wo 2017/048658 A 1[I I P00 OO0 00

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/048658 A1l

23 March 2017 (23.03.2017) WIPO | PCT
(51) International Patent Classification: (74) Agents: MINHAS, Sandip et al.; Microsotft Corporation,
GO6F 12/0862 (2016.01) GO6F 9/38 (2006.01) Attn: Patent Group Docketing (Bldg. 8/1000), One Mi-
(21) International Application Number: crosoft Way, Redmond, Washington 98052-6399 (US).
PCT/US2016/051419 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
13 September 2016 (13.09.2016) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
62/221,003 19 September 2015 (19.09.2015) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
15/061,408 4 March 2016 (04.03.2016) Us SC, SD, SE, 8G, SK, SL, SM, ST, SV, 8Y, TH, TJ, T™,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(71) Applicant: MICROSOFT TECHNOLOGY LICENS- ZW.
ING, LLC [US/US]; Attn: Patent Group Docketing (Bldg. . L
8/1000), One Microsoft Way, Redmond, Washington (84) Designated States (uniess otherwise indicated, for every
98052-6399 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(72) Imventors: BURGER, Douglas C.; Microsoft Technology TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

Licensing, LLC, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US). SMITH, Aaron L.; Microsoft Techno-
logy Licensing, LLC, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US).

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: PREFETCHING ASSOCIATED WITH PREDICATED STORE INSTRUCTIONS

(57) Abstract: Technology related to prefetching data associated with pre-
dicated stores of programs in block-based processor architectures is dis-

1300

FIG. 13

closed. In one example of the disclosed technology, a processor includes a

block-based processor core for executing an instruction block comprising a

Receive an instruction block comprising an

1310n—— instruction header and a plurality of instructions

1320— Determine that an instruction of the plurality of

instructions is a predicated store instruction

! Calculate 2 memory address using a first value !
133H encoded in a field of the predicated store instruction :
| and a second value generated by a register read of |

| the instruction block and/or a different instruction 1

targeting the predicated store instruction |

___________ p

Initiate @ memory operation associated with a
memory address targeted by the predicated store
instruction before a predicate of the predicated store
instruction is calculated

1340~

I
1350 Prioritize the initiated memory operation according |
to a memory access prioritization policy

plurality of instructions. The block-based processor core includes decode lo-
gic and pretetch logic. The decode logic is configured to detect a predicated
store instruction of the instruction block. The prefetch logic is configured to
calculate a target address of the predicated store instruction and initiate a
v memory operation associated with the calculated target address before a pre-
dicate of the predicated store instruction is calculated.

WO 2017/048658 A1 |IIIWAT 00T 000N K A0 AR

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted — with international search report (Art. 21(3))
a patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

PREFETCHING ASSOCIATED WITH PREDICATED STORE INSTRUCTIONS

BACKGROUND
[001] Microprocessors have benefitted from continuing gains in transistor count,
integrated circuit cost, manufacturing capital, clock frequency, and energy efficiency due
to continued transistor scaling predicted by Moore’s law, with little change in associated
processor Instruction Set Architectures (ISAs). However, the benefits realized from
photolithographic scaling, which drove the semiconductor industry over the last 40 years,
are slowing or even reversing. Reduced Instruction Set Computing (RISC) architectures
have been the dominant paradigm in processor design for many years. Out-of-order
superscalar implementations have not exhibited sustained improvement in area or
performance. Accordingly, there is ample opportunity for improvements in processor
ISAs to extend performance improvements.

SUMMARY

[002] Methods, apparatus, and computer-readable storage devices are disclosed for
prefetching data associated with predicated load and store instructions of a block-based
processor instruction set architecture (BB-ISA). The described techniques and tools can
potentially improve processor performance and can be implemented separately, or in
various combinations with each other. As will be described more fully below, the
described techniques and tools can be implemented in a digital signal processor,
microprocessor, application-specific integrated circuit (ASIC), a soft processor (e.g., a
microprocessor core implemented in a field programmable gate array (FPGA) using
reconfigurable logic), programmable logic, or other suitable logic circuitry. As will be
readily apparent to one of ordinary skill in the art, the disclosed technology can be
implemented in various computing platforms, including, but not limited to, servers,
mainframes, cellphones, smartphones, PDAs, handheld devices, handheld computers,
touch screen tablet devices, tablet computers, wearable computers, and laptop computers.
[003] In some examples of the disclosed technology, a processor includes a block-based
processor core for executing an instruction block comprising an instruction header and a
plurality of instructions. The block-based processor core includes decode logic and
prefetch logic. The decode logic is configured to detect a predicated store instruction of
the instruction block. The prefetch logic is configured to calculate a target address of the
predicated store instruction and initiate a memory operation associated with the calculated

target address before a predicate of the predicated store instruction is calculated.

1

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[004] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter. The foregoing and
other objects, features, and advantages of the disclosed subject matter will become more
apparent from the following detailed description, which proceeds with reference to the
accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS
[005] FIG. 1 illustrates a block-based processor including multiple processor cores, as
can be used in some examples of the disclosed technology.
[006] FIG. 2 illustrates a block-based processor core, as can be used in some examples of
the disclosed technology.
[007] FIG. 3 illustrates a number of instruction blocks, according to certain examples of
disclosed technology.
[008] FIG. 4 illustrates portions of source code and respective instruction blocks.
[009] FIG. 5 illustrates block-based processor headers and instructions, as can be used in
some examples of the disclosed technology.
[010] FIG. 61s a flowchart illustrating an example of a progression of states of a
processor core of a block-based processor.
[011] FIG. 7A illustrates an example snippet of source code of a program for a block-
based processor.
[012] FIG. 7B illustrates an example of a dependence graph of the example snippet of
source code from FIG. 7A.
[013] FIG. 8 illustrates an example instruction block corresponding to the snippet of
source code from FIG. 7A, the instruction block comprises predicated load instructions
and predicated store instructions.
[014] FIG. 9is a flowchart illustrating an example method of compiling a program for a
block-based processor, as can be performed in some examples of the disclosed technology.
[015] FIG. 10 illustrates an example system for executing an instruction block on a
block-based processor core, as can be used in some examples of the disclosed technology.
[016] FIG. 11 illustrates an example system comprising a processor having multiple
block-based processor cores and a memory hierarchy, as can be used in some examples of

the disclosed technology.

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[017] FIGS. 12-13 are flowcharts illustrating example methods of executing an
instruction block on a block-based processor core, as can be performed in some examples
of the disclosed technology.
[018] FIG. 14 is a block diagram illustrating a suitable computing environment for
implementing some embodiments of the disclosed technology.

DETAILED DESCRIPTION

L General Considerations

[019] This disclosure is set forth in the context of representative embodiments that are
not intended to be limiting in any way.

2%

[020] As used in this application the singular forms “a,” “an,” and “the” include the
plural forms unless the context clearly dictates otherwise. Additionally, the term
“includes” means “comprises.” Further, the term “coupled” encompasses mechanical,
electrical, magnetic, optical, as well as other practical ways of coupling or linking items
together, and does not exclude the presence of intermediate elements between the coupled
items. Furthermore, as used herein, the term “and/or” means any one item or combination
of items in the phrase.

[021] The systems, methods, and apparatus described herein should not be construed as
being limiting in any way. Instead, this disclosure is directed toward all novel and non-
obvious features and aspects of the various disclosed embodiments, alone and in various
combinations and subcombinations with one another. The disclosed systems, methods,
and apparatus are not limited to any specific aspect or feature or combinations thereof, nor
do the disclosed things and methods require that any one or more specific advantages be
present or problems be solved. Furthermore, any features or aspects of the disclosed
embodiments can be used in various combinations and subcombinations with one another.
[022] Although the operations of some of the disclosed methods are described in a
particular, sequential order for convenient presentation, it should be understood that this
manner of description encompasses rearrangement, unless a particular ordering is required
by specific language set forth below. For example, operations described sequentially may
in some cases be rearranged or performed concurrently. Moreover, for the sake of
simplicity, the attached figures may not show the various ways in which the disclosed
things and methods can be used in conjunction with other things and methods.

29 CC

Additionally, the description sometimes uses terms like “produce,” “generate,” “display,”

2% 2% 2%

“receive,” “emit,” “verify,” “execute,” and “initiate” to describe the disclosed methods.

These terms are high-level descriptions of the actual operations that are performed. The

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

actual operations that correspond to these terms will vary depending on the particular
implementation and are readily discernible by one of ordinary skill in the art.

[023] Theories of operation, scientific principles, or other theoretical descriptions
presented herein in reference to the apparatus or methods of this disclosure have been
provided for the purposes of better understanding and are not intended to be limiting in
scope. The apparatus and methods in the appended claims are not limited to those
apparatus and methods that function in the manner described by such theories of
operation.

[024] Any of the disclosed methods can be implemented as computer-executable
instructions stored on one or more computer-readable media (e.g., computer-readable
media, such as one or more optical media discs, volatile memory components (such as
DRAM or SRAM), or nonvolatile memory components (such as hard drives)) and
executed on a computer (e.g., any commercially available computer, including smart
phones or other mobile devices that include computing hardware). Any of the computer-
executable instructions for implementing the disclosed techniques, as well as any data
created and used during implementation of the disclosed embodiments, can be stored on
one or more computer-readable media (e.g., computer-readable storage media). The
computer-executable instructions can be part of, for example, a dedicated software
application or a software application that is accessed or downloaded via a web browser or
other software application (such as a remote computing application). Such software can
be executed, for example, on a single local computer (e.g., with general-purpose and/or
block-based processors executing on any suitable commercially available computer) or in
a network environment (e.g., via the Internet, a wide-area network, a local-area network, a
client-server network (such as a cloud computing network), or other such network) using
one or more network computers.

[025] For clarity, only certain selected aspects of the software-based implementations are
described. Other details that are well known in the art are omitted. For example, it should
be understood that the disclosed technology is not limited to any specific computer
language or program. For instance, the disclosed technology can be implemented by
software written in C, C++, Java, or any other suitable programming language. Likewise,
the disclosed technology is not limited to any particular computer or type of hardware.
Certain details of suitable computers and hardware are well-known and need not be set

forth in detail in this disclosure.

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[026] Furthermore, any of the software-based embodiments (comprising, for example,
computer-executable instructions for causing a computer to perform any of the disclosed
methods) can be uploaded, downloaded, or remotely accessed through a suitable
communication means. Such suitable communication means include, for example, the
Internet, the World Wide Web, an intranet, software applications, cable (including fiber
optic cable), magnetic communications, electromagnetic communications (including RF,
microwave, and infrared communications), electronic communications, or other such
communication means.

J IR Introduction to the Disclosed Technologies

[027] Superscalar out-of-order microarchitectures employ substantial circuit resources to
rename registers, schedule instructions in dataflow order, clean up after miss-speculation,
and retire results in-order for precise exceptions. This includes expensive energy-
consuming circuits, such as deep, many-ported register files, many-ported content-
accessible memories (CAMs) for dataflow instruction scheduling wakeup, and many-wide
bus multiplexers and bypass networks, all of which are resource intensive. For example,
FPGA-based implementations of multi-read, multi-write RAMs typically require a mix of
replication, multi-cycle operation, clock doubling, bank interleaving, live-value tables, and
other expensive techniques.

[028] The disclosed technologies can realize energy efficiency and/or performance
enhancement through application of techniques including high instruction-level
parallelism (ILP), out-of-order (O0Q), superscalar execution, while avoiding substantial
complexity and overhead in both processor hardware and associated software. In some
examples of the disclosed technology, a block-based processor comprising multiple
processor cores uses an Explicit Data Graph Execution (EDGE) ISA designed for area-
and energy-efficient, high-ILP execution. In some examples, use of EDGE architectures
and associated compilers finesses away much of the register renaming, CAMs, and
complexity. In some examples, the respective cores of the block-based processor can store
or cache fetched and decoded instructions that may be repeatedly executed, and the
fetched and decoded instructions can be reused to potentially achieve reduced power
and/or increased performance.

[029] In certain examples of the disclosed technology, an EDGE ISA can eliminate the
need for one or more complex architectural features, including register renaming, dataflow
analysis, misspeculation recovery, and in-order retirement while supporting mainstream

programming languages such as C and C++. In certain examples of the disclosed

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

technology, a block-based processor executes a plurality of two or more instructions as an
atomic block. Block-based instructions can be used to express semantics of program data
flow and/or instruction flow in a more explicit fashion, allowing for improved compiler
and processor performance. In certain examples of the disclosed technology, an explicit
data graph execution instruction set architecture (EDGE ISA) includes information about
program control flow that can be used to improve detection of improper control flow
instructions, thereby increasing performance, saving memory resources, and/or and saving
energy.

[030] In some examples of the disclosed technology, instructions organized within
instruction blocks are fetched, executed, and committed atomically. Intermediate results
produced by the instructions within an atomic instruction block are buffered locally until
the instruction block is committed. When the instruction block is committed, updates to
the visible architectural state resulting from executing the instructions of the instruction
block are made visible to other instruction blocks. Instructions inside blocks execute in
dataflow order, which reduces or eliminates using register renaming and provides power-
efficient OoO execution. A compiler can be used to explicitly encode data dependencies
through the ISA, reducing or eliminating burdening processor core control logic from
rediscovering dependencies at runtime. Using predicated execution, intra-block branches
can be converted to dataflow instructions, and dependencies, other than memory
dependencies, can be limited to direct data dependencies. Disclosed target form encoding
techniques allow instructions within a block to communicate their operands directly via
operand buffers, reducing accesses to a power-hungry, multi-ported physical register files.
[031] Between instruction blocks, instructions can communicate using visible
architectural state such as memory and registers. Thus, by utilizing a hybrid dataflow
execution model, EDGE architectures can still support imperative programming languages
and sequential memory semantics, but desirably also enjoy the benefits of out-of-order
execution with near in-order power efficiency and complexity.

[032] In some examples of the disclosed technology, a processor includes a block-based
processor core for executing an instruction block comprising an instruction header and a
plurality of instructions. The block-based processor core includes decode logic and
prefetch logic. The decode logic can be configured to detect a predicated store instruction
of the instruction block. The prefetch logic can be configured to calculate a target address
of the predicated store instruction and initiate a memory operation associated with the

calculated target address before a predicate of the predicated store instruction is calculated.

6

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

The execution speed of the predicated store instruction can potentially be increased by
initiating the memory operation before the predicate of the predicated store instruction is
calculated.

[033] As will be readily understood to one of ordinary skill in the relevant art, a spectrum
of implementations of the disclosed technology are possible with various area,
performance, and power tradeoffs.

III. Example Block-Based Processor

[034] FIG. 11s ablock diagram 10 of a block-based processor 100 as can be

implemented in some examples of the disclosed technology. The processor 100 is
configured to execute atomic blocks of instructions according to an instruction set
architecture (ISA), which describes a number of aspects of processor operation, including
a register model, a number of defined operations performed by block-based instructions, a
memory model, interrupts, and other architectural features. The block-based processor
includes a plurality of processing cores 110, including a processor core 111.

[035] As shown in FIG. 1, the processor cores are connected to each other via core
interconnect 120. The core interconnect 120 carries data and control signals between
individual ones of the cores 110, a memory interface 140, and an input/output (I/O)
interface 145. The core interconnect 120 can transmit and receive signals using electrical,
optical, magnetic, or other suitable communication technology and can provide
communication connections arranged according to a number of different topologies,
depending on a particular desired configuration. For example, the core interconnect 120
can have a crossbar, a bus, a point-to-point bus, or other suitable topology. In some
examples, any one of the cores 110 can be connected to any of the other cores, while in
other examples, some cores are only connected to a subset of the other cores. For
example, each core may only be connected to a nearest 4, 8, or 20 neighboring cores. The
core interconnect 120 can be used to transmit input/output data to and from the cores, as
well as transmit control signals and other information signals to and from the cores. For
example, each of the cores 110 can receive and transmit semaphores that indicate the
execution status of instructions currently being executed by each of the respective cores.
In some examples, the core interconnect 120 is implemented as wires connecting the cores
110, and memory system, while in other examples, the core interconnect can include
circuitry for multiplexing data signals on the interconnect wire(s), switch and/or routing
components, including active signal drivers and repeaters, or other suitable circuitry. In

some examples of the disclosed technology, signals transmitted within and to/from the

7

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

processor 100 are not limited to full swing electrical digital signals, but the processor can
be configured to include differential signals, pulsed signals, or other suitable signals for
transmitting data and control signals.

[036] Inthe example of FIG. 1, the memory interface 140 of the processor includes
interface logic that is used to connect to additional memory, for example, memory located
on another integrated circuit besides the processor 100. As shown in FIG. 1 an external
memory system 150 includes an L2 cache 152 and main memory 155. In some examples
the L2 cache can be implemented using static RAM (SRAM) and the main memory 155
can be implemented using dynamic RAM (DRAM). In some examples the memory
system 150 is included on the same integrated circuit as the other components of the
processor 100. In some examples, the memory interface 140 includes a direct memory
access (DMA) controller allowing transfer of blocks of data in memory without using
register file(s) and/or the processor 100. In some examples, the memory interface 140 can
include a memory management unit (MMU) for managing and allocating virtual memory,
expanding the available main memory 155.

[037] The I/O interface 145 includes circuitry for receiving and sending input and output
signals to other components, such as hardware interrupts, system control signals,
peripheral interfaces, co-processor control and/or data signals (e.g., signals for a graphics
processing unit, floating point coprocessor, physics processing unit, digital signal
processor, or other co-processing components), clock signals, semaphores, or other
suitable I/0 signals. The I/O signals may be synchronous or asynchronous. In some
examples, all or a portion of the I/O interface is implemented using memory-mapped 1/O
techniques in conjunction with the memory interface 140.

[038] The block-based processor 100 can also include a control unit 160. The control
unit can communicate with the processing cores 110, the I/O interface 145, and the
memory interface 140 via the core interconnect 120 or a side-band interconnect (not
shown). The control unit 160 supervises operation of the processor 100. Operations that
can be performed by the control unit 160 can include allocation and de-allocation of cores
for performing instruction processing, control of input data and output data between any of
the cores, register files, the memory interface 140, and/or the I/O interface 145,
modification of execution flow, and verifying target location(s) of branch instructions,
instruction headers, and other changes in control flow. The control unit 160 can also
process hardware interrupts, and control reading and writing of special system registers,

for example the program counter stored in one or more register file(s). In some examples

8

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

of the disclosed technology, the control unit 160 is at least partially implemented using
one or more of the processing cores 110, while in other examples, the control unit 160 is
implemented using a non-block-based processing core (e.g., a general-purpose RISC
processing core coupled to memory). In some examples, the control unit 160 is
implemented at least in part using one or more of: hardwired finite state machines,
programmable microcode, programmable gate arrays, or other suitable control circuits. In
alternative examples, control unit functionality can be performed by one or more of the
cores 110.

