂,

R_a and R_b are independently of each other a donor group such as -OH, -COOH, -NHR', -CONH₂, -SH, or a heterocyclic group selected from pyridyl, pyrrolyl, and thiazolyl, wherein R' represents H or C1-C6 alkyl

R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H or C1-C6 alkyl, or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂,

p has a value of 0, 1 or 2,

q has a value of 1 to 7,

s is 1 to 8, and

o is 1 to 6.

In a further preferred embodiment R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H or C1-C6 alkyl, or C1-C12 alkyl.

In a most preferred embodiment R_a is $-\text{NH}_2$, R_b is $-\text{OH}$ and R_c is H.

Preferably σ is 1, 2, 3 or 4.

- 5 It is understood that the abbreviations "N" and "C" are representative for all possible degrees of saturation, i.e. N includes $-\text{NH}-$ and $-\text{N}=$ linkages and C includes $-\text{CH}_2-$ and $-\text{CH}=$ linkages.
- 10 It is understood that the abbreviation $(\text{H})_q$ represents all H substituents on the indicated ring (i.e. on X_3 , C_6 , C_7 and X_4). For example $q = 5$ for a fully saturated unsubstituted analog ($\text{X}_3 = \text{X}_4 = \text{N}$, $p = 0$) or $q = 7$ for a fully saturated unsubstituted 5,8-dideaza analog ($\text{X}_3 = \text{X}_4 = \text{C}$, $p = 0$) and $q = 1$ for a fully unsaturated analog with $\text{X}_3 = \text{X}_4 = \text{N}$, $p = 0$.

In a preferred embodiment, R_1 and R_2 may independently of each other represent H, alkyl, $-\text{OR}'$, $-\text{NHR}'$, more preferably $-\text{OR}'$, $-\text{NHR}'$.

20

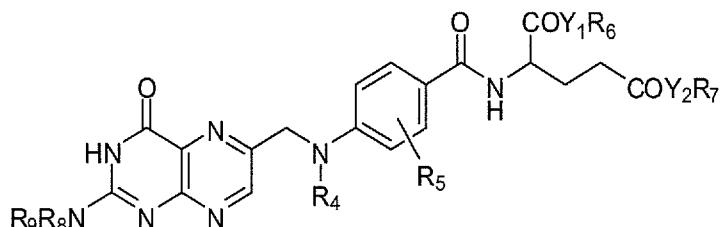
In a preferred embodiment, R_3 is H, formyl, C1-C12 alkyl or C1-C12 alkanoyl.

25 In another preferred embodiment, R_4 is H, nitroso, C1-C12 alkoxy, or C1-C12 alkanoyl.

In a preferred embodiment, R_6 is H or straight chain or branched

C_1-C_{12} alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO_2 , more preferably R_6 is H or straight chain or branched C_1-C_{12} alkyl. In a most preferred embodiment, R_6 is H.

- 5 In another preferred embodiment R_a , $R_{a'}$, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', or a heterocyclic group selected from pyridyl, pyrrolyl, and thiazolyl wherein R' represents H or C_1-C_6 alkyl, or a F as defined hereinabove. More preferably R_a , $R_{a'}$, R_b are independently of each
10 other H, -OR', -COOR', -NHR', -CONHR', -SR', wherein R' represents H or C_1-C_6 alkyl, or a F as defined hereinabove.


Preferred donor groups for R_a , $R_{a'}$, R_b are -OH, -COOH, -NHR', -CONH₂, -SH, or a heterocyclic group selected from pyridyl, pyrrolyl, and thiazolyl, wherein R' represents H or C_1-C_6 alkyl. More
15 preferred donor groups for R_a , $R_{a'}$, R_b are independently of each other -OH, -COOH, -NHR', -CONH₂, -SH, wherein R' represents H or C_1-C_6 alkyl.

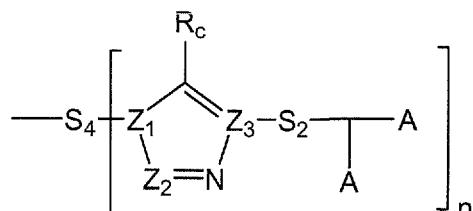
Further preferred embodiments include:

- 20 (i) X_1 to X_5 are N, R_1 is NH_2 , R_2 is O, R_4 is H, s is 1, 3 or 5, and all the other parameters are as defined in formulae VII, VIIa or VIIb
25 (ii) X_1 to X_5 are N, Y is O, R_1 is NH_2 , R_2 is O, R_3 is H, methyl or formyl, R_4 is H, methyl or formyl, R_6 is H, methyl or ethyl, s is 1, 3 or 5, and all the other parameters are as defined in formulae VII, VIIa or VIIb
(iii) X_1 to X_5 are N, Y is O, R_1 is NH_2 , R_2 is O, R_3 is H, methyl or formyl, R_4 is H, R_6 is H, s is 1, 3 or 5, R_a and R_b are -OH, and all the other parameters are as de-

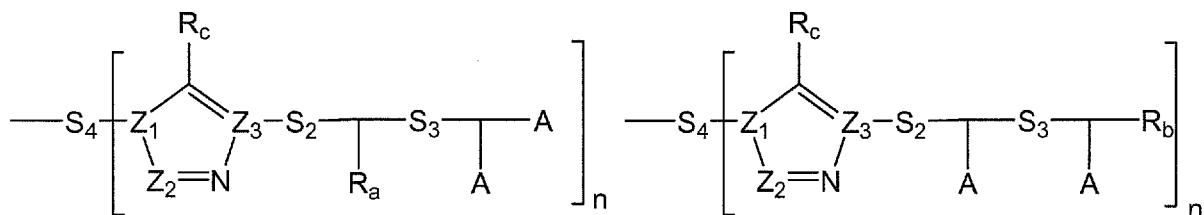
fined in formulae VII, VIIa or VIIb

Thus, in a further specific embodiment the present invention is directed to a compound of formula VIII,

wherein,


Y₁, Y₂ are independently of each other C, N or O,

10 R₈, R₉ are independently of each other H, formyl, straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO₂,


R₄ is selected from H, nitroso, C₁-C₁₂ alkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkanoyl, halosubstituted C₁-C₁₂ alkanoyl, and

15 R₅ is H, CN, Hal, NO₂, C₁-C₁₂ alkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkanoyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, (C₁-C₁₂ alkoxy) carbonyl, and (C₁-C₁₂ alkylamino) carbonyl,

R₆ and R₇ are independently of each other H, straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO₂, or a group of formula IVa, IVb and/or a group of formula IVb'

IVa

IVb

IVb'

5

wherein

Z_1 , Z_2 , Z_3 are independently of each other C or N,

S_2 , S_3 , S_4 are independently of each other a single bond or a spacer, such as straight chain or branched C1-C12 alkyl, which 10 is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five-15 or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', wherein R' represents H or C1-C6 alkyl,

A represents independently of each other -COOH, -NH₂, -CONH₂, or -SH,

20 R_a , R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, wherein R' represents H or C1-C6 alkyl, or a F as defined herein-above,

R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H, 25 C1-C6 alkyl, or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂,

or a F as defined hereinabove, and

n is 1 or 2.

Preferably either (i) Z_1 is N, Z_3 is C and Z_2 is C or N, or (ii) 5 Z_1 is C and Z_2 and Z_3 are N.

The term "alkyl", when used singly or in combination, refers to straight chain or branched alkyl groups containing 1 to 12 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, sec-10 butyl, isobutyl, t-butyl, pentyl isopentyl, neopentyl, hexyl and the like. The preferred alkyl groups contain 1 to 8, more preferably 1 to 4 carbon atoms.

As used herein, the term "alkenyl", singly or in combination 15 with other groups, refers to straight chain or branched alkylene groups containing 2 to 12 carbon atoms, such as methylene, ethylene, propylene, isopropylene, butylene, t-butylene, sec-butylene, isobutylene, amylene, isoamylene, pentylene, isopentylene, hexylene and the like. The preferred alkenyl groups contain 20 2 to 6 carbon atoms.

The term "alkynyl" as used herein refers to a linear or branched chain of carbon atoms with one or more carbon-carbon triple bonds. The preferred alkynyl groups contain 2 to 12, more preferably 25 2 to 6 carbon atoms.

The term "alkoxy" as used herein refers to alkyl, as defined above, substituted with oxygen, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, tert-butoxy and the like.

The term "alkanoyl" as used herein refers to formyl, or alkyl, as defined above, terminally-substituted with a carbonyl such as acetyl, propanoyl, butanoyl, pentanoyl and the like.

- 5 The term "alkylamino" as used herein refers to alkyl, as defined above, substituted with nitrogen, including both monoalkylamino such as methylamino, ethylamino, propylamino, tert-butylamino, and the like, and dialkylamino such as dimethylamino, diethylamino, methylpropylamino, and the like.

10

The term "halo" as used herein refers to any Group 7 element and includes fluoro, chloro, bromo, iodo, and astatine(o).

- 15 The term "five- or six-membered aromatic carbocyclic or heterocyclic ring" refers to five- or six-membered aromatic carbocyclic rings such as phenyl, cycloheptyl, cyclohexyl, and cyclopentyl, and five- or six-membered aromatic heterocyclic rings containing at least one heteroatom selected from N, S, O, and P, such as pyridyl, piperidino, piperazino, morpholino, imidazolyl, 20 triazolyl, tetrazolyl, oxazolyl, thiazolyl, pyrrolidinyl, and pyrazolyl.

- 25 The term "heterocyclic group" as used herein refers to a saturated heterocyclic group or unsaturated heterocyclic group having at least one heteroatom selected from N, S, O, and P, preferably N or S. Examples of a saturated heterocyclic group include tetrahydrofuryl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, piperidyl, morpholinyl, thiamorpholinyl and piperazinyl. Examples of a unsaturated heterocyclic group include furyl, pyrrolyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isooxazolyl 30 and pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl and pyridazinyl.

These heterocyclic groups may be substituted by alkyl such as methyl or ethyl, halogen atom or phenyl. When the heterocyclic group is substituted by phenyl, it may form a condensed ring combining the two adjacent carbon atoms in the heterocyclic group with the phenyl group. Examples of the condensed rings include benzothiazolyl, benzofuryl, quinazolinyl and quinoxalinyl. Preferred heterocyclic groups are pyridyl, pyrrolyl, and thiazolyl.

As used herein, the term "phosphine" includes, for example, tri-arylpophosphines, trialkylphosphines and tris(dialkylamino)phosphines, which may have a substituent, and the like. Specific examples thereof include, for example, 1,2-bis(dimethylphosphino)ethane and tris-hydroxymethylenephosphine.

As used herein, the term "optionally substituted" includes C(1-6)alkyl, C(1-6)alkenyl, C(1-6)acyl, aryl C(1-6)alkylaryl, cyano, nitro and halo, preferably C(1-6)alkyl, cyano, nitro and halo, most preferably C(1-4)alkyl.

In another aspect, the invention provides complexes comprising compounds of the present invention and ^{99m}Tc , $^{186/188}\text{Re}$, $^{111}\text{In}^{+3}$, $^{67/68}\text{Ga}^{+3}$, $^{90}\text{Y}^{+3}$, $^{109}\text{Pd}^{+2}$, $^{105}\text{Rh}^{+3}$, ^{177}Lu , $^{64/67}\text{Cu}$ ^{166}Ho , ^{213}Bi hereinafter also called complexes of the present invention. Preferably the complexes of the present invention comprise ^{99m}Tc , ^{186}Re or ^{186}Re . Technetium, which is particularly useful as a diagnostic imaging agent, is preferably one or more of the radionuclides ^{99m}Tc , ^{94m}Tc or ^{96}Tc . As indicated hereinabove, the preferred radioisotope for medical imaging is ^{99m}Tc . Its 140 keV .gamma.-photon is ideal for use with widely-available gamma cameras. It has short (6 hour) half-life, which is desirable when considering patient dosimetry. Rhenium, which is particularly useful as a radiotherapy agent, is preferably one of the radionuclides ^{186}Re or ^{188}Re , or a mixture thereof.

In a further aspect the present invention also provides methods of synthesizing a compound of the invention. In a first method of synthesis the heterocyclic ligand site for the radionuclide 5 is synthesized first and subsequently linked through a suitable linker to a suitably protected pteroic or folic acid derivative to obtain the final compound of choice (see for example Figure 1).

In one specific embodiment this method of synthesis for example 10 includes in a first step coupling of a histidine fragment (compound 1 in Fig 1), which is suitably protected at the amino- and carboxy-terminus to a linker S_3 having a suitable leaving group LG. Subsequent couplings to first a glutamic acid residue and then to a folic acid residue results in the final folic acid 15 conjugate which upon deprotection can be complexed with a suitable radionuclide.

It will be obvious for a skilled person to select appropriate conditions for the various coupling steps and choose appropriate protecting groups PG (e.g. see Greene & Wuts, Eds., Protective Groups in Organic Synthesis, 2nd Ed., 1991, John Wiley & Sons, NY.) and leaving groups LG (e.g. a halogen, tosylate, mesylate, triflate, carbonate group).

In a second method of synthesis, a folic or pteroic acid moiety 25 and a ligand site moiety are synthesized first, wherein the folic or pteroic acid moiety carries an azide group and the ligand site moiety carries an alkyne group (or vice versa) and subsequently coupled in a cycloaddition under thermal conditions or in the presence of a catalyst to obtain the final compound of 30 choice (Kolb and Sharpless, Drug Discovery Today 2003, 8, 1128; Kolb et al. Angew. Chem. Int. Ed. 2001, 40, 2004; Rostovtsev, V.

V. et al. Angew. Chem. Int. Ed. 2002, 41, 2596; US 2005/02222427; WO 06/116629).

These reactions are known as Huisgen 1,3-dipolar cycloaddition (thermal conditions) and Click-Reaction (catalytic conditions) 5 and have been described in the art (Kolb and Sharpless, Drug Discovery Today 2003, 8, 1128; Kolb et al. Angew. Chem. Int. Ed. 2001, 40, 2004; Rostovtsev et al. Angew. Chem. Int. Ed. 2002, 41, 2596; US 2005/02222427; WO 06/116629). More specifically compounds of formula I wherein the fivemembered heterocycle is a 10 triazole are obtained by cycloaddition of an azide R_a-N_3 with an alkyne $R_b-C\equiv C-R_c$ and compounds of formula I wherein the fivemembered heterocycle is a tetrazole are obtained by cycloaddition of an azide R_a-N_3 with a cyanide $R_b-C\equiv N$. All possible combinations are contemplated herein, i.e. R_a being the folate derivative and R_b being a chelating moiety or precursor thereof as well 15 as R_b being the folate derivative and R_a being a chelating moiety or precursor thereof. Thus the modular and versatile nature of the reaction allows to employ a wide variety of linkers to couple the radioisotope to folic acid.

20 In one specific embodiment the cycloaddition is performed under thermal conditions, i.e. at temperatures ranging from 10 to 200 °C, preferably from 10 to 100 °C.

In another embodiment the cycloaddition is performed in the presence of a catalyst, such as a transition metal complex, such 25 as Ru and Cu(I). Preferred catalysts are Cu(I) salts, such as Cu(I) chloride, bromide, iodide. Alternatively Cu(I) can be obtained by in situ reduction of a Cu(II) salt. This reaction can be performed in a variety of protic or aprotic solvents, such as for example methanol, ethanol, 2-propanol, tertiary-butanol, n-30 butanol and/or water or buffered solutions thereof, at a wide range of temperatures (such as between 10 and 100 °C, preferably room temperature) and varying pH (such as from 4 to 12), under oxidative or reducing conditions and in the presence of other

functional groups with no need for protecting groups.

It will be obvious for a skilled person to select appropriate conditions (see also US 2005/0222427 which is incorporated herein by reference as well as references cited therein).

5 Thus, in one exemplary reaction, an alkynyl derivatized chelating moiety or precursor thereof (e.g. propargyl glycine) is coupled with azido folic acid under standard conditions (for example Na-ascorbate, Cu(OAc)₂, ^tBuOH/H₂O (1:1), rt). Alternatively, a chelating moiety or precursor thereof functionalized with an 10 azido group is coupled to an alkyne substituted folic acid or derivative of choice in a Cu(I)-catalyzed cycloaddition under standard conditions. Both click product are then labelled with e.g. [^{99m}Tc(CO)₃(H₂O)₃]⁺ to provide the SPECT tracer.

Clearly, both routes allow the incorporation of a wide varieties 15 of linkers to couple a different chelating moieties (and hence radiometals) to folic acid.

Specific embodiments are discussed in the Examples section.

The present invention further provides a method of synthesizing 20 a complex of the invention, which comprises labeling a compound of the invention, which includes the steps of first obtaining a compound of the invention, and reacting the compound with a radionuclide as specified hereinabove, preferably Tc-99m, Re-186 or Re-188, generally in the presence of a reducing agent to form 25 a metal chelate complex between the compound of the invention and the radionuclide. The reducing agent may be any known reducing agent, but will preferably be a dithionite ion or a stannous ion. In a specific embodiment, preparation of a complex of the present invention containing rhenium as the metal may be accomplished using rhenium in the +5 or +7 oxidation state. Examples 30 of compounds in which rhenium is in the Re(VII) state are NaReO₄

or KReO₄. Re(V) is available as Re-gluconate, Re-glucoheptonate, Re-tartrate, Re-citrate. Other rhenium reagents capable of forming a rhenium complex may also be used.

5 In a further aspect the invention provides pharmaceutical compositions comprising a diagnostic imaging amount or a therapeutically effective amount of at least one complex of the present invention and a pharmaceutically acceptable carrier therefor. In a preferred embodiment, the pharmaceutical compositions contain
10 at least one complex that contains Tc-99m, Re-186 or Re-188.

As used herein, a pharmaceutically acceptable carrier, which is present in an appropriate dosage, includes solvents, dispersion media, antibacterial and antifungal agents, isotonic agents, and the like which are physiologically acceptable. The use of such
15 media and agents are well-known in the art.

In a further aspect the present invention provides uses of complexes and/or pharmaceutical compositions of the present invention for convenient and effective administration to a subject in
20 need for diagnostic imaging or radiotherapy. The subject of the methods of the present invention is preferably a mammal, such as an animal or a human, preferably a human.

Thus in a particular embodiment the present invention provides a method for diagnostic imaging of a cell or population of cells
25 expressing a folate-receptor, said method comprising the steps of administering at least one complex or composition of the present invention in a diagnostic imaging amount, and obtaining a diagnostic image of said cell or population of cells.

The complexes and/or compositions of the present invention may
30 also be used as radiotherapy agents useful for the treatment of a subject in need thereof.

Thus in another particular embodiment the present invention provides a method for radiotherapy comprising the steps of administering to a subject in need thereof at least one complex or composition of the present invention in therapeutically effective amounts, and after localization of said at least one complex or composition in the desired tissues, subjecting the tissues to irradiation to achieve the desired therapeutic effect.

In yet another embodiment the present invention provides a method for simultaneous diagnosis and radiotherapy comprising the steps of administering to a subject in need thereof at least one complex or composition of the present invention in a diagnostically and therapeutically effective amount, and after localization of said at least one complex or composition in the desired tissues, subjecting the tissues to irradiation, and obtaining a diagnostic image of said tissues to follow the course of treatment.

