(54) Titre : DERIVES DE 5,6-BISARYL-2-PYRIDINE-CARBOXAMIDE, LEUR PREPARATION ET LEUR APPLICATION EN THERAPEUTIQUE COMME ANTAGONISTES DES RECEPTEURS A L'UROTENSINE II

(57) Abrégé/Abstract:
L'invention concerne des composés répondant à la formule (I) : dans laquelle X, Y, U, A, B, W, Z, R1 et R2 sont tels que définis dans la description. Procédé de préparation et application en thérapeutique.
(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle
Bureau international

(43) Date de la publication internationale 21 février 2008 (21.02.2008)

PCT

(51) Classification internationale des brevets :
C07D 213/00 (2006.01) A61K 31/435 (2006.01)
C07D 241/10 (2006.01) A61P 9/00 (2006.01)
C07D 401/04 (2006.01)

(21) Numéro de la demande internationale :
PCT/FR2007/001357

(22) Date de dépôt international : 9 août 2007 (09.08.2007)

(25) Langue de dépôt : français

(26) Langue de publication : français

(30) Données relatives à la priorité :
0607283 11 août 2006 (11.08.2006) FR

(71) Déposant (pour tous les États désignés sauf US) :

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement) :

(54) Titre : 5,6-BISARYL-2-PYRIDINE-CARBOXYLAMIDE DERIVATIVES, PREPARATION AND APPLICATION THEREOF IN THERAPEUTICS AS UROSENSIN II RECEPTOR ANTAGONISTS

(54) Titre : DÉRIVÉS DE 5,6-BISARYL-2-PYRIDINE-CARBOXYLAMIDE, LEUR PRÉPARATION ET LEUR APPLICATION EN THÉRAPEUTIQUE COMME ANTAGONISTES DES RÉCEPTEURS A L’UROSENSINE II

(57) Abstract: The invention relates to compounds having the formula (I): wherein X, Y, U, A, B, W, Z, R1 and R2 are as defined in the description. Method of preparation and application in therapeutics.

(57) Abrégé : L’invention concerne des composés répondant à la formule (I) : dans laquelle X, Y, U, A, B, W, Z, R1 et R2 sont tels que définis dans la description. Procédé de préparation et application en thérapeutique.
DÉRIVÉS DE 5,6-BISARYL-2-PYRIDINE-CARBOXAMIDE, LEUR PRÉPARATION ET LEUR APPLICATION EN THÉRAPEUTIQUE COMME ANTAGONISTES DES RECEPTEURS A L’UROTENSINE II

La présente invention a pour objet des dérivés de 5,6-bisaryl-2-pyridine-carboxamide, leur préparation et leur application en thérapeutique en tant qu’antagonistes des récepteurs à l’Urotensine II.

Enfin, il a été montré que certaines lignées de cellules tumorales surexpriment le récepteur de l'Urotensine II (Takahashi K., et al, Peptides, 2003, 24, 301).

Les antagonistes des récepteurs de l'Urotensine II peuvent être utiles pour le traitement de l'insuffisance cardiaque congestive, l'ischémie cardiaque, l'infarctus du myocarde, l'hypertrophie et la fibrose cardiaque, les maladies coronaires et l'athérosclérose, l'hypertension artérielle systémique et pulmonaire, la resténose post-angioplastie, les insuffisances rénales aiguë et chronique d'origine diabétique et/ou hypertensive, le diabète, l'inflammation vasculaire, et les anévrismes. Par ailleurs les antagonistes des récepteurs de l'Urotensine II peuvent être utiles pour le traitement des désordres du système nerveux central, incluant les maladies neurodégénératives, les accidents vasculaires cérébraux, le stress, l'anxiété, l'agressivité, la dépression, la schizophrénie mais aussi les vomissements et les maladies du sommeil.

Enfin, les antagonistes des récepteurs de l'Urotensine II peuvent également être utiles pour le traitement de certains cancers.

Les composés selon la présente invention répondent à la formule (I):

![Chemical Structure](image)

(1)

dans laquelle:

X et Y représentent indépendamment l'un de l'autre un atome d'azote ou un chaînon -CR3-, où R3 représente un atome d'hydrogène ou d'halogène ou un groupe alkyle ou alcoxy ;

U représente un atome d'hydrogène ou un groupe NHR7 où R7 est un atome d'hydrogène ou un groupe alkyle ;

A représente un groupe aryle, hétéroaryle ou hétérocycloalkyle ;
W représente un atome d'halogène, un groupe alkyle ou un groupe halogénoalkyle ;

Z représente une liaison, un groupe cycloalkyle ou un groupe alkylène éventuellement substitué par un ou plusieurs groupes choisis parmi un atome d'halogène et les groupes alkyle, hydroxy et alcoxy ;

B représente :
- soit un groupe –NR4R5, où R4 et R5 représentent indépendamment l'un de l'autre un groupe alkyle, cycloalkyle, hydroxyalkyle ou fluoroalkyle, ou bien R4 et R5 forment, avec l'atome d'azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, tel qu'un cycle pyrroliidine ou pipérididine, éventuellement substitué par un groupe alkyle,
- soit un hétérocycle de formule suivante:

![Diagram](attachment:image.jpg)

où m et n représentent indépendamment l'un de l'autre 0, 1 ou 2, et où R6 et R7 représentent indépendamment l'un de l'autre un atome d'hydrogène ou un groupe alkyle ou cycloalkyle ;

R1 et R2 représentent :
- soit, indépendamment l'un de l'autre, un atome d'hydrogène ou un groupe alkyle, cycloalkyle, phényle, benzyle ou -CH₂-indolyle, ces groupes étant éventuellement substitués par un ou plusieurs groupes choisis parmi les atomes d'halogène et les groupes alkyle, fluoroalkyle, alcoxy, hydroxy et -O-CO-alkyle, au moins l'un de R1 ou R2 étant différent d'un atome d'hydrogène,
- soit R1 et R2 forment ensemble, avec l'atome de carbone auquel ils sont rattachés, un système mono ou polycyclique choisi parmi : cycloalkyle, indanyle, tétrahydropyranyle, pipéridine, tétrahydronaphtyle, bicyclo[2,2,1]heptyle, bicyclo[3,3,1]nonyle et adamantyle, ledit système mono ou polycyclique étant éventuellement substitué, en une position quelconque (y compris sur un atome d'azote, s'il y a lieu) par un ou plusieurs groupes choisis parmi un atome d'halogène et les groupes alkyle, fluoroalkyle, hydroxy, alcoxy, -O-CO-alkyle et acyle ;

p représente un nombre entier égal à 0 ou 1.
Les composés de formule (I) peuvent comporter un ou plusieurs atomes de carbone asymétriques. Ils peuvent donc exister sous forme d'énantiomères ou de diastéréoisomères. Ces énantiomères, diastéréoisomères, ainsi que leurs mélanges, y compris les mélanges racémiques, font partie de l'invention.

Les composés de formule (I) peuvent également exister sous forme d'hydrates ou de solvats, à savoir sous forme d'associations ou de combinaisons avec une ou plusieurs molécules d'eau ou avec d'un solvant. De tels hydrates et solvats font également partie de l'invention.

Parmi les composés de formule (I), on peut citer les composés de formule (I') :

\[
\begin{align*}
\text{Y} & \quad \text{X} & \quad \text{W} \\
& & \\
\text{A} & \text{H} & \text{Z} \\
& & B \\
\text{COOH} & \text{(I')} \\
\end{align*}
\]

dans laquelle :

- X et Y représentent indépendamment l'un de l'autre un atome d'azote ou un chaînon -CR3-, où R3 représente un atome d'hydrogène ou d'halogène ou un groupe alkyle ou alcoxy ;
- A représente un groupe aryle, hétéroaryle ou hétérocycloalkyle choisi parmi les groupes phényle, thiényle, thiazolyle, pyridinyle, pyrimidinyle, pyrazinyle, pyrazolyte et pyrrolidinone, ledit groupe aryle, hétéroaryle ou hétérocycloalkyle étant...
éventuellement substitué en des positions quelconques par 1 à 3 groupes choisis parmi un atome d’halogène et les groupes alkyle, fluoroalkyle, hydroxy, alcoxy, -NRR’, -NR-CO-alkyle, -SO- et -SO₂-alkyle, où R et R’ représentent indépendamment l’un de l’autre un atome d’hydrogène ou un groupe alkyle ;

W représente un atome d’halogène, un groupe alkyle ou un groupe fluoroalkyle ;

Z représente une liaison, un groupe cycloalkylène ou un groupe alkylène éventuellement substitué par 1 ou 2 groupes choisis parmi un atome d’halogène et les groupes alkyle, hydroxy et alcoxy ;

B représente :

soit un groupe -NR₄R₅, où R₄ et R₅ représentent indépendamment l’un de l’autre un groupe alkyle, cycloalkyle ou fluoroalkyle, ou bien R₄ et R₅ forment, avec l’atome d’azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, tel qu’un cycle pyrrolidinyle ou piperidinyle, éventuellement substitué par un groupe alkyle, soit un hétérocycle de formule suivante :

\[\text{\includegraphics{image.png}} \]

où m et n représentent indépendamment l’un de l’autre 0, 1 ou 2, et où R₆ et R₇ représentent indépendamment l’un de l’autre un atome d’hydrogène ou un groupe alkyle ;

R₁ et R₂ représentent :

- soit, indépendamment l’un de l’autre, un atome d’hydrogène ou un groupe alkyle, cycloalkyle, phényle, benzyle ou -CH₂-indolyle, ces groupes étant éventuellement substitués par un ou plusieurs groupes choisis parmi les atomes d’halogène et les groupes alkyle, fluoroalkyle, alcoxy, hydroxy et -O-CO-alkyle, au moins l’un de R₁ ou R₂ étant différent d’un atome d’hydrogène,

- soit R₁ et R₂ forment ensemble, avec l’atome de carbone auquel ils sont rattachés, un système mono ou polycyclique choisi parmi : cycloalkyle, indane, tétrahydropyranyl, pipéridine, tétrahydrouraphytyle, bicyclo[2,2,1]heptyle, bicyclo[3,3,1]nonyle et adamantyle, ledit système mono ou polycyclique étant éventuellement substitué, en une position quelconque par un ou plusieurs groupes choisis parmi un atome d’halogène et les groupes alkyle, fluoroalkyle, hydroxy, alcoxy,
formyle et acétyle ;

p représente 0 ou 1.

Parmi les composés de formule (I) objets de l’invention, on peut citer un sous-groupe de composés qui se définit comme suit :

X et Y représentent indépendamment l’un de l’autre un atome d’azote ou un chaînon -CR3-, où R3 représente un atome d’hydrogène ou un groupe alcoxy ;

et/ou

U représente un atome d’hydrogène ou un groupe NHR7 où R7 est un atome d’hydrogène ou un groupe alkyle ;

et/ou

A représente un groupe aryle, hétéroaryle ou hétérocycloalkyle choisi parmi les groupes phényle, benzodioxolyle, thiényle, thiazolyle, pyridinyle, pyrazolyle et pyrroloidinone, ledit groupe aryle ou hétéroaryle étant éventuellement substitué en des positions quelconques par un ou plusieurs groupes choisis parmi un atome d’halogène et les groupes cyano, alkyle, halogénoalkyle, hydroxy, alcoxy, -O-(CH₂)ₙ-O-alkyle, halogénoalcoxy, -NRR’, -NR-CO-alkyle et -SO₂-alkyle, où R et R’ représentent indépendamment l’un de l’autre un atome d’hydrogène ou un groupe alkyle et p est un nombre entier compris entre 1 et 5 et plus particulièrement entre 1 et 3 ;

et/ou

W représente un atome d’halogène, un groupe alkyle ou un groupe halogénoalkyle ;

et/ou

Z représente une liaison ou un groupe alkylène éventuellement substitué par au moins un groupe choisi parmi un atome d’halogène et les groupes alkyle et hydroxy ;
et/ou

B représente :

• soit un groupe \(-NR4R5\), où R4 et R5 représentent indépendamment l'un de l'autre un groupe alkyle, hydroxyalkyle, ou bien R4 et R5 forment, avec l'atome d'azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, tel qu'un cycle pyrrolidinyle ou pipéridinyle,

• soit un hétérocycle de formule suivante :

\[
\begin{array}{c}
\text{N} \\
\text{R6} \\
\text{R7}
\end{array}
\]

où m et n représentent indépendamment l'un de l'autre 0, 1 ou 2, et où R6 et R7 représentent indépendamment l'un de l'autre un atome d'hydrogène ou un groupe alkyle ou cycloalkyle ;

et/ou

R1 et R2 représentent :

• soit, indépendamment l'un de l'autre, un atome d'hydrogène ou un groupe alkyle, cycloalkyle, phényle, benzyle ou \(-\text{CH}_2\text{-indolyle}\), ces groupes étant éventuellement substitués par un ou plusieurs groupes hydroxy, au moins l'un de R1 ou R2 étant différent d'un atome d'hydrogène,

• soit R1 et R2 forment ensemble, avec l'atome de carbone auquel ils sont rattachés, un système mono ou polycyclique choisi parmi : cycloalkyle, indanyle, tétrahydropyranyle, pipéridine, bicyclo[2,2,1]heptyle, bicyclo[3,3,1]nonyle et adamantyle, ledit système mono ou polycyclique étant éventuellement substitué, en une position quelconque (y compris sur un atome d'azote, s'il y a lieu) par un ou plusieurs groupes choisis parmi les groupes alkyle, hydroxy, acétyle et alcoxy ;

et/ou

p représente un nombre entier égal à 0 ou 1.