[039] The control unit 160 includes a scheduler that is used to allocate instruction blocks
to the processor cores 110. As used herein, scheduler allocation refers to hardware for
directing operation of instruction blocks, including initiating instruction block mapping,
fetching, decoding, execution, committing, aborting, idling, and refreshing an instruction
block. In some examples, the hardware receives signals generated using computer-
executable instructions to direct operation of the instruction scheduler. Processor cores
110 are assigned to instruction blocks during instruction block mapping. The recited
stages of instruction operation are for illustrative purposes, and in some examples of the
disclosed technology, certain operations can be combined, omitted, separated into multiple
operations, or additional operations added.

[040] The block-based processor 100 also includes a clock generator 170, which
distributes one or more clock signals to various components within the processor (e.g., the
cores 110, interconnect 120, memory interface 140, and I/O interface 145). In some
examples of the disclosed technology, all of the components share a common clock, while
in other examples different components use a different clock, for example, a clock signal
having differing clock frequencies. In some examples, a portion of the clock is gated to
allow power savings when some of the processor components are not in use. In some
examples, the clock signals are generated using a phase-locked loop (PLL) to generate a
signal of fixed, constant frequency and duty cycle. Circuitry that receives the clock
signals can be triggered on a single edge (e.g., a rising edge) while in other examples, at
least some of the receiving circuitry is triggered by rising and falling clock edges. In some
examples, the clock signal can be transmitted optically or wirelessly.

IV. Example Block-Based Processor Core

[041] FIG. 2 is a block diagram 200 further detailing an example microarchitecture for
the block-based processor 100, and in particular, an instance of one of the block-based

processor cores (processor core 111), as can be used in certain examples of the disclosed

9

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

technology. For ease of explanation, the exemplary block-based processor core 111 is
illustrated with five stages: instruction fetch (IF), decode (DC), operand fetch, execute
(EX), and memory/data access (LS). However, it will be readily understood by one of
ordinary skill in the relevant art that modifications to the illustrated microarchitecture,
such as adding/removing stages, adding/removing units that perform operations, and other
implementation details can be modified to suit a particular application for a block-based
processor.

[042] In some examples of the disclosed technology, the processor core 111 can be used
to execute and commit an instruction block of a program. An instruction block is an
atomic collection of block-based-processor instructions that includes an instruction block
header and a plurality of instructions. As will be discussed further below, the instruction
block header can include information describing an execution mode of the instruction
block and information that can be used to further define semantics of one or more of the
plurality of instructions within the instruction block. Depending on the particular ISA and
processor hardware used, the instruction block header can also be used, during execution
of the instructions, to improve performance of executing an instruction block by, for
example, allowing for early fetching of instructions and/or data, improved branch
prediction, speculative execution, improved energy efficiency, and improved code
compactness.

[043] The instructions of the instruction block can be dataflow instructions that explicitly
encode relationships between producer-consumer instructions of the instruction block. In
particular, an instruction can communicate a result directly to a targeted instruction
through an operand buffer that is reserved only for the targeted instruction. The
intermediate results stored in the operand buffers are generally not visible to cores outside
of the executing core because the block-atomic execution model only passes final results
between the instruction blocks. The final results from executing the instructions of the
atomic instruction block are made visible outside of the executing core when the
instruction block is committed. Thus, the visible architectural state generated by each
instruction block can appear as a single transaction outside of the executing core, and the
intermediate results are typically not observable outside of the executing core.

[044] As shown in FIG. 2, the processor core 111 includes a control unit 205, which can
receive control signals from other cores and generate control signals to regulate core
operation and schedules the flow of instructions within the core using an instruction

scheduler 206. The control unit 205 can include state access logic 207 for examining core

10

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

status and/or configuring operating modes of the processor core 111. The control unit 205
can include execution control logic 208 for generating control signals during one or more
operating modes of the processor core 111. Operations that can be performed by the
control unit 205 and/or instruction scheduler 206 can include allocation and de-allocation
of cores for performing instruction processing, control of input data and output data
between any of the cores, register files, the memory interface 140, and/or the I/O interface
145. The control unit 205 can also process hardware interrupts, and control reading and
writing of special system registers, for example the program counter stored in one or more
register file(s). In other examples of the disclosed technology, the control unit 205 and/or
instruction scheduler 206 are implemented using a non-block-based processing core (e.g.,
a general-purpose RISC processing core coupled to memory). In some examples, the
control unit 205, instruction scheduler 206, state access logic 207, and/or execution control
logic 208 are implemented at least in part using one or more of: hardwired finite state
machines, programmable microcode, programmable gate arrays, or other suitable control
circuits.

[045] The control unit 205 can decode the instruction block header to obtain information
about the instruction block. For example, execution modes of the instruction block can be
specified in the instruction block header though various execution flags. The decoded
execution mode can be stored in registers of the execution control logic 208. Based on the
execution mode, the execution control logic 208 can generate control signals to regulate
core operation and schedule the flow of instructions within the core 111, such as by using
the instruction scheduler 206. For example, during a default execution mode, the
execution control logic 208 can sequence the instructions of one or more instruction
blocks executing on one or more instruction windows (e.g., 210, 211) of the processor
core 111. Specifically, each of the instructions can be sequenced through the instruction
fetch, decode, operand fetch, execute, and memory/data access stages so that the
instructions of an instruction block can be pipelined and executed in parallel. The
instructions are ready to execute when their operands are available, and the instruction
scheduler 206 can select the order in which to execute the instructions. As another
example, the execution control logic 208 can include prefetch logic for fetching data
associated with load and store instructions before the load and store instructions are
executed.

[046] The state access logic 207 can include an interface for other cores and/or a

processor-level control unit (such as the control unit 160 of FIG. 1) to communicate with

11

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

and access state of the core 111. For example, the state access logic 207 can be connected
to a core interconnect (such as the core interconnect 120 of FIG. 1) and the other cores can
communicate via control signals, messages, reading and writing registers, and the like.
[047] The state access logic 207 can include control state registers or other logic for
modifying and/or examining modes and/or status of an instruction block and/or core
status. As an example, the core status can indicate whether an instruction block is mapped
to the core 111 or an instruction window (e.g., instruction windows 210, 211) of the core
111, whether an instruction block is resident on the core 111, whether an instruction block
is executing on the core 111, whether the instruction block is ready to commit, whether the
instruction block is performing a commit, and whether the instruction block is idle. As
another example, the status of an instruction block can include a token or flag indicating
the instruction block is the oldest instruction block executing and a flag indicating the
instruction block is executing speculatively.

[048] The control state registers (CSRs) can be mapped to unique memory locations that
are reserved for use by the block-based processor. For example, CSRs of the control unit
160 (FIG. 1) can be assigned to a first range of addresses, CSRs of the memory interface
140 (FIG. 1) can be assigned to a second range of addresses, a first processor core can be
assigned to a third range of addresses, a second processor core can be assigned to a fourth
range of addresses, and so forth. In one embodiment, the CSRs can be accessed using
general purpose memory read and write instructions of the block-based processor.
Additionally or alternatively, the CSRs can be accessed using specific read and write
instructions (e.g., the instructions have opcodes different from the memory read and write
instructions) for the CSRs. Thus, one core can examine the configuration state of a
different core by reading from an address corresponding to the different core’s CSRs.
Similarly, one core can modify the configuration state of a different core by writing to an
address corresponding to the different core’s CSRs. Additionally or alternatively, the
CSRs can be accessed by shifting commands into the state access logic 207 through serial
scan chains. In this manner, one core can examine the state access logic 207 of a different
core and one core can modify the state access logic 207 or modes of a different core.

[049] Each of the instruction windows 210 and 211 can receive instructions and data
from one or more of input ports 220, 221, and 222 which connect to an interconnect bus
and instruction cache 227, which in turn is connected to the instruction decoders 228 and
229. Additional control signals can also be received on an additional input port 225. Each

of the instruction decoders 228 and 229 decodes instructions for an instruction block and

12

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

stores the decoded instructions within a memory store 215 and 216 located in each
respective instruction window 210 and 211.

[050] The processor core 111 further includes a register file 230 coupled to an L1 (level
one) cache 235. The register file 230 stores data for registers defined in the block-based
processor architecture, and can have one or more read ports and one or more write ports.
For example, a register file may include two or more write ports for storing data in the
register file, as well as having a plurality of read ports for reading data from individual
registers within the register file. In some examples, a single instruction window (e.g.,
instruction window 210) can access only one port of the register file at a time, while in
other examples, the instruction window 210 can access one read port and one write port, or
can access two or more read ports and/or write ports simultaneously. In some examples,
the register file 230 can include 64 registers, each of the registers holding a word of 32 bits
of data. (This application will refer to 32-bits of data as a word, unless otherwise
specified.) In some examples, some of the registers within the register file 230 may be
allocated to special purposes. For example, some of the registers can be dedicated as
system registers examples of which include registers storing constant values (e.g., an all
zero word), program counter(s) (PC), which indicate the current address of a program
thread that is being executed, a physical core number, a logical core number, a core
assignment topology, core control flags, a processor topology, or other suitable dedicated
purpose. In some examples, there are multiple program counter registers, one or each
program counter, to allow for concurrent execution of multiple execution threads across
one or more processor cores and/or processors. In some examples, program counters are
implemented as designated memory locations instead of as registers in a register file. In
some examples, use of the system registers may be restricted by the operating system or
other supervisory computer instructions. In some examples, the register file 230 is
implemented as an array of flip-flops, while in other examples, the register file can be
implemented using latches, SRAM, or other forms of memory storage. The ISA
specification for a given processor, for example processor 100, specifies how registers
within the register file 230 are defined and used.

[051] In some examples, the processor 100 includes a global register file that is shared by
a plurality of the processor cores. In some examples, individual register files associated
with a processor core can be combined to form a larger file, statically or dynamically,

depending on the processor ISA and configuration.

13

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[052] As shown in FIG. 2, the memory store 215 of the instruction window 210 includes
a number of decoded instructions 241, a left operand (LOP) buffer 242, a right operand
(ROP) buffer 243, and an instruction scoreboard 245. In some examples of the disclosed
technology, each instruction of the instruction block is decomposed into a row of decoded
instructions, left and right operands, and scoreboard data, as shown in FIG. 2. The
decoded instructions 241 can include partially- or fully-decoded versions of instructions
stored as bit-level control signals. The operand buffers 242 and 243 store operands (e.g.,
register values received from the register file 230, data received from memory, immediate
operands coded within an instruction, operands calculated by an earlier-issued instruction,
or other operand values) until their respective decoded instructions are ready to execute.
Instruction operands are read from the operand buffers 242 and 243, not the register file.
[053] The memory store 216 of the second instruction window 211 stores similar
instruction information (decoded instructions, operands, and scoreboard) as the memory
store 215, but is not shown in FIG. 2 for the sake of simplicity. Instruction blocks can be
executed by the second instruction window 211 concurrently or sequentially with respect
to the first instruction window, subject to ISA constraints and as directed by the control
unit 205.

[054] In some examples of the disclosed technology, front-end pipeline stages IF and DC
can run decoupled from the back-end pipelines stages (IS, EX, LS). In one embodiment,
the control unit can fetch and decode two instructions per clock cycle into each of the
instruction windows 210 and 211. In alternative embodiments, the control unit can fetch
and decode one, four, or another number of instructions per clock cycle into a
corresponding number of instruction windows. The control unit 205 provides instruction
window dataflow scheduling logic to monitor the ready state of each decoded instruction’s
inputs (e.g., each respective instruction’s predicate(s) and operand(s) using the scoreboard
245. When all of the inputs for a particular decoded instruction are ready, the instruction
is ready to issue. The control logic 205 then initiates execution of one or more next
instruction(s) (e.g., the lowest numbered ready instruction) each cycle and its decoded
instruction and input operands are sent to one or more of functional units 260 for
execution. The decoded instruction can also encode a number of ready events. The
scheduler in the control logic 205 accepts these and/or events from other sources and
updates the ready state of other instructions in the window. Thus execution proceeds,
starting with the processor core’s 111 ready zero input instructions, instructions that are

targeted by the zero input instructions, and so forth.

14

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[055] The decoded instructions 241 need not execute in the same order in which they are
arranged within the memory store 215 of the instruction window 210. Rather, the
instruction scoreboard 245 is used to track dependencies of the decoded instructions and,
when the dependencies have been met, the associated individual decoded instruction is
scheduled for execution. For example, a reference to a respective instruction can be
pushed onto a ready queue when the dependencies have been met for the respective
instruction, and instructions can be scheduled in a first-in first-out (FIFO) order from the
ready queue. Information stored in the scoreboard 245 can include, but is not limited to,
the associated instruction’s execution predicate (such as whether the instruction is waiting
for a predicate bit to be calculated and whether the instruction executes if the predicate bit
is true or false), availability of operands to the instruction, or other prerequisites required
before executing the associated individual instruction.

[056] In one embodiment, the scoreboard 245 can include decoded ready state, which is
initialized by the instruction decoder 228, and active ready state, which is initialized by the
control unit 205 during execution of the instructions. For example, the decoded ready
state can encode whether a respective instruction has been decoded, awaits a predicate
and/or some operand(s), perhaps via a broadcast channel, or is immediately ready to issue.
The active ready state can encode whether a respective instruction awaits a predicate
and/or some operand(s), is ready to issue, or has already issued. The decoded ready state
can cleared on a block reset or a block refresh. Upon branching to a new instruction
block, the decoded ready state and the active ready state is cleared (a block or core reset).
However, when an instruction block is re-executed on the core, such as when it branches
back to itself (a block refresh), only active ready state is cleared. Block refreshes can
occur immediately (when an instruction block branches to itself) or after executing a
number of other intervening instruction blocks. The decoded ready state for the
instruction block can thus be preserved so that it is not necessary to re-fetch and decode
the block’s instructions. Hence, block refresh can be used to save time and energy in
loops and other repeating program structures.

[057] The number of instructions that are stored in each instruction window generally
corresponds to the number of instructions within an instruction block. In some examples,
the number of instructions within an instruction block can be 32, 64, 128, 1024, or another
number of instructions. In some examples of the disclosed technology, an instruction
block is allocated across multiple instruction windows within a processor core. In some

examples, the instruction windows 210, 211 can be logically partitioned so that multiple

15

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

instruction blocks can be executed on a single processor core. For example, one, two,
four, or another number of instruction blocks can be executed on one core. The respective
instruction blocks can be executed concurrently or sequentially with each other.

[058] Instructions can be allocated and scheduled using the control unit 205 located
within the processor core 111. The control unit 205 orchestrates fetching of instructions
from memory, decoding of the instructions, execution of instructions once they have been
loaded into a respective instruction window, data flow into/out of the processor core 111,
and control signals input and output by the processor core. For example, the control unit
205 can include the ready queue, as described above, for use in scheduling instructions.
The instructions stored in the memory store 215 and 216 located in each respective
instruction window 210 and 211 can be executed atomically. Thus, updates to the visible
architectural state (such as the register file 230 and the memory) affected by the executed
instructions can be buffered locally within the core until the instructions are committed.
The control unit 205 can determine when instructions are ready to be committed, sequence
the commit logic, and issue a commit signal. For example, a commit phase for an
instruction block can begin when all register writes are buffered, all writes to memory are
buffered, and a branch target is calculated. The instruction block can be committed when
updates to the visible architectural state are complete. For example, an instruction block
can be committed when the register writes are written to the register file, the stores are
sent to a load/store unit or memory controller, and the commit signal is generated. The
control unit 205 also controls, at least in part, allocation of functional units 260 to each of
the respective instructions windows.

[059] As shown in FIG. 2, a first router 250, which has a number of execution pipeline
registers 255, is used to send data from either of the instruction windows 210 and 211 to
one or more of the functional units 260, which can include but are not limited to, integer
ALUs (arithmetic logic units) (e.g., integer ALUs 264 and 265), floating point units (e.g.,
floating point ALU 267), shift/rotate logic (e.g., barrel shifter 268), or other suitable
execution units, which can including graphics functions, physics functions, and other
mathematical operations. Data from the functional units 260 can then be routed through a
second router 270 to outputs 290, 291, and 292, routed back to an operand buffer (e.g.
LOP buffer 242 and/or ROP buffer 243), or fed back to another functional unit, depending
on the requirements of the particular instruction being executed. The second router 270

can include a load/store queue 275, which can be used to issue memory instructions, a data

16

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

cache 277, which stores data being output from the core to memory, and load/store
pipeline register 278.

[060] The core also includes control outputs 295 which are used to indicate, for example,
when execution of all of the instructions for one or more of the instruction windows 210 or
211 has completed. When execution of an instruction block is complete, the instruction
block is designated as “committed” and signals from the control outputs 295 can in turn
can be used by other cores within the block-based processor 100 and/or by the control unit
160 to initiate scheduling, fetching, and execution of other instruction blocks. Both the
first router 250 and the second router 270 can send data back to the instruction (for
example, as operands for other instructions within an instruction block).

[061] As will be readily understood to one of ordinary skill in the relevant art, the
components within an individual core are not limited to those shown in FIG. 2, but can be
varied according to the requirements of a particular application. For example, a core may
have fewer or more instruction windows, a single instruction decoder might be shared by
two or more instruction windows, and the number of and type of functional units used can
be varied, depending on the particular targeted application for the block-based processor.
Other considerations that apply in selecting and allocating resources with an instruction
core include performance requirements, energy usage requirements, integrated circuit die,
process technology, and/or cost.

[062] It will be readily apparent to one of ordinary skill in the relevant art that trade-offs
can be made in processor performance by the design and allocation of resources within the
instruction window (e.g., instruction window 210) and control logic 205 of the processor
cores 110. The area, clock period, capabilities, and limitations substantially determine the
realized performance of the individual cores 110 and the throughput of the block-based
processor cores 110.