An image of a cell or tissue expressing the folate receptor, i.e. a tumor cell or tissue, labeled with one or more of the complexes or compositions of the present invention can be detected using a radiation detector, e.g. a γ -radiation detector. One such procedure utilizes scintigraphy. Tomographic imaging procedures such as single photon emission computed tomography (SPECT) can also be used to improve visualization. Selection and use of such radiation detectors is within the skill of one of ordinary skill in the art. Thus, a diagnostic imaging amount of a complex or composition of the present invention to be administered may be selected in an amount sufficient such as to produce a diagnostic image of an organ or other site of the subject as described hereinabove. A therapeutically effective amount of a complex or composition of the present invention to be administered may be selected in an amount sufficient such as to produce a desired radiotherapeutic effect. More specifically a therapeutically effective amount is an amount of at least one of the

complexes of the present invention which will permit sufficient tumor localization of the complex to stop and/or diminish tumor growth or size. As provided herein tumor growth or size can be monitored using the methods of the present invention or any 5 other known diagnostic imaging procedure. Clearly the specific activity of the radionuclide of choice, e.g. ^{99m}Tc , $^{186/188}\text{Re}$, $^{111}\text{In}^{+3}$, $^{67/68}\text{Ga}^{+3}$, $^{90}\text{Y}^{+3}$, $^{109}\text{Pd}^{+2}$, $^{105}\text{Rh}^{+3}$, ^{177}Lu , $^{64/67}\text{Cu}$ ^{166}Ho , ^{213}Bi , preferably Tc-99m, Re-186 or Re-188, will be taken into consideration in determining a dosage for diagnostic imaging or radio-10 therapy.

Generally, the unit dose to be administered has a radioactivity of about 0.01 mCi to about 300 mCi, preferably 10 mCi to about 200 mCi. For a solution to be injected a preferred unit dosage 15 is from about 0.01 mL to about 10 mL. After e.g. intravenous administration, imaging of the organ or tumor *in vivo* can take place, if desired, from within minutes to hours or even longer, after the radiolabeled reagent has been administered to a subject. Typically, a sufficient amount of the administered dose 20 will accumulate in the targeted area to be imaged within about 0.1 to 1 of an hour.

The complexes and/or compositions of the present invention may be administered by an appropriate route such as parentally (for 25 example, intravenously), intramuscularly or intraperitoneally or by any other suitable method. For example, the complexes and/or compositions of this invention may be administered to a subject by bolus or slow infusion intravenous injection. The suitable forms for injection include sterile aqueous solutions or dispersions 30 and sterile powders of the above mentioned complexes and/or compositions of the present invention.

The complexes or pharmaceutical compositions are preferably

sterile. Sterilization can be accomplished by any art recognized technique, including but not limited to, addition of antibacterial or antifungal agents, for example, paraben, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.

5

The complexes and/or compositions of the invention may also be used for in vitro detection of a cell expressing the folate receptor in a tissue biopsy taken from a subject. Thus in a further embodiment the present invention provides a method for in vitro detection of a cell expressing the folate receptor, e.g. a tumor cell, in a tissue sample which includes contacting said tissue sample with a complex or composition of the present invention in effective amounts and for sufficient time and conditions to allow binding to occur and detecting such binding by imaging techniques.

Samples can be collected by procedures known to the skilled person, e.g., by collecting a tissue biopsy or a body fluid, by aspirating for tracheal or pulmonary samples and the like.

Tissue samples to be tested include any tissue suspected to contain a cell expressing a folate receptor, such as tumor cells, epithelial cells, kidneys, gastrointestinal or the hepatobiliary system, and others. Samples can be sectioned, e.g., with a microtome, to facilitate microscopic examination and observation of bound complex. Samples can also be fixed with an appropriate fixative either before or after incubation with one of the complexes or compositions of the present invention to improve the histological quality of sample tissues.

Time and conditions sufficient for binding of a complex of the present invention to a folate receptor on the cell include standard tissue culture conditions, i.e. samples can be cultured in vitro and incubated with one of the complexes or compositions of the present invention in physiological media. Such conditions

are well known to the skilled person. Alternatively, samples can be fixed and then incubated with a complex or composition of the present invention in an isotonic or physiological buffer.

A typical amount of said complex of the present invention for in vitro detection of a tumor cell can range from about 1 ng/l to about 1000 µg/l. A preferred amount is about 1 µg/l to about 100 µg/l. Preferred complexes to be used for in vitro diagnosis of a tumor cell are the same as for in vivo applications and include ^{99m}Tc, ^{186/188}Re, ¹¹¹In⁺³, ^{67/68}Ga⁺³, ⁹⁰Y⁺³, ¹⁰⁹Pd⁺², ¹⁰⁵Rh⁺³, ¹⁷⁷Lu, ^{64/67}Cu ¹⁶⁶Ho, ²¹³Bi, preferably Tc-99m, Re-186 or Re-188.

For detection of cellular binding of one of the present compounds, samples can be incubated in the presence of a selected complex, then washed and counted in a standard scintillation counter. Alternative methods apply and are known to the skilled person.

For diagnostic or radiotherapy applications it is convenient to prepare the complexes of the present invention at, or near, the site where they are to be used. Thus in a further aspect the present invention provides a single or multi-vial kit containing all of the components needed to prepare the complexes or compositions of this invention, other than the radionuclide ion itself. Thus a preferred single-vial kit of the present invention comprises a compound of the present invention, and a source of a pharmaceutically acceptable reducing agent such as a stannous salt. In addition, the kit comprises optionally further additives, for example the kit is buffered with a pharmaceutically acceptable acid or base to adjust the pH to a desired value for complex formation. Such a single vial kit may optionally contain exchange ligands such as glucoheptonate, gluconate, mannitol, maleate, citric or tartaric acid and may also contain reaction modifiers, such as diethylenetriaminepentaacetic acid or ethyl-

enediamine tetraacetic acid. Additional additives, such as solubilizers (for example a cyclodextrin), antioxidants (for example ascorbic acid) and/or fillers (for example, NaCl) may be employed to improve the radiochemical purity and stability of the 5 final product, or to aid in the production of the kit. The radionuclide, e.g. Tc or Re, will preferably be added separately in the form of a solution, e.g. a pertechnetate or perrhenate solution.

A preferred multi-vial kit of the present invention comprises, 10 in one vial, the components, other than the radionuclide itself, required to form a labile radionuclide complex, that is, an exchange ligand and a pharmaceutically acceptable reducing agent such as a stannous salt. A compound of the present invention is contained in a second vial, as well as optional additives such 15 as buffers appropriate to adjust the pH to its optimal value. Optionally the radionuclide will be provided in form of a solution, e.g. for example a pertechnetate or perrhenate solution, to be added.

All components of a kit may be in liquid, frozen or dry form. In 20 a preferred embodiment, kit components are provided in lyophilized form.

All of the compounds, complexes, compositions and/or methods disclosed and claimed herein can be made and executed without 25 undue experimentation in light of the present disclosure. It will be apparent to those of skill in the art that variations may be applied to the present invention without departing from the scope of the invention. The Examples provided herein are intended to be illustrative and are not exhaustive; therefore the 30 illustrated Examples should not be viewed as limiting the invention in any way.

ExamplesMaterials and Methods

Melting points were taken on a Büchi-535 apparatus and are uncorrected. Infrared spectra were recorded on a Jasco FT/IR-6200 5 ATR-IR. Nuclear magnetic resonance spectra were recorded with a Bruker 300 MHz, 400 MHz or 500 MHz spectrometer with the corresponding solvent signals as an internal standard. Chemical shifts δ are reported in parts per million (ppm) relative to tetramethylsilane (0.00 ppm). Values of the coupling constant, nJ , are given in Hertz (Hz); the following abbreviations are used 10 in the experimental section for the description of ^1H -NMR spectra: singlet (s), broad singlet (bs), doublet (d), triplet (t), multiplet (m), doublet of doublets (dd). The chemical shifts of complex multiplets are given as the range of their occurrence. 15 Low resolution mass spectra (LR-MS) were recorded with a Micromass Quattro microTM API LC-ESI and high resolution mass spectra (HR-MS) were recorded with a Bruker FTMS 4.7T BioAPEXII (ESI). All water sensitive reactions were performed under argon in 20 flame-dried glass ware. Reactions were monitored by thin layer chromatography (TLC, performed on EM Science 0.25 mm thick, pre-coated silica gel 60 F-254 glass supported plates) or HPLC. HPLC was performed on a Merck-Hitachi L-7000 system equipped with an L-7400 tunable absorption detector. The following systems were 25 used for analytical HPLC: *HPLC System 1*: XBridge[®] column (C18, 5 μm , 4.6 x 150 mm, Waters); 0.1 % TFA_{aq} (solvent A), acetonitrile (solvent B), 1 mL/min; 0-1 min, 95 % A; 1-15 min, 95-5 % A; 15-20 min, 5 % A; 20-22 min, 5-95 % A; 22-25 min, 95 % A; *HPLC System 2*: XTerra[®] column (MSC18, 5 μm , 4.6 x 150 mm, Waters); 0-15 min 5-80 % B; 15-20 min 95 % B. *Semiprep HPLC* were performed 30 with an XBridge column (C18, 5 μm , 10 x 150 mm, Waters) using the solvent system as indicated in the description of the individual experiments.

[$\text{Re}(\text{Br})_3(\text{CO})_3$] [Et_4N]₂ was prepared according to Alberto et al, *J. Chem. Soc. Dalton. Trans.* 1994, 2815. [$^{99\text{m}}\text{Tc}(\text{H}_2\text{O})_3(\text{CO})_3$]⁺ was prepared according to Alberto et al, *J. Am. Chem. Soc.* 2001, 123, 3135.

5 [Na] [$^{99\text{m}}\text{TcO}_4$]) was eluted from a $^{99}\text{Mo}/^{99\text{m}}\text{Tc}$ -generator (Mallinckrodt-Tyco, Petten, The Netherlands) with a 0.9 % saline solution. The precursor [$^{188}\text{Tc}(\text{OH}_2)_3(\text{CO})_3$]⁺ was synthesized using the IsolinkTM-kit (Mallinckrodt-Tyco, Petten, The Netherlands). For the *in vitro* studies and the biodistribution experiments, the 10 radiofolates were separated from unlabeled folate ligand by means of HPLC in order to obtain a maximal specific activity. The non-purified complex used for SPECT/CT-studies.

15 **Example 1: Synthesis of Pte-Glu(H-His(τ -(4-N-Butyl))-OH)-OH (5-(4-(4-(2-amino-2-carboxyethyl)-1H-imidazol-1-yl)butylamino)-2-(4-((2-amino-4-oxo-3,4-dihydropteridin-6-yl)methylamino)benzamido)-5-oxopentanoic acid)**

(a) *Synthesis of Boc-His (τ (4-NH₂Bu))-OMe*

20 1-azido-4-chlorobutane has been prepared according to a modified based on Yao, L. et al, *J. J. Org. Chem.* 2004, 69, 1720. So 7.87 g (121 mmol) NaN_3 were suspended under argon in 220 ml dioxane. To the suspension 18.86 g of 1-bromo-4-chlorobutane were added and the mixture was stirred at room temperature for 18 25 hours. After addition of 550 ml water the mixture was extracted twice with 330 ml diethylether. The combined ether extracts were washed with 330 ml water and 330 ml aqueous sodium chloride (10%), dried over sodium sulphate and concentrated to give 14.11 g of a yellow pale oil with a purity of approximately 95% 1-azido-4-chlorobutane (¹H-NMR (300 MHz, CDCl_3): δ =1.65-1.95 (m, C(2)H₂, C(3)H₂, 4H); 3.33 (t, ³J=3.3, C(1)H₂, 2H); 3.57 (t, ³J =

6.2, C(4)H₂, 2H).

To a suspension of 24,24 g (90 mmol, 1,0 eq.) Boc-His-OMe (purchased from Bachem) in 50 ml acetone under argon was added 13,68 g (99 mmol, 1,1 eq.) potassium carbonate, 13,22 g (99 mmol, 1,1 eq.) 1-azido-4-chlorobutane and 3,75 g (25 mmol, 0,28 eq.) sodium iodide and the mixture was heated to reflux until TLC indicated a complete conversion (TLC: SiO₂, dichloromethane / methanol / 9:1, R_f (product) = 0.58, R_f (starting material) = 0.37). After 2 days approximately 85% of starting material were consumed. The product was isolated by chromatography (SiO₂, ethyl-acetate/n-hexane/ 4:1) to give 11.74 g of Boc-His (τ(4-N₃Bu))-OMe as a yellow-brownish resin (¹H-NMR (300 MHz, CDCl₃): δ = 1,44 (s, C(CH₃)₃, 9H); 1,5-1,6 (m, C_{Bu(3)}H₂, 2H); 1,8-1,9 (m, C_{Bu(2)}H₂, 2H); 3,00 (dd, ²J=14,4, ³J=4,7, C_{β-His}H_A, 1H); 3,08 (dd, ²J=14,8; ³J=5,5, C_{β-His}H_B, 1H); 3,31 (t, ³J=6,6, N₃C_{Bu(4)}H₂, 2H); 3,70 (s, CH₃, 3H); 3,90 (t, ³J=7,0, C_{Bu(1)}H₂, 2H); 4,53 (ddd, C_{α-His}H, 1H); 5,99 (d, ³J=8,2, NH, 1H); 6,68 (s, C_{im(5)}H, 1H); 7,37 (s, C_{im(2)}H, 1H)).

To a solution of 11,73 g (32 mmol, 1,0 eq.) of the above obtained intermediate Boc-His (τ(4-N₃Bu))-OMe in 320 ml tetrahydrofuran under argon 10,49 g (40 mmol, 1,25 eq.) triphenylphosphine were added. The mixture was stirred at room temperature for 19 hours. After addition of 32 ml of water and further stirring for 4 hours the mixture was concentrated under vacuum to give 21.70 g of the desired heterocyclic ligand site Boc-His(τ(4-NH₂Bu))-OMe as a yellowish resin which contained approx. 50% triphenylphosphine oxide.

¹H-NMR (300 MHz, CDCl₃): δ = 1,43 (s, C(CH₃)₃, 9H); 1,4-1,55 (m, C_{Bu(3)}H₂, 2H); 1,7-1,9 (m, C_{Bu(2)}H₂, 2H); 2,69 (t, ³J=6,9, C_{Bu(4)}H₂, 2H); 3,00 (dd, C_{β-His}H_A, 1H); 3,08 (dd, C_{β-His}H_B, 1H); 3,70 (s, CH₃, 3H); 3,88 (t, ³J=7,0, C_{Bu(1)}H₂, 2H); 4,52 (ddd, C_{α-His}H, 1H); 5,95 (d, ³J=7,9, NH, 1H); 6,67 (s, C_{im(5)}H, 1H); between 7,20 and 7,75 (s, C_{im(2)}H, 1H).

Triphenylphosphine oxide: $\delta = 7,20-7,75$ (m, Ph_3).

(b) *Synthesis of H-Glu(NH(Boc-His(τ -Bu-4-yl)OMe)-OtBu*

To a solution of 4,26 g (10 mmol, 1,0 eq.) Fmoc-Glu-OtBu (purchased from Bachem) in 40 ml monoglyme (1,2-dimethoxyethane) 1,38 g (12 mmol, 1,2 eq.) of N-hydroxy-succinimide were added. The mixture was cooled to 5°C and 2,48 g (12 mmol, 1,2 eq.) of N,N'-dicyclohexyl-carbodiimide (DCC) were added. After stirring for 22 hours at room temperature all starting material was consumed (TLC, SiO_2 , ethylacetate/hexane / 1:1, R_f product = 0.43, R_f starting material = 0.35) and a solution was formed which was directly used in the following steps.

Thus, to the above obtained solution of Fmoc-Glu(OSu)-OtBu in 40 ml monoglyme (1,2-dimethoxyethane), 6,88 g (10 mmol, purity ~50 %, 1,0 eq.) of Boc-His (τ (4-NH₂Bu))-OMe (see step (a)) were added. After two hours stirring at ambient temperature the mixture was concentrated to approximately 15 g and the product was purified by flash-chromatography (SiO_2 , dichloromethane/methanol/25:1, TLC, SiO_2 , dichloromethane/methanol 9:1, R_f product = 0.46, R_f starting material = 0.05) to give 2.29 g of Fmoc-Glu(NH(Boc-His(τ -Bu-4-yl)OMe)-OtBu as a yellowish foam (¹H-NMR (300 MHz, CDCl_3): $\delta = 1,39$ (s, $\text{C}(\text{CH}_3)_3$, 9H); 1,3-1,5 (m, $\text{C}_{\text{Bu}(3)}\text{H}_2$, 2H); 1,44 (s, $\text{C}(\text{CH}_3)_3$, 9H); 1,63-1,75 (m, $\text{C}_{\text{Bu}(2)}\text{H}_2$, 2H); 1,85-1,95 (m, $\text{C}_{\beta\text{-GluH}_A}$, 1H); 2,1- 2,3 (m, $\text{C}_{\beta\text{-GluH}_B}$, 1H); 2,24 (m, $\text{C}_{\gamma\text{-GluH}_2}$, 2H); 2,97 (2 dd, $\text{C}_{\beta\text{-HisH}_2}$, 2H); 3,1-3,3 (m, $\text{C}_{\text{Bu}(4)}\text{H}_2$, 2H); 3,64 (s, CH_3 , 3H); 3,79 (t, $\text{C}_{\text{Bu}(1)}\text{H}_2$, 2H); 4,1-4,25 (t, $\text{C}_{\alpha\text{-GluH}}$; t, $\text{C}_{\beta\text{-FmocH}}$, 2H); 4,25- 4,45 (m, $\text{C}_{\alpha\text{-FmocH}_2}$, 2H); 4,52 (q, $\text{C}_{\alpha\text{-HisH}}$, 1H); 5,82 (d, $^3\text{J}=7,6$, $\text{N}_{\alpha\text{-GluH}}$, 1H); 5,95 (d, $^3\text{J}=8,1$, $\text{N}_{\alpha\text{-HisH}}$, 1H); 6,36 (s, $\text{N}_{\gamma\text{-GluH}}$, 1H); 6,61 (s, $\text{C}_{\text{im}(5)}\text{H}$, 1H); 7,20-7,30 (s, $\text{C}_{\text{im}(2)}\text{H}$, 1H); between 7,20 and 7,80 (m, $\text{C}_{\text{FmocH}_8}$, 8H)).

To a mixture of 2,29 g (3,06 mmol, 1,0 eq.) Fmoc-Glu(NH(Boc-

His(τ -Bu-4-yl)OMe)-OtBu and 50 ml dichlormethane 3.0 ml piperidine were added. After 3 hours stirring at room temperature the product was isolated by flash chromatography (SiO₂, dichloromethane/methanol 4:1, TLC, SiO₂, dichloromethane/methanol 9:1, R_f product = 0.20, R_f starting material = 0.51) to give 892 mg of H-Glu(NH(Boc-His(τ -Bu-4-yl)OMe)-OtBu as a pink foam.