Parmi les composés de formule (I) objets de l'invention, on peut citer un deuxième sous-groupe de composés pour lesquels X et Y représentent indépendamment l'un de
l’autre un atome d’azote ou un chaînon -CR3-, où R3 représente un atome d’hydrogène ou d’halogène ou un groupe alkyle ou alcoxy.

Plus particulièrement, parmi les composés de formule (I) du deuxième sous-groupe, objets de l’invention, on peut citer un sous-groupe de composés pour lesquels lesquels X et Y représentent indépendamment l’un de l’autre un atome d’azote ou un chaînon -CR3-, où R3 représente un atome d’hydrogène ou un groupe alcoxy.

Parmi les composés de formule (I) objets de l’invention, on peut citer un troisième sous-groupe de composés pour lesquels U représente un atome d’hydrogène ou un groupe NHR7 où R7 est un atome d’hydrogène ou un groupe alkyle.

Parmi les composés de formule (I) objets de l’invention, on peut citer un quatrième sous-groupe de composés pour lesquels A représente un groupe aryle, hétéroaryle ou hétérocycloalkyle éventuellement substitué.

Plus particulièrement, parmi les composés de formule (I) du quatrième sous-groupe, objets de l’invention, on peut citer un sous-groupe de composés pour lesquels A représente un groupe aryle, hétéroaryle ou hétérocycloalkyle choisi parmi les groupes phényle, benzodioxolyle, thiényle, thiazolyle, pyridinyle, pyrimidinyle, pyrazolinyle, pyrazolyle et pyrroldinone, ledit groupe aryle, hétéroaryle ou hétérocycloalkyle étant éventuellement substitué en des positions quelconques par un ou plusieurs groupes choisis parmi un atome d’halogène et les groupes cyano, alkyle, halogénoalkyle, hydroxy, alcoxy, -O-(CH2)ₜ-O-alkyle, halogénoalcoxy, -NRR', -NR-CO-alkyle, -SO- et -SO₂-alkyle, où R et R' représentent indépendamment l’un de l’autre un atome d’hydrogène ou un groupe alkyle et p est un nombre entier compris entre 1 et 5.

Encore plus particulièrement, parmi les composés de formule (I) du quatrième sous-groupe, objets de l’invention, on peut citer un sous-groupe de composés pour lesquels A représente un groupe choisi parmi les groupes phényle, benzodioxolyle, thiényle, thiazolyle, pyridinyle, pyrazolinyle et pyrroldinone, ledit groupe aryle ou hétéroaryle étant éventuellement substitué en des positions quelconques par un à trois groupes choisis parmi un atome d’halogène et les groupes cyano, alkyle, halogénoalkyle, hydroxy, alcoxy, -O-(CH₂)ₜ-O-alkyle, halogénoalcoxy, -NRR', -NR-CO-alkyle et -SO₂-alkyle, où R et R' représentent indépendamment l’un de l’autre un atome d’hydrogène ou un groupe alkyle et p est un nombre entier compris entre 1 et 3.
Parmi les composés de formule (1) objets de l’invention, on peut citer un cinquième sous-groupe de composés pour lesquels W représente un atome d’halogène, un groupe alkyle ou un groupe halogénoalkyle.

Parmi les composés de formule (1) objets de l’invention, on peut citer un sixième sous-groupe de composés pour lesquels Z représente une liaison, un groupe cycloalkylène ou un groupe alkylène éventuellement substitué par 1 ou 2 groupes choisis parmi un atome d’huiagène et les groupes alkyle, hydroxy et alcoxy.

Plus particulièrement, parmi les composés de formule (1) du sixième sous-groupe, objets de l’invention, on peut citer un sous-groupe de composés pour lesquels Z représente une liaison ou un groupe alkylène éventuellement substitué par au moins un groupe choisi parmi un atome d’halogène et les groupes alkyle et hydroxy.

Parmi les composés de formule (1) objets de l’invention, on peut citer un septième sous-groupe de composés pour lesquels B représente :

• soit un groupe â–NR4R5, où R4 et R5 représentent indépendamment l’un de l’autre un groupe alkyle, cycloalkyle, hydroxyalkyle ou fluoroalkyle, ou bien R4 et R5 forment, avec l’atome d’azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, tel qu’un cycle pyrrolidinyle ou pipéridinyle, éventuellement substitué par un groupe alkyle,
• soit un hétérocycle de formule suivante :

\[\text{N} \quad \text{R6} \]
\[\text{R7} \]

où m et n représentent indépendamment l’un de l’autre 0, 1 ou 2, et où R6 et R7 représentent indépendamment l’un de l’autre un atome d’halogène ou un groupe alkyle ou cycloalkyle.

Plus particulièrement, parmi les composés de formule (1) du septième sous-groupe, objets de l’invention, on peut citer un sous-groupe de composés pour lesquels B représente un groupe â–NR4R5, où R4 et R5 représentent indépendamment l’un de l’autre un groupe alkyle, cycloalkyle, hydroxyalkyle ou fluoroalkyle, ou bien R4 et R5 forment, avec l’atome d’azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, tel qu’un cycle pyrrolidinyle ou pipéridinyle, éventuellement substitué par un groupe alkyle.
Encore plus particulièrement, parmi les composés de formule (I) du septième sous-groupe, objets de l’invention, on peut citer un sous-groupe de composés pour lesquels B représente un groupe –NR4R5, où R4 et R5 représentent indépendamment l’un de l’autre un groupe alkyle, hydroxyalkyle ou fluoroalkyle, ou bien R4 et R5 forment, avec l’atome d’azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, tel qu’un cycle pyrrolidiny1e ou pipéridinyle.

Plus particulièrement, parmi les composés de formule (I) du septième sous-groupe, objets de l’invention, on peut citer un sous-groupe de composés pour lesquels B représente un hétérocycle de formule suivante :

\[
\begin{array}{c}
\text{R6} \\
\text{N} \\
\text{R7}
\end{array}
\]

où m et n représentent indépendamment l’un de l’autre 0, 1 ou 2, et où R6 et R7 représentent indépendamment l’un de l’autre un atome d’hydrogène ou un groupe alkyle ou cycloalkyle.

Parmi les composés de formule (I) objets de l’invention, on peut citer un huitième sous-groupe de composés pour lesquels R1 et R2 représentent :

- soit, indépendamment l’un de l’autre, un atome d’hydrogène ou un groupe alkyle, cycloalkyle, phényle, benzyle ou -CH2-indoly1e, ces groupes étant éventuellement substitués par un ou plusieurs groupes choisis parmi les atomes d’halogène et les groupes alkyle, fluoroalkyle, alcoxy, hydroxy et -O-CO-alkyle, au moins l’un de R1 ou R2 étant différent d’un atome d’hydrogène,

- soit R1 et R2 forment ensemble, avec l’atome de carbone auquel ils sont rattachés, un système mono ou polycyclique choisi parmi : cycloalkyle, indany1e, tétrahtydropyranyle, pipéridine, tétrahtydronaphtyle, bicyclo[2,2,1]hepty1e, bicyclo[3,3,1]nonyle et adamantyle, ledit système mono ou polycyclique étant éventuellement substitué, en une position quelconque (y compris sur un atome d’azote, s’il y a lieu) par un ou plusieurs groupes choisis parmi un atome d’halogène et les groupes alkyle, fluoroalkyle, hydroxy, alcoxy, -O-CO-alkyle et acyle.

Plus particulièrement, parmi les composés de formule (I) du huitième sous-groupe, objets de l’invention, on peut citer un sous-groupe de composés pour lesquels
R1 et R2 représentent indépendamment l'un de l'autre, un atome d'hydrogène ou un
groupe alkyle, cycloalkyle, phényle, benzyle ou -CH₂-indolye, ces groupes étant
eventuellement substitués par un ou plusieurs groupes choisis parmi les atomes
d'halogène et les groupes alkyle, fluoroalkyle, alcoxy, hydroxy et -O-CO-alkyle, au moins
l'un de R1 ou R2 étant différent d'un atome d'hydrogène.

Encore plus particulièrement, parmi les composés de formule (I) du huitième
sous-groupe, objets de l'invention, on peut citer un sous-groupe de composés pour
lesquels R1 et R2 représentent indépendamment l'un de l'autre, un atome d'hydrogène
ou un groupe alkyle, cycloalkyle, phényle, benzyle ou -CH₂-indolye, ces groupes étant
eventuellement substitués par un ou plusieurs groupes hydroxy, au moins l'un de R1 ou
R2 étant différent d'un atome d'hydrogène.

Plus particulièrement, parmi les composés de formule (I) du huitième sous-
groupe, objets de l'invention, on peut citer un sous-groupe de composés pour lesquels
R1 et R2 forment ensemble, avec l'atome de carbone auquel ils sont rattachés, un
système mono ou polycyclique choisi parmi : cycloalkyle, indanyle, tétrahydropropyrylne,
pipéridine, tétrahydropyphyle, bicyclo[2,2,1]heptyle, bicyclo[3,3,1]nonyle et adamantyle,
ledit système mono ou polycyclique étant éventuellement substitué, en une position
quelconque (y compris sur un atome d'azote, s'il y a lieu) par un ou plusieurs groupes
choisis parmi un atome d'halogène et les groupes alkyle, hydroxy et alcoxy.

Encore plus particulièrement, parmi les composés de formule (I) du huitième
sous-groupe, objets de l'invention, on peut citer un sous-groupe de composés pour
lesquels R1 et R2 forment ensemble, avec l'atome de carbone auquel ils sont rattachés,
un système mono ou polycyclique choisi parmi : cycloalkyle, indanyle, tétrahydropropyrylne,
pipéridine, bicyclo[2,2,1]heptyle, bicyclo[3,3,1]nonyle et adamantyle, ledit système mono
ou polycyclique étant éventuellement substitué, en une position quelconque (y compris
sur un atome d'azote, s'il y a lieu) par un ou plusieurs groupes choisis parmi les groupes
alkyle, hydroxy et alcoxy.
plusieurs groupes choisis parmi les groupes alkyle, hydroxy et alcoxy.

Encore plus particulièrement, parmi les composés de formule (I) du huitième sous-groupe, objets de l’invention, on peut citer un sous-groupe de composés pour lesquels R1 et R2 forment ensemble, avec l’atome de carbone auquel ils sont rattachés, un système mono ou polycyclique choisi parmi : cycloalkyle, indanylé, tétrahydropropyranyle, pipéridine, bicyclo[2.2.1]heptyle, bicyclo[3.3.1]nonyle et adamantyle, ledit système mono ou polycyclique étant éventuellement substitué, sur un atome d’azote, par un groupe choisi parmi les groupes alkyle et acyle.

Parmi les composés de formule (I) objets de l’invention, on peut citer un neuvième sous-groupe de composés pour lesquels p représente un nombre entier égal à 0 ou 1.