[063] The instruction scheduler 206 can have diverse functionality. In certain higher
performance examples, the instruction scheduler is highly concurrent. For example, each
cycle, the decoder(s) write instructions’ decoded ready state and decoded instructions into
one or more instruction windows, selects the next instruction to issue, and, in response the
back end sends ready events—either target-ready events targeting a specific instruction’s
input slot (predicate, left operand, right operand, ec.), or broadcast-ready events targeting
all instructions. The per-instruction ready state bits, together with the decoded ready state

can be used to determine that the instruction is ready to issue.

17

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[064] In some examples, the instruction scheduler 206 is implemented using storage
(e.g., first-in first-out (FIFO) queues, content addressable memories (CAMs)) storing data
indicating information used to schedule execution of instruction blocks according to the
disclosed technology. For example, data regarding instruction dependencies, transfers of
control, speculation, branch prediction, and/or data loads and stores are arranged in storage
to facilitate determinations in mapping instruction blocks to processor cores. For example,
instruction block dependencies can be associated with a tag that is stored in a FIFO or
CAM and later accessed by selection logic used to map instruction blocks to one or more
processor cores. In some examples, the instruction scheduler 206 is implemented using a
general purpose processor coupled to memory, the memory being configured to store data
for scheduling instruction blocks. In some examples, instruction scheduler 206 is
implemented using a special purpose processor or using a block-based processor core
coupled to the memory. In some examples, the instruction scheduler 206 is implemented
as a finite state machine coupled to the memory. In some examples, an operating system
executing on a processor (e.g., a general purpose processor or a block-based processor
core) generates priorities, predictions, and other data that can be used at least in part to
schedule instruction blocks with the instruction scheduler 206. As will be readily apparent
to one of ordinary skill in the relevant art, other circuit structures, implemented in an
integrated circuit, programmable logic, or other suitable logic can be used to implement
hardware for the instruction scheduler 206.

[065] In some cases, the scheduler 206 accepts events for target instructions that have not
yet been decoded and must also inhibit reissue of issued ready instructions. Instructions
can be non-predicated, or predicated (based on a true or false condition). A predicated
instruction does not become ready until it is targeted by another instruction’s predicate
result, and that result matches the predicate condition. If the associated predicate does not
match, the instruction never issues. In some examples, predicated instructions may be
issued and executed speculatively. In some examples, a processor may subsequently
check that speculatively issued and executed instructions were correctly speculated. In
some examples a misspeculated issued instruction and the specific transitive closure of
instructions in the block that consume its outputs may be re-executed, or misspeculated
side effects annulled. In some examples, discovery of a misspeculated instruction leads to

the complete roll back and re-execution of an entire block of instructions.

18

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

V. Example Stream of Instruction Blocks

[066] Turning now to the diagram 300 of FIG. 3, a portion 310 of a stream of block-
based instructions, including a number of variable length instruction blocks 311-315 (A—
E) is illustrated. The stream of instructions can be used to implement user application,
system services, or any other suitable use. In the example shown in FIG. 3, each
instruction block begins with an instruction header, which is followed by a varying
number of instructions. For example, the instruction block 311 includes a header 320 and
twenty instructions 321. The particular instruction header 320 illustrated includes a
number of data fields that control, in part, execution of the instructions within the
instruction block, and also allow for improved performance enhancement techniques
including, for example branch prediction, speculative execution, lazy evaluation, and/or
other techniques. The instruction header 320 also includes an ID bit which indicates that
the header is an instruction header and not an instruction. The instruction header 320 also
includes an indication of the instruction block size. The instruction block size can be in
larger chunks of instructions than one, for example, the number of 4-instruction chunks
contained within the instruction block. In other words, the size of the block 1s shifted 4
bits in order to compress header space allocated to specifying instruction block size. Thus,
a size value of 0 indicates a minimally-sized instruction block which is a block header
followed by four instructions. In some examples, the instruction block size is expressed as
a number of bytes, as a number of words, as a number of n-word chunks, as an address, as
an address offset, or using other suitable expressions for describing the size of instruction
blocks. In some examples, the instruction block size is indicated by a terminating bit
pattern in the instruction block header and/or footer.

[067] The instruction block header 320 can also include execution flags, which indicate
special instruction execution requirements. For example, branch prediction or memory
dependence prediction can be inhibited for certain instruction blocks, depending on the
particular application. As another example, an execution flag can be used to control
whether prefetching is enabled for data and/or instructions of certain instruction blocks.
[068] In some examples of the disclosed technology, the instruction header 320 includes
one or more identification bits that indicate that the encoded data is an instruction header.
For example, in some block-based processor ISAs, a single ID bit in the least significant
bit space is always set to the binary value 1 to indicate the beginning of a valid instruction

block. In other examples, different bit encodings can be used for the identification bit(s).

19

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

In some examples, the instruction header 320 includes information indicating a particular
version of the ISA for which the associated instruction block is encoded.

[069] The block instruction header can also include a number of block exit types for use
in, for example, branch prediction, control flow determination, and/or bad jump detection.
The exit type can indicate what the type of branch instructions are, for example:
sequential branch instructions, which point to the next contiguous instruction block in
memory; offset instructions, which are branches to another instruction block at a memory
address calculated relative to an offset; subroutine calls, or subroutine returns. By
encoding the branch exit types in the instruction header, the branch predictor can begin
operation, at least partially, before branch instructions within the same instruction block
have been fetched and/or decoded.

[070] The instruction block header 320 also includes a store mask which identifies the
load-store queue identifiers that are assigned to store operations. The instruction block
header can also include a write mask, which identifies which global register(s) the
associated instruction block will write. The associated register file must receive a write to
each entry before the instruction block can complete. In some examples a block-based
processor architecture can include not only scalar instructions, but also single-instruction
multiple-data (SIMD) instructions, that allow for operations with a larger number of data
operands within a single instruction.

VL Example Block Instruction Target Encoding

[071] FIG. 4 is a diagram 400 depicting an example of two portions 410 and 415 of C
language source code and their respective instruction blocks 420 and 425 (in assembly
language), illustrating how block-based instructions can explicitly encode their targets.
The high-level C language source code can be translated to the low-level assembly
language and machine code by a compiler whose target is a block-based processor. A
high-level language can abstract out many of the details of the underlying computer
architecture so that a programmer can focus on functionality of the program. In contrast,
the machine code encodes the program according to the target computer’s ISA so that it
can be executed on the target computer, using the computer’s hardware resources.
Assembly language is a human-readable form of machine code.

[072] In the following examples, the assembly language instructions use the following
nomenclature: “I[<number>] specifies the number of the instruction within the instruction
block where the numbering begins at zero for the instruction following the instruction

header and the instruction number is incremented for each successive instruction; the

20

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

operation of the instruction (such as READ, ADDI, DIV, and the like) follows the
instruction number; optional values (such as the immediate value 1) or references to
registers (such as RO for register 0) follow the operation; and optional targets that are to
receive the results of the instruction follow the values and/or operation. Each of the
targets can be to another instruction, a broadcast channel to other instructions, or a register
that can be visible to another instruction block when the instruction block is committed.
An example of an instruction target is T[1R] which targets the right operand of instruction
1. An example of a register target is W[RO], where the target is written to register O.

[073] Inthe diagram 400, the first two READ instructions 430 and 431 of the instruction
block 420 target the right (T[2R]) and left (T[2L]) operands, respectively, of the ADD
instruction 432. In the illustrated ISA, the read instruction is the only instruction that
reads from the global register file; however any instruction can target, the global register
file. When the ADD instruction 432 receives the result of both register reads it will
become ready and execute.

[074] When the TLEI (test-less-than-equal-immediate) instruction 433 receives its single
input operand from the ADD, it will become ready and execute. The test then produces a
predicate operand that is broadcast on channel one (B[1P]) to all instructions listening on
the broadcast channel, which in this example are the two predicated branch instructions
(BRO P1t 434 and BRO P1f 435). In the assembly language of the diagram 400, “P1f”
indicates the instruction is predicated (the “P”) on a false result (the “f”) being transmitted
on broadcast channel 1 (the “17), and “P1t” indicates the instruction is predicated on a true
result being transmitted on broadcast channel 1. The branch that receives a matching
predicate will fire.

[075] A dependence graph 440 for the instruction block 420 is also illustrated, as an
array 450 of instruction nodes and their corresponding operand targets 455 and 456. This
illustrates the correspondence between the block instructions 420, the corresponding
instruction window entries, and the underlying dataflow graph represented by the
instructions. Here decoded instructions READ 430 and READ 431 are ready to issue, as
they have no input dependencies. As they issue and execute, the values read from
registers R6 and R7 are written into the right and left operand bufters of ADD 432,
marking the left and right operands of ADD 432 “ready.” As a result, the ADD 432
instruction becomes ready, issues to an ALU, executes, and the sum is written to the left

operand of TLEI 433.

21

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[076] As a comparison, a conventional out-of-order RISC or CISC processor would
dynamically build the dependence graph at runtime, using additional hardware
complexity, power, area and reducing clock frequency and performance. However, the
dependence graph is known statically at compile time and an EDGE compiler can directly
encode the producer-consumer relations between the instructions through the ISA, freeing
the microarchitecture from rediscovering them dynamically. This can potentially enable a
simpler microarchitecture, reducing area, power and boosting frequency and performance.

VII. Example Block-Based Instruction Formats

[077] FIG. 5 is a diagram illustrating generalized examples of instruction formats for an
instruction header 510, a generic instruction 520, a branch instruction 530, a load
instruction 540, and a store instruction 550. Each of the instruction headers or instructions
is labeled according to the number of bits. For example the instruction header 510
includes four 32-bit words and is labeled from its least significant bit (Isb) (bit 0) up to its
most significant bit (msb) (bit 127). As shown, the instruction header includes a write
mask field, a store mask field, a number of exit type fields, a number of execution flag
fields (X flags), an instruction block size field, and an instruction header ID bit (the least
significant bit of the instruction header).

[078] The execution flag fields can indicate special instruction execution modes. For
example, an “inhibit branch predictor” flag can be used to inhibit branch prediction for the
instruction block when the flag is set. As another example, an “inhibit memory
dependence prediction” flag can be used to inhibit memory dependence prediction for the
instruction block when the flag is set. As another example, a “break after block” flag can
be used to halt an instruction thread and raise an interrupt when the instruction block is
committed. As another example, a “break before block” flag can be used to halt an
instruction thread and raise an interrupt when the instruction block header is decoded and
before the instructions of the instruction block are executed. As another example, a “data
prefetching disable” flag can be used to control whether data prefetching is enabled or
disabled for the instruction block.

[079] The exit type fields include data that can be used to indicate the types of control
flow and/or synchronization instructions encoded within the instruction block. For
example, the exit type fields can indicate that the instruction block includes one or more of
the following: sequential branch instructions, offset branch instructions, indirect branch
instructions, call instructions, return instructions, and/or break instructions. In some

examples, the branch instructions can be any control flow instructions for transferring

22

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

control flow between instruction blocks, including relative and/or absolute addresses, and
using a conditional or unconditional predicate. The exit type fields can be used for branch
prediction and speculative execution in addition to determining implicit control flow
instructions. In some examples, up to six exit types can be encoded in the exit type fields,
and the correspondence between fields and corresponding explicit or implicit control flow
instructions can be determined by, for example, examining control flow instructions in the
instruction block.

[080] The illustrated generic block instruction 520 is stored as one 32-bit word and
includes an opcode field, a predicate field, a broadcast ID field (BID), a first target field
(T1), and a second target field (T2). For instructions with more consumers than target
fields, a compiler can build a fanout tree using move instructions, or it can assign high-
fanout instructions to broadcasts. Broadcasts support sending an operand over a
lightweight network to any number of consumer instructions in a core. A broadcast
identifier can be encoded in the generic block instruction 520.

[081] While the generic instruction format outlined by the generic instruction 520 can
represent some or all instructions processed by a block-based processor, it will be readily
understood by one of skill in the art that, even for a particular example of an ISA, one or
more of the instruction fields may deviate from the generic format for particular
instructions. The opcode field specifies the length or width of the instruction 520 and the
operation(s) performed by the instruction 520, such as memory read/write, register
load/store, add, subtract, multiply, divide, shift, rotate, system operations, or other suitable
instructions.

[082] The predicate field specifies the condition under which the instruction will execute.
For example, the predicate field can specify the value “true,” and the instruction will only
execute if a corresponding condition flag matches the specified predicate value. In some
examples, the predicate field specifies, at least in part, a field, operand, or other resource
which is used to compare the predicate, while in other examples, the execution is
predicated on a flag set by a previous instruction (e.g., the preceding instruction in the
instruction block). In some examples, the predicate field can specify that the instruction
will always, or never, be executed. Thus, use of the predicate field can allow for denser
object code, improved energy efficiency, and improved processor performance, by
reducing the number of branch instructions.

[083] The target fields T1 and T2 specifying the instructions to which the results of the

block-based instruction are sent. For example, an ADD instruction at instruction slot 5

23

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

can specify that its computed result will be sent to instructions at slots 3 and 10.
Depending on the particular instruction and ISA, one or both of the illustrated target fields
can be replaced by other information, for example, the first target field T1 can be replaced
by an immediate operand, an additional opcode, specify two targets, efc.

[084] The branch instruction 530 includes an opcode field, a predicate field, a broadcast
ID field (BID), and an offset field. The opcode and predicate fields are similar in format
and function as described regarding the generic instruction. The offset can be expressed in
units of four instructions, thus extending the memory address range over which a branch
can be executed. The predicate shown with the generic instruction 520 and the branch
instruction 530 can be used to avoid additional branching within an instruction block. For
example, execution of a particular instruction can be predicated on the result of a previous
instruction (e.g., a comparison of two operands). If the predicate is false, the instruction
will not commit values calculated by the particular instruction. If the predicate value does
not match the required predicate, the instruction does not issue. For example, a BRO F
(predicated false) instruction will issue if it is sent a false predicate value.

[085] It should be readily understood that, as used herein, the term “branch instruction”
is not limited to changing program execution to a relative memory location, but also
includes jumps to an absolute or symbolic memory location, subroutine calls and returns,
and other instructions that can modify the execution flow. In some examples, the
execution flow is modified by changing the value of a system register (e.g., a program
counter PC or instruction pointer), while in other examples, the execution flow can be
changed by modifying a value stored at a designated location in memory. In some
examples, a jump register branch instruction is used to jump to a memory location stored
in a register. In some examples, subroutine calls and returns are implemented using jump
and link and jump register instructions, respectively.

[086] The load instruction 540 is used for retrieving data from memory into a processor
core. The address of the data can be calculated dynamically at runtime. For example, the
address can be a sum of an operand of the load instruction 540 and an immediate field of
the load instruction 540. As another example, the address can be a sum of an operand of
the load instruction 540 and a sign-extended and/or shifted immediate field of the load
instruction 540. As another example, the address of the data can be a sum of two operands
of the load instruction 540. The load instruction 540 can include a load-store identifier
field (LSID) to provide a relative ordering of the load within an instruction block. For

example, the compiler can assign an LSID to each load and store of the instruction block

24

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

at compile-time. The amount and type of data can be retrieved and/or formatted in various
ways. For example, the data can be formatted as a signed or unsigned value and the
amount or size of the data retrieved can vary. Different opcodes can be used to identify
the type of load instruction 540, such as a load unsigned byte, load signed byte, load
double-word, load unsigned half-word, load signed half-word, load unsigned word, and
load signed word, for example. The output of the load instruction 540 can be directed to a
target instruction as indicated by a target field (TO).

[087] A predicated load instruction is a load instruction that conditionally executes based
on whether a result associated with the instruction matches a predicate test value. For
example, the result can be delivered to an operand of the predicated load instruction from
another instruction, and the predicate test value can be encoded in a field of the predicated
load instruction. As a specific example, the load instruction 540 can be a predicated load
instruction when one or more bits of the predicate field (PR) are non-zero. For example,
the predicate field can be two bits wide where one bit is used to indicate that the
instruction is predicated and one bit is used to indicate the predicate test value.
Specifically, the encodings “00” can indicate the load instruction 540 is not predicated,
“10” can indicate the load instruction 540 is predicated on a false condition (e.g., the
predicate test value is a “0”); “11” can indicate the load instruction 540 is predicated on a
true condition (e.g., the predicate test value is a “0”); and “10” can be reserved. Thus, a
two-bit predicate field can be used to compare a received result to a true or false condition.
A wider predicate field can be used to compare the received result to a larger number.
[088] In one example, the result to be compared to the predicate test value can be passed
to the instruction via one or more broadcast operands or channels. The broadcast channel
of the predicate can be identified within the load instruction 540 using a broadcast
identifier field (BID). For example, the broadcast identifier field can be two-bits wide to
encode four possible broadcast channels on which to receive the value to compare to the
predicate test value. As a specific example, if the value received on the identified
broadcast channel matches the predicate test value, the load instruction 540 is executed.
However, if the value received on the identified broadcast channel does not match the
predicate test value, the load instruction 540 is not executed.

[089] The load instruction 540 can be relatively slow to execute compared to other
instructions because it is used to retrieve data from memory, and memory accesses can be
relatively slow. For example, operations that occur entirely within a processor core can be

relatively faster because the logic circuits of the processor core are relatively closer

25

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

together and faster than the circuits in main memory. Memory may be shared by multiple
processor cores of a processor, so it can be relatively far from a particular processor core
and the memory may be larger than a processor core making it relatively slower.

[090] A memory hierarchy can be used to potentially increase the speed of accessing data
stored in the memory. A memory hierarchy includes multiple levels of memory having
different speeds and sizes. Levels within or closer to the processor core are generally
faster and smaller than levels farther from the processor core. For example, a memory
hierarchy can include a level-one (L.1) cache within a processor core, a level-two (L2)
cache within a processor that is shared by multiple processor cores, main memory that is
off-chip or external to the processor, and backing store that is located on a storage device,
such as a hard-disk drive. Data can be copied from a slower level of the hierarchy to a
faster level of the hierarchy when the data will be or is likely to be used by a processor
core. The data can be copied in blocks or lines that contain multiple words of data
corresponding to a range of memory addresses. For example, a memory line can be
copied or fetched from main memory into an L2 and/or L1 cache to increase the execution
speed of instructions that access memory locations within the memory line. A principle of
locality indicates that a program tends to use memory locations that are close to other
memory locations used by the program (spatial locality) and that a given memory location
is likely to be used multiple times by the program within a short time period (temporal
locality). Thus, copying a memory line associated with an address of one instruction into
a high-speed cache may also increase the execution speed of other instructions that access
other locations within the cached memory line. However, the faster levels of the memory
hierarchy likely have reduced storage capacity compared to the slower levels of the
memory hierarchy. Thus, copying a new memory line into the cache will typically cause a
different memory line to be displaced or evicted. Policies can be implemented to balance
the risk of evicting data that is likely to be reused by the instructions of an instruction
block with the goal of prefetching data that will be used by the instructions.