¹H-NMR (300 MHz, CDCl₃): δ = 1,42 (s, C(CH₃)₃); 1,35-1,55 (m, CBu₍₃₎H₂); 1,46 (s, C(CH₃)₃); 1,75-1,9 (m, C_{Bu(2)}H₂; m, C _{β -GluH_A}); 2,05-2,2 (m, C _{β -GluH_B}); 2,35 ("t", C _{γ -GluH₂}); 2,95-3,1 (2 dd, C _{β -HisH₂}); 3,22 (q, C_{Bu(4)}H₂); 3,41 ("dd", C _{α -GluH); 3,67 (s, CH₃); 3,90 (t, C_{Bu(1)}H₂); 4,53 (ddd, C _{α -HisH); 5,94 (d, ³J=8,4, N _{α -HisH); 6,65-6,7 (s, NH; s, C_{im(5)}H); 7,42 (s, C_{im(2)}H).}}}

(c) *Synthesis of Pte-Glu(H-His(τ -(4-N-Butyl))-OH)-OH (5-(4-(4-(2-amino-2-carboxyethyl)-1H-imidazol-1-yl)butylamino)-2-(4-((2-amino-4-oxo-3,4-dihydropteridin-6-yl)methylamino)benzamido)-5-oxopentanoic acid)*

A mixture of 25.3 g pteroic acid and 1175 ml of formic acid was refluxed for 3 hours. After cooling to room temperature 2350 ml of methyl-tert.butyl ether were added. The resulting suspension was stirred for 2 hours at room temperature, the precipitate was filtered off, washed with 1600 ml of water and dried under vacuum at 40°C to give 27.28 g of 10-formylpteroic acid (¹H-NMR (300 MHz, DMSO-d₆): δ = 12.90 (bs, COOH, 1H); 11.40 (bs, N(3)H, 1H); 8.85 (s, CHO, 1H); 8.65 (s, C(7)H, 1H); 7.95 (d, Ph, 2H); 7.56 (d, Ph, 2H); 6.90 (bs, NH₂, 2H)).

To a suspension of 8.5 g of the above obtained 10-formylpteroic acid in 128 ml N,N-dimethylformamide, 52 ml N,N-dimethylformamide-diisopropylacetal were added. The mixture was stirred at room temperature for 18 hours. The precipitate which has formed was filtered off, washed with 4 ml of N,N-dimethylformamide and 50 ml acetone and dried at 40°C under vac-

uum to give 8.7 g of protected N²,N,N-dimethylaminomethylene-10-formylpteroic acid (¹H-NMR (300 MHz, DMSO-d₆ +D₂O): δ = 8.70 (s, CHN, 1H); 8.63 (s, C(7)-H, CHO, 2H); 7.81 (d, Ph, 2H); 7.30 (d, Ph, 2H); 5.18 (C(6)CH₂, 2H); 3.19 (s, NCH₃, 3H); 3.08 (s, 5 NCH₃, 3H)).

To a solution of 391 mg (0,90 mmol, 1,0 eq.) of the above obtained N²,N,N-dimethylaminomethylene-10-formyl-pteroic acid in 3 ml tetrahydrofuran under argon were added 274 mg (0,99 mmol, 1,1 eq.) DMTMM (4-(4,6-Dimethoxy[1,3,5]triazin-2-yl)-4-methylmorpholiniumchlorid, synthesized according to Kunishima et al, Tetrahedron Letters, 40, 5327-5330, 1999) and 473 mg (0,99 mmol, 1,1 eq.) H-Glu(NH(Boc-His(t-Bu-4-yl)OMe)-OtBu (see step (b)). The suspension was stirred for three hours at room temperature and then concentrated under vacuum to approximately 1.5 g. After 15 addition of 2 ml water a precipitate formed which was separated from the solution by centrifugation. The precipitate was resuspended in 0.5 ml water, separated by centrifugation and dried under vaccum to give 526 mg of N²-N,N-dimethylaminomethylene-10-formyl-Pte-Glu(NH(Boc-His(t-Bu-4-yl)OMe)-OtBu as a yellow foam.

20 ¹H-NMR (300 MHz, CDCl₃): δ = 1,39 (s, C(CH₃)₃); 1,3-1,45 (m, C_{Bu(3)H₂}); 1,46 (s, C(CH₃)₃); ~1,7-1,8 (m, C_{Bu(2)H₂}); 1,8-1,9 (m, C_β-GluH_A); 2,1-2,4 (m, C_β-GluH_B; m, C_γ-GluH₂); 2,95-3,05 (2 dd, C_β-HisH₂); 3,14 (s, C_{DMAMH_{3A}}); 3,22 (s, C_{DMAMH_{3B}}); 3,2-3,3 (m, C_{Bu(4)H₂}); 3,69 (s, CH₃); 3,8-3,9 (m, C_{Bu(1)H₂}); 4,4-4,6 (m, C_α-HisH; m, C_α-GluH); 5,29 (s, C_{Pte(9)H₂}); 5,60 (d, NH); 5,94 (d, NH); 6,70 (s, C_{im(5)H}); 6,95 (s, NH); 7,40 (d, ³J=8,6, 2 x C_{Pte(5')H}); 7,48 (s, C_{im(2)H}); 7,87 (d, ³J=8,6, 2 x C_{Pte(6')H}); 8,70 (s, C_{DMAMH}); 8,80 (s, C_{ForH}); 8,93 (s, C_{Pte(7)H}).

30 To 200 mg (0,22 mmol, 1 eq.) of the above obtained N²-N,N-dimethylaminomethylene-10-formyl-Pte-Glu(NH(Boc-His(t-Bu-4-yl)OMe)-OtBu 22 ml 1M HCl were added. The mixture was stirred for 2 hours at 50°C. After cooling to approximately 15°C 1,76 g

solid sodium hydroxide were added. After stirring at room temperature for one hour the pH was adjusted to pH = 2.5 by addition of formic acid. The product was isolated by reversed phase medium pressure liquid chromatography (RP-MPLC, solid phase: Europrep 60-60 C-18; 60 Å; 35-70 µm, 140 g; 36 cm x 26 mm, liquid phase: 0-10 min. 99,9 % H₂O, 0,1 % HCOOH, 10-40 min. 34,9 % MeOH, 65 % H₂O, 0,1 % HCOOH) to give 120 mg of Pte-Glu(H-His(τ-(4-N-Butyl))-OH)-OH as a yellowish resin.

¹H-NMR (300 MHz, D₂O&D₂SO₄, cal.: δ(H₂O) = 4,79): δ = 0,4-0,6 (m, C_{Bu(3)H₂}) ; 0,75-0,9 (m, C_{Bu(2)H₂}) ; ~1,1-1,25 (m, C_{β-GluH_A}) ; 1,25-1,4 (m, C_{β-GluH_B}) ; 1,50 (t, ³J=7,1, C_{γ-GluH₂}) ; 2,1-2,3 (m, C_{Bu(4)H₂}) ; 2,45 (2 dd, C_{β-HisH₂}) ; 3,1-3,3 (t, C_{Bu(1)H₂}) ; 3,4-3,5 (t, C_{α-HisH}) ; 3,5-3,6 (q, ³J_E= 4,6, ³J_Z= 9,44, C_{α-GluH}) ; 4,08 (s, C_{Pte(9)H₂}) ; ~6,49 (s, C_{im(5)H}) ; 6,65 (d, ³J= 6,7, 2 x C_{Pte(5')H}) ; 6,95 (d, ³J=6,1, 2 x C_{Pte(6')H}) ; 7,68 (s, C_{im(2)H}) ; 7,83 (s, C_{Pte(7)H}) .

Example 2: Synthesis of Re(CO)₃-His-folate complex

Pte-Glu(H-His(τ-(4-N-Butyl))-OH)-OH (5-(4-(4-(2-amino-2-carboxyethyl)-1H-imidazol-1-yl)butylamino)-2-(4-((2-amino-4-oxo-3,4-dihydropteridin-6-yl)methylamino)benzamido)-5-oxopentanoic acid) (15.0 mg, 23 µmol) obtained according to Example 1 and [Re(Br)₃(CO)₃][Et₄N]₂ (20.0 mg, 26 µmol) were suspended in H₂O/MeOH (4 mL, 1:1) and the pH was adjusted to pH 8 with dilute NaHCO₃. The resulting yellow solution was stirred at 50 °C for 1.5 h after which HPLC indicated complete conversion of the starting material. The mixture was cooled to rt and the pH adjusted to pH 2-3 by addition of dilute HCl (0.1 M). The precipitate was isolated by centrifugation (10 min, 3500 rpm) and dried under reduced pressure to provide Re-complex (5) as a brown solid: HR-MS: [M+H]⁺ = 920.2131 (calc. for C₃₂H₃₅N₁₁O₁₀Re: 920.2126), HPLC purity: >70%.

Example 3: Synthesis of 99m Tc(CO)₃-His-folate complex

In analogy to Example 2, 99m Tc(CO)₃-His-folate was prepared by addition of a stock solution of the Pte-Glu(H-His(τ -(4-N-Butyl))-OH)-OH (5-(4-(4-(2-amino-2-carboxyethyl)-1H-imidazol-1-yl)butylamino)-2-(4-((2-amino-4-oxo-3,4-dihydropteridin-6-yl)methylamino)benzamido)-5-oxopentanoic acid) obtained according to Example 1 in phosphate buffered saline (PBS) to [Na] [99m TcO₄]) resulting in a final concentration of 10⁻⁵ M.

The sealed reaction vial was heated for 60 min at 100°C to form the corresponding in excellent yield (> 98 %).

Example 4: Synthesis of Triazol-Folate

a) *Synthesis of 4-azido-butane-amine.* The Boc-protected intermediate azide (0.42 g, 2.0 mmol; prepared according to Link et al J. Am. Chem. Soc. 2004, 126, 10598) was dissolved in CH₂Cl₂ (5 mL) and trifluoroacetic acid (TFA, 1.0 mL) was added. The mixture was left at rt over night and then concentrated under reduced pressure to yield the TFA salt of amine the corresponding Azide-Amine as a colorless oil (450 mg, quantitative): ¹H-NMR (CDCl₃) δ = 8.19-7.80 (bs, 3H), 4.76-4.50 (bs, 1H), 3.32 (t, 2H, J = 6.5), 3.30- 2.92 (m, 2H), 1.81-1.70 (m, 2H), 1.70-1.58 (m, 2H); LR-MS: [M+H]⁺ = 115.10 (calc. for C₄H₁₀N₄: 114.15).

b) *Synthesis of Glu(4-azido-butylamide)OMe*

In a flamed-dried flask under argon was dissolved BocGluOMe (261 mg, 1.0 mmol) in dry DMF (5 mL, over molecular sieves 4 Å) and Et₃N (210 μ L, 1.5 equiv) was added. HBTU (380 mg, 1.0 mmol) was added at 0 °C and the mixture was stirred for half an hour. The solution of the activated acid was transferred via cannula to a solution of the TFA salt of the azide-amine obtained under a) (228 mg, 1.0 mmol) in dry DMF (5 mL) containing Et₃N (210 μ L, 1.5

equiv) at 0 °C. After 2 hrs, the mixture was warmed to rt and stirred over night. Removal of volatile components under reduced pressure and purification of the residue by flash chromatography on silicagel with CH₂Cl₂/MeOH (60:1→30:1) provided the corresponding Boc-protected amide product as a colorless oil (330 mg, 92 %): ¹H-NMR (CDCl₃) δ = 6.32-6.19 (bs, 1H), 5.35-5.24 (bs, 1H), 4.30-4.21 (m, 1H), 3.72 (s, 3H), 3.35-3.21 (m, 4H), 2.24 (t, 2H, *J* = 6.8), 2.21-2.10 (m, 1H), 1.95-1.80 (m, 1H), 1.67-1.52 (m, 4H), 1.43 (s, 9H); LR-MS: [M+H]⁺ = 358.20 (calc. for C₁₅H₂₇N₅O₅: 357.41).

The Boc-protected intermediate obtained above (0.72 g, 2.0 mmol) was dissolved in CH₂Cl₂ (10 mL) and trifluoroacetic acid (TFA, 1.5 mL) was added. The mixture was left at rt over night and then concentrated under reduced pressure to yield the TFA salt of the corresponding amine as a pale yellow oil (740 mg, quantitative): ¹H-NMR (CDCl₃) δ = 10.15-8.60 (bs, 3H), 6.74 (t, 1H, *J* = 5.6), 4.14 (dd, 1H, *J* = 7.7 and 3.7), 3.80 (s, 3H), 3.31-3.26 (m, 2H), 3.25-3.18 (m, 2H), 2.59-2.45 (m, 2H), 2.38-2.27 (m, 1H), 2.24-2.13 (m, 1H), 1.63-1.50 (m, 4H); LR-MS: [M+H]⁺ = 258.23 (calc. for C₁₀H₁₉N₅O₃: 257.29).

c) *Synthesis of protected γ-(4-azido-butaonyl)-folic acid amide*

In a flamed-dried flask under argon was suspended N₂-N,N-dimethylaminomethylene-10-formyl-pteroic acid (198 mg, 0.5 mmol) in dry DMF (10 mL, over molecular sieves 4 Å) and Et₃N (104 μL, 0.75 mmol) was added. HBTU (380 mg, 0.5 mmol) was added at 0 °C and the mixture was stirred for one hour. To the resulting orange solution was added at 0 °C a solution of amine TFA salt obtained under c) (186 mg, 0.5 mmol) in dry DMF (9 mL) containing Et₃N (210 μL, 1.5 mmol). The resulting clear yellow solution was stirred at 0 °C for one hour and then allowed to warm to rt. Removal of volatile components under reduced pressure and purifi-

cation of the residue by flash chromatography on silicagel with $\text{CH}_2\text{Cl}_2/\text{MeOH}$ (17:1→10:1) provided the corresponding protected azido-folate as a yellow solid (290 mg, 92 %): mp 125-130 °C; HR-MS: $[\text{M}+\text{Na}]^+ = 657.2617$ (calc. for $\text{C}_{9}\text{H}_{15}\text{N}_4\text{O}_4\text{Na}$: 657.2624).

5 The under d) obtained product (63 mg, 0.1 mmol) was dissolved in 1 M NaOH (3 mL) and stirred at rt over night. The resulting turbid solution was cleared by filtration through Celite™. The pH of the yellow solution was adjusted to pH ~2 by addition of HCl (first 37 % HCl, then 1 M HCl) which resulted in precipitation 10 of the product. The suspension was centrifuged (10 min at 3500 rpm), the pale yellow supernatant decanted and the solid product dried under reduced pressure to give the penta-hydrochloride salt of azido folate as a yellow powder (75 mg, quantitative): mp > 200 °C; $^1\text{H-NMR}$ (DMSO-d6) δ = 12.21-11.95 (bs, 1H), 8.64 (s, 1H), 8.18 (d, 1H, $J = 7.2$), 7.85 (t, 1H, $J = 5.7$), 7.65 (d, 2H, $J = 9.0$), 7.00-6.82 (bs, 2H), 6.93 (t, 1H, $J = 6.2$), 6.64 (d, 2H, $J = 9.0$), 4.49 (d, 2H, $J = 5.9$), 4.32- 4.22 (m, 1H), 3.29 (t, 2H, $J = 6.8$), 3.03 (q, 2H, $J = 6.5$), 3.09-2.96 (m, 2H), 2.12-1.83 (m, 2H), 1.55-1.45 (m, 2H), 1.45-1.35 (m, 2H) (one NH 20 not observed); HR-MS: $[\text{M}]^+ = 537.2127$ (calc. for $\text{C}_{23}\text{H}_{27}\text{N}_{11}\text{O}_5$: 537.2197); elemental analysis (calculated %-values for $\text{C}_{23}\text{H}_{27}\text{N}_{11}\text{O}_5(\text{HCl})_5$ in parenthesis) C 39.16 (38.38), H 4.09 (4.48), N 21.43 (21.40), O (11.11), Cl (24.63).

25 *f) Synthesis of Triazol-folate*

Synthesis A: Protected azido folate (95 mg, 0.15 mmol, obtained under d)) was dissolved in $^t\text{BuOH}/\text{H}_2\text{O}$ (1:1, 6 mL) and L-propargyl glycine (17 mg, 0.15 mmol), $\text{Cu}(\text{OAc})_2$ (5.5 mg, 20 mol%) and sodium ascorbate (12 mg, 40 mol%) were added. The brown solution was 30 stirred at rt over night after which HPLC indicated completed conversion of the substrates (*HPLC system 1*). Metal scavenger resin QuadraPure IDA™ (0.3 g) was added and the mixture was kept

at rt for one day while occasionally shaken. The resulting yellow solution was decanted and concentrated under reduced pressure. The residue was taken up in 1 M NaOH (4 mL) and stirred at rt over night after which HPLC indicated complete deprotection 5 of intermediate X. The pH of the yellow solution was adjusted to pH ~2 by addition of HCl (first 37 % HCl, then 1 M HCl) which resulted in precipitation of the product. The suspension was centrifuged (10 min at 3500 rpm), the pale yellow supernatant decanted and the solid product dried under reduced pressure. 10 HPLC purification of the crude product (XBridge semiprep column, isocratic 10% CH₃CN, 90% aq. TFA (0.1 %)) provided the tris-TFA salt, mono-hydrate of the desired Triazol-folate as a yellow powder (113 mg, 75 % for 2 steps): ¹H-NMR (DMSO-d6, using a water-signal suppressing program) δ = 8.68 (bs, 1H), 8.27 (bs, 2H, exchanged with D₂O), 8.20 (d, 1H, exchanged with D₂O, J = 6.8), 7.92 (s, 1H), 7.85 (t, 1H, exchanged with D₂O, J = 5.7), 7.65 (d, 15 2H, J = 8.1), 7.5-7.0 (multiple bs, 2H, exchanged with D₂O), 6.64 (d, 2H, J = 8.1), 4.50 (s, 2H), 4.35-4.20 (m, 5H, one proton exchanges with D₂O), 3.23-3.13 (m, 2H), 3.09-2.94 (m, 2H), 2.18 (t, 20 2H, J = 8.2), 2.10-1.98 (m, 1H), 1.93-84 (m, 1H), 1.80-1.72 (m, 2H), 1.45-1.27 (m, 2H); HR-MS: [M+H]⁺ = 651.2738 (calc. for C₂₈H₃₄N₁₂O₇: 650.2673); elemental analysis (calculated %-values for C₂₈H₃₄N₁₂O₇(TFA)₃ (H₂O) in parenthesis) C 40.30 (40.40), H 4.20 (3.98), N 16.86 (16.63), O (22.16); content of fluoride determined by titration: 14.95 (calc.: 16.63).

Synthesis B: Deprotected azido folate (36 mg, 0.05 mmol; obtained under e)) was suspended in ^tBuOH/H₂O (1:1, 3 mL) and L-propargyl glycine (6 mg, 0.053 mmol), Cu(OAc)₂ (2 mg, 20 mol%) and sodium ascorbate (4 mg, 40 mol%) were added. The mixture was 30 stirred at 80 °C for 20 min after which HPLC (*HPLC system 1*) indicated completed conversion of the starting substrate. The brown suspension was dissolved by addition of 1M NaOH and as cleared by filtration through CeliteTM. The product was precipi-

tated by adjusting the pH of the solution to pH ~2 with 1 M HCl. The suspension was centrifuged (10 min at 3500 rpm), the supernatant decanted and the solid product dried under reduced pressure yielding the penta-hydrochloride salt of the desired Triazol-folate as an orange solid (42 mg, quantitative).