Dans le cadre de la présente invention, et sauf mention différente dans le texte, on entend par :

- un atome d’halogène : un atome de fluor, de chlore, de brome ou d’iode ;
- un groupe alkyle : un groupe aliphatique saturé linéaire, comprenant de 1 à 5 atomes de carbone ou quand la chaîne alkyle comprend au moins trois atomes de carbone pouvant être linéaire, ramifié ou partiellement cyclisé. A titre d’ exemples, on peut citer les groupes méthylique, éthyle, propyle, isopropylique, butyle, isobutylique, tertiobutylique, pentylique, méthylène-cyclopropyle ;
 - un groupe alkylène : un groupe alkyle tel que défini ci-dessus, qui est divalent. A titre d’exemple, on peut citer un groupe diméthylène (−CH₂−CH₂−), propylène, butylène, éthylène, ou 2-méthylpropylène ;
- un groupe cycloalkyle : un groupe cyclique saturé, qui comprend de 3 à 8 atomes de carbone et qui est cyclique. A titre d’ exemples, on peut citer les groupes cyclopropyle, cyclopentyle, cyclohexyle et cycloheptyle ;
 - un groupe hétérocycloalkyle : un groupe cycloalkyle tel que défini ci-dessus, dont un ou deux carbones ont été substitués par un atome d’azote. A titre d’exemple, on peut citer le groupe pyrrolidinone et le groupe pipéridine ;
- un groupe aryle : un groupe aromatique monocyclique comprenant 5 ou 6 atomes de carbones, par exemple un groupe phényle ;
 - un groupe hétéroaryle : un groupe aromatique cyclique comprenant 5 ou 6 atomes dont un ou plusieurs hétéroatomes tels que N et/ou S. A titre d’ exemple de groupes hétéroaryles, on peut citer un groupe thiényle, thiazolyle, pyrindinyle, pyrimidinyle, pyridazinyle, pyrazinyle, pyrazolylique ;
 - un groupe cycloalkylène : un groupe cycloalkyle tel que défini ci-dessus qui est
divalent ;
- un groupe fluoroalkyle : un groupe alkyle tel que défini ci-dessus, dont un ou plusieurs atomes d’hydrogène ont été substitués par un atome de fluor. A titre d’exemple, on peut citer le groupe trifluorométhyle ;
- un groupe alcoxy : un groupe de formule -O-alkyle où le groupe alkyle est tel que précédemment défini.

Parmi les composés décrits dans la présente invention, on peut citer un sous groupe de composés répondant à la formule (I) dans laquelle :

\[X \text{ et } Y \text{ représentent indépendamment l’un de l’autre un atome d’azote ou un groupe CH ;} \]

\[U \text{ représente un atome d’hydrogène ou un groupe NHR7 où R7 est un atome d’hydrogène ;} \]

\[W \text{ représente un atome de chlore ou un groupe trifluorométhyle ;} \]

\[Z \text{ représente une liaison ou un groupe alkylène éventuellement substitué par un groupe méthyle ;} \]

- soit un groupe \(-\text{NR4R5}\), où R4 et R5 représentent indépendamment l’un de l’autre un groupe alkyle ou bien R4 et R5 forment, avec l’atome d’azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons,

- soit des hétérocycles de formule suivante :

\[\text{\begin{align*}
&\text{\begin{tikzpicture}
&\node (n1) at (0,0) {N};
&\node (n2) at (0.5,0) {R_6};
&\node (n3) at (0.5,-1) {};\node (n4) at (1.5,-1) {m};
&\end{tikzpicture}}\}
&\text{et}\quad \text{\begin{tikzpicture}
&\node (n1) at (0,0) {N};
&\node (n2) at (0.5,0) {R_5};
&\node (n3) at (0.5,-1) {};\node (n4) at (1.5,-1) {R_6};
&\end{tikzpicture}}
\end{align*}} \]

où m = 1 ou 2 et R6 représente un groupe éthyle ou méthyle ;
R1 et R2 représentent :

- soit, indépendamment l’un de l’autre, un atome d’hydrogène ou un groupe isopropyle, terbutyle ;
- soit R1 et R2 forment ensemble, avec l’atome de carbone auquel ils sont rattachés, un système mono ou polycyclique choisi parmi : cycloalkyle (tel que cyclopentyle, cyclohexyle, ou cycloheptyle), tétrahydropyranyle, bicyclo[2,2,1]heptyle, bicyclo[3,3,1]nonyle et adamantyle, ledit groupe cycloalkyle étant éventuellement substitué dans les positions 3 et 4 par un groupe méthyle, hydroxy ou méthoxy ou un ou deux atomes d’halogène tel que le fluor.

p représente 0 ou 1.

On peut également citer un deuxième sous groupe de composés parmi les composés préférés et répondant à la formule (I) dans laquelle :

X représente un atome d’azote et Y un groupe CH ;

A représente un groupe phényle ou pyridinyle, substitué dans les positions 2, 4, 5 et 6 par un ou deux groupes choisis parmi un atome d’halogène, tel que chlore ou fluor, et les groupes alkyles, tels que méthyle, éthyle ou isopropyle, trifluorométhyle, méthoxy et N,N-diméthylamine ;

U représente un atome d’hydrogène ou un groupe NHR7 où R7 est un atome d’hydrogène ;

W représente un atome de chlore ou un groupe trifluorométhyle ;

Z représente une liaison ou un groupe éthylène, propylène ou méthylpropylène ;

B représente :

- soit un groupe –NR4R5, où R4 et R5 représentent indépendamment l’un de l’autre un groupe méthyle, éthyle ou propyle ou forment ensemble avec l’atome d’azote auquel ils sont rattachés un cycle à 5 ou 6 chaînons,
- soit un hétérocycle de formule suivante :

```
\[ NMe \]
```
R1 et R2 représentent :

- soit R1 est un atome d’hydrogène et R2 un groupe isopropyle, tertbutyle, l’atome de carbone portant les groupes R1 et R2 adoptant la configuration absolue S,

- soit R1 et R2 forment ensemble, avec l’atome de carbone auquel ils sont rattachés, un groupe cycloalkyle (tel que cyclohexyle ou cycloheptyle), et adamantyle, ledit groupe cycloalkyle étant éventuellement substitué dans les positions 3 et 4 par un groupe méthyle, hydroxy ou méthoxy,

p représente 0 ou 1.

Parmi les composés objets de l’invention, on peut notamment citer les composés suivants :

- 2-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl]carbonyl]amino)adamantane-2-carboxylic acid hydrochloride

- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-4-methoxy-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

- (3S)-3-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,4-dimethylphenyl)pyridin-2-yl]carbonyl]amino)-4,4-dimethylpentanoic acid hydrochloride

- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,6-difluorophenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(5-ethoxy-2-methylphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,6-dichlorophenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-fluoro-6-methylphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-[2-methyl-5-(1-methylthyl)phenyl]pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-[2-chloro-5-(2-methoxyethoxy)phenyl]pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,4-dimethylphenyl)pyrazin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- (3S)-3-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-chloro-5-ethoxyphenyl)pyrazin-2-yl]carbonyl]amino)-4,4-dimethylpentanoic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-[2-(methoxymethyl)phenyl]pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-[2-chloro-5-(1-methylethoxy)phenyl]pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-[2-chloro-5-ethoxyphenyl]pyrazin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[5-[2-chloro-5-(dimethylamino)phenyl]-6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-[2-ethyl-6-fluorophenyl]pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-[2-methyl-5-propylphenyl]pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-2'-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-6-ethoxy-2,3'-bipyridin-6'-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[3-amino-6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-[2-chloro-5-ethoxyphenyl]pyrazin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)-2-fluoropropoxy]phenyl]-5-[2-methylphenyl]pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 2-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-chlorophenyl)pyridin-2-yl]carbonyl]amino)adamantane-2-carboxylic acid hydrochloride
1-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2-(difluoromethyl)-5-methylphenyl}pyridin-2-yl)carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

1-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{5-(2-methoxyethoxy)-2-methylphenyl}pyridin-2-yl)carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

1-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{5-(methoxymethyl)-2-methylphenyl}pyridin-2-yl)carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

1-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2-methyl-5-(1-methylethoxy)phenyl}pyridin-2-yl)carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

1-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2-methyl-5-(2-methylpropoxy)phenyl}pyridin-2-yl)carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

1-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{5-(cyclopropylmethoxy)-2-methylphenyl}pyridin-2-yl)carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

1-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2-methyl-5-propoxyphenyl}pyridin-2-yl)carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

2-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2,6-dimethoxyphenyl}pyridin-2-yl)carbonyl]amino)-2,3-dihydro-1H-indene-2-carboxylic acid

1-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2,6-dimethoxyphenyl}pyridin-2-yl)carbonyl]amino)cyclopentanecarboxylic acid

2-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2,6-dimethoxyphenyl}pyridin-2-yl)carbonyl]amino)bicyclo[2.2.1]heptane-2-carboxylic acid hydrochloride

N-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2,6-dimethoxyphenyl}pyridin-2-yl)carbonyl]phenylalanine

1-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2-methylphenyl}pyridin-2-yl)carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

3-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2,6-dimethoxyphenyl}pyridin-2-yl)carbonyl]amino)-4-methylpentanoic acid

3-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2,6-dimethoxyphenyl}pyridin-2-yl)carbonyl]amino)-4-phenylbutanoic acid

3-[(6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-{2,6-dimethoxyphenyl}pyridin-2-yl)carbonyl]amino)-4-(1H-indol-3-yl)butanoic acid
- ([6-4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl)[carbonyl]amino)(phenyl)acetic acid
- 3-[[6-4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl][carbonyl]amino)-3-cyclohexylpropanoic acid
- 1-[[6-4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl][carbonyl]amino)cyclohexanecarboxylic acid
- N-[[6-4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl][carbonyl]-alpha-methylphenylalanine
- N-[[6-4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl][carbonyl]-3-methylisovaline
- 2-[[6-4-chloro-3-[[1-methylpyrrolidin-3-yl]oxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl][carbonyl]amino)adamantane-2-carboxylic acid hydrochloride
- 2-[[6-4-chloro-3-[[1-methylpiperidin-4-yl]oxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl][carbonyl]amino)adamantane-2-carboxylic acid hydrochloride
- 2-[[6-4-chloro-3-[[3-(dimethylamino)propoxy]phenyl]-5-(2-methoxyphenyl)pyridin-2-yl][carbonyl]amino)adamantane-2-carboxylic acid hydrochloride
- 2-[[6-4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-methylphenyl)pyridin-2-yl][carbonyl]amino)adamantane-2-carboxylic acid hydrochloride
- 2-[[6-4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl][carbonyl]amino)adamantane-2-carboxylic acid hydrochloride
- 2-[[6-4-chloro-3-[[3-ethylpyrrolidin-3-yl]oxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl][carbonyl]amino)adamantane-2-carboxylic acid hydrochloride
- 2-[[6-4-chloro-3-[[3-(dimethylamino)propoxy]phenyl]-5-(2-oxopyrrolidin-1-yl)pyridin-2-yl][carbonyl]amino)adamantane-2-carboxylic acid hydrochloride
- 2-[[6-4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl][carbonyl]amino)bicyclo[3.3.1]nonane-9-carboxylic acid hydrochloride
- 2-[[6-4-chloro-3-[3-(diethylamino)propoxy]phenyl]-5-(2,6-dimethoxyphenyl)pyridin-2-yl][carbonyl]amino)adamantane-2-carboxylic acid hydrochloride
- 2-[[2-4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-3,4'-bipyridin-6-yl)[carbonyl]amino)adamantane-2-carboxylic acid hydrochloride
- 2-[[2'-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-2,3'-bipyridin-6'-yl}carbonyl]amino]adamantane-2-carboxylic acid hydrochloride
- 3-[[4''-chloro-3''-[3-(dimethylamino)propoxy]-2,6-dimethoxy-1,1''-2',1''-terphenyl-4'-yl}carbonyl]amino]-4-methylpentanoic acid
- 3-[[5-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-6-(2-methylphenyl)pyridin-3-yl]carbonyl]amino]-4-methylpentanoic acid hydrochloride
- N-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]-3-hydroxyphenylalanine hydrochloride
- 2-[[6-[4-chloro-3-[2-(1-methylpiperidin-2-yl)ethoxy]phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]adamantane-2-carboxylic acid hydrochloride
- 2-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-ethylphenyl)pyridin-2-yl]carbonyl]amino]adamantane-2-carboxylic acid hydrochloride
- 2-[[6-[4-chloro-3-[3-cyclopropyl(methyl)amino)propoxy]phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]adamantane-2-carboxylic acid hydrochloride
- 2-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-[2-(dimethylamino)phenyl]pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride
- 1-[[3,5-dichloro-2'-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-2,3'-bipyridin-6'-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2,4-dimethylphenyl)pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride
2-[[6-[4-chloro-3-[3-(dimethylamino)butoxy]phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]adamantane-2-carboxylic acid hydrochloride

2-[[6-[4-chloro-3-(2-piperidin-1-ylethoxy)phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]adamantane-2-carboxylic acid hydrochloride