[091] The execution speed of the load instruction 540 can potentially be increased by
prefetching the data from memory prior to the load instruction 540 being executed.
Prefetching the data can include copying data associated with the load address from a
slower level of the memory hierarchy into a faster level of the memory hierarchy before
the load instruction 540 is executed. Thus, the data can potentially be accessed from the
faster level of the memory hierarchy during execution of the load instruction 540 which

can speed up the execution of the load instruction 540. A predicated load instruction may

26

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

provide more opportunities for prefetching data than a non-predicated load instruction
because the additional predicate calculation may delay when the predicated load
instruction is ready to issue. However, a predicated load instruction may also provide
more risks with prefetching data than a non-predicated load instruction because the
predicated load instruction will not execute if the predicate condition is not met and any
prefetched data can potentially evict data that is used within the instruction block. A
compiler can potentially detect cases where prefetching the data exceeds a risk threshold
and can pass this information to a processor core via an enable field for enabling
prefetching of data. For example, the opcode field can include an optional enable field
(EN) for controlling whether load data can be prefetched before the load instruction 540
executes.

[092] As a specific example of a 32-bit load instruction 540, the opcode field can be
encoded in bits [31:25]; the predicate field can be encoded in bits [24:23]; the broadcast
identifier field can be encoded in bits [22:21]; the LSID field can be encoded in bits
[20:16]; the immediate field can be encoded in bits [15:9]; and the target field can be
encoded in bits [8:0].

[093] The store instruction 550 is used for storing data to memory. The address of the
data can be calculated dynamically at runtime. For example, the address can be a sum of a
first operand of the store instruction 550 and an immediate field of the store instruction
550. As another example, the address can be a sum of an operand of the store instruction
550 and a sign-extended and/or shifted immediate field of the store instruction 550. As
another example, the address of the data can be a sum of two operands of the store
instruction 550. The store instruction 550 can include a load-store identifier field (LSID)
to provide a relative ordering of the store within an instruction block. The amount of data
to be stored can vary based on an opcode of the store instruction 550, such as a store byte,
store half-word, store word, and store double-word, for example. The data to be stored at
the memory location can be input from a second operand of the store instruction 550. The
second operand can be generated by another instruction or encoded as a field of the store
instruction 550.

[094] A predicated store instruction is a store instruction that conditionally executes
based on whether a result associated with the instruction matches a predicate test value.
For example, the result can be delivered to an operand of the predicated store instruction
from another instruction, and the predicate test value can be encoded in a field of the

predicated store instruction. For example, the store instruction 550 can be a predicated

27

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

store instruction when one or more bits of the predicate field (PR) are non-zero. The result
to be compared to the predicate test value can be passed to the instruction via one or more
broadcast operands or channels. The broadcast channel of the predicate can be identified
within the store instruction 550 using a broadcast identifier field (BID). As a specific
example, if the value received on the identified broadcast channel matches the predicate
test value, the store instruction 550 is executed. However, if the value received on the
identified broadcast channel does not match the predicate test value, the store instruction
550 is not executed.

[095] Similar to the load instruction 540, executing the store instruction 550 can be
relatively slow compared to executing other instructions because it may include retrieving
data from memory, and memory accesses can be relatively slow. Specifically, the store
instruction 550 will retrieve a memory line associated with the targeted address when there
is a cache miss and the cache policy is a write-back, write-allocate policy. A cache can
implement different policies when writing or storing data to a memory location, such as
the write-through and write-back policies. When writing data using a write-through cache
policy, the data is written to the cache and to the backing store. When writing data using a
write-back cache policy, the data is written only to the cache and not to the backing store
until the cache line holding the data is evicted from the cache. A cache can implement
different policies when write data misses in the cache, such as the write-allocate and write-
no-allocate policies. When write data misses in the cache using a write-allocate cache
policy, the line spanning the address of the write data is brought into the cache. When
write data misses in the cache using a write-no-allocate cache policy, the line spanning the
address of the write data is not brought into the cache.

[096] The execution speed of the store instruction 550 can potentially be increased by
prefetching the data from memory prior to the store instruction 550 being executed. For
example, the data can be prefetched from memory prior to a predicate value of the store
instruction 550 being executed. Prefetching the data can include copying data associated
with the load address from a slower level of the memory hierarchy into a faster level of the
memory hierarchy before the store instruction 550 is executed. The opcode field can
include an optional enable field (EN) for controlling whether data at the targeted store
address can be prefetched before the store instruction 550 executes. For example, the EN
field can be cleared, indicating not to prefetch, when a write-through cache policy is used.
[097] As a specific example of a 32-bit store instruction 550, the opcode field can be
encoded in bits [31:25]; the predicate field can be encoded in bits [24:23]; the broadcast

28

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

identifier field can be encoded in bits [22:21]; the LSID field can be encoded in bits
[20:16]; the immediate field can be encoded in bits [15:9]; and the optional enable field
can be encoded in bit [0]. The bits [8:1] can be reserved for additional functions or for
future use.

VIII. Example States of a Processor Core

[098] FIG. 61s a flowchart illustrating an example of a progression of states 600 of a
processor core of a block-based computer. The block-based computer is composed of
multiple processor cores that are collectively used to run or execute a software program.
The program can be written in a variety of high-level languages and then compiled for the
block-based processor using a compiler that targets the block-based processor. The
compiler can emit code that, when run or executed on the block-based processor, will
perform the functionality specified by the high-level program. The compiled code can be
stored in a computer-readable memory that can be accessed by the block-based processor.
The compiled code can include a stream of instructions grouped into a series of instruction
blocks. During execution, one or more of the instruction blocks can be executed by the
block-based processor to perform the functionality of the program. Typically, the program
will include more instruction blocks than can be executed on the cores at any one time.
Thus, blocks of the program are mapped to respective cores, the cores perform the work
specified by the blocks, and then the blocks on respective cores are replaced with different
blocks until the program is complete. Some of the instruction blocks may be executed
more than once, such as during a loop or a subroutine of the program. An “instance” of an
instruction block can be created for each time the instruction block will be executed.

Thus, each repetition of an instruction block can use a different instance of the instruction
block. As the program is run, the respective instruction blocks can be mapped to and
executed on the processor cores based on architectural constraints, available hardware
resources, and the dynamic flow of the program. During execution of the program, the
respective processor cores can transition through a progression of states 600, so that one
core can be in one state and another core can be in a different state.

[099] At state 605, a state of a respective processor core can be unmapped. An
unmapped processor core is a core that is not currently assigned to execute an instance of
an instruction block. For example, the processor core can be unmapped before the
program begins execution on the block-based computer. As another example, the
processor core can be unmapped after the program begins executing but not all of the

cores are being used. In particular, the instruction blocks of the program are executed, at

29

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

least in part, according to the dynamic flow of the program. Some parts of the program
may flow generally serially or sequentially, such as when a later instruction block depends
on results from an earlier instruction block. Other parts of the program may have a more
parallel flow, such as when multiple instruction blocks can execute at the same time
without using the results of the other blocks executing in parallel. Fewer cores can be
used to execute the program during more sequential streams of the program and more
cores can be used to execute the program during more parallel streams of the program.
[0100] At state 610, the state of the respective processor core can be mapped. A mapped
processor core is a core that is currently assigned to execute an instance of an instruction
block. When the instruction block is mapped to a specific processor core, the instruction
block is in-flight. An in-flight instruction block is a block that is targeted to a particular
core of the block-based processor, and the block will be or is executing, either
speculatively or non-speculatively, on the particular processor core. In particular, the in-
flight instruction blocks correspond to the instruction blocks mapped to processor cores in
states 610-650. A block executes non-speculatively when it is known during mapping of
the block that the program will use the work provided by the executing instruction block.
A block executes speculatively when it is not known during mapping whether the program
will or will not use the work provided by the executing instruction block. Executing a
block speculatively can potentially increase performance, such as when the speculative
block is started earlier than if the block were to be started after or when it is known that
the work of the block will be used. However, executing speculatively can potentially
increase the energy used when executing the program, such as when the speculative work
is not used by the program.

[0101] A block-based processor includes a finite number of homogeneous or
heterogeneous processor cores. A typical program can include more instruction blocks
than can fit onto the processor cores. Thus, the respective instruction blocks of a program
will generally share the processor cores with the other instruction blocks of the program.
In other words, a given core may execute the instructions of several different instruction
blocks during the execution of a program. Having a finite number of processor cores also
means that execution of the program may stall or be delayed when all of the processor
cores are busy executing instruction blocks and no new cores are available for dispatch.
When a processor core becomes available, an instance of an instruction block can be

mapped to the processor core.

30

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[0102] An instruction block scheduler can assign which instruction block will execute on
which processor core and when the instruction block will be executed. The mapping can
be based on a variety of factors, such as a target energy to be used for the execution, the
number and configuration of the processor cores, the current and/or former usage of the
processor cores, the dynamic flow of the program, whether speculative execution is
enabled, a confidence level that a speculative block will be executed, and other factors.
An instance of an instruction block can be mapped to a processor core that is currently
available (such as when no instruction block is currently executing on it). In one
embodiment, the instance of the instruction block can be mapped to a processor core that
is currently busy (such as when the core is executing a different instance of an instruction
block) and the later-mapped instance can begin when the earlier-mapped instance is
complete.

[0103] At state 620, the state of the respective processor core can be fetch. For example,
the IF pipeline stage of the processor core can be active during the fetch state. Fetching an
instruction block can include transferring instructions of the block from memory (such as
the L1 cache, the L2 cache, or main memory) to the processor core, and reading
instructions from local buffers of the processor core so that the instructions can be
decoded. For example, the instructions of the instruction block can be loaded into an
instruction cache, buffer, or registers of the processor core. Multiple instructions of the
instruction block can be fetched in parallel (e.g., at the same time) during the same clock
cycle. The fetch state can be multiple cycles long and can overlap with the decode (630)
and execute (640) states when the processor core is pipelined.

[0104] When instructions of the instruction block are loaded onto the processor core, the
instruction block is resident on the processor core. The instruction block is partially
resident when some, but not all, instructions of the instruction block are loaded. The
instruction block is fully resident when all instructions of the instruction block are loaded.
The instruction block will be resident on the processor core until the processor core is reset
or a different instruction block is fetched onto the processor core. In particular, an
instruction block is resident in the processor core when the core is in states 620-670.
[0105] At state 630, the state of the respective processor core can be decode. For
example, the DC pipeline stage of the processor core can be active during the fetch state.
During the decode state, instructions of the instruction block are being decoded so that
they can be stored in the memory store of the instruction window of the processor core. In

particular, the instructions can be transformed from relatively compact machine code, to a

31

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

less compact representation that can be used to control hardware resources of the
processor core. Predicated load and predicated store instructions can be identified during
the decode state. The decode state can be multiple cycles long and can overlap with the
fetch (620) and execute (640) states when the processor core is pipelined. After an
instruction of the instruction block is decoded, it can be executed when all dependencies of
the instruction are met.

[0106] At state 640, the state of the respective processor core can be execute. During the
execute state, instructions of the instruction block are being executed. In particular, the
EX and/or LS pipeline stages of the processor core can be active during the execute state.
Data associated with load and/or store instructions can be fetched and/or pre-fetched
during the execute state. The instruction block can be executing speculatively or non-
speculatively. A speculative block can execute to completion or it can be terminated prior
to completion, such as when it is determined that work performed by the speculative block
will not be used. When an instruction block is terminated, the processor can transition to
the abort state. A speculative block can complete when it is determined the work of the
block will be used, all register writes are buffered, all writes to memory are buffered, and a
branch target is calculated, for example. A non-speculative block can execute to
completion when all register writes are buffered, all writes to memory are buffered, and a
branch target is calculated, for example. The execute state can be multiple cycles long and
can overlap with the fetch (620) and decode (630) states when the processor core is
pipelined. When the instruction block is complete, the processor can transition to the
commit state.

[0107] At state 650, the state of the respective processor core can be commit or abort.
During commit, the work of the instructions of the instruction block can be atomically
committed so that other blocks can use the work of the instructions. In particular, the
commit state can include a commit phase where locally buffered architectural state is
written to architectural state that is visible to or accessible by other processor cores. When
the visible architectural state is updated, a commit signal can be issued and the processor
core can be released so that another instruction block can be executed on the processor
core. During the abort state, the pipeline of the core can be halted to reduce dynamic
power dissipation. In some applications, the core can be power gated to reduce static
power dissipation. At the conclusion of the commit/abort states, the processor core can
receive a new instruction block to be executed on the processor core, the core can be

refreshed, the core can be idled, or the core can be reset.

32

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[0108] At state 660, it can be determined if the instruction block resident on the processor
core can be refreshed. As used herein, an instruction block refresh or a processor core
refresh means enabling the processor core to re-execute one or more instruction blocks
that are resident on the processor core. In one embodiment, refreshing a core can include
resetting the active-ready state for one or more instruction blocks. It may be desirable to
re-execute the instruction block on the same processor core when the instruction block is
part of a loop or a repeated sub-routine or when a speculative block was terminated and is
to be re-executed. The decision to refresh can be made by the processor core itself
(contiguous reuse) or by outside of the processor core (non-contiguous reuse). For
example, the decision to refresh can come from another processor core or a control core
performing instruction block scheduling. There can be a potential energy savings when an
instruction block is refreshed on a core that already executed the instruction as opposed to
executing the instruction block on a different core. Energy is used to fetch and decode the
instructions of the instruction block, but a refreshed block can save most of the energy
used in the fetch and decode states by bypassing these states. In particular, a refreshed
block can re-start at the execute state (640) because the instructions have already been
fetched and decoded by the core. When a block is refreshed, the decoded instructions and
the decoded ready state can be maintained while the active ready state is cleared. The
decision to refresh an instruction block can occur as part of the commit operations or at a
later time. If an instruction block is not refreshed, the processor core can be idled.

[0109] At state 670, the state of the respective processor core can be idle. The
performance and power consumption of the block-based processor can potentially be
adjusted or traded off based on the number of processor cores that are active at a given
time. For example, performing speculative work on concurrently running cores may
increase the speed of a computation but increase the power if the speculative misprediction
rate is high. As another example, immediately allocating new instruction blocks to
processors after committing or aborting an earlier executed instruction block may increase
the number of processors executing concurrently, but may reduce the opportunity to reuse
instruction blocks that were resident on the processor cores. Reuse may be increased
when a cache or pool of idle processor cores is maintained. For example, when a
processor core commits a commonly used instruction block, the processor core can be
placed in the idle pool so that the core can be refreshed the next time that the same
instruction block is to be executed. As described above, refreshing the processor core can

save the time and energy used to fetch and decode the resident instruction block. The

33

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

instruction blocks/processor cores to place in an idle cache can be determined based on a
static analysis performed by the compiler or a dynamic analysis performed by the
instruction block scheduler. For example, a compiler hint indicating potential reuse of the
instruction block can be placed in the header of the block and the instruction block
scheduler can use the hint to determine if the block will be idled or reallocated to a
different instruction block after committing the instruction block. When idling, the
processor core can be placed in a low-power state to reduce dynamic power consumption,
for example.

[0110] At state 680, it can be determined if the instruction block resident on the idle
processor core can be refreshed. If the core is to be refreshed, the block refresh signal can
be asserted and the core can transition to the execute state (640). If the core is not going to
be refreshed, the block reset signal can be asserted and the core can transition to the
unmapped state (605). When the core is reset, the core can be put into a pool with other
unmapped cores so that the instruction block scheduler can allocate a new instruction
block to the core.

IX. Examples of Block-Based Compiler Methods

[0111] FIG. 7A is an example snippet of source code 700 of a program for a block-based
processor. FIG. 7B is an example of a dependence graph 710 of the example snippet of
source code 700. FIG. 8 illustrates an example instruction block corresponding to the
snippet of source code from FIG. 7A, where the instruction block comprises predicated
load instructions and predicated store instructions. FIG. 9 is a flowchart illustrating an
example method of compiling a program for a block-based processor.

[0112] In FIG. 7A, the source code 700 comprising source code statements 702-708 can
be compiled or transformed into an instruction block that can be atomically executed on a
block-based processor core of a processor. In this example, the variable z is a local
variable of the instruction block and so its value can be calculated by one instruction of the
instruction block and passed to other instructions of the instruction block without updating
architectural state that is visible outside of the block-based processor core that the
instruction block is executing on. The variables x and y are used to pass values between
different instruction blocks using the registers RO and R1, respectively. The variables a-e
are stored in memory. The addresses of the memory locations are stored registers R10-
R14, respectively.

[0113] Compiling the source code can include generating the dependence graph 710 by

analyzing the source code 700, and emitting instructions of the instruction block using the

34

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

dependence graph 710. The dependence graph 710 can be a single directed acyclic graph
(DAG) or a forest of DAGs. The nodes (e.g., 720, 730, 740, 750, and 760) of the
dependence graph 710 can represent operations to perform the function of the source code
700. For example, the nodes can directly correspond to operations to be performed by the
processor core. Alternatively, the nodes can correspond to macro- or micro-operations to
be performed by the processor core. The directed edges (e.g., 711, 712, and 713)
connecting the nodes represent dependencies between the nodes. Specifically, consumer
or target nodes are dependent on producer nodes generating a result, and thus producer
nodes are executed before consumer nodes. The directed edges point from the producer
node to the consumer node. In the block-atomic execution model, intermediate results are
visible only within the processor core and final results are made visible to all of the
processor cores when the instruction block is committed. The nodes 720 and 730 produce
intermediate results and the nodes 740, 750, and 760 may produce final results.