Example 5: Synthesis of $^{99m}\text{Tc}(\text{CO})_3$ -Triazol-folate complex

Synthesis A: 50 μL of a stock solution (10^2 M to 10^{-7} M in physiological (0.15 M) phosphate buffer pH = 7.4) of the Triazol-folate ligand was added to a solution of $[^{99m}\text{Tc}(\text{CO})_3(\text{OH}_2)_3]^+$ (prepared according to Alberto et al, *J.Am.Chem. Soc.* 2001, 123, 3135; 100 μL ; ~1 GBq/mL). Phosphate buffered saline (PBS pH 7.4, 350 μL) was added to adjust the final concentration. The reaction was heated for 50 min at 100°C. Radiolabeling yields were determined via HPLC. Complexes were analyzed via HPLC and the identity confirmed according to common practice by comparison with the UV trace of the corresponding Re-complexes (see Example 6) using *HPLC system 2*.

One-Pot-Synthesis B: Deprotected Azido folate (obtained under step 4e); 40 μL , ca. 10^{-3} M in MeOH/PBS pH 7.4 (5:1)) was mixed with L-propargyl glycine (20 μL , 10^{-2} M in water), $\text{Cu}(\text{OAc})_2$ (5 μL , 10^{-2} M in water) and sodium ascorbate (20 μL , 10^{-2} M in water). After heating to 100 °C for 30 min, the mixture was cooled to rt and added to $[^{99m}\text{Tc}(\text{H}_2\text{O})_3(\text{CO})_3]^+$ (100 μL , ~1 GBq/mL) in PBS (0.6 mL, 0.15 M, pH 7.4). After additional heating to 100 °C for 60 min, clean formation of the desired complex was confirmed by HPLC (*HPLC system 2*).

Example 6: Synthesis of $\text{Re}(\text{CO})_3$ -Triazol-folate complex

30 Triazol-folate (obtained hereinabove); tri-trifluoroacetate mono-hydrate, 0.7 mg, 0.7 μmol) and $[\text{Re}(\text{Br})_3(\text{CO})_3][\text{Et}_4\text{N}]_2$ (1.0 mg,

1.4 μ mol) were suspended in water (0.5 mL). Addition of NaOH (0.1 M) to a final pH of 8 yielded a yellow solution which was stirred at 50 °C for 1h after which HPLC (*HPLC system 1*) indicated complete conversion of the starting azido folate. The solution was cooled to rt and the pH adjusted to pH ~2 by addition of dilute aq. HCl. The precipitate was isolated by centrifugation (3 min 16'000 rpm), dissolved in NaOH (0.1 M) and purified by HPLC (*HPLC system 1*) to provide a reference solution of cold Re-complex in CH₃CN/0.1% TFA. HR-MS: [M+H]⁺ = 921.2074 (calc. for C₃₁H₃₄N₁₂O₁₀Re: 921.2078). HPLC purity >95 %.

Example 7: *In vivo* experiments

Biodistribution studies were performed with 4-5-week-old male, athymic nude mice (NMRI nu/nu; Charles River, The Netherlands). The animals were acclimated and fed with a folate-deficient rodent diet starting 5 days prior to the tumor cell inoculation. The mice were inoculated subcutaneously with the KB-tumor cell suspension (5 x 10⁶ cells) into the subcutis of each shoulder. Radiofolate biodistribution studies were carried out approx. 14 days after tumor cell inoculation when the tumor size reached a size of approx. 0.5-1.5 cm³. The experiments were performed in triplicate. The ^{99m}Tc(CO)₃-His-folate and ^{99m}Tc(CO)₃-Triazol-folate, respectively, (1.5 MBq in 100 μ L) were administered via a lateral tail vein. For the experiments in combination with the antifolate, pemetrexed (PMX; Alimta[®]; Lilly, Bad Homburg, Germany) was diluted with NaCl 0.9 % according to the instruction of the manufacturer. It was administered (400 μ g in 100 μ L) 1 h previous to the radiotracer via a lateral tail vein. The animals were sacrificed at 1 h, 4 h and 24 h after administration of ^{99m}Tc-radiofolates alone or with pre-injected PMX. The selected tissues were removed, weighed, and counted for radioactivity in

a γ -counter to determine the percentage of injected activity per gram of tissue (% IA/g).

The biodistribution data obtained for 99m Tc-His-folate (Tables 5 1a,b) and of 99m Tc-Triazol-folate (Tables 2a,b) with or without preinjection with the antifolate Pemetrexed (Tables 1b, 2b) in KB-tumor bearing male nude mice are shown in Tables 1 to 4. The 10 values are indicated as percentage injected activity per gram tissue [% IA/g]. The results in Tables 1a and 2a clearly show that the compounds of the present invention achieve an excellent tumor-blood value.

The experiments in combination with the antifolate, pemetrexed, are shown in Tables 1b and 2b. The results indicate that with 15 prior administration of an antifolate even higher specificity can be observed.

Table 1a:

Site	Time p.i.		
	1 h p.i.	4 h p.i.	24 h p.i.
blood	0.18 \pm 0.10	0.12 \pm 0.02	0.02 \pm 0.01
heart	3.60 \pm 0.53	1.16 \pm 0.36	0.14 \pm 0.07
lung	1.04 \pm 0.12	0.69 \pm 0.09	0.16 \pm 0.07
spleen	0.37 \pm 0.22	0.30 \pm 0.04	0.05 \pm 0.01
kidneys	23.96 \pm 10.11	24.56 \pm 3.17	6.70 \pm 1.12
stomach	1.71 \pm 0.12	1.03 \pm 0.22	0.15 \pm 0.02
intestines	3.84 \pm 2.23	1.51 \pm 0.29	0.18 \pm 0.14
liver	9.73 \pm 1.32	3.83 \pm 1.49	0.44 \pm 0.31
muscle	1.56 \pm 0.07	1.09 \pm 0.26	0.19 \pm 0.03

bone	0.77 ± 0.07	0.58 ± 0.20	0.06 ± 0.01
parotid gland	6.52 ± 1.04	5.72 ± 0.63	1.58 ± 0.69
tumor right	2.75 ± 0.62	4.35 ± 0.71	3.34 ± 0.34
tumor left	2.52 ± 0.40	4.23 ± 0.78	3.68 ± 0.36
tumor-to-blood	18.56 ± 10.47	38.00 ± 8.33	184.23 ± 65.88
tumor-to-liver	0.30 ± 0.06	1.19 ± 0.47	10.99 ± 5.60
tumor-to-kidney	0.12 ± 0.05	0.18 ± 0.03	0.53 ± 0.10

Table 1b:

	Pemetrexed* (Alimta®); Time p.i.		
	1 h p.i.	4 h p.i.	24 h p.i.
blood	0.09 ± 0.04	0.04 ± 0.01	0.01 ± 0.00
heart	1.57 ± 0.59	0.23 ± 0.04	0.08 ± 0.02
lung	0.72 ± 0.06	0.29 ± 0.08	0.07 ± 0.01
spleen	0.18 ± 0.09	0.08 ± 0.02	0.03 ± 0.01
kidneys	7.94 ± 2.27	3.40 ± 1.14	1.81 ± 0.48
stomach	1.58 ± 0.85	0.54 ± 0.11	0.43 ± 0.40
intestines	4.81 ± 4.65	0.50 ± 0.13	0.23 ± 0.24
liver	3.91 ± 2.24	1.24 ± 0.49	0.24 ± 0.06
muscle	1.02 ± 0.26	0.43 ± 0.08	0.18 ± 0.12
bone	0.53 ± 0.16	0.15 ± 0.02	0.04 ± 0.02
parotid gland	3.98 ± 1.17	1.68 ± 0.62	0.88 ± 0.23
tumor right	2.59 ± 0.62	3.56 ± 0.88	1.98 ± 0.24
tumor left	2.64 ± 0.71	4.21 ± 1.11	2.31 ± 0.62
tumor-to-blood	29.19 ± 4.82	110.10 ± 2.49	167.13 ± 56.47
tumor-to-liver	0.74 ± 0.18	3.05 ± 2.26	9.85 ± 4.63
tumor-to-kidney	0.34 ± 0.06	1.20 ± 0.37	1.28 ± 0.55

Table 2a:

Site	Time p.i.			
				excess folic acid
	1 h p.i.	4 h p.i.	24 h p.i.	4 h p.i.
blood	0.12 ± 0.03	0.12 ± 0.04	0.02 ± 0.01	0.22 ± 0.36
heart	2.17 ± 0.45	0.83 ± 0.05	0.11 ± 0.02	0.02 ± 0.02
lung	0.91 ± 0.23	0.63 ± 0.08	0.11 ± 0.07	0.05 ± 0.07
spleen	0.38 ± 0.14	0.32 ± 0.07	0.06 ± 0.03	0.02 ± 0.04
kidneys	18.11 ± 2.53	27.33 ± 3.61	8.03 ± 3.40	0.18 ± 0.09
stomach	1.39 ± 0.18	1.02 ± 0.04	0.15 ± 0.03	0.07 ± 0.05
intestines	2.47 ± 0.94	0.76 ± 0.14	0.28 ± 0.27	1.26 ± 0.65
liver	2.95 ± 1.02	0.89 ± 0.42	0.14 ± 0.02	1.48 ± 1.26
muscle	1.55 ± 0.22	0.82 ± 0.16	0.16 ± 0.08	< 0.01
bone	0.81 ± 0.17	0.48 ± 0.11	0.05 ± 0.02	< 0.01
parotid gland	-	-	-	-
tumor right	3.76 ± 1.03	5.35 ± 0.33	2.98 ± 0.76	0.09 ± 0.07
tumor left	4.61 ± 1.00	4.33 ± 1.00	3.37 ± 2.06	0.02 ± 0.03
tumor-to-blood	38.37 ± 16.16	42.14 ± 12.09	138.12 ± 40.31	
tumor-to-liver	1.58 ± 0.62	6.29 ± 2.74	22.28 ± 8.00	
tumor-to-kidney	0.24 ± 0.09	0.18 ± 0.04	0.39 ± 0.09	

5 **Table 2b:**

	Pemetrexed* (Alimta®); Time p.i.
--	----------------------------------

Site	4 h p.i.
blood	0.05 ± 0.04
heart	0.34 ± 0.15
lung	0.31 ± 0.15
spleen	0.08 ± 0.03
kidneys	4.22 ± 2.28
stomach	0.70 ± 0.26
intestines	0.53 ± 0.30
liver	0.49 ± 0.30
muscle	0.35 ± 0.08
bone	0.18 ± 0.04
parotid gland	-
tumor right	2.79 ± 0.67
tumor left	2.56 ± 0.42
tumor-to-blood	68.31 ± 33.15
tumor-to-liver	7.16 ± 4.49
tumor-to-kidney	0.71 ± 0.33

* 400 µg, injected 1 h previous to the radiotracer

Example 8: *Ex vivo/In vitro* Autoradiography

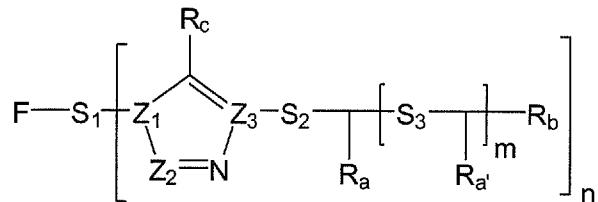
- 5 *Ex vivo Autoradiography:* Immediately after euthanasia, tumors and kidneys were removed and frozen, embedded in TissueTek at -80°C. Frozen tumors and kidneys were cut into sections of 10 µm with a microtom (Cryo-Star HM 560 M, Walldorf, Germany) and mounted on slides (Superfrost plus, Menzel, Braunschweig, Germany). The slides were exposed to phosphor imaging screens (Multisensitive screen, Packard Instruments Co., Meriden, USA) in X-ray cassettes over night. The screens were then read by a phos-

phor imager (Cyclone, Packard, Instruments Co., Groningen, The Netherlands).

In vitro Autoradiography: In vitro autoradiography was performed on adjacent sections of those prepared from tumor and kidneys 5 for ex vivo autoradiography. The slides with tumor sections were pre-incubated in Tris-HCl buffer 8170 mM, pH 7.6, with 5 mM MgCl₂) with 0.25 (w/v) BSA for 10 min at room temperature. Then, the sections were incubated with a solution of ^{99m}Tc-His-folate or ^{99m}Tc-Triazol-folate (0.5 MBq/mL in Tris-HCl buffer, containing 10 1 % BSA) for 60 min at RT. After incubation, the sections were rinsed twice for 5 min in cold Tris-HCl buffer (with 25% BSA), then washed for 5 min in pure Tris-HCl buffer and finally rinsed with cold MilliQ. The sections were air-dried, exposed to phosphor imaging screens.

15 The results are shown in Figure 5.

Example 9: SPECT/CT-studies:


SPECT/CT imaging was performed with a four-headed multiplexing multi-pinhole NanosPECT (Bioscan Inc., Washington D.C.). Each 20 head was outfitted with a tungsten collimator of nine 1.4 mm-diameter pinholes, imaging a cylindrical field of view that is 37 mm in diameter by 16 mm in length. The axial FOV is extended using a step-and-shoot helical scan of the animal, with the user defining a range from 16 to 180 mm according to the region to be 25 imaged. The apertures used in this study provided a reconstructed resolution in the submillimetre range at 140 keV. The acquisition time per view was chosen for 1000 s. CT was performed with the integrated CT using a tube voltage of 45 kV and an exposure time of 1000 ms per view. After acquisition, SPECT 30 and CT data were reconstructed iteratively with the HISPECT software (Bioscan Inc., Washington D.C., USA) software. The

SPECT and CT fusion was performed using the MIPtool software (version 1.20, Bioscan Inc.).

The results are shown in Figure 6.

CLAIMS

1. A compound of formula I

5

I

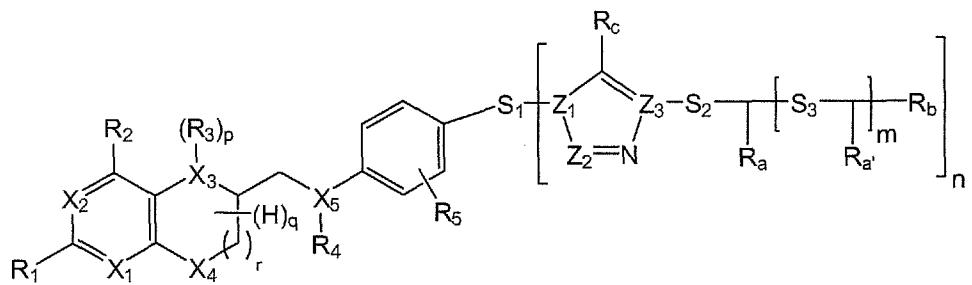
wherein

F is a folate or derivative thereof,

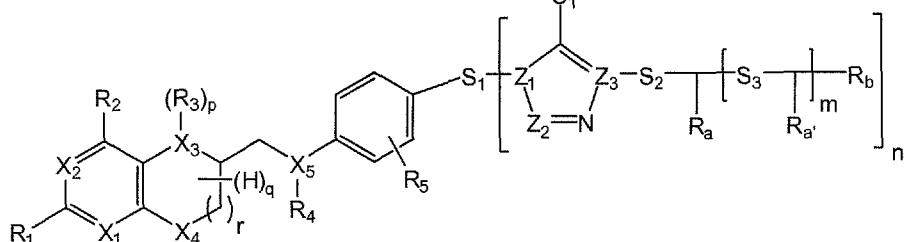
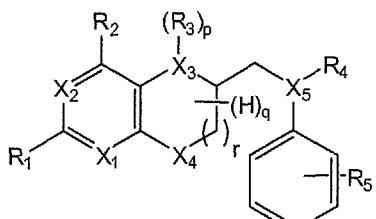
Z₁, Z₂, Z₃ are independently of each other C or N,

S₁, S₂, S₃ are independently of each other a single bond or a spacer, such as straight chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with -CN, -Hal, -NO₂, -COR' or -COOR', wherein R' represents H or C1-C6 alkyl,

R_a, R_{a'}, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, wherein R' represents H or C1-C6 alkyl, or a F as defined hereinabove, and wherein of groups R_a, R_{a'} and R_b at least two adjacent groups are a donor group -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine or a heterocyclic group


25 R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H,

C1-C6 alkyl, or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂, or a F as defined hereinabove ,



m is 0,1, 2, 3, or 4 , and

5 n is 1 or 2.