(3S)-3-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]-4-methylpentanoic acid hydrochloride

2-[[6-[4-chloro-3-(2-pyrrolidin-1-ylethoxy)phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]adamantane-2-carboxylic acid hydrochloride

2-[[6-[4-chloro-3-(3-pyrrolidin-1-ylpropoxy)phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]adamantane-2-carboxylic acid hydrochloride

2-[[2'-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-3-methyl-2,3'-bipyridin-6'-yl]carbonyl]amino]adamantane-2-carboxylic acid hydrochloride

1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]-4-methylcyclohexanecarboxylic acid hydrochloride

2-[[6-[4-chloro-3-[3-(dimethylamino)-1-methylpropoxy]phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]adamantane-2-carboxylic acid hydrochloride

1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-chloro-4-fluorophenyl)pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

(3S)-3-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-chlorophenyl)pyridin-2-yl]carbonyl]amino]-4-methylpentanoic acid hydrochloride

1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-chlorophenyl)pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

acetyl-4-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]piperidine-4-carboxylic acid hydrochloride
- 1-[[6-[[4-chloro-3-[[3-[[dimethylamino]propoxy]phenyl]-5-[[2-methyl]phenyl]pyridin-2-yl]carbonyl]amino]-4-hydroxy cyclohexanecarboxylic acid hydrochloride
- cis-1-[[6-[[4-chloro-3-[[3-[[dimethylamino]propoxy]phenyl]-5-[[2-chlorophenyl]pyridin-2-yl]carbonyl]amino]-4-methoxy cyclohexanecarboxylic acid hydrochloride
- trans-1-[[6-[[4-chloro-3-[[3-[[dimethylamino]propoxy]phenyl]-5-[[2-chlorophenyl]pyridin-2-yl]carbonyl]amino]-4-methoxy cyclohexanecarboxylic acid hydrochloride
- trans-1-[[6-[[4-chloro-3-[[3-[[dimethylamino]propoxy]phenyl]-5-[[2-methyl]phenyl]pyridin-2-yl]carbonyl]amino]-4-hydroxy cyclohexanecarboxylic acid hydrochloride
- 1-[[2'-[4-chloro-3-[[3-[[dimethylamino]propoxy]phenyl]-3-methyl-2,3'-bipyridin-6'-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride
- N-[[6-[[4-chloro-3-[[3-[[dimethylamino]propoxy]phenyl]-5-[[2-chlorophenyl]pyridin-2-yl]carbonyl]-D-valine hydrochloride
1-[[2-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-2'-methyl-3,3'-bipyridin-6-yl}carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[2-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-4'-methyl-3,3'-bipyridin-6-yl}carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-(2-pyrrrolidin-1-ylethoxy)phenyl}-5-(2-methylphenyl)pyridin-2-yl}carbonyl]amino]-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-ethyl(methyl)amino)propoxy]phenyl}-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino)-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(diethylamino)propoxy]phenyl}-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino)-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2-ethylphenyl)pyridin-2-yl]carbonyl]amino)-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(5-chloro-2-methylphenyl)pyridin-2-yl]carbonyl]amino)-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2,4-dimethylphenyl)pyridin-2-yl]carbonyl]amino)-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2,5-dimethylphenyl)pyridin-2-yl]carbonyl]amino)-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-ethyl(methyl)amino)propoxy]phenyl}-5-(2,4-dimethylphenyl)pyridin-2-yl]carbonyl]amino)-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-[methyl(propyl)amino)propoxy]phenyl}-5-(2-ethylphenyl)pyridin-2-yl]carbonyl]amino)-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(diethylamino)propoxy]phenyl}-5-(2,4-dimethylphenyl)pyridin-2-yl]carbonyl]amino)-4-hydroxycyclohexanecarboxylic acid hydrochloride
1-{[[6-(4-chloro-3-{3-[ethyl(methyl)amino]propoxy}phenyl)-5-(2-ethylphenyl)pyridin-2-yl]carbonyl]amino}-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-{[[6-(4-chloro-3-{3-dimethylamino}propoxy)phenyl]-5-(2-ethylphenyl)pyridin-2-yl]carbonyl]amino}cyclohexanecarboxylic acid hydrochloride

1-{[6-(4-chloro-3-{3-[ethyl(methyl)amino]propoxy}phenyl)]-5-(2-propylphenyl)pyridin-2-yl]carbonyl]amino}-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-{[3-chloro-2'-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-fluoro-2,3'-bipyridin-6'-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

1-{[6-{4-chloro-3-{3-dimethylamino}propoxy]phenyl}-5-(2-chloro-5-methylphenyl)pyridin-2-yl]carbonyl]amino}-4-hydroxycyclohexanecarboxylic acid hydrochloride

1-{[[6-(4-chloro-3-{3-[ethyl(methyl)amino]propoxy}phenyl)-2,3'-bipyridin-6'-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

1-{[[6-(4-chloro-3-{3-dimethylamino}propoxy]phenyl}-5-(2-chloro-5-methylphenyl)pyridin-2-yl]carbonyl]amino)cycloheptanecarboxylic acid hydrochloride

(3S)-3-{[[6-(4-chloro-3-{3-(dimethylamino)propoxy}phenyl}-5-(2-chloro-5-methylphenyl)pyridin-2-yl]carbonyl]amino}-4-methylpentanoic acid hydrochloride

1-{[6-{4-chloro-3-{3-dimethylamino}propoxy]phenyl}-5-(2-chloro-5-fluorophenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

1-{[[6-(4-chloro-3-{3-(dimethylamino)propoxy}phenyl)-5-(3,5-dimethyl-1H-pyrazol-1-yl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

1-{[6-{4-chloro-3-{3-(dimethylamino)propoxy]phenyl}-5-(2-chloro-5-methoxyphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

1-{[[6-[3-{3-[dimethylamino]propoxy}-4-ethylphenyl)-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride

3-{[[6-{4-chloro-3-{3-(dimethylamino)propoxy]phenyl}-5-(2-chloro-5-methylphenyl)pyridin-2-yl]carbonyl]amino)-3-cyclobutylpropanoic acid hydrochloride

1-{[[6-{4-chloro-3-{3-(dimethylamino)propoxy]phenyl}-5-(2-methylthiophen-3-yl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 3-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-chloro-5-methylphenyl)carbonyl]amino]-3-cyclopropylpropanoic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-methylphenyl)pyrazin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-chloro-4-hydroxyphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-chloro-4,5-dimethylphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(5-methyl-1,3-thiazol-4-yl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 4-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino)oxepane-4-carboxylic acid hydrochloride
- 3-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-chlorophenyl)pyridin-2-yl]carbonyl]amino)-4,4-dimethylpentanoic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-cyanophenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(4-hydroxy-2-methylphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(3-fluoro-2-methylphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(5-hydroxy-2-methylphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(2-chloro-6-fluorophenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(4-hydroxyethyl)(methyl)amino)propoxy]phenyl]-5-(2,4-dimethylphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
- 1-[[6-[4-chloro-3-[3-(dimethylamino)propoxy]phenyl]-5-(3-hydroxy-2-methylphenyl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylic acid hydrochloride
1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(4,5-difluoro-2-methylphenyl)pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(6-methyl-1,3-benzodioxo-5-yl)pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(3,5-diethyl-1H-pyrazol-1-yl)pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2-chloro-5-ethoxyphenyl)pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[5-chloro-2'-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-3-(difluoromethyl)-2,3'-bipyridin-6'-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-[2-methylphenyl]pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-[2-methylphenyl]-3-[methylamino]pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(5-ethyl-3-methyl-1H-pyrazol-1-yl)pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[5-2-chloro-4-(dimethylamino)phenyl]-6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-[2-chloro-5-(trifluoromethoxy)phenyl]pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[3-amino-6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2-methylphenyl)pyrazin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2,4-dichlorophenyl)pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]-4,4-difluorocyclohexanecarboxylic acid hydrochloride

1-[[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-3-(methylamino)-5-(2-methylphenyl)pyridin-2-yl]carbonyl]amino]cyclohexanecarboxylic acid hydrochloride
- 1-{{(6-4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2-chloro-4-fluorophenyl)pyridin-2-yl]carbonyl}amino)cyclohexanecarboxylic acid hydrochloride

- 1-{{(6-4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2-chloro-4-methoxyphenyl)pyridin-2-yl]carbonyl}amino)cyclohexanecarboxylic acid hydrochloride

- 1-{{(6-4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-[2-(difluoromethyl)phenyl]pyridin-2-yl]carbonyl}amino)cyclohexanecarboxylic acid hydrochloride

Conformément à l’invention, on peut préparer les composés de formule générale (I) selon le procédé qui suit, illustré dans le schéma 1.

Quand, dans le composé de départ de formule (XI), X représente un atome d’azote, Y représente un atome de carbone (c’est-à-dire un groupe de formule -CR₃- telle que définie en rapport avec les composés de formule (I) selon l’invention) et U représente un atome d’hydrogène, ou bien X représente un atome de carbone, Y représente un atome d’azote et U représente un atome d’hydrogène, ou encore X et Y représentent un atome d’azote et U représente un atome d’hydrogène, alors on peut effectuer dans une étape (i) une réaction de couplage de type SUZUKI catalysée par un dérivé de palladium (O) tel que le tétrakis(triphénylphosphine)palladium (O) [Pd(PPh₃)₄] entre le composé de formule (XI) (où Q = OH ou Br et T = atome d’halogène, tel qu’un atome de brome ou d’iode) et un acide borique de formule (IX), où GP représente un groupe benzyle éventuellement substitué par un ou plusieurs groupes alcoxy, en présence d’une base telle que le phosphate de potassium et dans un solvant tel que le N,N-diméthylformamide (DMF) à la température d’environ 95°C. Cette réaction permet de substituer régiosélectivement la fonction T par le noyau phénoly pour conduire au composé (VIII).

La fonction OH du composé (VIII) est ensuite transformée en un groupe partant tel que trifluorométhanesulfonate (OTf), dans l’étape (ii), à l’aide d’anhydride trifluorométhanesulfonique en présence d’une base telle que la triéthylamine (TEA) et dans un solvant tel que le dichlorométhane (DCM) pour conduire au composé de formule (VII).

Le groupe trifluorométhanesulfonate ainsi obtenu permet dans l’étape (iii), grâce à sa réactivité, d’introduire le noyau A par une réaction de couplage organopalladiée de type :
- soit SUZUKI entre le composé (VII) et un acide ou un ester boronique de formules respectives A-B(OH)₂ ou
en présence d'une quantité catalytique de dérivé du palladium tel que le Pd(PPh₃)₄, en
présence d'une base telle que le phosphate de potassium et d'un solvant tel que le DMF,
à la température de 90°C ;

5 soit STILLE entre le composé (VII) et un dérivé aylvtributylstannane ou
hétéroatylstannane ASnBu₃ en présence d'une quantité catalytique d'iodeure de cuivre
(Cul) et d'un dérivé de palladium (II) tel que le dichlorure de [1,1'-
bis(cyclopentadiényldiphénylphosphino)ferrocène] palladium (II) [PdCl₂(dppf)] et d'un
solvant tel que le 1,4-dioxanne à la température de 90°C ;

10 soit HARTWIG-BUCHWALD entre le composé (VII) et un amide tel que la 2-
pyrroolidinone, en présence d'une quantité catalytique d'une phosphine telle que le 9,9-
diméthyl-4,5-bis-(diphénylphosphino)xanthène (XantPhos) et d'un dérivé du palladium (0)
tel que le tris(dibenzylidèneacétone)dipalladium (0) [Pd₂(dba)₃], en utilisant une base telle
que le carbonate de césium, et dans un solvant tel que le DMF à la température de 70°C.

15 On obtient ainsi le composé (VI).

Alternativement, dans le composé de départ de formule (XI), quand X et Y
représentent des atomes de carbone et U représente un atome d'hydrogène, Q un atome
d'iode et T un atome de brome, ou bien X et Y représentent un atome d'azote et U
représente un groupe NHR (tel que défini en rapport avec les composés de formule (I)
selon l'invention), Q et T des atomes de chlore, de brome ou d'iode on inverse l'ordre
d'introduction des groupes A et phénoxy sur le noyau phényle de départ (schéma 1).