[0114] As a specific example, the dependence graph 710 can be generated from at least
the snippet of source code 700. It should be noted that in this example, there are more
statements of the source code 700 than nodes of the dependence graph 710. However, a
dependence graph may generally have fewer, the same, or more nodes than the statements
of the source code used to generate the dependence graph. The statement 702 generates
the node 720 of the dependence graph 710. The node 720 calculates or produces a
variable z which is consumed by the node 730 as represented by the edge 711. The
statement 703 generates the node 730 of the dependence graph 710, where the variable z is
compared to a predicate test value (e.g., a constant 16) to generate a predicate value of true
or false. If the predicate value is true, the node 740 is executed (as represented by the
edge 712), but if the predicate value is false, the node 750 is executed (as represented by
the edge 713). The statements 704 and 707 generate the node 740 and the statements 705
and 708 generate the nodes 750. Nodes 740 and 750 each include a predicated load and a
predicated store. For example, in node 740, reading the variable a and storing the
incremented value of a is predicated on the variable z being greater than or equal to 16.
As another example, in node 750, reading the variable ¢ and storing the incremented value
of ¢ is predicated on the variable z being less than 16. The value of b generated by either
node 740 or 750 is consumed by the node 760, which is generated by the statement 706.
The value of b can be passed directly from the generating instruction to the consuming
instruction or the value of b can be passed indirectly from the generating instruction to the

consuming instruction, such as via a load-store queue. Node 760 includes a non-

35

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

predicated load and a non-predicated store. Specifically, the value of variable e is always
loaded and the value of variable d is always stored when the instruction block is executed.
[0115] FIG. 8 is an example instruction block 800 corresponding to the snippet of source
code 700 from FIG. 7A. The instruction block 800 can be generated by performing a
traversal of the dependence graph 710 and emitting instructions corresponding to each
node of the dependence graph 710. Thus, the instructions of the instruction block 800 can
be emitted in a particular order based on how the dependence graph 710 is traversed.
Optimizations can be performed on the emitted instructions, such as removing redundant
or dead code, eliminating common sub-expressions, and re-ordering instructions for more
efficient usage of hardware resources. In a conventional non-block-based processor,
dependencies between instructions are maintained by the ordering of the instructions, such
that dependent instructions must come after the instructions they depend upon. In
contrast, the instructions within an instruction block to be executed on a block-based
processor can be emitted in any order because the dependencies are encoded within the
instructions themselves and not in the order of the instructions. Specifically, the
instruction scheduling logic of the block-based processor can ensure the proper order of
execution because the scheduling logic will only issue instructions for execution when the
dependencies of the instructions are satisfied. Thus, a compiler targeting a block-based
processor may have more degrees of freedom in which to order the emitted instructions
within the instruction block. For example, the instructions can be ordered based on
various criteria, such as: a size of the instruction when the instructions have variable
lengths (so that like-sized instructions are grouped together or so that the instructions
maintain a particular alignment within the instruction block); a mapping of machine code
instructions to source code statements; a type of the instruction (so that like-type
instructions (e.g., having the same opcode) are grouped together or some types of
instructions are ordered before other types); an execution time of the instruction (so that
relatively time consuming instructions or instruction paths may be executed before quicker
instructions or instruction paths); and/or a traversal of the dependence graph 710.

[0116] The emitted order of the instructions of the instruction block 800 generally follows
a breadth-first traversal of the dependence graph 710, but with some example
optimizations for reading the addresses of the variables stored in memory earlier than
when using a pure breadth-first traversal. As described above, the order of the instructions
does not, by itself, determine the order that the instructions of the atomic instruction block

800 are executed. However, by ordering an instruction earlier in the instruction block, the

36

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

instruction may be decoded earlier and may be available for instruction dispatch earlier
than if the instruction is ordered later in the instruction block.

[0117] Instructions I[0] and I[1] are used for reading the values of the variables x and y
from the register file. Instruction I[2] is used to read the address of the variable b and to
transmit the address of the variable b on broadcast channel 1. Moving the reading of the
address of the variable b from both of the predicated paths is an optimization that can
potentially reduce code size (by replacing two predicated reads of register R11 with a
single read of register R11) and can potentially increase the speed of writing to the
memory location corresponding to the variable b. For example, once instruction I[2] is
executed and the address of the variable b is known, the data at the address of the variable
b can be prefetched in preparation for the predicated store of the variable b in instruction
I[9] or I[14], such as when the cache policy is write allocate. For example, the prefetching
can be initiated before the predicate value is calculated at instruction I[4] and during
execution of the potentially multi-cycle divide operation of instruction I[3].

[0118] The instruction I[4] is used for the predicate calculation. Specifically, the result of
the instruction I[3] is compared to the predicate test value, 16, and the predicate result is
transmitted on broadcast channel 2. The instructions I[5]-1[9] execute only if the predicate
result is true (e.g., z>= 16) and instructions I[10]-I[14] execute only if the predicate result
is false (e.g., z<16). In the assembly language of the instruction block 800, “P2f”
indicates the instruction is predicated (the “P”) on a false result (the “f”) being transmitted
on broadcast channel 2 (the “2”), and “P2t” indicates the instruction is predicated on a true
result being transmitted on broadcast channel 2.

[0119] The instruction I[7] is a predicated load of the variable a. The execution speed of
the predicated load may be increased if the data located at the memory location of a is
prefetched. The data can be prefetched after the address of the variable a is calculated or
read from a register. As one example, the memory address of the variable a can be read
from a register using the instruction I[5]. Thus, prefetching the data can be initiated before
the variable x is decremented using the instruction I[6] and the predicated load is executed
using the instruction I[7]. An example of a compiler optimization can be moving the
instruction to determine the memory address of the variable a to an earlier point in the
predicated path of execution so that the data can be prefetched earlier than if the
instruction is not moved. In this example, the address of the variable a is moved to the

first instruction of the predicated path of execution.

37

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[0120] An alternative optimization (not shown) can be to “hoist” one or more of the
instructions loading the variables a and ¢ to before the predicate calculation. Specifically,
the predicated load instructions can be converted to non-predicated load instructions and
moved to before the predicate calculation. However, this optimization may complicate the
compiler because the hoisted instructions are moved across a basic block boundary.
Further, this optimization may potentially reduce performance and/or energy efficiency
because the work from the hoisted instructions may not be used. Specifically, only one of
the variables a and ¢ are used for a given run of the instruction block. Hoisting the loading
of both variables a and c ensures that the work from one of the loads will not be used.
Hoisting the loading of only one of the variables a or ¢ is effectively speculative because
the wrong variable may be hoisted. Selecting the wrong instruction may also use memory
bandwidth that could otherwise be used by a non-speculative instruction, which may delay
the execution of the non-speculative instruction.

[0121] The instruction I[9] is a predicated store instruction that is used to store the result
from the instruction I[8] into the memory location of the variable b when the predicate
result from the instruction I[4] is true. The address of the variable b is determined by the
instruction I[2] and sent on the broadcast channel 1. The processor core can store the
operand for the instruction I[9] when the result from the instruction I[2] is sent on the
broadcast channel 1. The instruction I[14] is another predicated store instruction that is
used to store the result from the instruction I[13] into the memory location of the variable
b when the predicate result from the instruction I[4] is false. Thus, only one of the
predicated store instructions I[9] or I[14] will execute during a given run of the instruction
block 800 because each of the predicated store instructions I[9] and I[14] is predicated on
an opposite result of the predicate calculation. As described in more detail below, the
output of the predicated store instruction is buffered locally within the processor core until
a commit phase of the instruction block 800. When the instruction block 800 commits, the
output of the predicated store instruction can update the memory location of the variable b
and/or its corresponding entries within the memory hierarchy.

[0122] The instruction I[12] is a predicated load of the variable ¢. As with the predicated
load of the variable a, the execution speed of the predicated load of the variable ¢ may be
increased if the data located at the memory location of ¢ is prefetched. The data can be
prefetched after the address of the variable c is calculated or read from a register. As one
example, the memory address of the variable ¢ can be read from a register using the

instruction I[10]. Thus, prefetching the data can be initiated before the variable y is

38

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

decremented using the instruction I[11] and the predicated load is executed using the
instruction I[12].

[0123] The instruction I[16] is a non-predicated load of the variable e, and the address for
the variable e is generated by the instruction I[15]. The execution speed of the load of the
variable e may be increased if the data located at the memory location of e is prefetched.
In this example, the address for the variable e is generated by the instruction preceding the
non-predicated load of the variable e so that the instructions may be issued in close
proximity. Alternatively, the compiler can move the address generating instruction earlier
in the instruction block (such as before the predicate calculation) so that the processor core
may have a greater opportunity to prefetch the data stored at the address of the variable e.
[0124] The instruction I[17] is a non-predicated load of the variable b, which was earlier
stored by one of the predicated stores (instruction I[9] or I[14]). The instruction block 800
is an atomic instruction block and the instructions of the instruction block 800 commit
together. Thus, the memory location of the variable b and/or its corresponding entries
within the memory hierarchy are not updated until a commit phase of the instruction block
800. Thus, the output from the predicated store (instruction I[9] or 1[14]) is buffered
locally within the instruction block until the commit phase of the instruction block 800.
For example, the output from the predicated store can be stored in a load-store queue of
the processor core. Specifically, the output from the executed predicated store can be
stored or buffered in the load-store queue and marked with a load-store identifier of the
predicated store instruction. The buffered output from the predicated store instruction can
be forwarded from the load-store queue to an operand of the instruction I[17].

[0125] The instruction I[20] is a non-predicated store instruction that is used to store the
result from the instruction I[19] into the memory location of the variable d. The address of
the variable d is determined by the instruction I[18] which reads the address from the
register file. The execution speed of the store may be increased if the cache policy is write
allocate and the data located at the memory location of d is prefetched. The data can be
prefetched after the address of the variable d is calculated or read from a register. For
example, once instruction I[19] is executed and the address of the variable d is known, the
data at the address of the variable d can be prefetched in preparation for the non-predicated
store of the variable d in instruction I[20]. For example, the prefetching can be initiated
before instruction I[18] completes execution. The output of the store instruction is
buffered locally, such as at the load-store queue within the processor core, until a commit

phase of the instruction block 800. When the instruction block 800 commits, the output of

39

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

the store instruction can update the memory location of the variable d and/or its
corresponding entries within the memory hierarchy.

[0126] The instruction I[21] is an unconditional branch to the next instruction block. In
some examples of the disclosed technology, an instruction block will have at least one
branch to another instruction block of the program. The instructions I[22] and 1[23] are
no-operation instructions. These instructions perform no operation other than to pad the
instruction block 800 to a multiple of four instruction words. In some examples of the
disclosed technology, an instruction block is required to have a size that is a multiple of
four instruction words.

[0127] FIG. 9 is a flowchart illustrating an example method 900 for compiling a program
for a block-based computer architecture. The method 900 can be implemented in software
of a compiler executing on a block-based processor or a conventional processor. The
compiler can transform high-level source code (such as C, C++, or Java) of a program, in
one or more phases or passes, into low-level object or machine code that is executable on
the targeted block-based processor. For example, the compiler phases can include: lexical
analysis for generating a stream of tokens from the source code; syntax analysis or parsing
for comparing the stream of tokens to a grammar of the source code language and
generating a syntax or parse tree; semantic analysis for performing various static checks
(such as type-checking, checking that variables are declared, and so forth) on the syntax
tree and generating an annotated or abstract syntax tree; generation of intermediate code
from the abstract syntax tree; optimization of the intermediate code; machine code
generation for producing the machine code for the targeted processor from the
intermediate code; and optimization of the machine code. The machine code can be
emitted and stored into a memory of the block-based processor so that the block-based
processor can execute the program.

[0128] At process block 905, instructions of a program can be received. For example, the
instructions can be received from a front-end of a compiler for transforming source code
into machine code. Additionally or alternatively, the instructions can be loaded from a
memory, a secondary storage device (such as a hard-disk drive), or from a
communications interface (such as when the instructions are downloaded from a remote
server computer). The instructions of the program may include metadata or data about the
instructions, such as a break-point or a single-step starting point associated with an

instruction.

40

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[0129] At process block 910, the instructions can be grouped into instruction blocks
targeted for execution on a block-based processor. For example, the compiler can
generate machine code as a sequential stream of instructions which can be grouped into
instruction blocks according to the block-based computer’s hardware resources and the
data and control flow of the code. For example, a given instruction block can include a
single basic block, a portion of a basic block, or multiple basic blocks, so long as the
instruction block can be executed within the constraints of the ISA and the hardware
resources of the targeted computer. A basic block is a block of code where control can
only enter the block at the first instruction of the block and control can only leave the
block at the last instruction of the basic block. Thus, a basic block is a sequence of
instructions that are executed together. Multiple basic blocks can be combined into a
single instruction block using predicated instructions so that intra-instruction-block
branches are converted to datatflow instructions.

[0130] The instructions can be grouped so that the resources of the processor cores are not
exceeded and/or are efficiently utilized. For example, the processor cores can include a
fixed number of resources, such as one or more instruction windows, a fixed number of
load and store queue entries, and so forth. The instructions can be grouped to have fewer
instructions per group than are available within an instruction window. For example, an
instruction window may have storage capacity for 32 instructions, a first basic block may
have 8 instructions, and the first basic block may conditionally branch to a second basic
block having 23 instructions. The two basic blocks can be grouped together into one
instruction block so that the grouping includes 31 instructions (less than the 32-instruction
capacity) and the instructions of the second basic block are predicated on the branch
condition being true. As another example, an instruction window may have storage
capacity for 32 instructions and a basic block may have 38 instructions. The first 31
instructions can be grouped into one instruction block with an unconditional branch (the
thirty-second instruction) and the next 7 instructions can be grouped into a second
instruction block. As another example, an instruction window may have storage capacity
for thirty-two instructions and a loop body may include eight instructions and be repeated
three times. Grouping can include unrolling the loop by combining the multiple iterations
of the loop body within a larger loop body. By unrolling the loop, the number of
instructions within the instruction block can be increased and the instruction window

resource can potentially be more efficiently utilized.

41

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

[0131] At process block 920, predicated load and/or predicated store instructions can be
identified for a respective instruction block. A predicate load instruction is a load
instruction that conditionally executes based on the result of a predicate calculation within
the respective instruction block. Similarly, a predicate store instruction is a store
instruction that conditionally executes based on the result of a predicate calculation within
the respective instruction block. For example, the predicate calculation can be generated
based on a condition or test within an “if,” “switch,” “while,” “do,” “for,” or other source
code statement for modifying a control flow of a program. The grouping of the
instructions in the process block 910 may affect which loads and stores are predicated
loads and predicated stores. For example, grouping a single if-then-else statement within a
single instruction block (as in the instruction block 800 of FIG. 8) may cause any loads
and stores within the body of the if-then-else statement to be predicated loads and stores.
Alternatively, grouping the statements of the body of the if clause in one instruction block
(in a manner similar to the instruction block 425 of FIG. 4) and grouping the statements of
the body of the else clause in a different instruction block may cause none of the loads and
stores to be predicated loads and stores when the condition is calculated outside of the
respective instruction blocks.

[0132] At process block 930, respective predicated load and/or predicated store
instructions can be classified as candidates for prefetching or not candidates for
prefetching. The classification can be based on various factors and/or combinations of
factors, such as a static analysis of the instruction block, a likelihood that a branch will be
taken, a source of the predicate calculation, a programmer hint, a static or dynamic
analysis of a frequency of executing the instruction, a type of memory reference, and other
factors that may affect the likelihood of using the prefetched data.

[0133] As one example, a respective instruction can be classified based on a static analysis
of the instruction block. A static analysis is based on information about the instruction
block that is available before any instructions of the instruction block are executed. For
example, a static analysis can include determining a mix of arithmetic and logic unit
(ALU) instructions to memory instructions. A static model of the processor core may
include a desired ratio of ALU instructions to memory instructions, such as a 2:1 ratio of
ALU/memory instructions. If the instruction mix of the instruction block is ALU-bound
(there are more ALU instructions than desired when compared to the number of memory
instructions), then prefetching may be more desirable. However, if the instruction mix of

the instruction block is memory-bound, then prefetching may be less desirable. Thus, a

42

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

respective instruction can be classified as a candidate for prefetching based on an
instruction mix within the instruction block.

[0134] As another example, a respective instruction can be classified based on the
likelihood that a branch will be taken. The likelihood that the branch will be taken can be
based on a static or dynamic analysis. For example, a static analysis can be based on a
source code statement generating the predicate calculation. As a specific example, a
branch in a for loop may be more likely to be taken than a branch in an if-then-else
statement. A dynamic analysis can use information from a profile generated during an
earlier run of the program. Specifically, the program can be executed one or more times
using representative data for the program to generate a profile comprising traces and/or
statistics for the program and its instruction blocks. The profile may be generated by
sampling performance counters or other state of the processor during the program run.
The profile may include information such as which instruction blocks are executed, a
frequency that respective instruction blocks are executed (such as to determine hot regions
of the program), which branches are taken, a frequency that respective branches are taken,
the results of predicate calculations, and so forth. The profile data can be used to guide or
return information back to the compiler during recompilation of a program so that the
program can potentially be made more efficient. In one embodiment, the loads and/or
stores that are more likely than not to be executed can be classified as candidates for
prefetching and the other loads and/or stores can be classified as not candidates for
prefetching. In alternative embodiments, the likelihood to be executed can be reduced or
increased to classify a particular load or store as a candidate for prefetching.

[0135] As another example, a programmer hint can be passed to the compiler via a
compiler pragma or by using a particular system call, for example. As a specific example,
the programmer can use a pragma defined by the compiler to specify that data prefetching
is enabled and/or desired for a particular load, store, subroutine, section, or program.
Additionally or alternatively, the programmer can specify that data prefetching is disabled
or disfavored for a particular load, store, subroutine, section, or program. The
programmer hint can be used exclusively to classify a particular load or store as a
candidate for prefetching or it can be weighted with other factors for classifying a
particular load or store.

[0136] As another example, a type of memory reference can be used to classify a
particular load or store as a candidate for prefetching. In particular, memory accesses that

are likely to miss in a cache of the processor core may benefit from prefetching. For

43

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

example, memory accesses to the heap or indirect memory accesses within a linked data
structure (e.g., pointer chasing) may be more likely to miss in the cache and may benefit
from prefetching. Thus, these accesses can be classified as candidates for prefetching.
[0137] At process block 940, prefetching for the respective predicated load and/or
predicated store instructions can be enabled when they are classified as candidates for
prefetching. For example, prefetching can be enabled for an instruction block and/or for
an individual instruction. As a specific example, prefetching can be enabled for an
instruction block by setting a flag in the instruction header that is used to configure the
processor core to enable prefetching. As another example, prefetching can be enabled for
a particular instruction by using an enable bit of the instruction to encode whether
prefetching is enabled for the instruction.