2. A compound according to claim 1 having formula II and II'

II

10

II'

wherein

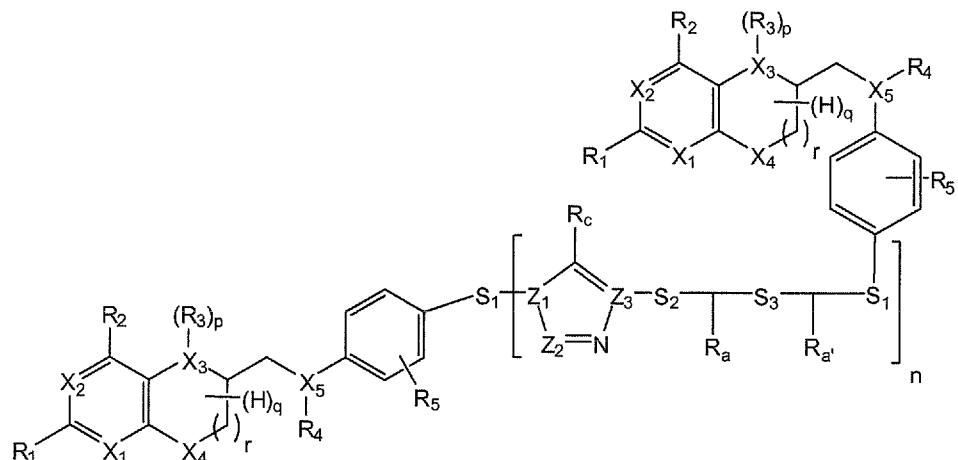
X₁, X₂, X₃, X₄ and X₅ are independently of each other C or N,

Z₁, Z₂, Z₃ are independently of each other C or N,

R_1 and R_2 are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl, wherein R' is H or C1-C6 alkyl,

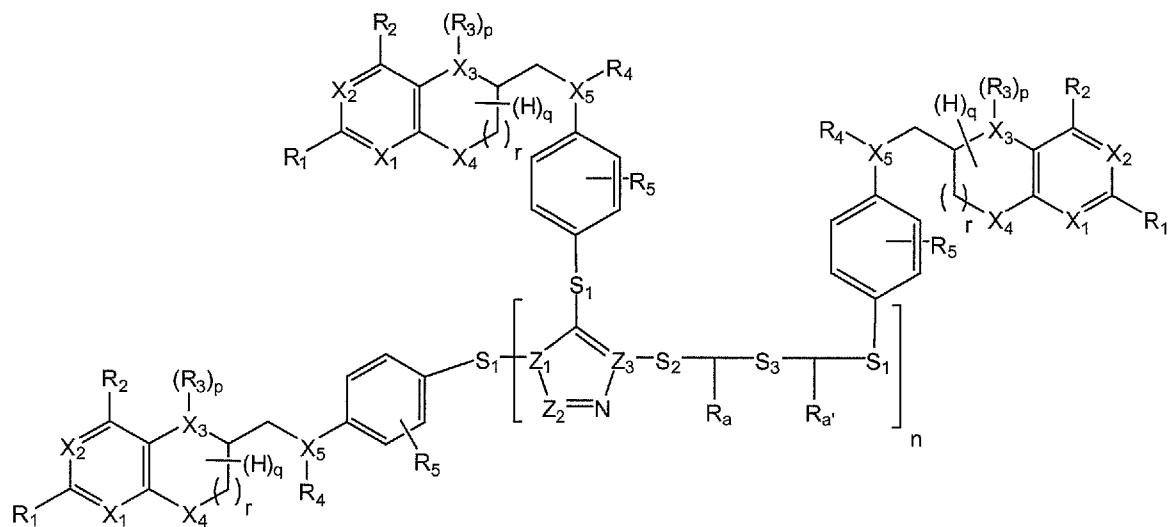
5 R_3 and R_4 are independently of each other H, formyl, iminomethyl, nitroso, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, halosubstituted C1-C12 alkanoyl,

10 R_5 is H, CN, Hal, NO₂, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl,

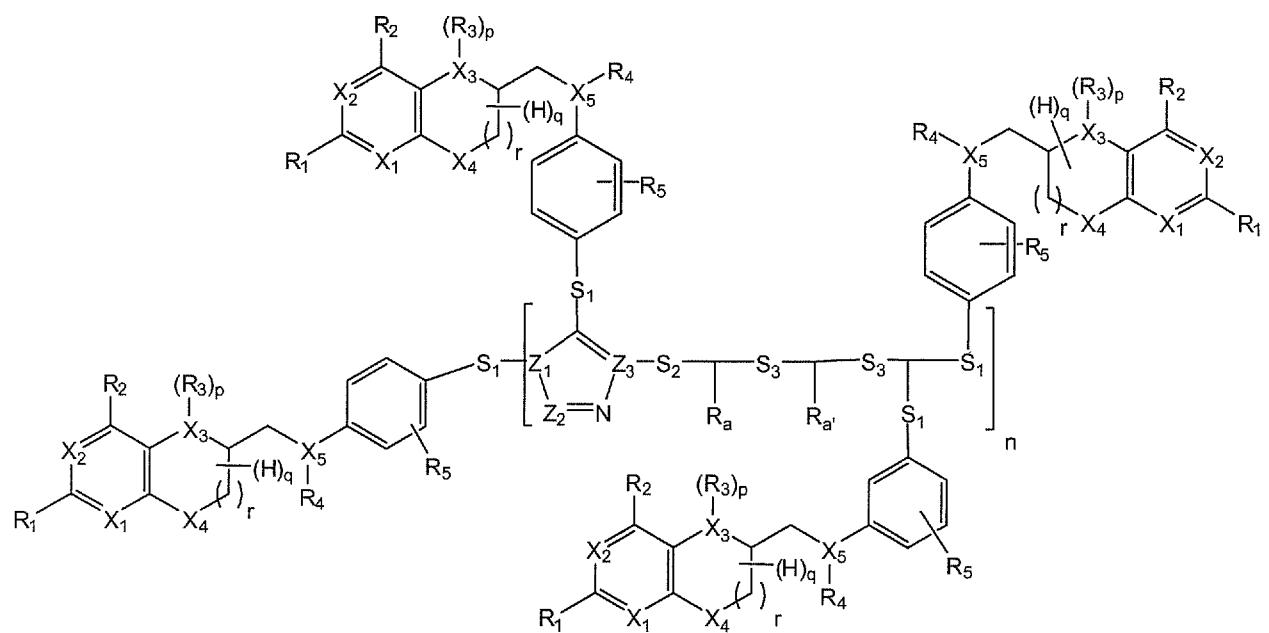

15 S_1 , S_2 , S_3 are independently of each other a single bond or a spacer, such as straight chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', 20 wherein R' represents H or C1-C6 alkyl,

25 R_a , $R_{a'}$, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, wherein R' represents H or C1-C6 alkyl, or a F as defined hereinabove, and wherein of groups R_a , $R_{a'}$ and R_b at least two adjacent groups are a donor group -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine or a heterocyclic group,

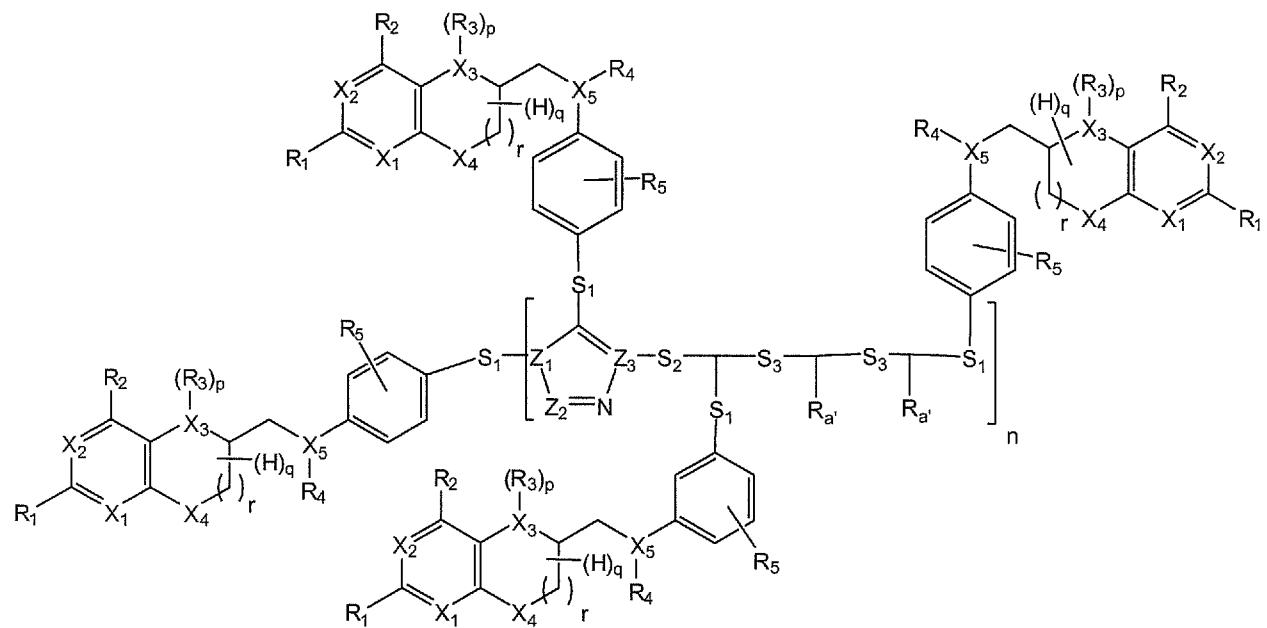
30 R_c is H, CO₂R', COR', -SO₃R', -NHR', or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂, wherein R' represents H, C1-C6 alkyl,

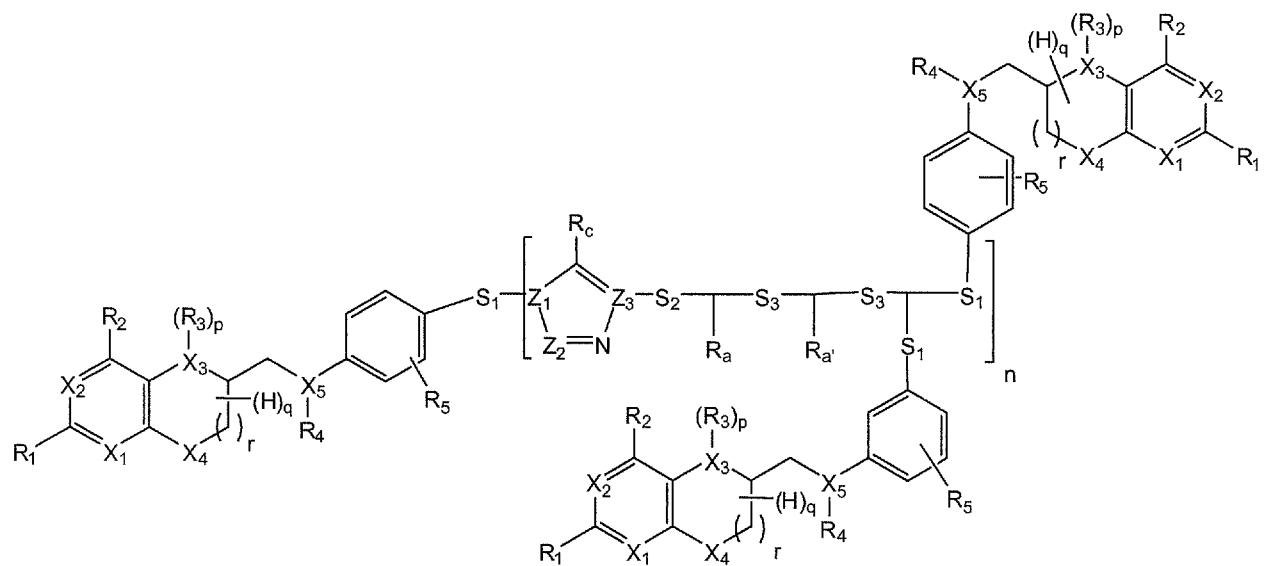

m is 0, 1, 2, 3 or 4,
n is 1 or 2,
p has a value of 0, 1 or 2,
q has a value of 1 to 7, and
5 r is 0 or 1.

3. A compound according to claims 1 or 2 having formulas IIa, IIb, IIc, IIId and IIe



10


IIa


IIB

IIC

IIId

IIe

5 wherein

X_1 , X_2 , X_3 , X_4 and X_5 are independently of each other C or N,

Z_1 , Z_2 , Z_3 are independently of each other C or N,

R_1 and R_2 are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl, wherein R' is H or C1-C6 alkyl,

5 R_3 and R_4 are independently of each other H, formyl, iminomethyl, nitroso, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, halosubstituted C1-C12 alkanoyl,

10 R_5 is H, CN, Hal, NO₂, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl,

15 S_1 , S_2 , S_3 are independently of each other a single bond or a spacer, such as straight chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', 20 wherein R' represents H or C1-C6 alkyl,

R_a , $R_{a'}$, R_b are independently of each other -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine or a heterocyclic group, wherein R' represents H, C1-C6 alkyl,

25 R_c is H, CO₂R', COR', -SO₃R', -NHR', or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂, wherein R' represents H, C1-C6 alkyl,

n is 1 or 2,

p has a value of 0, 1 or 2,

q has a value of 1 to 7, and

r is 0 or 1.

4. A compound according to any preceding claim, wherein S_1

5 is a single bond or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, OH, NH₂, SH, SO₃H or NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -NR'-CO-, -CO-NR'-, -CH=CH-, -C≡C-, or a five- or six-membered aromatic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', wherein R' represents H or C1-C6 alkyl, .

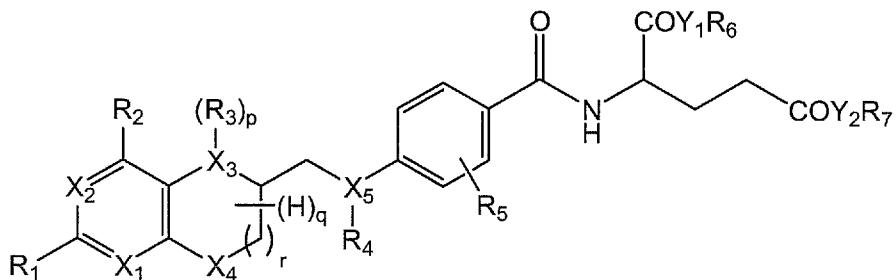
15 5. A compound according to any preceding claim, wherein S_2 ,

S₃ are independently of each other a single bond or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, OH, NH₂ or NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -NR'-, -NR'-CO-, wherein R' represents H or C1-C6 alkyl

20 6. A compound according to any preceding claim, wherein Z_1

is N, Z_3 is C and Z_2 is C or N.

25


7. A compound according to any preceding claim, wherein Z_1

is C and Z_2 and Z_3 are N.

25 8. A compound according to any preceding claim, wherein m is

0 or m is 1.

9. A compound according to claim 1 having formula III,

5

III

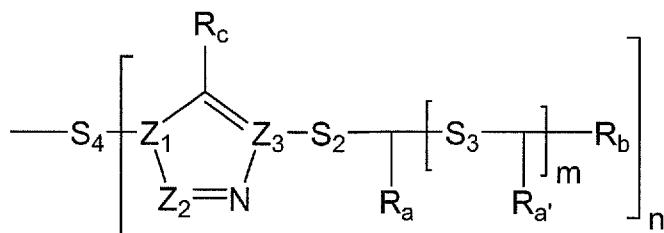
wherein

X₁, X₂, X₃, X₄ and X₅ are independently of each other C or N;

Y₁, Y₂ are independently of each other C, O or N,

10 R₁ and R₂ are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl, wherein R' is H or C1-C6 alkyl,

15 R₃ and R₄ are independently of each other H, formyl, iminomethyl, nitroso, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, halosubstituted C1-C12 alkanoyl,


R₅ is H, CN, Hal, NO₂, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl,

20 p has a value of 0, 1 or 2,

q has a value of 1 to 7,

r is 0 or 1,

R₆ and R₇ are independently of each other H, straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO₂, or a group of formula IV

5

IV

wherein

Z₁, Z₂, Z₃ are independently of each other C or N,

S₂, S₃, S₄ are independently of each other a single bond or a spacer, such as straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', wherein R' represents H or C₁-C₆ alkyl,

R_a, R_{a'}, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, wherein R' represents H or C₁-C₆ alkyl, or a F as defined hereinabove, and wherein of groups R_a, R_{a'} and R_b at least two adjacent groups are a donor group -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine or a heterocyclic group,

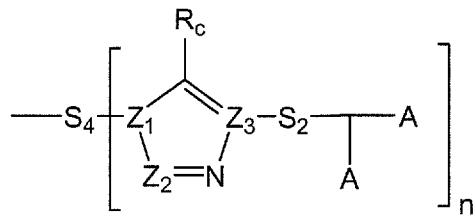
R_c is H, CO_2R' , COR' , $-SO_3R'$, $-NHR'$, wherein R' represents H, C1-C6 alkyl, or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO_2 , or a F as defined hereinabove,

5 m is 0, 1, 2, 3, or 4, and

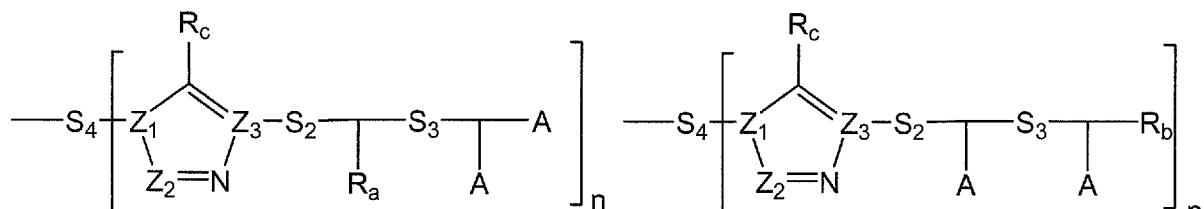
n is 1 or 2,

with the proviso that at least one of R_6 and R_7 is a group of formula IV.

10 10. A compound according to claim 9, wherein Z_1 is N, Z_3 is C and Z_2 is C or N,


11. A compound according to claim 9, wherein Z_1 is C and Z_2 and Z_3 are N

12. A compound according to claim 9, wherein R_6 is H or straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO_2 , and R_7 is a group of formula IV,


13. A compound according to claim 9, wherein R_6 is a group of formula IV, and R_7 is H or straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO_2 ,

14. A compound according to claim 9, wherein both R_6 and R_7 are a group of formula IV.

15. A compound of formula III according to claim 9, wherein at least one of R_6 and R_7 is a group of formula IVa, IVb and/or a group of formula IVb'

IVa

5

IVb

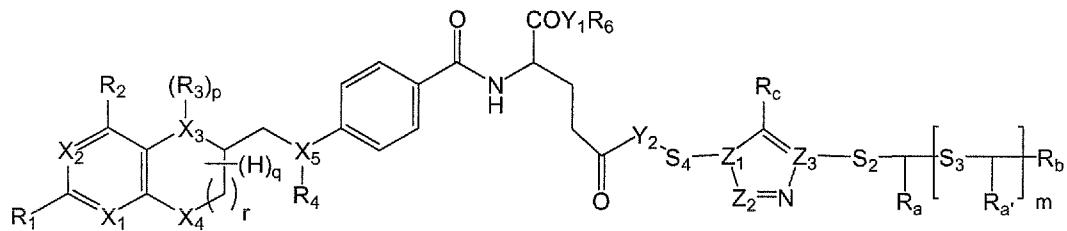
IVb'

wherein

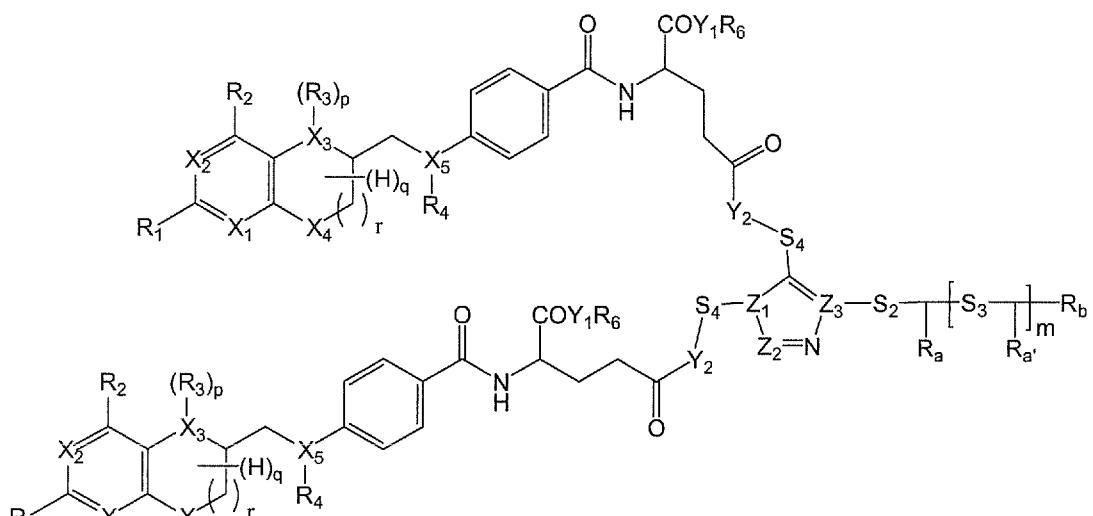
Z_1 , Z_2 , Z_3 are independently of each other C or N,

S_2 , S_3 , S_4 are independently of each other a single bond or a spacer, such as straight chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR', wherein R' represents H or C1-C6 alkyl,