Dans ce cas, une première réaction de type SUZUKI (étape (iv)) avec un acide
boronique A-B(OH)₂ permet d'introduire sélectivement un groupe A à la place de l'atome
d'halogène Q. La réaction est effectuée en présence d'une quantité catalytique d'un
dérivé du palladium tel que le Pd(PPh₃)₄ et d'une base telle que le carbonate de césium,
dans un solvant tel que le DMF à la température de 90°C. On réalise ensuite une
deuxième réaction de type SUZUKI (étape (v)) entre l'ester boronique (XII) ou l'acide
boronique (IX) et le composé (X), en présence d'une quantité catalytique d'un dérivé du
palladium tel que le Pd(PPh₃)₄ et d'une base telle que le carbonate de césium, dans un
solvant tel que le DMF à la température de 90°C. On obtient ainsi le composé (VI).

La déprotection de la fonction phénol du composé de formule (VI) par le
tribromure de bore à -78°C, l'acide trifluoroacétique (TFA) à température ambiante ou le
chlorure d'hydrogène à 0°C dans le DCM (étape (vii)) conduit au composé de formule (V).
L’introduction du groupement Z-B dans l’étape (vii) peut être effectuée :
- soit par alkylation du composé (V) avec un dérivé chloré Cl-Z-B en présence
d’une base minérale faible telle que le carbonate de césium et dans un solvant polaire
aprotique tel que le DMF à une température comprise entre 80 et 100°C, telle que 90°C,
- soit par réaction de MITSUNOBU entre le composé (V) et un alcool de formule
HO-Z-B en présence de triphénylphosphine, d’azodicarboxylate de diisopropyle (DIAD),
et d’une quantité catalytique de base organique faible telle que la TEA à 0°C dans un
solvant aprotique tel que le tétrahydrofurane (THF).

Le composé de formule (IV) est ensuite saponifié dans l’étape (viii), à l’aide d’une
base minérale forte telle que l’hydroxyde de potassium dans un mélange eau/méthanol
maintenu à température ambiante (T.A.) ou chauffé à reflux, pour conduire, après
acidification avec un acide fort tel que l’acide chlorhydrique (HCl) 1N, au composé (III).

Dans le cadre de la présente invention par température ambiante, on entend une
température comprise entre 20 et 25°C.

Une réaction de couplage peptidique (étape ix)) entre le composé (III) et des
amines de formule (II) en présence d’un agent de couplage tel que le carbonyldimidazole
(CDI), le tétrafluoroborate de N-[(1H-benzotriazol-1-yl oxy)(diméthylamino)méthylidène]-N-
méthylméthanaminium (TBTU) ou le chlorhydrate de N-[3-(diméthylamino)propyl-N’-éthyl
carbodiimide (EDC .HCl) et d’une base organique telle que la N,N’-diisopropyléthylamine
(DIEA) et dans un solvant polaire aprotique tel que le DMF à température ambiante
conduit aux composés de formule (I) conformes à la présente invention.

Le schéma 2 décrit la synthèse des dérivés boroniques (IX) et (XII).

. Cas où W = CF₃
Le 2-amino-5-nitrophénol (XVI) est transformé en dérivé iodé (XV) par une
réaction de SANDMEYER en milieu aqueux à 0°C, en présence d’iodure de sodium et
avec un co-solvant tel que le diméthylsulfoxide (DMSO). La protection de la fonction
phénol (étape i) par un groupement benzyle est effectuée avec un dérivé halogéné tel
que le bromure de benzyle en présence d’une base telle que le carbonate de potassium
(K₂CO₃) dans un solvant tel que le DMF à 60°C. La substitution de l’atome d’iode par le
trifluorométhyltriméthylsilane en présence de Cul et de fluorure de potassium dans un
solvant tel que la N-méthylpyrrolidinone (NMP) à 45°C (étape ii), conduit au composé
(XIV) qui, après réduction de la fonction nitro en fonction amine par un réducteur tel que
le fer à 70°C dans un mélange éthanol (EtOH)/eau/acide acétique (AcOH), est
transformé en dérivé iodé (XIII) à l’aide d’une deuxième réaction de SANDMEYER (étape iii).

Dans l’étape (iv), une réaction d’échange métal-halogène effectuée entre le composé (XIII) et le chlorure d’isopropyle magnésien (iPrMgCl) à −50°C dans un solvant tel que le THF, suivie de l’addition de trisopropylborate, conduit après une acidolyse avec un acide tel que l’HCl 5N, à l’acide boronique (IX).

. Cas où W = Cl

La protection du 2-chloro-5-iodophénol (XVIIa) par un groupe benzyle ou para-méthoxybenzyle comme décrit à l’étape (i) conduit au dérivé iodé (XVII) qui peut-être transformé :
- soit, dans l’étape (iv), en acide boronique (IX) comme décrit précédemment,
- soit, dans l’étape (v), en ester boronique (XII) par une réaction de couplage avec le 4,4′,4′,5,5′,5′-octaméthyl-2,2′-bi-dioxaborolane en présence d’une base telle que l’acétate de potassium (KOAc) et d’une quantité catalytique d’un dérivé du palladium (II) tel que le [PdCl₂(dpff)], dans un solvant tel que le DMSO à 100°C.

Alternativement, un sous-groupe de composés de formule (Ia) conforme à la présente invention où le groupe A représente un noyau 2,6-diméthoxybenzène a été préparé de la façon suivante (schéma 3) :
- La condensation du 2,6-diméthoxybenzaldéhyde sur l’acide 2-cyanoacétique (étape i) en présence d’acétate d’ammonium et d’une base telle que la pyridine en chauffant au reflux d’un solvant tel que le toluène conduit au dérivé (XX).
- Le dérivé (XX) est ensuite traité par de l’hydrure de diisobutylaluminium (DIBAL-H) à 0°C dans un solvant tel que le toluène. L’aldéhyde ainsi obtenu est mis en réaction (étape ii) avec le 2-azido acétate d’éthyle à −10°C en présence d’une base telle que l’éthylate de sodium dans un solvant tel que l’éthanol pour obtenir le diène (XIX). A l’étape (iii), le traitement du diène (XIX) par la triphénylphosphine à T.A. dans un solvant tel que le DCM conduit à l’azatriphénylphosphoranylidène (XVIII).
- La réaction (étape iv) entre le dérivé (XVIII) et l’aldéhyde (XVII) dans un solvant tel que l’acétonitrile conduit, via la cyclisation in situ à 100°C d’une imine intermédiaire selon une séquence cyclisation électrocyclique / déhydrogénation, au dérivé pyridinique (IVA).
- Les séquences d’alkylation ou de réaction de MITSUNOBU (étape v), de saponification (étape vi) puis de couplage peptidique (étape vii) décrites auparavant dans le schéma 1 et appliquées au dérivé (IVA) conduisent aux composés de formule (Ia) conformes à la présente invention.
Dans les schémas 1 et 2, les composés de départ, les intermédiaires et les réactifs, quand leur mode de préparation n'est pas décrit sont disponibles dans le commerce ou décrits dans la littérature, ou bien peuvent être préparées selon des méthodes qui sont connues de l'homme de métier.
Schéma 1

(i) Q = OH ; T = Br, I
K₃PO₄
Suzuki

(ii) Tf₂O
NET₃

(iii) A-B(OH)₂, A-B
Pd(PPh₃)₄, K₃PO₄

(iv) Pd[0]

(v) Cs₂CO₃

(vi) BBr₃
ou TFA
ou HCl gaz

(vii) DIAD

(viii) 1) KOH ou LIOH
2) HCl aq.

(ix) DIEA / CDI ou TBTU
Schéma 2

(XVI) \[\rightarrow \]

1) NaNO₂ aq. / DMSO
2) GPBr, K₂CO₃
(Nal)

(XV)

CF₃SiMe₃
Cul
KF

(XIV)

1) Fe/AcOH aq. / EtOH
2) NaNO₂ aq. / DMSO
(Nal)

(XIII)

1) iPrMgCl
2) B(OiPr)₃
3) HCl aq.

(HO)₃bor

(XII)

(XVII)

GPBr, K₂CO₃

(XVIIa)

(W = Cl, CF₃)

(W)
Schéma 3

\[\text{MeO} \quad \text{HOOCCCH}_2\text{CN} \quad \text{MeO} \quad \text{CN} \]
\[\text{MeO} \quad \text{OMe} \quad \text{MeO} \quad \text{OMe} \]

\(\text{(XXI)} \) (i) \(\text{HOOCCH}_2\text{CN} \)

\[\rightarrow \text{MeO} \quad \text{CN} \]
\[\text{MeO} \quad \text{OMe} \quad \text{MeO} \quad \text{OMe} \]

\(\text{(XX)} \)

(ii) 1) DIBAL 2) \text{N}_3\text{CH}_2\text{COOEt} / \text{NaOEt}

\[\text{MeO} \quad \text{N}_{\text{Ph}} \quad \text{MeO} \quad \text{N}_{\text{Ph}} \]
\[\text{COOEt} \quad \text{COOEt} \quad \text{COOEt} \quad \text{COOEt} \]

\(\text{(XVIII)} \)

(iii) \(\text{PPh}_3 \)

\[\text{MeO} \quad \text{N}_{\text{Ph}} \quad \text{MeO} \quad \text{N}_{\text{Ph}} \]
\[\text{COOEt} \quad \text{COOEt} \quad \text{COOEt} \quad \text{COOEt} \]

\(\text{(XIX)} \)

(iv) \(\text{C}_2\text{H}_4\text{OH} \)

\[\text{MeO} \quad \text{N} \quad \text{MeO} \quad \text{N} \]
\[\text{OH} \quad \text{Cl} \quad \text{OH} \quad \text{Cl} \]
\[\text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl} \]
\[\text{MeO} \quad \text{MeO} \quad \text{MeO} \quad \text{MeO} \]

\(\text{(IVa)} \)

(v) \(\text{Cl-Z-B} \quad \text{Cs}_2\text{CO}_3 \)

\[\text{MeO} \quad \text{N} \quad \text{MeO} \quad \text{N} \]
\[\text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl} \]
\[\text{MeO} \quad \text{MeO} \quad \text{MeO} \quad \text{MeO} \]

\(\text{(Ill a)} \)

(vi) 1) \text{KOH} 2) \text{HCl aq.}

\[\text{MeO} \quad \text{N} \quad \text{MeO} \quad \text{N} \]
\[\text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl} \]
\[\text{MeO} \quad \text{MeO} \quad \text{MeO} \quad \text{MeO} \]

\(\text{(Ill a)} \)

(vii) \(\text{DIEA / CDI ou TBTU} \)

\[\text{MeO} \quad \text{N} \quad \text{MeO} \quad \text{N} \]
\[\text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl} \]
\[\text{MeO} \quad \text{MeO} \quad \text{MeO} \quad \text{MeO} \]

\(\text{(Ia)} \)

\[\text{R}_1 \quad \text{R}_2 \quad \text{H}_2 \quad \text{N} \quad \text{R}_1 \quad \text{R}_2 \quad \text{H}_2 \quad \text{N} \]
\[\text{COOH} \quad \text{COOH} \quad \text{COOH} \quad \text{COOH} \]

\(\text{(II)} \)
Les exemples suivants illustrent la préparation de certains composés conformes à l'invention. Les numéros des composés exemplifiés renvoient à ceux du tableau donné plus loin qui illustre les structures chimiques et les propriétés physiques de quelques composés selon l'invention.