[0138] At process block 950, optimizations can optionally be performed within and/or
between the instruction blocks. For example, instructions for determining a memory
address of a load or store instruction can be moved to earlier in the instruction block so
that the address is available for prefetching data from the targeted address. As a specific
example, a predicated instruction for determining a memory address of a load or store
instruction can be transformed to a non-predicated instruction and moved to earlier in the
instruction sequence than the predicate calculation. As another example, an instruction for
determining a memory address of a load or store instruction can be moved to earlier in the
instruction sequence within a predicated path. As another example, a predicated load or
store can be hoisted to before the predicate calculation. In other words, the predicated
load or store can be transformed to a non-predicated load or store and moved to before the
predicate calculation.

[0139] At process block 960, object code can be emitted for the instruction blocks targeted
to be executed on the block-based processor. For example, the instruction blocks can be
emitted in a format defined by the ISA of the targeted block-based processor. In
particular, the instruction blocks can include an instruction block header and one or more
instructions. The instruction block header can include information for determining an
operating mode of the processor core. For example, the instruction block header can
include an execution flag for allowing prefetching of predicated loads and stores. In one
embodiment, a respective instruction block can be emitted so that the instructions of the
instruction block sequentially follow the instruction header. The instructions can be
emitted in a sequential order so that the instruction block can be stored in a contiguous

section of memory. If the instructions are variable lengths, pad bytes can be inserted

44

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

between the instructions to maintain a desired alignment, such as on word or double-word
boundaries, for example. In an alternative embodiment, the instruction headers can be
emitted in one stream and the instructions can be emitted in a different stream so that the
instruction headers can be stored in one section of contiguous memory and the instructions
can be stored in a different section of contiguous memory.

[0140] At process block 970, the emitted object code can be stored in a computer-readable
memory or storage device. For example, the emitted object code can be stored into a
memory of the block-based processor so that the block-based processor can execute the
program. As another example, the emitted object code can be loaded onto a storage
device, such as a hard-disk drive of the block-based processor so that the block-based
processor can execute the program. At run-time, all or a portion of the emitted object code
can be retrieved from the storage device and loaded into memory of the block-based
processor so that the block-based processor can execute the program.

X. Example Block-Based Computer Architecture

[0141] FIG. 10 is an example architecture 1000 for executing a program. For example,
the program can be compiled using the method 900 of FIG. 9 to generate the instruction
blocks A-E. The instruction blocks A-E can be stored in a memory 1010 that can be
accessed by the processor 1005. The processor 1005 can include a plurality of block-
based processor cores (including block-based processor core 1020), an optional memory
controller and level-two (L2) cache 1040, cache coherence logic 1045, a control unit 1050,
and an input/output (I/O) interface 1060. The block-based processor core 1020 can
communicate with a memory hierarchy used for storing and retrieving instructions and
data of the program. The memory hierarchy can include the memory 1010, the memory
controller and level-two (L2) cache 1040, and the level-one (L1) cache 1028. The
memory controller and the level-two (L2) cache 1040 can be used to generate the control
signals for communicating with the memory 1010 and to provide temporary storage for
information coming from or going to the memory 1010. As illustrated in FIG. 10, the
memory 1010 is off-chip or external to the processor 1005. However, the memory 1010
can be fully or partially integrated within the processor 1005.

[0142] The control unit 1050 can be used for implementing all or a portion of a run-time
environment for the program. The runtime environment can be used for managing the
usage of the block-based processor cores and the memory 1010. For example, the
memory 1010 can be partitioned into a code segment 1012 comprising the instruction

blocks A-E and a data segment 1015 comprising a static section, a heap section, and a

45

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

stack section. As another example, the control unit 1050 can be used for allocating
processor cores to execute instruction blocks. Note that the block-based processor core
1020 includes a control unit 1030 having different functionality than the control unit 1050.
The control unit 1030 includes logic for managing execution of an instruction block by the
block-based processor core 1020. The optional I/O interface 1060 can be used for
connecting the processor 1005 to various input devices (such as an input device 1070),
various output devices (such as a display 1080), and a storage device 1090. In some
examples, the control unit 1030 (and its individual components), the memory controller
and L2 cache 1040, the cache coherence logic 1045, the control unit 1050, and the I/O
interface 1060 are implemented at least in part using one or more of: hardwired finite
state machines, programmable microcode, programmable gate arrays, or other suitable
control circuits. In some examples, the cache coherence logic 1045, the control unit 1050,
and the I/O interface 1060 are implemented at least in part using an external computer
(e.g., an off-chip processor executing control code and communicating with the processor
1005 via a communications interface (not shown)).

[0143] All or part of the program can be executed on the processor 1005. Specifically, the
control unit 1050 can allocate one or more block-based processor cores, such as the
processor core 1020, to execute the program. The control unit 1050 can communicate a
starting address of an instruction block to the processor core 1020 so that the instruction
block can be fetched from the code segment 1012 of the memory 1010. Specifically, the
processor core 1020 can issue a read request to the memory controller and L2 cache 1040
for the block of memory containing the instruction block. The memory controller and L2
cache 1040 can return the instruction block to the processor core 1020. The instruction
block includes an instruction header and instructions. The instruction header can be
decoded by the header decode logic 1032 to determine information about the instruction
block, such as whether there are any asserted execution flags associated with the
instruction block. For example, the header can encode whether data prefetching is enabled
for the instruction block. During execution, the instructions of the instruction block are
scheduled dynamically for execution by the instruction scheduler logic 1034, based on
when the instruction operands become available. As the instructions execute, intermediate
values of the instruction block (such as operand buffers of instruction windows 1022 and
1023, and registers of a load/store queue 1026) are calculated and stored locally within
state of the processor core 1020. The results of the instructions are committed atomically

for the instruction block. Thus, the intermediate values generated by the processor core

46

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

1020 are not visible outside of the processor core 1020 and the final results (such as writes
to the memory 1010 or to a global register file (not shown)) are released as a single
transaction. The processor core 1020 can include performance CSRs 1039 for monitoring
performance related information during execution of one or more instruction blocks. The
performance CSRs 1039 can be accessed by state access logic and the results can be
logged as profile data for use by a compiler implementing profile-guided optimization.
[0144] The control unit 1030 of the block-based processor core 1020 can include logic for
prefetching data associated with load and store instructions of an instruction block. The
execution speed of the load and store instructions can be increased when the memory
locations referenced by the load and store instructions are stored in faster levels of the
memory hierarchy that are closer to the processor core 1020. Prefetching the data can
include copying data associated with the load and store addresses from a slower level of
the memory hierarchy into a faster level of the memory hierarchy before the instructions
are executed. Thus, the time to retrieve the data can be overlapped with other instructions
before the load or store instruction begins execution.

[0145] Prefetch logic 1036 can be used to generate and manage prefetch requests for data.
Initially, the prefetch logic 1036 can identify one or more candidates for prefetching. For
example, the prefetch logic 1036 can communicate with the header decode logic 1032 and
the instruction decode logic 1033. The header decode logic 1032 can decode the
instruction header to determine if data prefetching is enabled for the resident instruction
block. If data prefetching is enabled, the candidates for prefetching can be identified. For
example, the instruction decode logic 1033 can be used to identify load and store
instructions by decoding opcodes of the instructions. The instruction decode logic 1033
can also determine whether prefetching is enabled or disabled for a particular instruction,
if the particular instruction is predicated, a source of any predicate calculation, a value of a
predicate result required to execute the instructions, any sources of operands for
calculating an address of the data to be prefetched, and a load-store identifier of the
instruction. The candidates for prefetching can be load and store instructions where
prefetching is not disabled.

[0146] The prefetch logic 1036 can generate a prefetch request for a candidate for
prefetching after the respective instruction is decoded and the target address of the
instruction is known. The target address of the instruction can be directly encoded within
the instruction or calculated from one or more operands of the instruction. For example,

the operands can be encoded in the instructions as constants or immediate values, can be

47

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

generated by another instruction of the instruction block, or a combination thereof. As a
specific example, the target address can be the sum of an immediate value encoded in the
instruction and the result from another instruction. As another example, the target address
can be the sum of a first result from a first instruction and a second result from a second
instruction. Wake-up and select logic 1038 can monitor the operands of the load and store
instructions and notify the prefetch logic 1036 when the operands of the load and store
instructions are ready. Once the operands of the load and store instructions are ready, the
address can be calculated.

[0147] The prefetch logic 1036 can calculate the address for a load or store instruction in a
variety of ways. For example, the prefetch logic 1036 can include a dedicated arithmetic
logic unit (ALU) for calculating the address from the operands of the load or store
instruction. By having a dedicated ALU within the prefetch logic 1036, the address to
prefetch from can potentially be calculated as soon as the operands are ready. However,
the processor 1005 can potentially be made smaller and less expensive by reusing an ALU
that is part of another functional unit. The reduced size may add complexity because a
shared ALU is managed so that conflicting requests are not presented to the ALU
simultaneously. Additionally or alternatively, an ALU of the load-store queue can be used
to calculate the target address of the load or store instruction. Additionally or alternatively,
an ALU of the ALU(s) 1024 can be used to calculate the target address of the load or store
instruction. The ALU(s) 1024 are used by the processor core 1020 for the execution of
instructions of the instruction blocks. Specifically, during the execute stage of an
instruction, the input operands are routed from operand buffers of the instruction window
1022 or 1023 to the ALU(s) 1024 and the output from the ALU(s) 1024 is written to a
targeted operand buffer of the instruction window 1022 or 1023. However, one or more
ALU of the ALU(s) 1024 may be idle during a given cycle which can provide an
opportunity for the ALU to be used for an address calculation. The instruction scheduler
logic 1034 manages the usage of the ALU(s) 1024. The prefetch logic 1036 can
communicate with the instruction scheduler logic 1034 so that an individual ALU of the
ALU(s) 1024 is not oversubscribed. Once the target address is calculated, a prefetch
request may be issued for the instruction.

[0148] The prefetch logic 1036 can initiate a prefetch request to target addresses of load
and store instructions where the target address has been determined. Memory bandwidth
to the memory hierarchy may be limited and so arbitration logic of the prefetch logic 1036

can be used to determine which, if any, of the candidates for prefetching are selected. As

48

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

one example, prefetch requests can be prioritized behind non-prefetch requests to the
memory hierarchy. Non-prefetch requests can be from instructions that are in the execute
stage and delaying the non-prefetch request behind a prefetch request may reduce the
overall execution speed of the instruction block. As another example, prefetch requests
for non-predicated loads and stores can be prioritized ahead of prefetch requests for
predicated loads and stores. Since non-predicated loads and stores will be executed and
predicated loads and stores may be speculative, the memory bandwidth may be more
efficiently utilized by allowing non-predicated loads and stores to have priority over
predicated loads and stores. For example, a prefetch associated with a predicated load or
store can be issued before a predicate of the predicated instruction is calculated.
Depending on the result of the predicate calculation, the predicated instruction may or may
not be executed. If the predicated instruction is not executed, then a prefetch to the target
address 1s wasted work.

[0149] The prefetch logic 1036 can communicate with a dependence predictor 1035 to
determine which predicated instructions are more likely to be executed. Prefetch requests
associated with predicated instructions more likely to be executed can be prioritized ahead
of predicated instructions less likely to be executed. As one example, the dependence
predictor 1035 can use a heuristic to predict a value of a predicate calculation, and thus,
which predicated instructions are more likely to be executed. As another example, the
dependence predictor 1035 can use information encoded in the instruction header to
predict a value of a predicate calculation.

[0150] The prefetch logic 1036 can prioritize prefetches associated with predicated loads
ahead of prefetches associated with predicated stores. For example, retrieving data
associated with a load may have fewer side-effects than retrieving data associated with a
store in a shared memory multi-processor system. Specifically, the cache coherence logic
1045 can maintain a directory and/or coherence state information for lines in the memory
hierarchy. The directory information can include presence information such as where the
cache line may be stored out of many processors. The coherence state information can
include the state of each cache line in the hierarchy using a cache coherency protocol, such
as the MESI or MOESI protocols. These protocols assign a state to lines stored in the
memory hierarchy such as a modified (“M”) state, an owned (“O”) state, an exclusive
(“E”) state, a shared (“S”) state, and an invalid (“I”’) state. When an address of a cache line
is loaded, the cache line can be assigned to the owned, exclusive, or shared state. This

may cause copies of the cache line in other processors to change cache protocol states.

49

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

However, when an address of a cache line is stored, the cache line will be assigned to the
modified state (using a write-allocate write-back policy) which may cause the cache line to
be invalidated in the caches of other processors. Thus, it may be desirable to prioritize
prefetches associated with predicated loads ahead of prefetches associated with predicated
stores.

[0151] The prefetch logic 1036 can initiate prefetch requests for target addresses of load
and store instructions. For example, the prefetch logic 1036 can initiate a memory
operation associated with the target address. The memory operation can include
performing a cache coherence operation corresponding to the cache line including the
memory address. For example, the cache coherence logic 1045 can be searched for
coherence information related to the cache line. The memory operation can include
detecting whether there is an inter-processor conflict for a cache line including the
memory address. If there is no conflict, the prefetch logic 1036 can initiate a prefetch
request for the target address. However, if there is a conflict, the prefetch logic 1036 can
abort the prefetch request for the target address.

[0152] Prefetching the data can include copying data associated with the target address
from a slower level of the memory hierarchy into a faster level of the memory hierarchy
before the load instruction 540 is executed. As a specific example, a cache line including
the target address can be fetched from the data segment 1014 of the memory 1010 into the
L2 cache 1040 and/or the L1 cache 1028. Prefetching the data can be contrasted with
executing a load instruction. For example, the data is stored in an operand buffer of the
instruction window 1022 or 1023 when the load instruction is executed, but the data is not
stored in the operand buffer of the instruction window 1022 or 1023 when the data is
prefetched. Prefetching the data can include performing a coherence operation associated
with a cache line including the target address. For example, a coherence state associated
with a cache line including the target address can be updated. The coherence state can be
updated within the cache coherence logic 1045 and/or within cache coherence logic of
other processors sharing the memory 1010.

[0153] FIG. 11 illustrates an example system 1100 comprising a processor 1105 having
multiple block-based processor cores 1120A-C and a memory hierarchy. The block-based
processor cores 1120A-C can be physical processor cores and/or logical processor cores
comprising multiple physical processor cores. The memory hierarchy can be arranged in
various different ways. For example, different arrangements may include more or fewer

levels within the hierarchy, and different components of the memory hierarchy can be

50

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

shared among different components of the system 1100. The components of the memory
hierarchy can be integrated on a single integrated circuit or chip. Alternatively, one or
more of the components of the memory hierarchy can be external to a chip including the
processor 1105. As illustrated, the memory hierarchy can include storage 1190, memory
1110, and an L2 cache (L2$) 1140 that is shared among the block-based processor cores
1120A-C. The memory hierarchy can include multiple L1 caches (L1$) 1124A-C that are
private within a respective core of the processor cores 1120A-C. In one example, the
processor cores 1120A-C may address virtual memory and there is a translation between
virtual memory addresses and the physical memory addresses. For example, a memory
management unit (MMU) 1152 can be used for managing and allocating virtual memory
so that the addressable memory space can exceed the size of the main memory 1110. The
virtual memory can be divided into pages and the active pages can be stored in the
memory 1110 and inactive pages can be stored on backing store within the storage device
1190. The memory controller 1150 can communicate with the input/output (I/O) interface
1160 to move pages between main memory and the backing store.

[0154] Data can be accessed at different granularities at different levels of the memory
hierarchy. For example, an instruction may access memory in units of a byte, a half-word,
a word, or a double-word. The unit of transfer between the memory 1110 and the L2
cache 1140 and between the L2 cache 1140 and the L1 caches 1124A-C can be a line. A
cache line can be multiple words wide, and the cache line size may differ between
different levels of the memory hierarchy. The unit of transfer between the storage device
1190 and the memory 1110 can be a page or a block. A page can be multiple cache lines
wide. Thus, loading or prefetching data for a load or store instruction may cause a larger
unit of data to be copied from one level of the memory hierarchy to another level of the
memory hierarchy. As a specific example, a load instruction executing on processor core
1120A and requesting a half-word of data that is located in a paged-out block of memory
can cause a block of memory to be copied from the storage device 1190 to the main
memory 1110, a first line to be copied from the main memory 1110 to the L2 cache 1140,
a second line to be copied from the L2 cache 1140 to the L1 cache 1124A, and a word or
half-word to be copied from the L1 cache 1124A to an operand buffer of the processor
core 1120A. The requested half-word of data is contained within each of the first line, the
second line, and the block.

[0155] When multiple processor cores can have different copies of a particular memory

location, such as in the L1 caches 1124A-1124C, the potential exists for local copies to

51

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

have different values for the same memory location. However, a directory 1130 and a
cache coherence protocol can be used to keep different copies of the memory consistent.
In some examples, the directory 1130 is implemented at least in part using one or more of:
hardwired finite state machines, programmable microcode, programmable gate arrays,
programmable processors, or other suitable control circuits. The directory 1130 can be
used to maintain residency information 1136 including presence information about where
copies of memory lines are located. For example, the memory lines can be located in the
caches of the processor 1105 and/or in caches of other processors that share the memory
1110. Specifically, the residency information 1136 can include presence information at
the granularity of the L1 caches 1124A-1124C. In order to maintain consistent copies of
the memory locations, the cache coherence protocol can require that only one processor
core 1120A-1120C can write to a particular memory location at a given time. Various
different cache protocols can be used, such as the MESI protocol as described in this
example. In order to write to the memory location, the processor core can obtain an
exclusive copy of the memory location and record the coherence state as “E” in the
coherence states 1132. The memory locations can be tracked at the granularity of the L1
cache line size. The tags 1134 can be used to maintain a list of all memory locations that
are present in the L1 caches. Thus, each memory location has a corresponding entry in the
tags 1134, the residency information 1136, and the coherence states 1132. When a
processor core writes to the memory location, such as by using a store instruction, the
coherence state can be changed to the modified or “M” state. Multiple processor cores can
read an unmodified version of the same memory location, such as when the processor
cores prefetch or load the memory location using a load instruction. When multiple copies
of the memory location are stored in multiple L1 caches, the coherence state can be the
shared or “S” state. However, if one of the shared copies is to be written to by a first
processor, the first processor obtains an exclusive copy by invalidating the other copies of
the memory location. The other copies are invalidated by having the coherence state of
the other copies changed to the invalid or “I” state. Once the copy of the memory location
is modified, the updated memory location can be shared by writing back the modified
value to the memory and invalidating or changing the coherence state to shared for the
cached copy of the memory location that was modified.