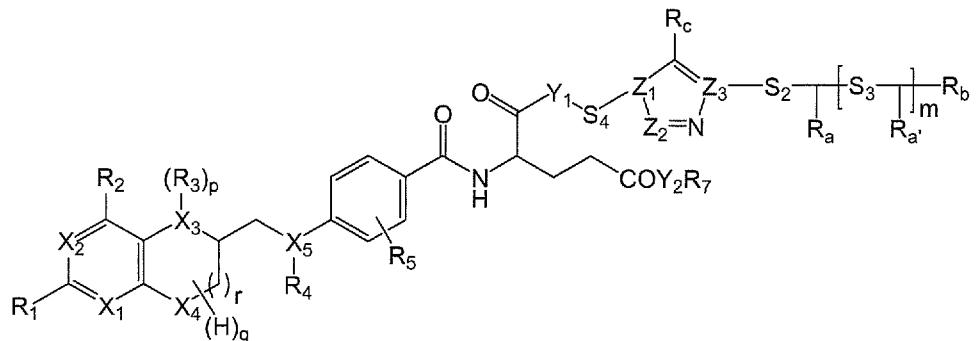
A represents independently of each other -COOH, -NH₂, -CONH₂, or -SH,

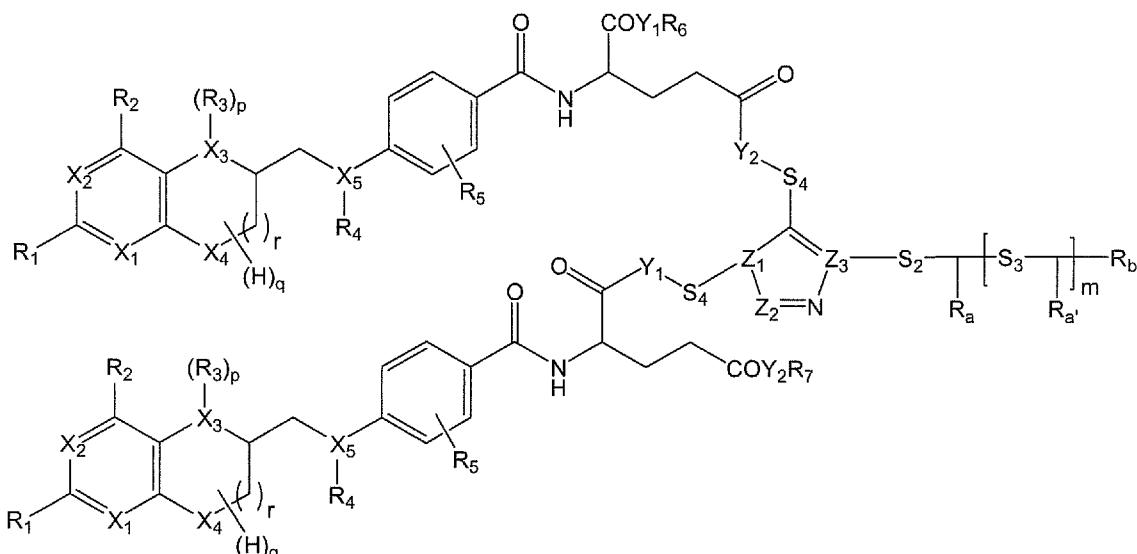

R_a , R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group,

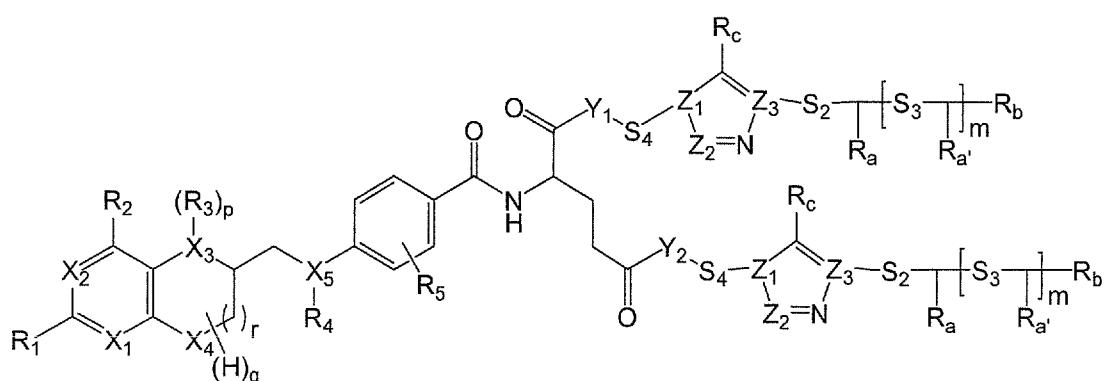
wherein R' represents H or C1-C6 alkyl, or a F as defined hereinabove,

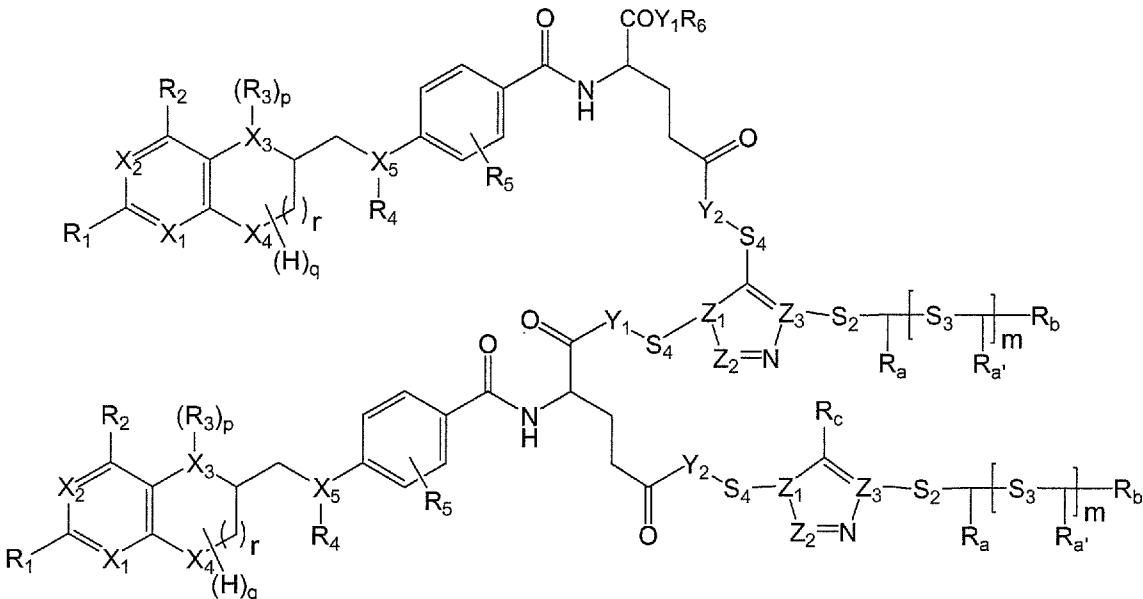

5 R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H, C1-C6 alkyl, or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂, or a F as defined hereinabove, and

n is 1 or 2.


16. A compound according to claim 1 having compounds of formulas V and V', Va and Va', Vb and Vb'


V


V'


Va

Va'

Vb

Vb'

wherein

X₁, X₂, X₃, X₄ and X₅ are independently of each other C or N;5 Y₁, Y₂ are independently of each other C, O or N,Z₁, Z₂, Z₃ are independently of each other C or N;R₁ and R₂ are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl, wherein R' is H or C1-C6 alkyl,R₃ and R₄ are independently of each other H, formyl, iminomethyl, nitroso, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, halosubstituted C1-C12 alkanoyl,R₅ is H, CN, Hal, NO₂, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl,R₆, R₇ are independently of each other H or straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO₂,

S_2 , S_3 , S_4 are independently of each other a single bond or a spacer, such as straight chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one -CN, -Hal, -OH, -NH₂, -SH, -SO₃H or -NO₂, and wherein one or more of the non-
5 adjacent CH₂ groups may independently be replaced by -O-, -CO-, -CO-O-, -O-CO-, -NR'-, -N=, -NR'-CO-, -CO-NR'-, -NR'-CO-O-, -O-CO-NR'-, -NR'-CO-NR'-, -CH=CH-, -C≡C-, -S-, -SO₃R'-, -PR'- or a five- or six-membered aromatic carbocyclic or heterocyclic ring, which is unsubstituted or substituted with CN, Hal, NO₂, COR' or COOR',
10 wherein R' represents H or C1-C6 alkyl,

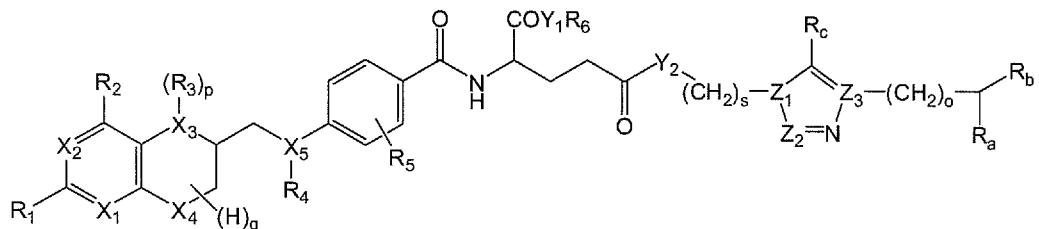
R_a , $R_{a'}$, R_b are independently of each other H, -OR', -COOR', -NHR', -CONHR', -SR', a phosphine or a heterocyclic group, wherein R' represents H or C1-C6 alkyl, or a F as defined hereinabove, and wherein of groups R_a , $R_{a'}$ and R_b at least two adjacent
15 groups are a donor group -OH, -COOH, -NHR', -CONH₂, -SH, a phosphine or a heterocyclic group,

R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H, C1-C6 alkyl, or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂,
20 or a F as defined hereinabove,

m is 0, 1, 2, 3, or 4,

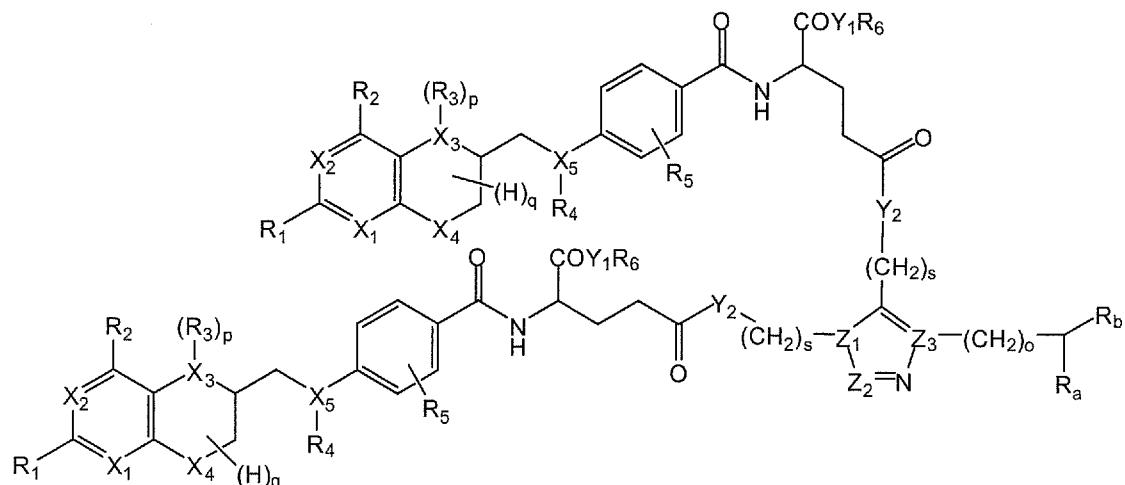
p has a value of 0, 1 or 2,

q has a value of 1 to 7, and


r is 0 or 1.

25

17. A compound according to claim 16 wherein S_2 , S_3 , S_4 are independently of each other straight-chain or branched C1-C8 alkyl, which is unsubstituted or substituted by at least one CN, Hal, OH, or NO₂ and wherein one or more of

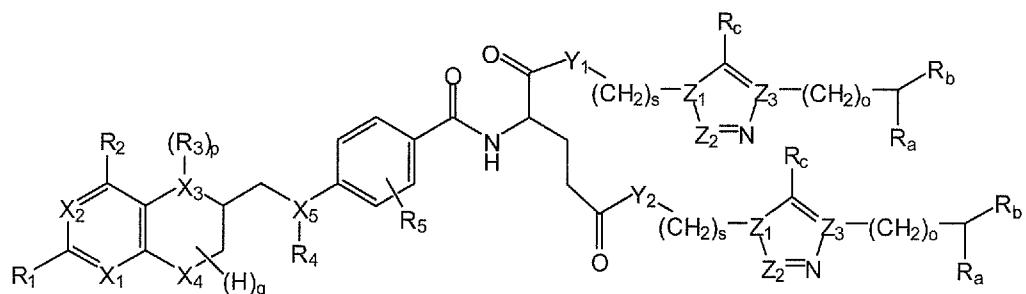

non-adjacent CH_2 groups may independently be replaced by $-\text{O}-$, $-\text{CO}-$, $-\text{CO-O-}$, $-\text{NR}'-$, $-\text{NR}'-\text{CO-}$, $-\text{CO-NR}'-$, wherein R' represents H or C1-C6 alkyl.

18. A compound according to claim 16 wherein m is 0.
- 5 19. A compound according to claim 16 wherein m is 1.
20. A compound according to claim 1 wherein having formulas VI and VI', VIa and VIa', and VIb and VIb',

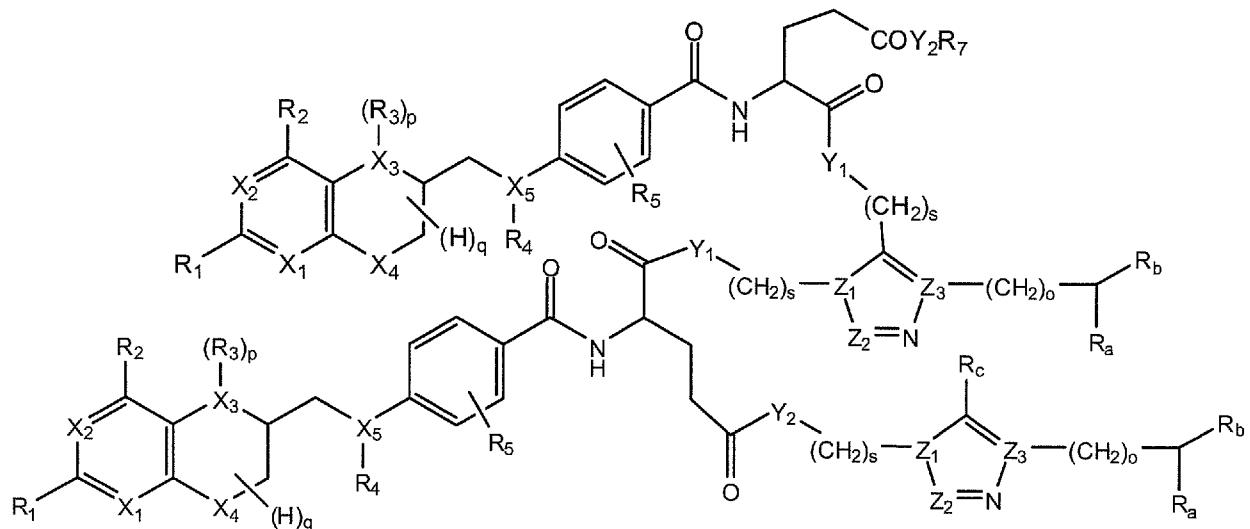
VI

10

VI'



VIa



5

VIa'

VIb

VIIb'

5 wherein

X_1 , X_2 , X_3 , X_4 and X_5 are independently of each other N or C,

Z_1 , Z_2 , Z_3 are independently of each other C or N,

Y_1 , Y_2 are independently of each other C, O or N,

10 R_1 and R_2 are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl, wherein R' is H or C1-C6 alkyl,

15 R_3 and R_4 are independently of each other H, formyl, iminomethyl, nitroso, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, halosubstituted C1-C12 alkanoyl,

R_5 is H, CN, Hal, NO₂, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl,

20 R_6 , R_7 are independently of each other H or straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by

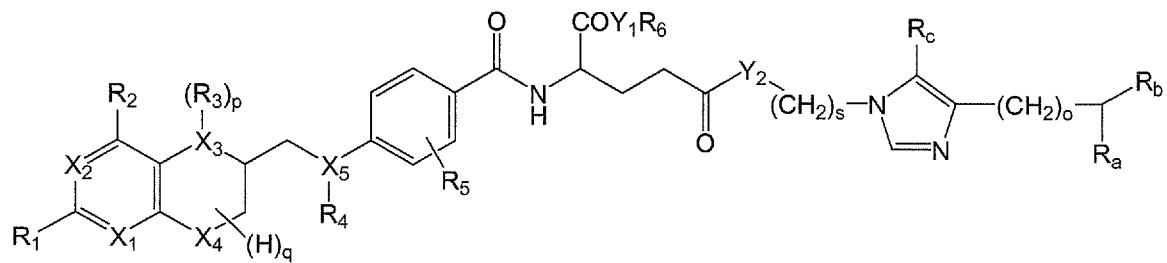
at least one CN, Hal or NO₂,

R_a, R_b are independently of each other a donor group such as -OH, -COOH, -NHR', -CONH₂, -SH, or a heterocyclic group selected from pyridyl, pyrrolyl, and thiazolyl, wherein R' represents H or C1-5 C6 alkyl,