Les abréviations suivantes sont utilisées :

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcOEt</td>
<td>Acétate d’éthyle</td>
</tr>
<tr>
<td>AcOH</td>
<td>Acide acétique</td>
</tr>
<tr>
<td>BSA</td>
<td>N,O-Bis(triméthylsilyl)acétamide</td>
</tr>
<tr>
<td>CDI</td>
<td>Carbonyldiimidazole</td>
</tr>
<tr>
<td>Cul</td>
<td>Iodure de cuivre</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichlorométhane</td>
</tr>
<tr>
<td>DIBAL-H</td>
<td>Hydrure de diisobutylaluminium</td>
</tr>
<tr>
<td>DIAD</td>
<td>Azodicarboxylate de diisopropyle</td>
</tr>
<tr>
<td>DME</td>
<td>Diméthoxyéthane</td>
</tr>
<tr>
<td>DMF</td>
<td>Diméthylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Diméthyl sulfoxide</td>
</tr>
<tr>
<td>EDC .HCl</td>
<td>Chlorhydrate de N-[3-(diméthylamino)propyl-N’-éthyl carbodiimide</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>h</td>
<td>Heure(s)</td>
</tr>
<tr>
<td>HCl</td>
<td>Acide chlorhydrique</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>Carbonate de potassium</td>
</tr>
<tr>
<td>KOAc</td>
<td>Acétate de potassium</td>
</tr>
<tr>
<td>K₃PO₄</td>
<td>Phosphate de potassium ou tetraoxophosphate de tripotassium</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>Carbonate de sodium</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>Chlorure d’ammonium</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>Hydrogénocarbonate de sodium</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>Sulfate de sodium</td>
</tr>
<tr>
<td>NMP</td>
<td>N-méthylpyrroldinone</td>
</tr>
<tr>
<td>PdCl₂ (dppf)</td>
<td>Dichlorure de[1,1’-bis(cyclopentadiényldiphénylphosphino)ferrocène] palladium (II)</td>
</tr>
<tr>
<td>Pd(PPh₃)₄</td>
<td>Tetrakis(triphénylphosphine) palladium (0)</td>
</tr>
<tr>
<td>Pd₂(dba)₃</td>
<td>Tris(dibenzylidèneacétone)dipalladium (0)</td>
</tr>
<tr>
<td>TBTU</td>
<td>Tétrafluoroborate de N-[(1H-benzotriazol-1-yloxy)(diméthylamino)méthylidène]-N-méthylméthanaminium</td>
</tr>
</tbody>
</table>
1.1. (2E)-3-(2,6-diméthoxyphényl)acrylonitrile

A une solution de 61 g (367 mmoles) de 2,6-diméthoxybenzaldéhyde dans 360 mL de toluène sont ajoutés successivement 1,13 g (14,7 mmoles) d’acétate d’ammonium, 40,4 mL (500 mmoles) de pyridine et 31,2 g (367 mmoles) d’acide 2-cyanoacétique. Le milieu réactionnel est porté à reflux 15 h en distillant l’azéotrope toluène-eau dans un montage de Dean-Stark. La solution est reprise par 500 mL de toluène et 40 mL de pyridine et à nouveau portée à reflux pendant 48 h dans le montage de Dean-Stark. Après concentration sous pression réduite, le résidu est repris par 800 mL de dichlorométhane (DCM) et lavé successivement avec 1 L d’une solution aqueuse d’HCl 1N, 500 mL d’une solution aqueuse saturée de carbonate de sodium (Na₂CO₃) et 1 L d’eau. Après séchage sur sulfate de sodium (Na₂SO₄) et concentration sous pression réduite, on obtient 62 g de (2E)-3-(2,6-diméthoxyphényl)acrylonitrile sous forme d’huile brune utilisée tel quel à l’étape suivante.

Rendement = 89 %

1.2. (2E)-3-(2,6-diméthoxyphényl)acrylaldéhyde

A une solution de 61 g (322 mmoles) de (2E)-3-(2,6-diméthoxyphényl)acrylonitrile dans 600 mL de toluène anhydre placée sous argon et refroidie à 0°C sont ajoutés 355 mL d’une solution 1M d’hydrure de diisobutylaluminium (DIBAL-H) (355 mmoles) dans le toluène en maintenant la température à 0°C. Le milieu réactionnel est ensuite ramené à température ambiante (T.A.) et agité pendant 3 h. On ajoute alors 13 mL (322 mmoles) de méthanol puis goutte à goutte 170 g (174 mmoles) d’une solution aqueuse d’acide sulfurique à 10 % en poids. La suspension est agitée une heure puis filtrée sur gâteau de céleste. Le filtrat est lavé avec 500 mL d’eau puis séché sur Na₂SO₄ et concentré sous pression réduite. Le résidu obtenu est repris par 500 mL de DCM et filtré sur colonne de
silice en éluant avec du DCM. Après concentration sous pression réduite, on obtient 37 g de (2E)-3-(2,6-diméthoxyphényl)acrylaldéhyde sous forme d’huile incolore. Rendement = 60 %.

1.3. (2E,4E)-2-azido-5-(2,6-diméthoxyphényl)penta-2,4-diénoate d’éthyle

A une solution de 15,5 g (673 mmoles) de sodium dans 500 mL d’éthanol EtOH absolu refroidie à −10°C et placée sous argon, est ajoutée goutte à goutte sous agitation une solution de 37 g (192 mmoles) de (2E)-3-(2,6-diméthoxyphényl)acrylaldéhyde et 85,7 g (664 mmoles) de 2-azidoacétate d’éthyle dans 200 mL d’EtOH absolu en maintenant la température à −10°C. Après 3h d’agitation à −10°C, le milieu réactionnel est ensuite agité pendant 15 h à T.A. puis versé sur 600 mL d’une solution aqueuse de chlorure d’ammonium (NH₄Cl) à 30% en poids. Après filtration sur un fritté et rinçage avec 2 x 200 mL d’eau, le précipité est repris par 600 mL de DCM, séché sur Na₂SO₄ et concentré sous pression réduite, ce qui conduit à 42 g de (2E,4E)-2-azido-5-(2,6-diméthoxyphényl)penta-2,4-diénoate d’éthyle sous forme de solide jaune. Rendement = 80 %
F(°C) = 138.

1.4 (2E,4E)-5-(2,6-diméthoxyphényl)-2-[(triphénylphosphoranylidène)amino]penta-2,4-diénoate d’éthyle

A une solution de 4,37 g (16,7 mmoles) de triphénylphosphine dans 40 mL de DCM est ajoutée goutte à goutte une solution de 5 g de (2E,4E)-2-azido-5-(2,6-diméthoxyphényl)penta-2,4-diénoate d’éthyle (16,5 mmoles) dans 60 mL de DCM. Le milieu réactionnel est agité 2 h à T.A. puis concentré sous pression réduite. Le résidu obtenu est concrétisé dans 100 mL d’ether isopropylique puis filtré sur un fritté et rincé avec 50 mL d’ether isopropylique, ce qui permet d’obtenir 7,9 g de (2E,4E)-5-(2,6-diméthoxyphényl)-2-[(triphénylphosphoranylidène)amino]penta-2,4-diénoate d’éthyle sous forme de solide blanc. Rendement = 91 %
F(°C) = 172

1.5. 6-(4-chloro-3-hydroxyphényl)-5-(2,6-diméthoxyphényl)pyridine-2-carboxylate d’éthyle
Une solution de 7,54 g (14 mmoles) de (2E,4E)-5-(2,6-diméthoxyphényl)-2- [(triénylphosphoranylidène)amino]penta-2,4-diénoate d'éthyle et de 2,42 g (15,4 mmoles) de 4-chloro-3-hydroxybenzaldéhyde dans 280 mL d'acétonitrile anhydre est portée à reflux durant 96 h. Après refroidissement à T.A., le milieu réactionnel est concentré sous pression réduite et le résidu obtenu est purifié par chromatographie sur colonne de gel de silice en éluant avec un gradient cyclohexane / acétate d'éthyle (AcOEt) de 0 à 30 % d'AcOEt. Après concentration sous pression réduite, on obtient 2,4 g de 6-(4-chloro-3-hydroxyphényl)-5-(2,6-diméthoxyphényl)pyridine-2-carboxylate d'éthyle sous forme de poudre blanche.

Rendement = 41 %

F(°C) = 182

1.6. 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}]-5-(2,6-diméthoxyphényl)pyridine-2-carboxylate d'éthyle

A une solution de 0,5 g (1,21 mmoles) de 6-(4-chloro-3-hydroxyphényl)-5-(2,6-diméthoxyphényl)pyridine-2-carboxylate d'éthyle dans 20 mL de DMF anhydre placée sous argon sont ajoutés 0,257 g (2,11 mmoles) de chlorhydrate de 3-chloro-N,N-diméthylpropane-1-amine et 3,40 g (1,34 mmoles) de carbonate de césium. Le milieu réactionnel est agité 15 min à T.A. puis porté 2 h à 80°C. Après refroidissement à T.A., on ajoute 1 mL d'une solution aqueuse à 5 % d'acide citrique et l'ensemble est concentré sous pression réduite. Le résidu est repris par 50 mL d'AcOEt et lavé avec 10 mL d'une solution à 5 % de Na₂CO₃ puis 10 mL d'eau. Après séchage sur Na₂SO₄ et concentration sous pression réduite, le résidu est purifié par chromatographie sur une colonne de gel de silice, en éluant avec un gradient DCM / méthanol de 1 à 15 % de méthanol. Après concentration sous pression réduite, on obtient 0,55 g de 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}]-5-(2,6-diméthoxyphényl)pyridine-2-carboxylate d'éthyle sous forme d'huile.

Rendement = 91 %

1.7. Acide 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}]-5-(2,6-diméthoxyphényl)pyridine-2-carboxylique

A une solution de 5,63 g (11,28 mmoles) de 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}]-5-(2,6-diméthoxyphényl)pyridine-2-carboxylate d'éthyle dans 132 mL d'EtOH, sont ajoutés 3,16 g (56,38 mmoles) d'hydroxyde de potassium. Le milieu réactionnel est porté 2 h à reflux puis concentré sous pression réduite. Le résidu
obtenu est repris par 10 mL d'eau puis neutralisé avec 56,5 mL (56,5 mmoles) d'une solution aqueuse d'HCl 1N. Le précipité obtenu est filtré sur un fritté et rincé avec 2 x 10 mL d'eau. Après séchage sous pression réduite, on obtient 5,25 g d'acide 6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2,6-diméthoxyphényl)pyridine-2-carboxylique sous forme de poudre blanche.

Rendement = 100 %
F(°C) = 215

1.8. Acide 1-[[6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2,6-diméthoxyphényl)pyridin-2-yl][carbonyl]amino]cyclohexanecarboxylique

A une solution de 200 mg (0,42 mmole) d'acide 6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2,6-diméthoxyphényl)pyridine-2-carboxylique dans 50 mL de DMF anhydre sont ajoutés sous argon 0,74 mL (0,41 mmole) de disopropyléthylamine et 409 mg (1,28 mmoles) de TBTU. Parallèlement, on porte à 90°C sous agitation et sous argon un mélange de 84 mg (0,59 mmole) d'acide 2-aminocyclohexane-2-carboxylique et de 0,18 mL (0,76 mmole) de N,O-Bis (triméthylsilyl) acétamide (BSA) dans 5 mL d'acétone anhydre. Après 2 h, le milieu se solubilise complètement et la solution est ramenée à T.A. puis ajoutée à la solution d'acide 6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2,6-diméthoxyphényl)pyridine-2-carboxylique activée avec du TBTU. Après 18 h d'agitation à T.A., on ajoute 10 mL d'une solution aqueuse 0,5 N d'HCl et l'agitation est maintenue 3 h. Le milieu réactionnel est alors réparti dans un mélange de 20 mL d'AcOEt/éther 1:1 et 10 mL d'eau. Après extraction, la phase aqueuse est à nouveau extraite avec 10 mL d'un mélange éther/AcOEt 1:1. Les phases organiques sont réunies, lavées avec 2 x 10 mL d'eau, séchées sur Na₂SO₄ et concentrée sous pression réduite. Le résidu est ensuite purifié par HPLC sur phase inverse (RP18) en éluant avec un gradient HCl 0,01N / acétonitrile de 5 % à 100 % d'acétonitrile. Après concentration sous pression réduite et une lyophilisation, on obtient 106 mg de chlorhydrate d'acide 1-[[6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2,6-diméthoxyphényl)pyridin-2-yl][carbonyl]amino]cyclohexanecarboxylique sous forme de poudre blanche.