[0156] The block-based processor cores 1120A-C can execute different programs and/or
threads that share the memory 1110. A thread is a unit of control within a program where

instruction blocks are ordered according to a control flow of the thread. The thread can

52

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

include one or more instruction blocks of the program. The thread may include a thread
identifier to distinguish it from other threads, a program counter referencing a non-
speculative instruction block of the thread, a logical register file for passing values
between instruction blocks of the thread, and a stack for storing data, such as activation
records, local to the thread. A program can be multi-threaded, where each thread can
operate independently of the other threads. Thus, different threads can execute on
different respective processor cores. The different programs and/or threads executing on
the processor cores 1120A-C can share the memory 1110 according to a cache coherency
protocol, as described above.

XI. Example Methods of Prefetching Data associated with Predicated Loads

and/or Stores

[0157] FIG. 12 is a flowchart illustrating an example method 1200 of prefetching data
associated with a predicated load executing on a block-based processor core. For
example, the method 1200 can be performed using the processor core 1020 when arranged
in a system such as the system 1000 of FIG. 10. The block-based processor core is used to
execute a program using a block-atomic execution model. The program includes one or
more instruction blocks where each instruction block includes an instruction block header
and a plurality of instructions. Using the block-atomic execution model, the individual
instructions of the respective instruction blocks are executed and committed atomically so
that final results of the instruction block are architecturally visible to other instruction
blocks in a single transaction after a commit.

[0158] At process block 1210, an instruction block is received. The instruction block
comprises an instruction header and a plurality of instructions. For example, the
instruction block can be received in response to a program counter of a processor core
being loaded with a starting address of the instruction block. The plurality of the
instructions can include various different types of instructions, where the different types of
instructions are identified by opcodes of the respective instructions. The instructions can
be predicated or non-predicated. Predicated instructions execute conditionally based on a
predicate result determined at runtime of the instruction block.

[0159] At process block 1220, it can be determined that an instruction of the plurality of
instructions is a predicated load instruction. For example, instruction decode logic of the
processor core can identify the predicated load instruction by matching the opcode of the
instruction to opcodes of load instructions. A predicate field of the instruction can be

decoded to determine whether execution of the load instruction is conditioned on a

53

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

predicate calculation. The instruction decode logic can identify sources of operands for
the predicated load instruction, such as the source of the predicate calculation. The
instruction decode logic can identify constant or immediate fields of the predicated load
instruction which may be used to determine a target address of the predicated load
instruction, where the target address is the location in memory of the data to load. The
decoded predicated load instruction can be stored in an instruction window of the
processor core.

[0160] At optional process block 1230, a memory address (e.g., the target address) can be
calculated using a first value encoded in a field of the predicated load instruction and a
second value produced by a register read of the instruction block and/or a different
instruction directly targeting the predicated load instruction. As one example, the first
value can be an immediate value of the predicated load instruction. As another example,
the second value can be caused by a register read of the instruction block. Specifically,
the register read can be initiated by an instruction or by decoding a field in a header of the
instruction block. As another example, a different instruction can produce the second
value by reading the second value from a register file or from a memory. As another
example, the different instruction can produce the second value by performing a
calculation such as an add or subtract operation. The first value and the second value can
be used in various ways to calculate the memory address. For example, the first value and
the second value can be added. As another example, one or more the first value and the
second value can be sign-extended and/or shifted before the first value and the second
value are added. The calculation can be performed by a dedicated functional unit (such as
an ALU) in a prefetch logic block or a load-store queue. Additionally or alternatively, the
calculation can be performed by an arithmetic unit of instruction execution logic datapath
during an open instruction issue slot.

[0161] As another example, the memory address can be calculated using a first value
produced by a first instruction targeting the predicated load instruction and a second value
produced by a second instruction targeting the predicated load instruction. As another
example, the memory address can be calculated using a first value encoded in a field of the
predicated load instruction and a second value stored in a base register. As another
example, the memory address can be calculated using a first value encoded in a field of the
predicated load instruction.

[0162] At process block 1240, data from a memory address targeted by the predicated

load instruction can be prefetched before a predicate of the predicated load instruction is

54

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

calculated. For example, the data can be prefetched after the memory address is generated
and before the predicate of the predicated load instruction is calculated. In particular,
wake-up and select logic can be configured to determine when the first value associated
with the predicated load instruction is ready and to initiate the prefetch logic after the first
value is ready.

[0163] At optional process block 1250, prefetch requests to the memory can be prioritized
according to a memory access prioritization policy. For example, the memory access
prioritization policy can include best practices for maintaining efficient use of the memory
bandwidth. As one example, non-prefetch requests to the memory can be prioritized ahead
of the prefetch request. Non-prefetch requests may be more likely to be used than
potentially speculative prefetch requests so the memory bandwidth may be more
efficiently utilized. As another example, prefetch requests for predicated load instructions
can be prioritized ahead of prefetch requests for predicated store instructions.

[0164] FIG. 13 is a flowchart illustrating an example method 1300 of prefetching data
associated with a predicated store executing on a block-based processor core. For
example, the method 1300 can be performed using the processor core 1020 when arranged
in a system such as the system 1000 of FIG. 10.

[0165] At process block 1310, an instruction block is received. The instruction block
comprises an instruction header and a plurality of instructions. For example, the
instruction block can be received in response to a program counter of a processor core
being loaded with a starting address of the instruction block. The plurality of the
instructions can include various different types of instructions, where the different types of
instructions are identified by opcodes of the respective instructions. The instructions can
be predicated or non-predicated. Predicated instructions execute conditionally based on a
predicate result determined at runtime of the instruction block.

[0166] At process block 1320, it can be determined that an instruction of the plurality of
instructions is a predicated store instruction. For example, instruction decode logic of the
processor core can identify the predicated store instruction by matching the opcode of the
instruction to opcodes of store instructions. A predicate field of the instruction can be
decoded to determine whether execution of the store instruction is conditioned on a
predicate calculation. The instruction decode logic can identify sources of operands for
the predicated store instruction, such as the source of the predicate calculation. The
instruction decode logic can identify constant or immediate fields of the predicated store

instruction which may be used to determine a target address of the predicated store

55

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

instruction, where the target address is the location in memory of the data to store. The
decoded predicated store instruction can be stored in an instruction window of the
processor core.

[0167] At optional process block 1330, a memory address (e.g., the target address) can be
calculated using a first value encoded in a field of the predicated store instruction and a
second value produced by a register read of the instruction block and/or a different
instruction directly targeting the predicated store instruction. As one example, the first
value can be an immediate value of the predicated store instruction. As another example,
the different instruction can produce the second value by reading the second value from a
register file or from a memory. As another example, the different instruction can produce
the second value by performing a calculation such as an add or subtract operation. The
first value and the second value can be used in various ways to calculate the memory
address. For example, the first value and the second value can be added. As another
example, one or more the first value and the second value can be sign-extended and/or
shifted before the first value and the second value are added. The calculation can be
performed by a dedicated functional unit (such as an ALU) in a prefetch logic block or a
load-store queue. Additionally or alternatively, the calculation can be performed by an
arithmetic unit of instruction execution logic datapath during an open instruction issue
slot.

[0168] As another example, the memory address can be calculated using a first value
produced by a first instruction targeting the predicated store instruction and a second value
produced by a second instruction targeting the predicated store instruction. As another
example, the memory address can be calculated using a first value encoded in a field of the
predicated store instruction and a second value stored in a base register of the processor
core. As another example, the memory address can be calculated using a first value
encoded in a field of the predicated store instruction.

[0169] At process block 1340, a memory operation associated with a memory address
targeted by the predicated store instruction can be initiated before a predicate of the
predicated store instruction is calculated. As one example, the memory operation can
occur before a predicate of the predicated store instruction is calculated. In particular, the
memory operation can occur after the memory address is generated and before the
predicate of the predicated store instruction is calculated. Specifically, wake-up and select

logic can be configured to determine when the first value associated with the predicated

56

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

store instruction is ready and to initiate prefetch logic and/or cache coherence logic after
the first value is ready.

[0170] Various memory operations can be performed. As one example, the memory
operation can include issuing a prefetch request to a memory hierarchy of the processor
for data at the calculated target address. As another example, the memory operation can
include performing a cache coherence operation corresponding to a cache line including
the memory address. The cache coherence operation can include fetching coherence
permissions for a memory line including the calculated target address. The cache
coherence operation can include determining whether an inter-thread and/or inter-
processor conflict exists for a memory line including the calculated target address.
Specifically, it can be determined whether the memory line is present in another processor
or processor core and whether the cache coherence state of the memory line is an
exclusive or shared state. If there is an inter-thread and/or inter-processor conflict a
prefetch of the memory line can be aborted or an appropriate coherence action can be
initiated, such as writing back a modified copy of the memory line and/or invalidating
shared copies of the memory line.

[0171] At optional process block 1350, the memory operation can be prioritized according
to a memory access prioritization policy. For example, the memory access prioritization
policy can include rules and/or heuristics for efficiently using the memory bandwidth. As
one example, the initiated memory operation can be prioritized behind prefetch requests
for predicated load instructions and/or non-prefetch requests to the memory hierarchy.
Generally, non-prefetch requests to the memory can be prioritized ahead of prefetch
requests. As another example, prefetch requests for predicated load instructions can be
prioritized ahead of prefetch requests for predicated store instructions.

XII. Example Computing Environment

[0172] FIG. 14 illustrates a generalized example of a suitable computing environment
1400 in which described embodiments, techniques, and technologies, including supporting
prefetching of data associated with predicated loads and stores of an instruction block
targeted for a block-based processor, can be implemented.

[0173] The computing environment 1400 is not intended to suggest any limitation as to
scope of use or functionality of the technology, as the technology may be implemented in
diverse general-purpose or special-purpose computing environments. For example, the
disclosed technology may be implemented with other computer system configurations,

including hand held devices, multi-processor systems, programmable consumer

57

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

electronics, network PCs, minicomputers, mainframe computers, and the like. The
disclosed technology may also be practiced in distributed computing environments where
tasks are performed by remote processing devices that are linked through a
communications network. In a distributed computing environment, program modules
(including executable instructions for block-based instruction blocks) may be located in
both local and remote memory storage devices.

[0174] With reference to FIG. 14, the computing environment 1400 includes at least one
block-based processing unit 1410 and memory 1420. In FIG. 14, this most basic
configuration 1430 is included within a dashed line. The block-based processing unit
1410 executes computer-executable instructions and may be a real or a virtual processor.
In a multi-processing system, multiple processing units execute computer-executable
instructions to increase processing power and as such, multiple processors can be running
simultaneously. The memory 1420 may be volatile memory (e.g., registers, cache, RAM),
non-volatile memory (e.g., ROM, EEPROM, flash memory, efc.), or some combination of
the two. The memory 1420 stores software 1480, images, and video that can, for example,
implement the technologies described herein. A computing environment may have
additional features. For example, the computing environment 1400 includes storage 1440,
one or more input devices 1450, one or more output devices 1460, and one or more
communication connections 1470. An interconnection mechanism (not shown) such as a
bus, a controller, or a network, interconnects the components of the computing
environment 1400. Typically, operating system software (not shown) provides an
operating environment for other software executing in the computing environment 1400,
and coordinates activities of the components of the computing environment 1400.

[0175] The storage 1440 may be removable or non-removable, and includes magnetic
disks, magnetic tapes or cassettes, CD-ROMs, CD-RWs, DVDs, or any other medium
which can be used to store information and that can be accessed within the computing
environment 1400. The storage 1440 stores instructions for the software 1480, plugin
data, and messages, which can be used to implement technologies described herein.
[0176] The input device(s) 1450 may be a touch input device, such as a keyboard, keypad,
mouse, touch screen display, pen, or trackball, a voice input device, a scanning device, or
another device, that provides input to the computing environment 1400. For audio, the
input device(s) 1450 may be a sound card or similar device that accepts audio input in

analog or digital form, or a CD-ROM reader that provides audio samples to the computing

58

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

environment 1400. The output device(s) 1460 may be a display, printer, speaker, CD-
writer, or another device that provides output from the computing environment 1400.
[0177] The communication connection(s) 1470 enable communication over a
communication medium (e.g., a connecting network) to another computing entity. The
communication medium conveys information such as computer-executable instructions,
compressed graphics information, video, or other data in a modulated data signal. The
communication connection(s) 1470 are not limited to wired connections (e.g., megabit or
gigabit Ethernet, Infiniband, Fibre Channel over electrical or fiber optic connections) but
also include wireless technologies (e.g., RF connections via Bluetooth, WiFi (IEEE
802.11a/b/n), WiMax, cellular, satellite, laser, infrared) and other suitable communication
connections for providing a network connection for the disclosed agents, bridges, and
agent data consumers. In a virtual host environment, the communication(s) connections
can be a virtualized network connection provided by the virtual host.

[0178] Some embodiments of the disclosed methods can be performed using computer-
executable instructions implementing all or a portion of the disclosed technology in a
computing cloud 1490. For example, disclosed compilers and/or block-based-processor
servers are located in the computing environment 1430, or the disclosed compilers can be
executed on servers located in the computing cloud 1490. In some examples, the
disclosed compilers execute on traditional central processing units (e.g., RISC or CISC
processors).

[0179] Computer-readable media are any available media that can be accessed within a
computing environment 1400. By way of example, and not limitation, with the computing
environment 1400, computer-readable media include memory 1420 and/or storage 1440.
As should be readily understood, the term computer-readable storage media includes the
media for data storage such as memory 1420 and storage 1440, and not transmission
media such as modulated data signals.

XIII. Additional Examples of the Disclosed Technology

[0180] Additional examples of the disclosed subject matter are discussed herein in
accordance with the examples discussed above.

[0181] In one embodiment, a processor includes a block-based processor core for
executing an instruction block. The instruction block includes an instruction header and a
plurality of instructions. The block-based processor core includes decode logic and
prefetch logic. The decode logic is configured to detect a predicated store instruction of

the instruction block. The prefetch logic is in communication with the decode logic. The

59

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

prefetch logic is configured to receive a first value associated with the predicated store
instruction. The first value can be generated by a register read of the instruction block
and/or another instruction of the instruction block that is targeting the predicated store
instruction. The block-based processor core may further include wake-up and select logic
in communication with the prefetch logic. The wake-up and select logic can be configured
to determine when the first value associated with the predicated store instruction is ready
and to initiate the prefetch logic after the first value is ready.

[0182] The prefetch logic is further configured to calculate a target address of the
predicated store instruction using the received first value. The target address can be
calculated in various different ways. For example, the target address can be calculated
using a dedicated arithmetic unit of the prefetch logic. As another example, the target
address can be calculated using an arithmetic unit of a load-store queue. As another
example, calculating the target address can include performing the target address
calculation during an open instruction issue slot and using an arithmetic unit of instruction
execution logic.

[0183] The prefetch logic is further configured to initiate a memory operation associated
with the calculated target address before a predicate of the predicated store instruction is
calculated. As one example, the memory operation can be issuing a prefetch request to a
memory hierarchy of the processor to prefetch a cache line spanning the calculated target
address. As another example, the memory operation can be fetching coherence
permissions for a memory line including the calculated target address. As another
example, the memory operation can be determining whether an inter-thread conflict exists
for a memory line including the calculated target address. The predicated store instruction
can include a compiler hint field, and the prefetch logic may only initiate the memory
operation when indicated by the compiler hint field. The initiated memory operation may
be prioritized behind non-prefetch requests to the memory hierarchy. The decode logic
may be further configured to detect a predicated load instruction of the instruction block,
and the prefetch logic may be further configured to prioritize prefetch requests for the
predicated load instruction before initiating the memory operation associated with the
calculated target address.

[0184] The processor can be used in a variety of different computing systems. For
example, a server computer can include non-volatile memory and/or storage devices; a
network connection; memory storing one or more instruction blocks; and the processor

including the block-based processor core for executing the instruction blocks. As another

60

10

15

20

25

30

WO 2017/048658 PCT/US2016/051419

example, a device can include a user-interface component; non-volatile memory and/or
storage devices; a cellular and/or network connection; memory storing one or more of the
instruction blocks; and the processor including the block-based processor core for
executing the instruction blocks. The user-interface component can include at least one or
more of the following: a display, a touchscreen display, a haptic input/output device, a
motion sensing input device, and/or a voice input device.

[0185] In one embodiment, a method can be used to execute a program on a processor
comprising a block-based processor core. The method includes receiving an instruction
block comprising a plurality of instructions. The method further includes determining that
an instruction of the plurality of instructions is a predicated store instruction. The method
further includes initiating a memory operation associated with a memory address targeted
by the predicated store instruction before a predicate of the predicated store instruction is
calculated. Initiating the memory operation may include performing a cache coherence
operation corresponding to a cache line including the memory address. Additionally or
alternatively, initiating the memory operation may include detecting that there is no inter-
processor conflict for a cache line including the memory address. The predicated store
instruction may include a prefetch enable bit and the memory operation can be initiated
only when indicated by the prefetch enable bit. The method may further include
prioritizing non-prefetch requests to the memory ahead of the memory operation.

[0186] The method may further include calculating the memory address using a first value
encoded in a field of the predicated store instruction and a second value generated by a
register read and/or a different instruction targeting the predicated store instruction. The
memory address can be calculated in various different ways. For example, calculating the
memory address can include using a dedicated arithmetic unit. The arithmetic unit can be
dedicated within prefetch logic or a load-store queue of the block-based processor core.
As another example, calculating the memory address can include requesting access to a
shared arithmetic unit and using the shared arithmetic unit to calculate the memory address
[0187] In one embodiment, a method includes receiving instructions of a program and
grouping the instructions into a plurality of instruction blocks targeted for execution on a
block-based processor. The method further includes, for a respective instruction block of
the plurality of instruction blocks: determining whether a store instruction is predicated,;
classifying a given predicated store instruction as a candidate for prefetching or not a
candidate for prefetching; and enabling prefetching for the given predicated store

instruction when it is classified as a candidate for prefetching. The method further

61

10

15

20

WO 2017/048658 PCT/US2016/051419

includes emitting the plurality of instruction blocks for execution by the block-based
processor. The method further includes storing the emitted plurality of instruction blocks
in one or more computer-readable storage media or devices. A block-based processor can
be configured to execute the stored plurality of instruction blocks generated by the
method.