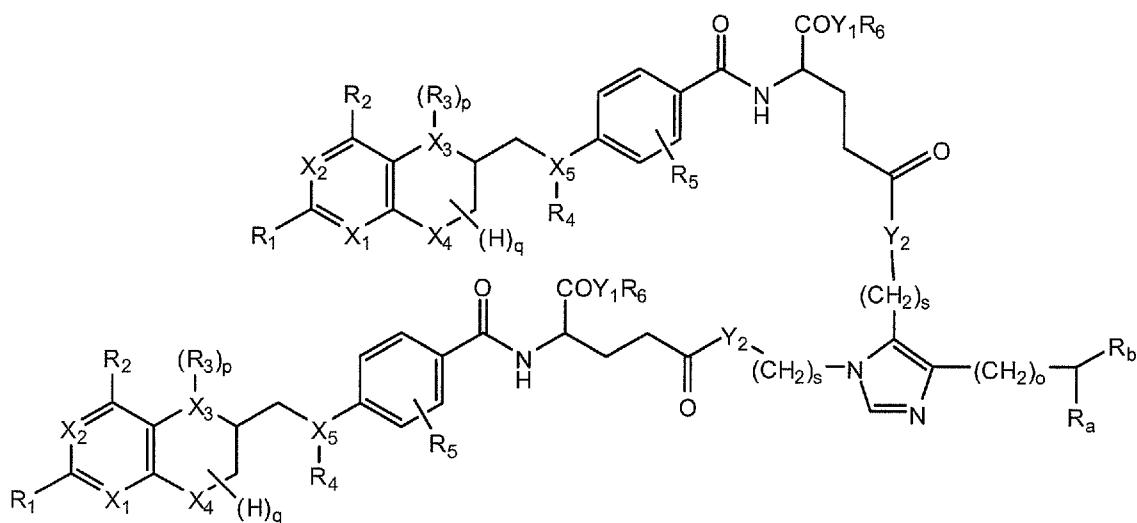
R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H or C1-C6 alkyl, or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂,

p has a value of 0, 1 or 2,

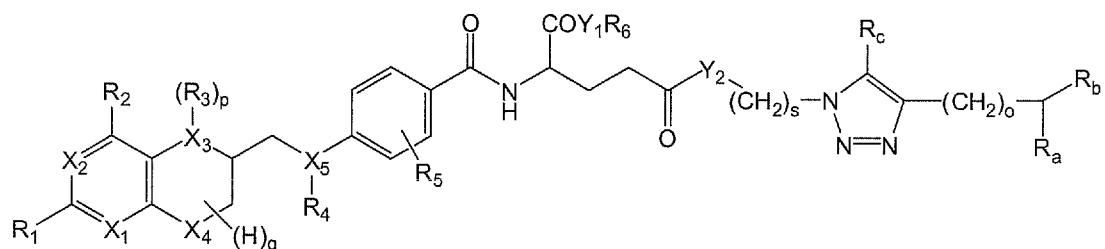
10 q has a value of 1 to 7,

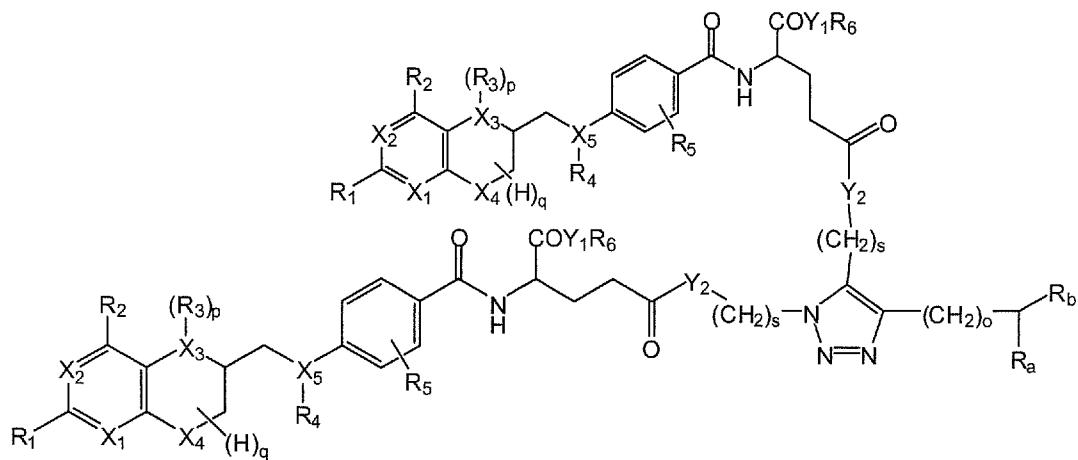

s is 1 to 8, and

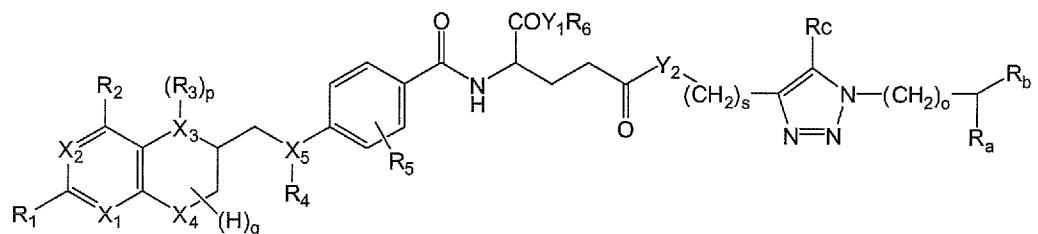
o is 1 to 6.


21. A compound according to claim 20, wherein Z₁ is N, Z₃ is
15 C and Z₂ is C or N.

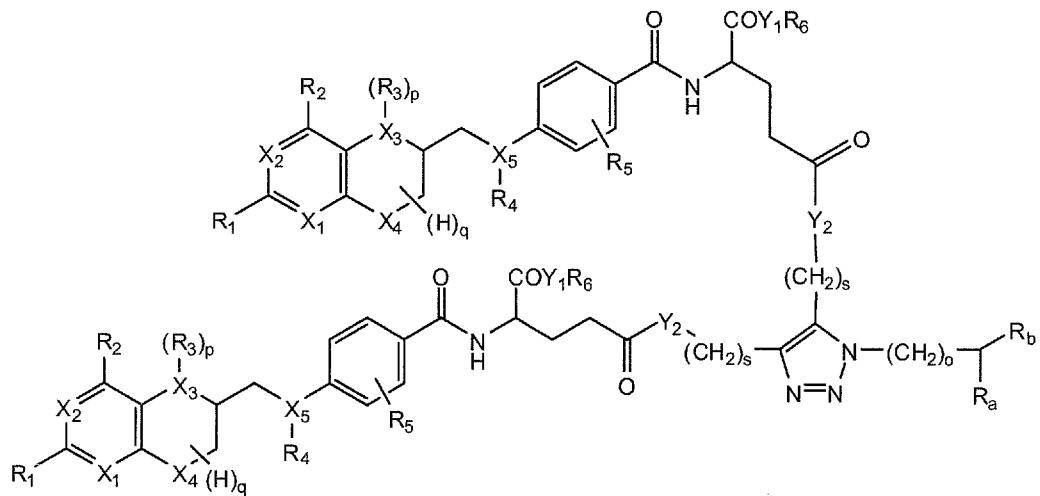
22. A compound according to claim 20, wherein Z₁ is C and Z₂
and Z₃ are N.


20 23. A compound according to claim 1 having compound of formulae VII and VII', VIIa and VIIa', and VIIb and VIIb'


VII


VII'

VIIa



VIIa'

5

VIIb

VIIb'

wherein

X_1 , X_2 , X_3 , X_4 and X_5 are independently of each other N or C,

Y_1 , Y_2 are independently of each other C, O or N,

R_1 and R_2 are independently of each other H, Hal, -OR', -NHR', C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl,

5 C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl, wherein R' is H or C1-C6 alkyl,

R_3 and R_4 are independently of each other H, formyl, iminomethyl, nitroso, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, halosubstituted C1-C12 alkanoyl,

10 R_5 is H, CN, Hal, NO₂, C1-C12 alkyl, C1-C12 alkoxy, C1-C12 alkanoyl, C2-C12 alkenyl, C2-C12 alkynyl, (C1-C12 alkoxy)carbonyl, and (C1-C12 alkylamino)carbonyl,

R_6 is H or straight chain or branched C₁-C₁₂ alkyl, which is unsubstituted or substituted by at least one CN, Hal or NO₂,

15 R_a and R_b are independently of each other a donor group such as -OH, -COOH, -NHR', -CONH₂, -SH, or a heterocyclic group selected from pyridyl, pyrrolyl, and thiazolyl, wherein R' represents H or C1-C6 alkyl,

20 R_c is H, CO₂R', COR', -SO₃R', -NHR', wherein R' represents H or C1-C6 alkyl, or straight-chain or branched C1-C12 alkyl, which is unsubstituted or substituted by at least one CN, Hal, or NO₂,

p has a value of 0, 1 or 2,

q has a value of 1 to 7,

s is 1 to 8, and

25 o is 1 to 6.

24. A compound according to any preceding claim, wherein R_c is H, CO₂R', COR', -SO₃R', -NHR' or C1-C12 alkyl, wherein

R' represents H or C1-C6 alkyl.

25. A compound according to any preceding claim, wherein R_a is -NH₂, R_b is -OH and R_c is H.

5

26. A compound according to any preceding claim, wherein R₆ is H or straight chain or branched C₁-C₁₂ alkyl.

27. A complex comprising a compound according to any preceding claim and a radionuclide.

10 28. A complex according to claim 27 wherein the radionuclide is selected from ^{99m}Tc, ^{186/188}Re, ¹¹¹In⁺³, ^{67/68}Ga⁺³, ⁹⁰Y⁺³, ¹⁰⁹Pd⁺², ¹⁰⁵Rh⁺³, ¹⁷⁷Lu, ^{64/67}Cu ¹⁶⁶Ho, ²¹³Bi.

15

29. A method of production of a compound according to claims 1 to 26 comprising the steps of (i) synthesizing the heterocyclic ligand site for the radionuclide, (ii) linking said site through a suitable linker to a suitably protected pteroic or folic acid derivative and (iii) isolating the compound.

25 30. A method of production of a compound according to claims 1 to 26 comprising the steps of (i) reacting an azido-derivatized folic acid with an ¹⁸F-labelled alkyne or alkyne substitute in a 1,3-cycloaddition and (ii) isolating the compound.

31. A method of production of a compound according to claims 1 to 26 comprising the steps of (i) reacting a folic acid derivatized with an alkyne or alkyne substitute with an ¹⁸F-labelled azide in a 1,3-cycloaddition and (b) isolating the compound.

5

32. A method of production of a complex according to claims 27 or 28 comprising the steps of reacting said compound with a radionuclide optionally in the presence of a reducing agent to form said complex.

10

15

33. A pharmaceutical composition comprising a diagnostic imaging amount or a therapeutically effective amount of at least one complex according to claims 27 or 28 and a pharmaceutically acceptable carrier therefor.

15

20

34. Use of a complex according to claims 27 or 28 or a pharmaceutical composition according to claim 33 in the preparation of a diagnostic agent useful for convenient and effective administration to a subject in need for diagnostic imaging.

20

25

35. Use of a complex according to claims 27 or 28 or a pharmaceutical composition according to claim 33 in the preparation of a radiotherapeutic agent useful for convenient and effective administration to a subject in need for radiotherapy.

25

30

36. Method for diagnostic imaging of a cell or population of cells expressing a folate-receptor, said method comprising

ing the steps of administering at least one complex according to claims 27 or 28 or composition according to claim 33 in a diagnostic imaging amount, and obtaining a diagnostic image of said cell or population of cells.

5

37. Method for radiotherapy comprising the steps of administering to a subject in need thereof at least one complex according to claims 27 or 28 or composition according to claim 33 in therapeutically effective amounts, and after localization of said at least one complex or composition in the desired tissues, subjecting the tissues to irradiation to achieve the desired therapeutic effect.
- 10
38. Method for in vitro detection of a cell expressing the folate receptor in a tissue sample which includes contacting said tissue sample with a complex according to claims 27 or 28 or composition according to claim 33 in effective amounts and for sufficient time and conditions to allow binding to occur and detecting such binding by 15
- 20
- imaging techniques.
- 25
39. A single or multi-vial kit comprising in one or separate vials a compound according to claims 1 to 25, a source of a pharmaceutically acceptable reducing agent, and optional additives such as a stannous salt.

Fig 1.

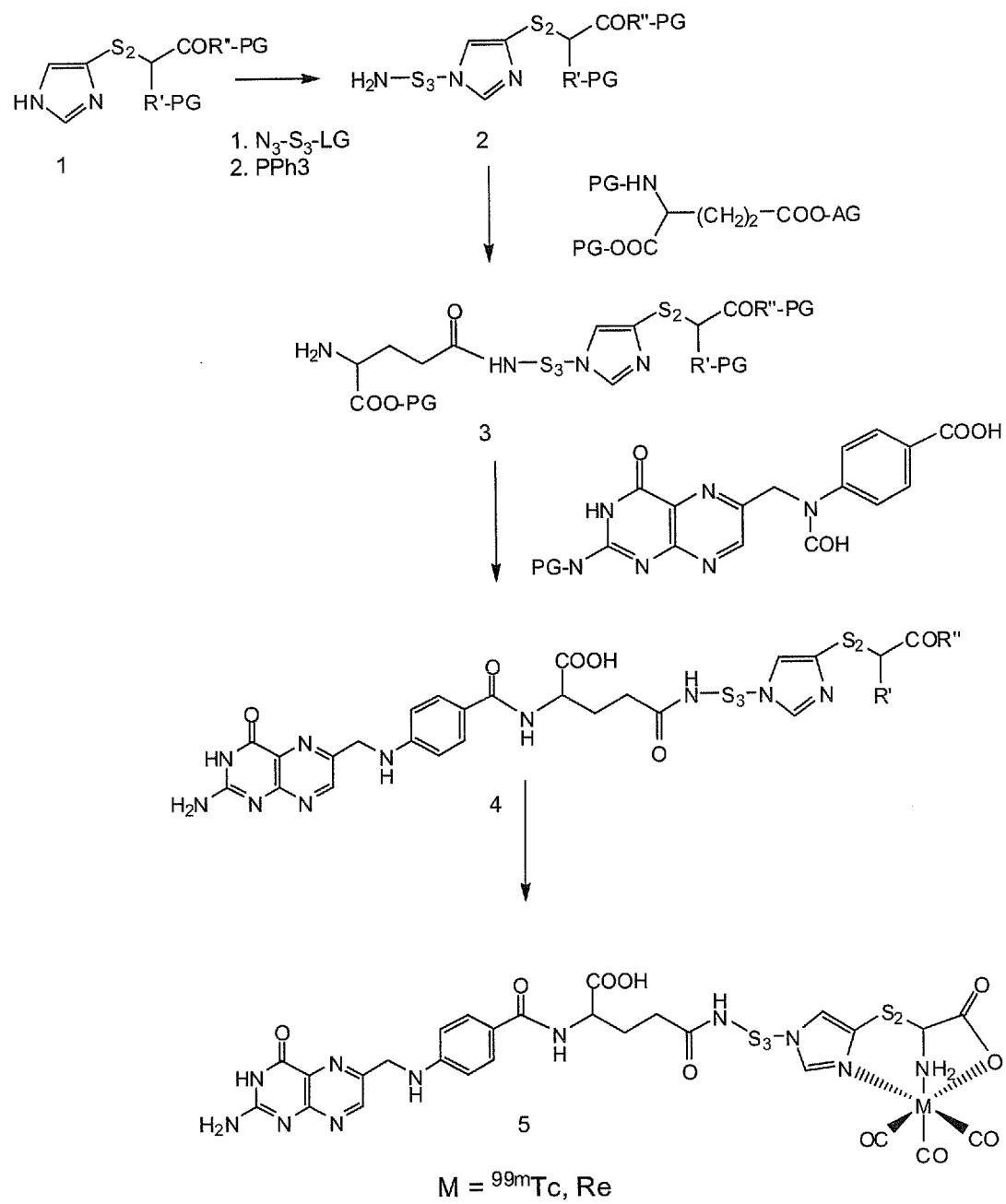


Fig 2.

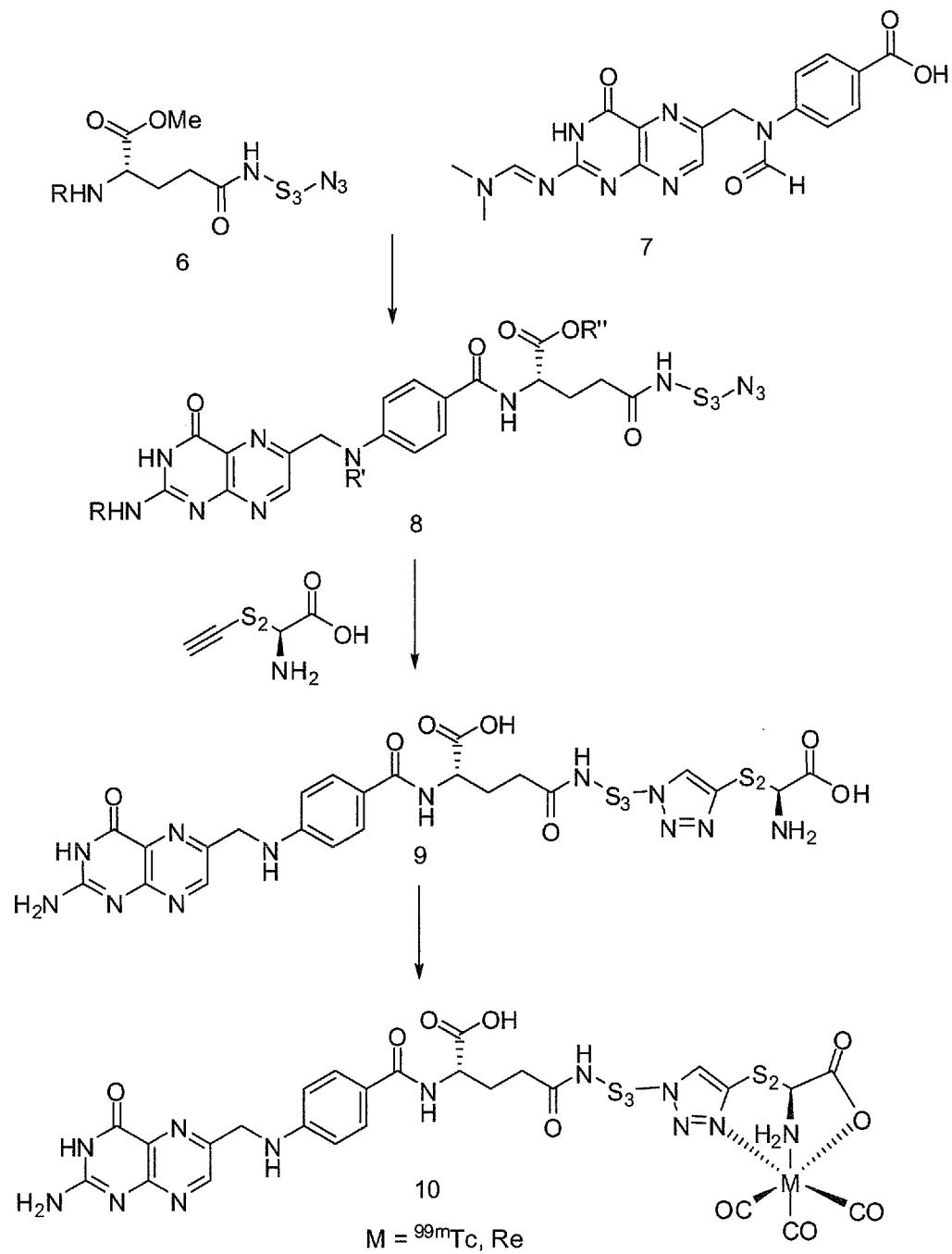
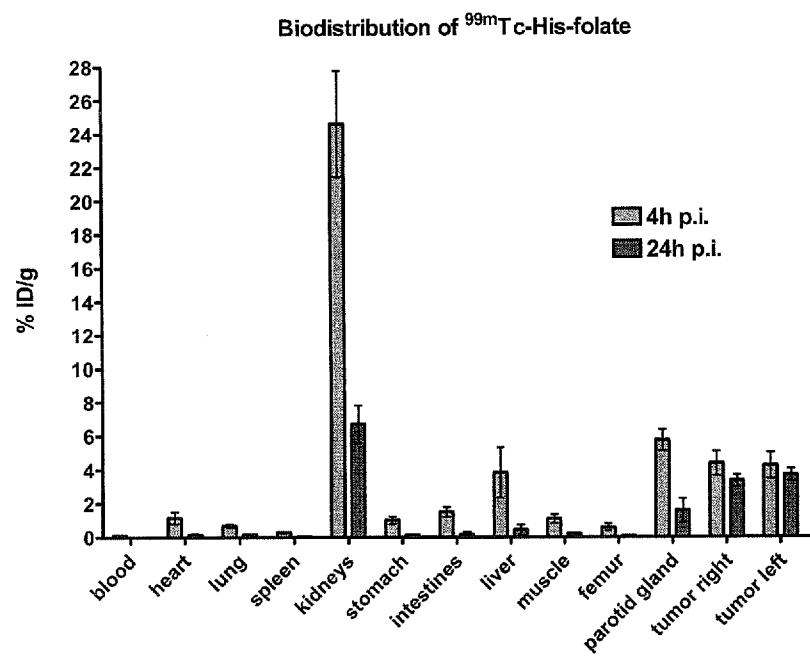