Rendement = 41 %
F(°C) > 200.
M = CₓHᵧClₙNₒOₙ = 595 ; M+H = 596

35 RMN ¹H (ppm, d6-DMSO, 400 MHz) : 8,70 (s, 1H) ; 7,80 (d, 1H) ; 7,65 (d, 1H) 7,15 (m, 2H) ; 7,05 (d, 1H) ; 6,60 (d, 1H) ; 6,50 (d, 2H) ; 3,85 (t, 2H) ; 3,35 (s, 6H) ; 2,75 (m, 2H) ; 2,45 (s, 6H) ; 2,15 (m, 2H) ; 1,90 (m, 2H) 1,55 (m, 4H) ; 1,25 (m, 4H)
Exemple 2 : Chlorhydrate d'acide 9-((6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2,6-diméthoxyphényl)pyridin-2-yl)[carbonyl]amino)bicyclo[3.3.1]nonane-9-carboxylique (composé N°25)

2.1. 9-aminobicyclo[3.3.1]nonane-9-carbonitrile

A une solution de 3 g (21,7 mmoles) de bicyclo[3.3.1]nonane-9-one dans 40 mL d'EtOH, sont ajoutés successivement 21 mL d'eau, 1,12 g (22,8 mmoles) de cyanure de sodium, 4,52 mL (54,27 mmoles) d'une solution aqueuse d'ammoniaque 12N et 2,32 g (43,41 mmoles) de NH₄Cl. Le mélange réactionnel est agité 18 h à 50°C. On ajoute alors 5 mL d'une solution aqueuse d'ammoniaque 12N et le mélange est à nouveau chauffé 4 h à 50°C. La solution est refroidie à T.A. puis répartie dans 100 mL d'un mélange éther/solution aqueuse de soude 1N 1:1. Après extraction, la phase organique est lavée avec 3 x 50 mL d'eau, séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est repris par 50 mL d'éther puis traité une minute avec un léger courant de chlorure d'hydrogène. Le chlorhydrate ainsi obtenu, est filtré, lavé avec 20 mL d'éther et réparti dans 100 mL d'un mélange DCM/solution aqueuse saturée de Na₂CO₃ 1:1. La phase aqueuse est à nouveau extraite avec 50 mL de DCM, les phases organiques étant ensuite réunies, lavées avec 2 x 20 mL d'eau et séchées sur Na₂SO₄. Après concentration sous pression réduite, on obtient 1,188 g de 9-aminobicyclo[3.3.1]nonane-9-carbonitrile sous forme d'huile.

Rendement = 52 %

2.2. N-(9-cyanobicyclo[3.3.1]non-9-yl)benzamide

A une solution de 1,88 g (11,45 mmoles) de 9-aminobicyclo[3.3.1]nonan-9-carbonitrile dans 20 mL de THF sont ajoutés une solution de 2,37 g (17,17 mmoles) de carbonate de potassium dans 30 mL d'eau puis 1,37 mL (11,8 mmoles) de chlorure de benzoyle. Le milieu réactionnel est agité 1 h à T.A. puis réparti dans 100 mL d'un mélange DCM/eau 1:1. La phase organique est lavée avec 50 mL d'eau, séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est concrétisé dans 100 mL de pentane ce qui permet d'obtenir, après filtration et lavage avec du pentane, 2,81 g de N-(9-cyanobicyclo[3.3.1]non-9-yl)benzamide sous forme de poudre blanche.

Rendement = 92 %

F(°C) > 200

2.3. Acide 9-aminobicyclo[3.3.1]nonane-9-carboxylique
A une solution de 2,8 g (10,43 mmoles) de N-(9-cyanobicyclo[3.3.1]non-9-yl)benzamide dans 80 mL de THF sont ajoutés 200 mL d'une solution aqueuse d'HCl 12N. La solution est agitée 20 h à T.A. et un précipité blanc apparaît progressivement. Après filtration du précipité sur fritté et rinçage avec 3 x 200 mL d'eau, on obtient 3,6 g d'acide 9-benzoylamino bicyclo[3.3.1]nonane-9-carboxylique humide.

3 g (10,44 mmoles) d'acide 9-benzoylamino bicyclo[3.3.1]nonane-9-carboxylique sont dissous dans 200 mL d'AcOH et 50 mL d'une solution aqueuse d'HCl 6N et le mélange est porté 18 h à reflux puis concentré partiellement par distillation de 150 mL de solvant. Après refroidissement, le mélange réactionnel est filtré et réparti dans 150 mL d'un mélange d'une solution aqueuse d'HCl 1N /éther 1:2. Après extraction, la phase aqueuse est concentrée puis traitée goutte à goutte avec une solution aqueuse de soude (NaOH) 12N pour amener le pH à 5-6. L'aminoacide ainsi précipité est filtré, lavé avec 3 x 50 mL d'eau et séché sous pression réduite ce qui conduit à 1,88 g d'acide 9-aminobicyclo[3.3.1]nonan-9-carboxylique sous forme de cristaux blancs.

Rendement = 98 %
F(°C) > 250.

2.4. Chlorhydrate d'acide 9-[(6-4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2,6-diméthoxyphényl)pyridin-2-y][carbonyl]amino)bicyclo[3.3.1]nonane-9-carboxylique

Selon le procédé décrit dans l'exemple 1.8, on obtient, à partir de 400 mg (0,85 mmoles) d'acide 6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2,6-diméthoxyphényl)pyridine-2-carboxylique et 218 mg (1,19 mmoles) d'acide 9-aminobicyclo[3.3.1]nonane-9-carboxylique et après purification sur phase inverse et une lyophilisation, 220 mg de chlorhydrate d'acide 9-[(6-4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2,6-diméthoxyphényl)pyridin-2-yl]carbonyl]amino)bicyclo[3.3.1]nonane-9-carboxylique sous forme de poudre blanche.

Rendement = 41 %
F(°C) : 197
M = C_{33}H_{42}ClN_3O_6 = 635 ; M+H = 636
RMN 1H (ppm, d6-DMSO, 400MHz) : 8,45 (s, 1H) ; 8,00 (d, 1H) ; 7,80 (d, 1H) ; 7,30 (t, 2H) ; 7,25 (s, 1H) ; 7,05 (d, 1H) ; 6,95 (dd, 1H) ; 6,70 (d, 1H) ; 3,85 (t, 2H) ; 3,50 (s, 6H) ; 3,05 (m, 2H) ; 2,70 (s, 6H) ; 2,2-1,4 (m, 16H).
Exemple 3 : Chlorhydrate d’acide 2-\{[6-(4-chloro-3-yl)[1-méthylpyrrolidin-3-yl]oxy]phényl\}-5-(2,6-diméthoxyphényl)pyridin-2-yl[carbonyl]amino)adamantane-2-carboxylique (composé N°15)

3.1. 6-(4-chloro-3-yl)[1-méthylpyrrolidin-3-yl]oxy]phényl\}-5-(2,6-diméthoxyphényl)pyridine-2-carboxylate d'étyle

A une solution de 300 mg (0,72 mmole) de 6-(4-chloro-3-hydroxyphenyl)-5-(2,6-diméthoxyphenyl)pyridine-2-carboxylate d'étyle dans 2,5 mL de THF anhydre refroidie à 0°C et placée sous argon, sont ajoutés 88 mg (0,87 mmole) de 1-méthyl-3-hydroxyprrolidin, 246 mg (1,09 mmoles) de triphénylphosphine et 0,01 mL (0,07 mmoles) de TEA. Après solubilisation, on ajoute goutte à goutte à 0°C une solution de 0,24 mL (1,09 mmole) de DIAD dans 2,5 mL de THF anhydre. Le milieu réactionnel est ramené à T.A., agité pendant 18 h puis repris par 50 mL d'AcOEt. La phase organique est lavée successivement avec 20 mL d'une solution aqueuse saturée de bicarbonate de sodium (NaHCO₃) puis 20 mL d'eau. Après séchage sur Na₂SO₄ et concentration sous pression réduite, le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient DCM / méthanol de 0 à 20 % en méthanol. Après concentration sous pression réduite, on obtient 250 mg de 6-(4-chloro-3-yl)[1-méthylpyrrolidin-3-yl]oxy]phényl\}-5-(2,6-diméthoxyphényl)pyridine-2-carboxylate d'étyle sous forme d'huile.

Rendement = 70 %

3.2. Chlorhydrate d’acide 2-\{[6-(4-chloro-3-yl)[1-méthylpyrrolidin-3-yl]oxy]phényl\}-5-(2,6-diméthoxyphényl)pyridin-2-yl[carbonyl]amino)adamantane-2-carboxylique

Selon la séquence saponification/couplage peptidique décrite dans les exemples 1.7 et 1.8 respectivement, on obtient, à partir de 250 mg (0,5 mmole) de 6-(4-chloro-3-yl)[1-méthylpyrrolidin-3-yl]oxy]phényl\}-5-(2,6-diméthoxyphényl)pyridine-2-carboxylate d'étyle et de 100 mg (0,51 mmole) d'acide 2-aminoadamantane-2-carboxylique, 160 mg d'acide 2-\{[6-(4-chloro-3-yl)[2-(diméthylamino)éthoxy]phényl\}-5-(2,6-diméthoxyphényl)pyridin-2-yl[carbonyl]amino)adamantane-2-carboxylique sous forme de poudre blanche.

Rendement = 47 %

F(°C) = 215

M = C₃₈H₄₀ClN₃O₆ = 645 ; M+H = 646
RMN'H (ppm, d6-DMSO,400MHz) : 8,40 (s, 1H) ; 8,00 (d, 1H) ; 7,85 (d, 1H) ; 7,35 (m, 2H) ; 7,05 (dd, 1H) ; 6,95 (t, 1H) ; 6,65 (d, 2H) ; 4,90 (m, 1H) ; 3,80 (m, 2H) ; 3,50 (s, 6H) ; 3,15 (m, 2H) ; 2,85 (m, 3H) ; 2,55 (s, 2H) ; 2,2-1,6 (m, 14H).

5 Exemple 4 : Chlorhydrate d'acide 2-[[6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2-méthylphényl)pyridin-2-yl]carbonyl]amino)adamantane-2-carboxylique (composé N° 18)

4.1. **2-(benzyloxy)-1-chloro-4-iodobenzène**

Une suspension de 300 g (1179 mmoles) de 2-chloro-5-iodophénol et de 140 mL (1179 mmoles) de bromure de benzyle et de 195,5 g (1415 mmoles) de carbonate de potassium anhydre dans 1,2 L de DMF anhydre est agitée 5 h à 70°C puis ramenée à T.A.. Le milieu réactionnel est ensuite réparti dans 3 L d'un mélange éther/eau 2:1. La phase organique est lavée avec 2 x 1 L d'eau, séchée sur Na₂SO₄ et concentrée sous pression réduite et le résidu obtenu est concrétisé dans du pentane. On obtient ainsi 376 g de 2-(benzyloxy)-1-chloro-4-iodobenzène sous forme de poudre beige.
Rendement = 92 %
F(°C) = 72.

4.2. **Acide [3-(benzyloxy)-4-chlorophényl]boronique**

A une solution de 198 g (575 mmoles) de 2-(benzyloxy)-1-chloro-4-iodobenzène dans 1,2 L de THF anhydre placée sous argon et agitée à −50°C, sont ajoutés goutte à goutte 374 mL (748 mmoles) d’une solution d’iPrMgCl 2N dans le THF en maintenant la température entre −40 et −50°C. On laisse revenir le mélange réactionnel à −10°C et l’agitation est maintenue 1 h. On ajoute ensuite 172 mL (748 mmoles) de borate de trisopropyle puis on laisse revenir lentement le mélange réactionnel à T.A.. Après 2 h d’agitation, le mélange est traité avec 1 L d’une solution aqueuse d’HCl 5N puis extrait avec de l’éther (2 x 600 mL). La phase organique est lavée avec 2 x 1 L d’eau, séchée sur Na₂SO₄ puis concentrée sous pression réduite. Le résidu obtenu est concrétisé dans du pentane, filtré sur fritté et lavé avec du pentane. On obtient ainsi 113 g d’acide [3-(benzyloxy)-4-chlorophényl]boronique sous forme de solide blanc.
Rendement = 76 %
4.3. 6-[3-(benzyloxy)-4-chlorophényl]-5-hydroxypyridine-2-carboxylate de méthyle

Une solution de 37 g (163 mmoles) de 6-bromo-5-hydroxy-2-pyridine carboxylate de méthyle et 51 g (196 mmoles) d’acide [3-(benzyloxy)-4-chlorophényl]boronique dans 300 mL de DMF anhydre est agitée 15 min sous barbotage d’argon puis on ajoute 63,8 g (196 mmoles) de carbonate de césium anhydre et 5 g (4,33 mmoles) de Pd(PPh₃)₄. Le milieu réactionnel est agité 10 h à 90°C sous argon, refroidi à T.A. puis réparti dans 1 L d’un mélange éther/acetone 1:1 et 1 L d’une solution aqueuse d’HCl 0,5 N. La phase aqueuse est re-extraxante avec 500 mL d’un mélange AcOEt / éther 1:1. Les phases organiques sont réunies et lavées avec 4 x 500 mL d’eau. Après séchage sur Na₂SO₄ et concentration sous pression réduite, le précipité est repris par 500 mL d’un mélange pétrole / DCM 7:3, filtré et lavé avec du pétrole. On obtient ainsi 32 g de 6-[3-(benzyloxy)-4-chlorophényl]-5-hydroxypyridine-2-carboxylate de méthyle sous forme de poudre jaune ocre.