[0188] The given predicated store instruction can be classified in various ways. For
example, classifying the given predicated store instruction can be based only on static
information about the program. As a specific example, classifying the given predicated
store instruction can be based on an instruction mix of the respective instruction block. As
another example, classifying the given predicated store instruction can be based on
dynamic information about the program.

[0189] One or more computer-readable storage media can store computer-readable
instructions that, when executed by a computer, cause the computer to perform the
method.

[0190] In view of the many possible embodiments to which the principles of the disclosed
subject matter may be applied, it should be recognized that the illustrated embodiments are
only preferred examples and should not be taken as limiting the scope of the claims to
those preferred examples. Rather, the scope of the claimed subject matter is defined by
the following claims. We therefore claim as our invention all that comes within the scope

of these claims.

62

WO 2017/048658 PCT/US2016/051419

CLAIMS

1. A processor comprising a block-based processor core for executing an
instruction block comprising an instruction header and a plurality of instructions, the
block-based processor core comprising:

decode logic configured to detect a predicated store instruction of the instruction
block; and

prefetch logic configured to:

receive a first value associated with the predicated store instruction;

calculate a target address of the predicated store instruction using the
received first value; and

initiate a memory operation associated with the calculated target address
before a predicate of the predicated store instruction is calculated.

2. The block-based processor core of claim 1, wherein the memory operation
includes issuing a prefetch request to a memory hierarchy of the processor to prefetch a
cache line spanning the calculated target address.

3. The block-based processor core of any one of claims 1 or 2, wherein the
memory operation includes fetching coherence permissions for a memory line including
data at the calculated target address.

4. The block-based processor core of any one of claims 1-3, wherein the
memory operation includes determining whether an inter-thread conflict exists for a
memory line spanning the calculated target address.

5. The block-based processor core of any one of claims 1-4, wherein the target
address is calculated using a dedicated arithmetic unit of the prefetch logic.

6. The block-based processor core of any one of claims 1-4, wherein
calculating the target address comprises performing the target address calculation during
an open instruction issue slot and using an arithmetic unit of instruction execution logic.

7. The block-based processor core of any one of claims 1-6, wherein the first
value is generated by another instruction of the instruction block that targets the predicated
store instruction.

8. The block-based processor core of any one of claims 1-7, wherein the
predicated store instruction comprises a compiler hint field, and the prefetch logic only
initiates the memory operation when indicated by the compiler hint field.

9. The block-based processor core of any one of claims 1-8, further

comprising:

63

WO 2017/048658 PCT/US2016/051419

wake-up and select logic configured to determine when the first value associated
with the predicated store instruction is ready and to initiate the prefetch logic after the first
value is ready.

10. A method of executing a program on a processor comprising a block-based
processor core, the method comprising:

receiving an instruction block comprising a plurality of instructions;

determining that an instruction of the plurality of instructions is a predicated store
instruction; and

initiating a memory operation associated with a memory address targeted by the
predicated store instruction before a predicate of the predicated store instruction is
calculated.

11. The method of claim 10, further comprising:

calculating the memory address using a first value encoded in a field of the
predicated store instruction and a second value generated by a register read or a different
instruction targeting the predicated store instruction.

12. The method of any one of claims 10 or 11, wherein initiating the memory
operation comprises performing a cache coherence operation corresponding to a cache line
including the memory address.

13. The method of any one of claims 10-12, wherein initiating the memory
operation comprises calculating the memory address comprises using a dedicated
arithmetic unit.

14. The method of any one of claims 10-13, wherein the memory operation is
initiated only when indicated by a prefetch enable bit of the predicated store instruction.

15. A method comprising:

receiving instructions of a program;

grouping the instructions into a plurality of instruction blocks targeted for
execution on a block-based processor;

for a respective instruction block of the plurality of instruction blocks:

determine whether a store instruction is predicated,

classify a given predicated store instruction as a candidate for prefetching
or not a candidate for prefetching; and

enable prefetching for the given predicated store instruction when it is

classified as a candidate for prefetching;

64

WO 2017/048658 PCT/US2016/051419

emitting the plurality of instruction blocks for execution by the block-based
processor; and
storing the emitted plurality of instruction blocks in one or more computer-

readable storage media or devices.

65

WO 2017/048658 PCT/US2016/051419
1/14 10

FIG. 1 e

120 111

Block-Based
Processor
100

160

|

|

|

|

|

|

|

|

|

| Control Unit
|

|

|

|

|

|

| Clock Generator
|

170 Memory Interface 140
L
L2 Cache 152

Memory System

|
|
| 150 I
|
|
|

Main Memory 155

Y

|
|—IIIIIIIII<J

268
I

[Load/Store Queue

D-Cache

Router 270

[LS Pipeline Registers

278 |

WO 2017/048658 PCT/US2016/051419
2/14 200
FIG. 2 " /
| T T Control Unit 205 |
| 220 221 222 223 Scheduler 206 |
| Execution Control 208 |
| L1 Cache 235 State Access 207 || |
| [-Cache 227 | |
| Register File 230 |
| |
| |
l: Instruction Window 210 : : Instruction Window_271_ o _i :
215 I
I [216
AL AL |
|:%core Decoded LOP ROP" : :(A : |
| board Instructions buffer buffer | | | |
| 245 241 242 243 || |
|I \ \ S S I : |
I
|| I |
|| 1 y
l e o o L e o o : |
I] |
I
N I Bl] | | | |
I] |
|I_ ___________ R —_d e e e e e e e e + —_— —_— |
A
| H Router 250 | EX Pipeline Registers 255 | |
|
|
|
|
|
|
|
|
|

290
Y

WO 2017/048658

320 ..

nstruction O

3/14

PCT/US2016/051419

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

.....

.....

Instruction 6

Instruction 7

Instruction 8

Instruction ©

Instruction 10

Instruction 11

Instruction 12

Instruction 13

Instruction 14

Instruction 15

Instruction 16

Instruction 17

Instruction 18

Instruction 19

321

3

00

/.

311

< 312

>313

314

a1

WO 2017/048658 PCT/US2016/051419
4/14

FIG. 4

400

420

I[0] read RO T [2R] ——
I[1] read R7 T[2L] 430
I[2] add T[3L] V\431
410 z =X + Y I[3] tlei #5 B[1P] 432
~; — 433
if (z<=5) { I[4] bro Plt L1 —— 434
415 % oo 1. I[5] bro Pi1f L2 \/‘\435
A 4
-= 1;
X /=Y;
}
I[0] read RO T[2L]
425
e I[1] read R7 T[3L]
I[2] add #1 T[4L]
I[3] sub #1 T[4R]
I[4] div W[RO]
I([5] bro L2
[T - - — =777, 40 T T T T T
45& 45i 45&
read —2R\\ RO

tlei \ #5

bro Plt
bro P1f

. :
| |
| |
| |
| |
I read 2L \‘l R7

| 2dd [3D :
| |
| |
| |
| |
| |
|

WO 2017/048658

FIG. 5

127

5/14

PCT/US2016/051419

510

/

Write Mask Store Mask | Exit Types | X Flags |Size|ID
/20
31 0
Opcode Predicate T1 T2
/30
31 0
Opcode Predicate Offset
/40
31 0
Opcode |EN |PR |BID LSID Immediate TO
L
/50
31 0
|
Opcode PR |BID LSID Immediate 0 : EN

WO 2017/048658

PCT/US2016/051419
6/14

¢ a
605— UNMAPPED
v 5
610 — MAPPED
620 — FETCH
~
630— DECODE " In
Flight
l<
640 — EXECUTE
Resident 4 g50\—— COMMIT / ABORT
/
660 VES
REFRESH? >
NO
670— IDLE
-
880 YES
REFRESH? >

NO

WO 2017/048658

7/14

FIFIG. 7A

// In this example, x and y are passed between instruction blocks
// via registers 0 and 1, respectively, of the register file. The
// variables a-e are stored in memory at the addresses stored in
// registers 10-14, respectively.

702 —» |z = x / v;

703 — |if (z>=16) {

707 —F—» x -= 1;

7104 ———» b = a + 1;
} else {

708 ——>» v -= 1;

706 ——F—» b = ¢ + 1;
}

706 —» |d = b + ¢e;

710

'

PCT/US2016/051419

700

WO 2017/048658 PCT/US2016/051419
8/14

FIG. 8

800

/

I[0] read RO T[3L] T[6L] // read x from RO

I[1] read R1 T[3R] T[12L] // read y from R1

I[2] read R11 BI1L] // read &b from R11

I[3] divs T [4L] /[l z =x/vYy;

I[4] tgei #16 B [2P] /] z >= 162

I[5] read P2t R10 T[7R] // read &a from R10

I[6] subi P2t #1 WI[RO] // x--; (write x to RO)

I[7] 14 P2t TI[8L] // predicated load of a
I[8] addi P2t #1 T [9R] // calculate a + 1;

I[9] =d P2t B1 // predicated store of b
I[10] read P2f R12 T[12R] // read &c from R12

I[11] subi P2f #1 W[R1] // v--; (write y to R1)
I[12] 14 p2f T[13L] // predicated load of ¢
I[13] addi P2f #1 T[14R] // calculate ¢ + 1;

I[14] sd P2f B1 // predicated store of b
I[15] read R14 T[16R] // read &e from R14

I[16] 14 T[19L] // non-predicated load of e
I[17] 14 Bl T[19R] // non-predicated load of b
I[18] read R13 T[20L] // read &d from R13

I[19] add T [20R] // calculate e + b;

I[20] sd // non-predicated store of d
I[21] bro nextBlockPC // branch to the next block
I[22] nop // no operation

I[23] nop // no operation

WO 2017/048658 PCT/US2016/051419
9/14

FIG. 9 i

/

905 \— Receive instructions of a program

v

Group the instructions into instruction blocks
targeted for execution on a block-based processor

v

For a respective instruction block, identify predicated
920 \— load and/or predicated store instructions

!

Classify respective predicated load and/or
predicated store instructions as candidates for
prefetching or not candidates for prefetching

Y

Enable prefetching for the respective predicated
940\ load and/or predicated store instructions when they
are classified as candidates for prefetching

910 —

930\—

|
| Perform optimizations within and/or between the
950 \— instruction blocks. I

960 Emitobject code corresponding to the instruction
blocks for execution on the block-based processor

!

970" Store the emitted object code in a computer-
readable memory or storage device

PCT/US2016/051419

WO 2017/048658

10/14

¢clol

YOE1S

desH

JlelsS

< 00O QW

$)00|g UononJsu|

gz00 8yoeD E1Eq |
| N1 9207 onend a10jg/peoT

¥201 (s)1un 01607 onowyiy

€col ccol
N MOPUIAA Ve 0 MOPUIAA
uolonJsy| uolonJsy|
I S
| 21607 109198 | SE0L
|I_8 dn-oxem | 21607 yoieeld
= = A
I £eor
| JoRIpald 21607 apooa
|_8ouspuade(| uoIoNJISU|
—l _——
| 6€0L | | yeoT Janpsyos
| sS44SO |
| Lad ._ ¢c0l ©poos(JepesH
0€0l yun jonuo)

(S)2409 10SS9001d paseg-yoo|g

| oboy |
| sousieyo) |

“ ayoen “

Ll

I |
—

ovor
ayoe) 1

Alows|y

0ror Auowsy

|
I |
I |
I |
“ %9 18]|0JU0D “
I |
I |
1 |

o — J

0001

0L Old

PCT/US2016/051419
11/14

WO 2017/048658

—r o YAAN! ——— daccll N vieell
orclLli 1607 arcll 01607 o vvell 01607
$11 yolejeid $11 yolejeid $11 yolejeid
o021 L 8Jo) a9 g0cll @Jo) g4 VO0cl 1l 8lo) gd
_
ovil $21
oclLl cclLli
09l1 | UoIJB WO Mwmr b so)esg
adeusiu| O/ et Aouspisay 1 aoualayon
_F ¢SIT NN |
oSl 0SI1 Aioyeuq
Jajjosuo) Alows|p
SOLL 10§S9901d
06l —
oBEIOIS OL1I Alows

\ Ll Ol

00L1

WO 2017/048658

PCT/US2016/051419

12/14

FIG. 12

12100—

Receive an instruction block comprising an
instruction header and a plurality of instructions

'

1220—

Determine that an instruction of the plurality of
instructions is a predicated load instruction

I
1230\/'*:

I
L ____

e .

Calculate a memory address using a first value

encoded in a field of the predicated load instruction
| and a second value produced by a register read of |

the instruction block and/or a different instruction
targeting the predicated load instruction

1240~—

Prefetch data from a memory address targeted by
the predicated load instruction before a predicate of
the predicated load instruction is calculated

1250~/~: Prioritize prefetch requests to the memory according |

to a memory access prioritization policy

1200

/

WO 2017/048658 PCT/US2016/051419

13/14

FIG. 13

Receive an instruction block comprising an
1310~ instruction header and a plurality of instructions

'

1320 — Determine that an instruction of the plurality of
instructions is a predicated store instruction

I . .
0 | Calculate a memory address using a first value
133 | encoded in a field of the predicated store instruction
| and a second value generated by a register read of |
| the instruction block and/or a different instruction |

:_ targeting the predicated store instruction :

:

Initiate a memory operation associated with a

1340 memory address targeted by the predicated store

instruction before a predicate of the predicated store
instruction is calculated

I
1350— Prioritize the initiated memory operation according !
to a memory access prioritization policy :

1300

/

WO 2017/048658 PCT/US2016/051419

14/14

FIG. 14

1400

/

Computing Cloud
1490 Software 1480

For described
technologies

|
I |
r-r—-———=—-—=—-—"——=—=== - |
: | () : Communication |
I : 1430 I Connection(s) 1470]| |
b | :
: | : Input Device(s) 1450 |
| | Processing Memory | | |
| 1420 |
|I Unit(s) I Output Device(s) |
utput Device(s
:| 1410 : P 1460| |
| : | I
| | Storage |
| | L 1440| |

Instructions 1480 for
described technologies

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/051419

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F12/0862 GOG6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

column 4, 1ine 26 - line 30
column 7, Tine 1 - 1line 10

column 10, 1line 51 - line 53
column 13, Tine 1 - line 4

column 13, 1line 58 - line 62
column 17, Tine 37 - Tline 50
column 19, line 61 - line 63
column 20, line 1 - Tine 31

column 21, line 65 - line 67
column 23, Tine 15 - Tline 18
column 25, 1ine 5 - line 10
column 28, line 54 - Tline 67
column 29, 1ine 1 - line 6

column 30, Tine 21 - Tine 25
column 51, 1line 38 - line 43

X US 8 010 745 B1 (FAVOR JOHN GREGORY [US]
ET AL) 30 August 2011 (2011-08-30)

1-15

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

15 December 2016

Date of mailing of the international search report

02/01/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Simion, C

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/051419

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 2009/013160 A1 (BURGER DOUGLAS C [US]
ET AL) 8 January 2009 (2009-01-08)
paragraphs [0019], [0022], [0032] -
[0035]; claim 15

WO 2013/101213 A1 (INTEL CORP [US]:
SHWARTSMAN STANISLAV [IL]; OZGUL MELIH
[US]; HILY SEB) 4 July 2013 (2013-07-04)
paragraphs [0027], [0034] - [0044]

WO 2004,/059472 A2 (SUN MICROSYSTEMS INC
[US]) 15 July 2004 (2004-07-15)
paragraphs [0006], [0016], [0018],
[0033], [0037], [0042], [0045], [0051]
US 6 185 675 B1 (KRANICH UWE [DE] ET AL)
6 February 2001 (2001-02-06)

column 3, line 48 - line 67

column 4, 1ine 1 - line 33

column 5, line 66 - line 67

column 6, 1ine 1 - line 4

column 6, line 41 - line 48

column 8, 1line 32 - line 67

column 9, line 1 - Tine 7

column 11, 1ine 1 - line 3

column 11, line 48 - line 63

[l ol oo s NeorWeo W) |

KARTHIKEYAN SANKARALINGAM ET AL:
"Distributed Microarchitectural Protocols
in the TRIPS Prototype Processor",

2014 47TH ANNUAL IEEE/ACM INTERNATIONAL
SYMPOSIUM ON MICROARCHITECTURE;
[PROCEEDINGS OF THE ANNUAL ACM/IEEE
INTERNATIONAL SYMPOSIUM ON
MICROARCHITECTURE], IEEE COMPUTER SOCIETY,
1730 MASSACHUSETTS AVE., NW WASHINGTON, DC
20036-1992 USA,

9 December 2006 (2006-12-09), pages
480-491, XP058106955,

ISSN: 1072-4451, DOI:
10.1109/MICR0.2006.19

ISBN: 978-0-7695-1369-0

page 2, paragraphs 2,2.1

page 3, left-hand column, paragraph 2
page 3, right-hand column, paragraph 1
page 4

page 6, paragraph 4.2

figure 1

US 20037154349 A1 (BERG STEFAN G [US] ET
AL) 14 August 2003 (2003-08-14)
paragraphs [0011], [0012], [0028],
[0039]

_/__

1-15

1-15

1-15

1-15

1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/051419
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2003/074653 Al (JU DZ-CHING [US] ET AL) 14

17 April 2003 (2003-04-17)
paragraphs [0014], [0015], [0029]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 3 of 3

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/051419
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 8010745 Bl 30-08-2011 NONE
US 2009013160 Al 08-01-2009 US 2009013160 Al 08-01-2009
WO 2009006607 Al 08-01-2009
WO 2013101213 Al 04-07-2013 TW 201344569 A 01-11-2013
US 2014223105 Al 07-08-2014
WO 2013101213 Al 04-07-2013
WO 2004059472 A2 15-07-2004 AU 2003301128 Al 22-07-2004
EP 1576466 A2 21-09-2005
JP 2006518053 A 03-08-2006
TW 1258695 B 21-07-2006
US 2004133769 Al 08-07-2004
WO 2004059472 A2 15-07-2004
US 6185675 Bl 06-02-2001 NONE
US 2003154349 Al 14-08-2003 NONE
US 2003074653 Al 17-04-2003 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - wo-search-report
	Page 83 - wo-search-report
	Page 84 - wo-search-report
	Page 85 - wo-search-report