Fig 3. (A)

(B)

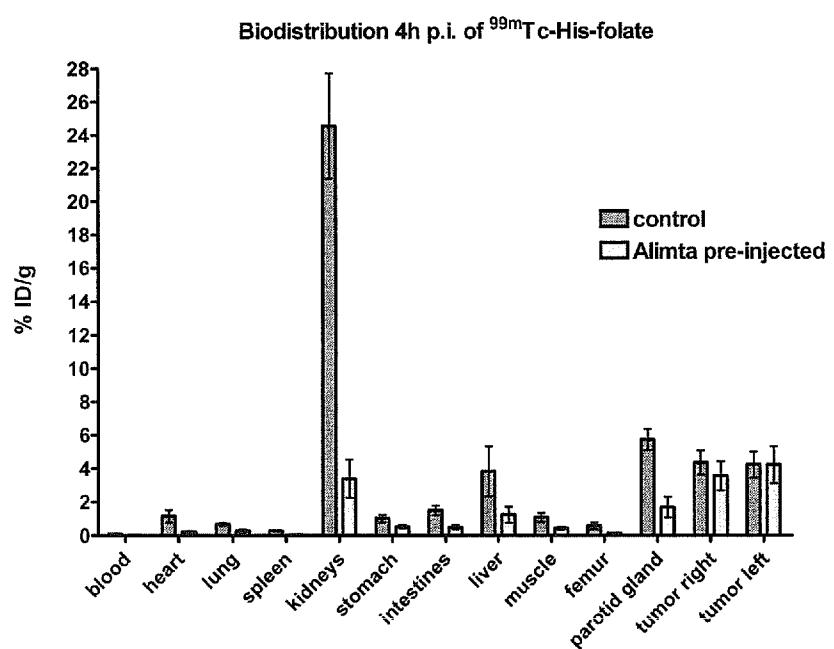
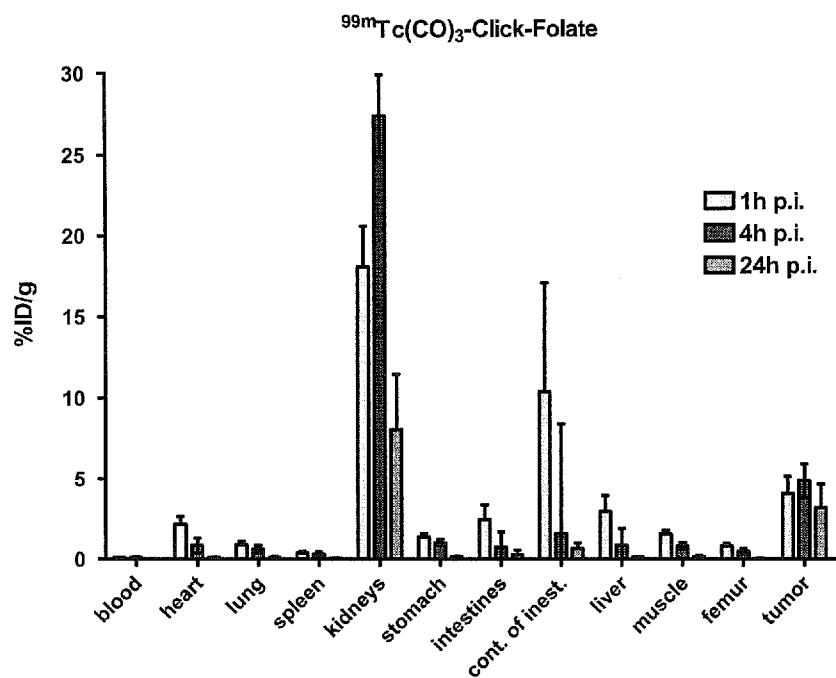



Fig 4. (A)

(B)

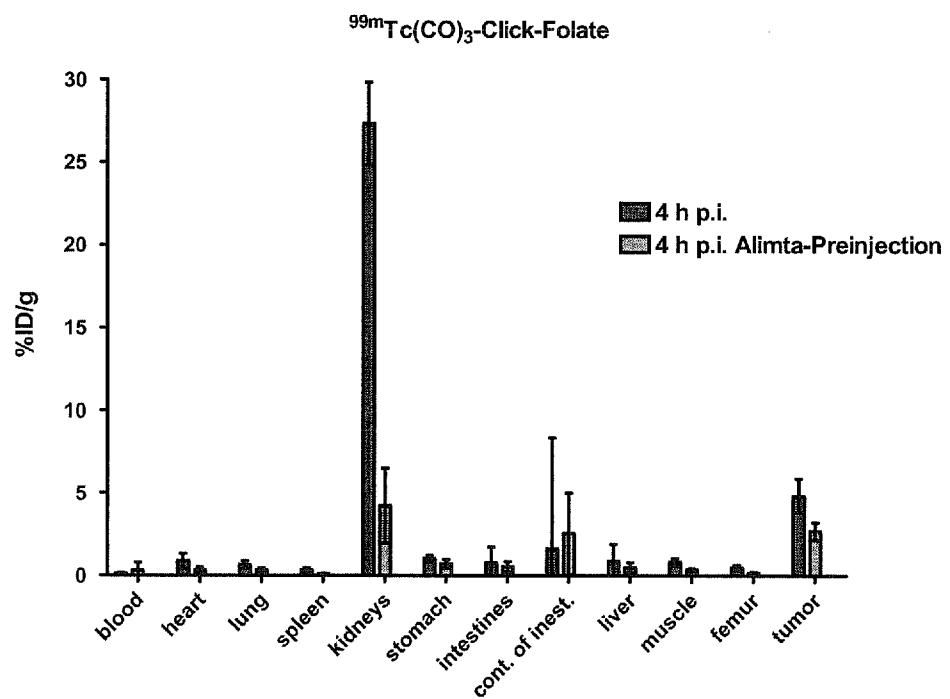


Fig 5.

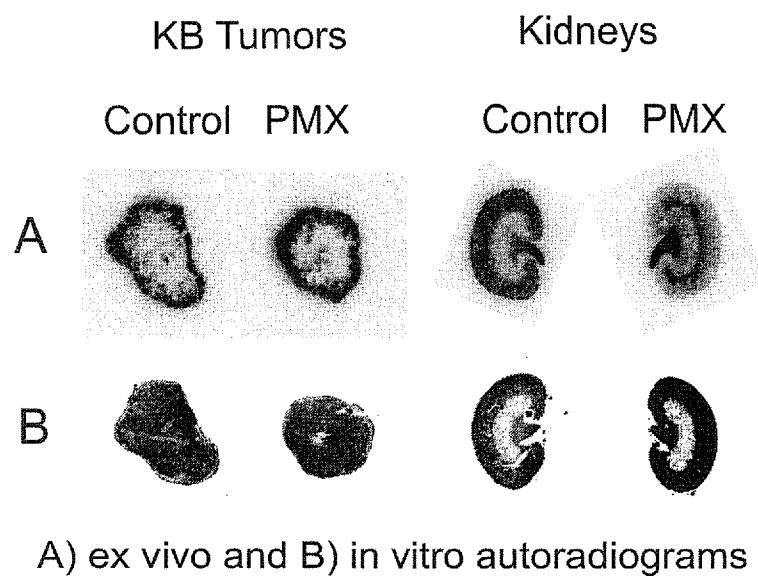
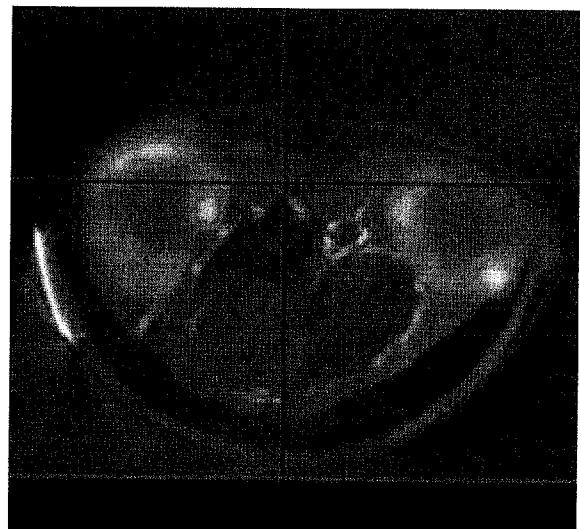
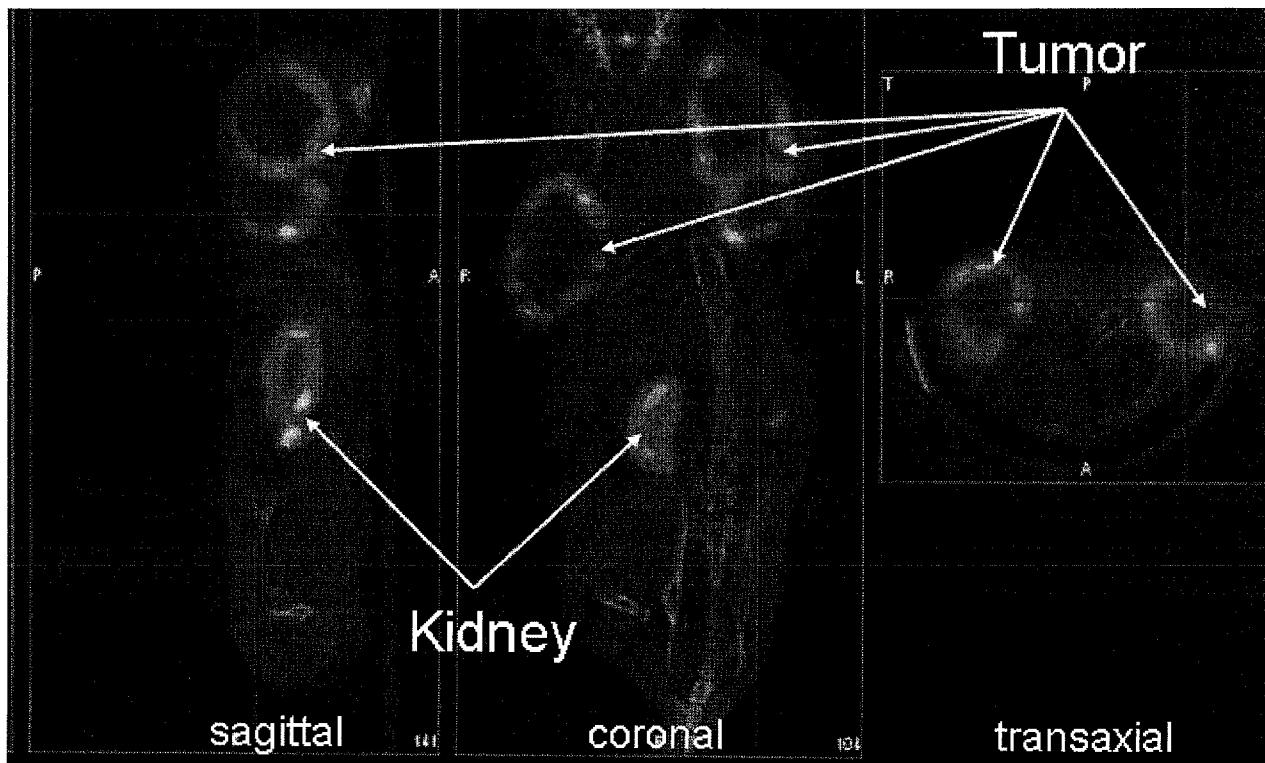
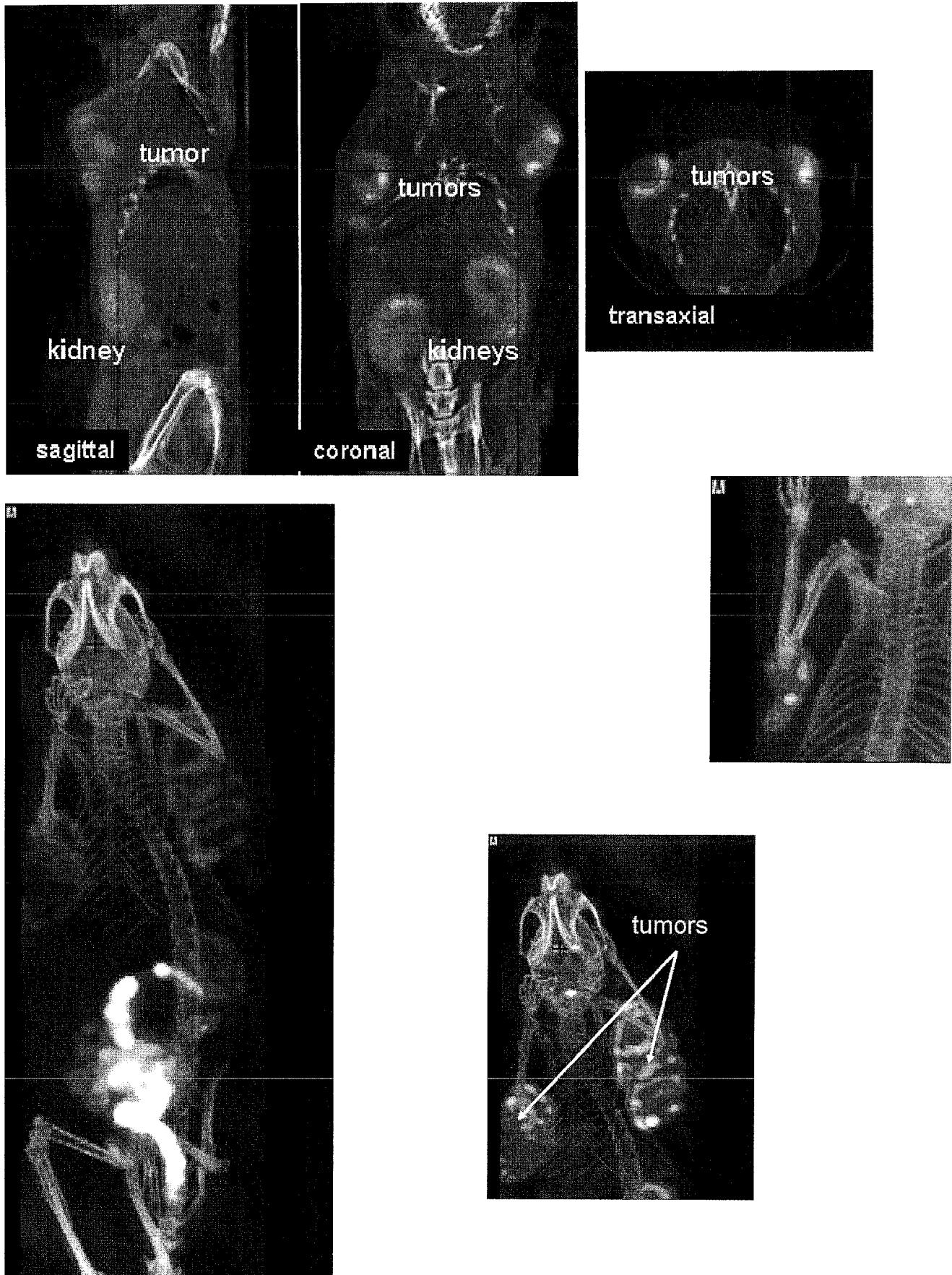





Fig 6.

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2008/054409

A. CLASSIFICATION OF SUBJECT MATTER
INV. C07D487/04 A61K51/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
T	MINDT ET AL.: "Click to chelate: in vitro and in vivo comparison of a 99mTc(CO)3-labeled histidine folate derivative with its isostructural clicked 1,2,3-triazole analogue" BIOCONJUGATE CHEM., vol. 19, 2008, pages 1689-1695, XP002495315 the whole document -----	1-39
P, X	US 2007/280880 A1 (MOSER RUDOLF [CH] ET AL) 6 December 2007 (2007-12-06) figure 1, compound 2a/b ----- -/-	1-39

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

10 September 2008

Date of mailing of the international search report

23/09/2008

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Bérillon, Laurent

INTERNATIONAL SEARCH REPORT

 International application No
 PCT/EP2008/054409

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	MINDT ET AL.: "Click to chelate: synthesis and installation of metal chelates into biomolecules in a single step" J. AM. CHEM. SOC., vol. 128, 2006, pages 15096-15097, XP002495316 figure 1	1-39
Y	KE C-Y ET AL: "The folate receptor as a molecular target for tumor-selective radionuclide delivery" NUCLEAR MEDICINE AND BIOLOGY, ELSEVIER, NY, US, vol. 30, no. 8, 1 November 2003 (2003-11-01), pages 811-817, XP004482844 ISSN: 0969-8051 the whole document	1-39
Y	WO 99/59640 A (BRACCO INT BV [NL]) 25 November 1999 (1999-11-25) the whole document	1-39
Y	WO 03/092742 A (ENDOCYTE INC [US]; LEAMON CHRISTOPHER PAUL [US]; PARKER MATTHEW A [US]) 13 November 2003 (2003-11-13) the whole document	1-39
Y	US 2001/004454 A1 (WEDEKING PAUL W [US] ET AL) 21 June 2001 (2001-06-21) the whole document	1-39

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box II.2

Claims Nos.: 1-15, 24-39(part)

The present claims relate to an extremely large number of possible folate-conjugates and complexes thereof. Support and disclosure in the sense of Article 6 and 5 PCT is to be found however for only a very small proportion of the folate-conjugates claimed (only 2 examples, see figures 1 and 2). The non-compliance with the substantive provisions is to such an extent, that the search was performed taking into consideration the non-compliance in determining the extent of the search (PCT Guidelines 9.19 and 9.23).

The search was restricted to the claimed folate conjugates of formula V, V', Va, Va', Vb, Vb', VI, VI', VIa, VIa', VIb, VIb', VII, VII', VIIa, VIIa', VIIb, VIIb' and complexes thereof.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.2), should the problems which led to the Article 17(2)PCT declaration be overcome.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/EP2008/054409

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 1-15, 24-39(part) because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers allsearchable claims.

2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claim's Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT**Information on patent family members**

International application No

PCT/EP2008/054409

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 2007280880	A1	06-12-2007	NONE		
WO 9959640	A	25-11-1999	AU 3622599 A	06-12-1999	
			EP 1077729 A2	28-02-2001	
			JP 2002515462 T	28-05-2002	
			US 6093382 A	25-07-2000	
			US 6221334 B1	24-04-2001	
WO 03092742	A	13-11-2003	AU 2003239383 A1	17-11-2003	
			CA 2484345 A1	13-11-2003	
			CN 1662263 A	31-08-2005	
			EP 1501551 A1	02-02-2005	
			JP 2006501149 T	12-01-2006	
			NZ 536467 A	30-11-2006	
US 2001004454	A1	21-06-2001	NONE		