Rendement = 53 %

F(°C) = 202

4.4. 6-[3-(benzyloxy)-4-chlorophényl]-5-[[trifluorométhyl]sulfonfonyl]oxy]pyridine-2-carboxylate de méthyle

A un mélange de 38,8 g (105 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-hydroxypyridine-2-carboxylate de méthyle dans 200 mL de DCM sont ajoutés 17,7 mL (126 mmoles) de TEA. Le mélange se solubilise progressivement et est refroidi à −5°C sous argon. On ajoute goutte à goutte 19,42 mL (115,4 mmoles) d’anhydride trifluorométhanesulfonique en maintenant la température à 0°C. Après 3 h à 0°C, le milieu réactionnel est repris avec 300 mL de DCM et lavé avec 2 x 200 mL d’eau, séché sur Na₂SO₄ puis concentré sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de silice en éluant avec un gradient pétrole / AcOEt de 0 à 30 % d’AcOEt. Après concentration sous pression réduite, on obtient 47,5 g de 6-[3-(benzyloxy)-4-chlorophényl]-5-[[trifluorométhyl]sulfonfonyl]oxy]pyridine-2-carboxylate de méthyle sous forme de cristaux blanc.

Rendement = 90 %

F(°C) = 89.
4.5. 6-[3-(benzyloxy)-4-chlorophényl]-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle

Une solution de 25 g (48,8 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-[(trifluorométhyl)sulfonyl]oxy]pyridine-2-carboxylate de méthyle et de 8,8 g (64,8 mmoles) d’acide 2-méthylphénylboronique dans 200 mL de DMF anhydre est agitée 15 min sous barbotage d’argon puis on ajoute 12,7 g (60 mmoles) de phosphate de potassium (K₃PO₄) anhydre et 5,76 g (5 mmoles) de Pd(PPh₃)₄ et le mélange réactionnel est agité 18 h à 90°C sous argon. Le milieu réactionnel est ensuite réparti à T.A. dans 600 mL d’un mélange éther/AcOEt 1:1 et 600 mL d’eau. Après extraction, la phase aqueuse est re-extrait avec 100 mL d’AcOEt, les phases organiques sont réunies et lavées avec 4 x 300 mL d’eau, séchées sur Na₂SO₄ puis concentrées sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient heptane / AcOEt de 0 à 20 % d’AcOEt. Après concentration sous pression réduite, on obtient 18 g de 6-[3-(benzyloxy)-4-chlorophényl]-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle sous forme d’huile. Rendement = 81 %

4.6. 6-(4-chloro-3-hydroxyphényl)-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle

A une solution de 19 g (42,8 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle dans 70 mL de DCM anhydre refroidie sous argon à -70°C sont ajoutés goutte à goutte en 1 h 30 85,6 mL (85,6 mmoles) d’une solution 1 N de tribromure de bore dans le DCM en maintenant la température à -65°C. Après 2 h d’agitation à -70°C, on ajoute goutte à goutte 20 mL (520 mmoles) de méthanol anhydre en maintenant la température à -65°C. Le milieu réactionnel est ramené à T.A. puis concentré sous pression réduite. Le résidu est repris par 100 mL de toluène et à nouveau concentré. L’opération est répétée encore deux fois. Le résidu obtenu est repris par 100 mL de méthanol et refroidi sous argon à 0°C puis on ajoute goutte à goutte 9 mL (128 mmoles) de chlorure de thionyle. Le milieu réactionnel est agité 48 h à T.A. puis concentré sous pression réduite. Le résidu obtenu est repris par 200 mL d’AcOEt, refroidi à 0°C et traité avec 300 mL d’une solution aqueuse saturée de NaHCO₃. Après extraction, la phase aqueuse est re-extrait avec 100 mL d’AcOEt. Les phases organiques sont réunies, lavées avec 100 mL d’eau, séchées sur Na₂SO₄ et concentrées sous pression réduite. Le résidu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient heptane / AcOEt de 0 à 30 % en AcOEt. Après
concentration sous pression réduite, on obtient 14,7 g de 6-(4-chloro-3-hydroxyphényl)-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle sous forme de poudre blanche.

Rendement = 97 %

F (°C) = 190

4.7. 6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle

Selon le procédé décrit dans l'exemple 1.6, à partir de 5,4 g (15,26 mmoles) de 6-(4-chloro-3-hydroxyphényl)-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle, de 9,95 g (30,53 mmoles) de carbonate de césium et de 2,9 g (18,3 mmoles) de chlorhydrate de 3-chloro-N,N-diméthylpropan-1-amine dans 60 mL de DMF, on obtient 6 g de 6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle sous forme d'huile.

Rendement = 90 %

Selon la séquence saponification/couplage peptidique décrite dans les exemples 1.7 et 1.8 respectivement, on obtient, à partir de 4,65 g (10,6 mmoles) de 6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle et de 2,38 g (12,18 mmoles) d'acide 2-amino adamantane-2-carboxylique, 4,1 g de chlorhydrate d'acide 2-[[6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2-méthylphényl)pyridin-2-yl]carbonyl]amino]adamantane-2-carboxylique sous forme de poudre blanche.

Rendement = 54 %

F (°C) : 224.

M = C₃₅H₄₀ClN₅O₄ = 601 ; M+H = 602

30 RMN'H (ppm, d6-DMSO, 400MHz) : 8,50 (s, 1H) ; 8,05 (d, 1H) ; 7,90 (d, 1H) ; 7,25 (m, 5H) ; 7,10 (dd, 1H) ; 6,95 (dd, 1H) ; 3,80 (m, 2H) ; 3,1 (m, 2H) ; 2,75 (s, 6H) ; 2,60 (s, 2H) ; 1,90 (s, 3H) ; 2,2-1,6 (m, 14H).

5.1. 6-[(benzyloxy)-4-chlorophényl]-5-(2-oxopyrrolidin-1-yl)pyridine-2-carboxylate de méthyle

Une solution de 500 mg (1 mmole) de 6-[(benzyloxy)-4-chlorophényl]-5-[[trifluorométhyl]sulfonyl]oxy]pyridine-2-carboxylate de méthyle, de 0,1 mL (1,1 mmoles) de 2-pyrrolidinone et de 450 mg (1,4 mmoles) de carbonate de césium dans 10 mL de 1,4 dioxane anhydre est agitée 10 minutes sous barbotage d’argon puis on ajoute 9 mg (0,01 mmoles) de Pd₂(dba)₃ et 17 mg (0,03 mmoles) de Xantphos et le milieu réactionnel est chauffé 6 h à 70°C sous agitation. Le mélange est ensuite réparti dans 100 mL d’un mélange éther/AcOEt 1:1 et 50 mL d’une solution aqueuse saturée de NH₄Cl. Après extraction, la phase organique est lavée avec 2 x 50 mL d’eau, séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient heptane / AcOEt de 0 à 30 % en AcOEt. Après concentration sous pression réduite, on obtient 293 mg de 6-[(benzyloxy)-4-chlorophényl]-5-(2-oxopyrrolidin-1-yl)pyridine-2-carboxylate de méthyle sous forme d’huile.
Rendement = 67 %.

5.2. 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-oxopyrrolidin-1-yl)pyridine-2-carboxylate de méthyle

Selon la séquence débenzylation/O-alkylation décrite dans les exemples 4.6 et 1.6 respectivement, on obtient, à partir de 511 mg (1,17 mmoles) de 6-[(benzyloxy)-4-chlorophényl]-5-(2-oxopyrrolidin-1-yl)pyridine-2-carboxylate de méthyle, 391 mg de 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-oxopyrrolidin-1-yl)pyridine-2-carboxylate de méthyle sous forme d’huile.
Rendement = 77 %

5.3. Chlorhydrate d’acide 2-{[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-oxopyrrolidin-1-yl)]pyridin-2-yl}[carbonyl]amino)adamantane-2-carboxylique

Selon la séquence saponification/couplage peptide décrite dans les exemples 1.7 et 1.8 respectivement, on obtient, à partir de 391 mg (0,91 mmoles) de 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-oxopyrrolidin-1-yl)pyridine-2-carboxylate de méthyle et de 265 mg (1,36 mmole) d’acide 2-aminoadamantane-2-carboxylique, 241 mg de chlorhydrate d’acide 2-{[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-
oxypyrrolidin-1-yl)pyridin-2-yl[carbonyl]amino)adamantane-2-carboxylique sous forme de poudre blanche.
Rendement = 39 %
F(°C) : 199
M = C_{32}H_{39}ClN_{4}O_{5} = 594 ; M+H = 595
RMM'H (ppm, d6-DMSO, 400 MHz) : 8,40 (s, 1H) ; 8,05 (t, 2H) ; 7,55 (d, 1H) ; 7,50 (s, 1H) ; 7,20 (dd, 1H) ; 4,15 (t, 2H) ; 3,65 (t, 2H) ; 2,75 (s, 6H) ; 2,55 (s, 2H) ; 2,2-1,6 (m, 20H).

10 Exemple 6 : Chlorhydrate d'acide 2-[(2'-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-2,3'-bipyridin-6'-yl)carbonyl]amino)adamantane-2-carboxylique
(composé N°27)

6.1. 2'-[3-(benzyloxy)-4-chlorophényl]-2,3'-bipyridine-6'-carboxylate de méthyle

15 Une suspension de 0,5 g (1 mmole) de 6-[3-(benzyloxy)-4-chlorophényl]-5-[[trifluorométhyl)sulfonyl]oxy]pyridine-2-carboxylate de méthyle, 0,44 g (1,2 mmoles) de 2-tri-n-butylstannyl)pyridine et 42 mg (1 mmole) de chlorure de lithium anhydre dans 2 mL de DMF anhydre est agitée 10 min sous barbotage d’argon puis on ajoute ensuite 9,5 mg (0,05 mmole) de Cul, 45 mg (0,05 mmole) de Pd_2(dbas)_3 et 27 mg (0,05 mmole) de PdCl_2 (dpdf) et le mélange réactionnel est alors chauffé à 90°C. Après 5 h d’agitation à 90°C, le mélange est refroidi à T.A, repris par 30 mL d’AcOEt, traité et agité pendant 15 minutes avec 30 mL d’une solution aqueuse à 5 % en poids de fluorure de potassium. Le mélange biphasique est ensuite filtré sur un gâteau de céлиte et la céliette est rincée avec 30 mL d’AcOEt. La phase organique est lavée avec 4 x 60 mL d’eau, séchée sur Na_2SO_4 et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de silice en éluant avec un gradient toluène / AcOEt de 0 à 15 % en AcOEt. Après concentration sous pression réduite, on obtient 240 mg de 2'-[3-(benzyloxy)-4-chlorophényl]-2,3'-bipyridine-6'-carboxylate de méthyle sous forme d’huile.

30 Rendement = 55 %

6.2. 2'-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-2,3'-bipyridine-6'-carboxylate de méthyle

Selon la séquence débenzylation/O-alkylation décrite dans les exemples 4.6 et 1.6 respectivement, on obtient, à partir de 680 mg (1,58 mmoles) de 2'-[3-(benzyloxy)-4-chlorophényl]-2,3'-bipyridine-6'-carboxylate de méthyle, 580 mg de 2'-[4-chloro-3-[3-
(diméthylamino)propoxy]phényl)-2,3'-bipyridine-6'-carboxylate de méthyle sous forme d'huile.
Rendement = 86 %

6.3. Chlorhydrate d'acide 2-[[2'-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-2,3'-bipyridin-6'-yl]carbonyl]amino]adamantane-2-carboxylique

Selon la séquence saponification/couplage peptidique décrite dans les exemples 1.7 et 1.8 respectivement, on obtient, à partir de 581 mg (1,36 mmoles) de 2'-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-2,3'-bipyridine-6'-carboxylate de méthyle et de 365 mg (1,87 mmoles) d'acide 2-aminoadamantane-2-carboxylique, 435 mg de chlorhydrate d'acide 2-[[2'-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-2,3'-bipyridin-6'-yl]carbonyl]amino]adamantane-2-carboxylique sous forme de poudre blanche.
Rendement = 48 %

15 F(°C) : 209
M = C_{29}H_{37}ClN_{4}O_{4} = 588 ; M+H = 589
RMN^1H (ppm, d6-DMSO, 400 MHz) : 10,55 (s, 1H) ; 8,65 (s, 1H) ; 8,50 (s, 1H) ; 8,25 (d, 1H) ; 8,10 (d, 1H) ; 7,80 (t, 1H) ; 7,40 (dd, 1H) ; 7,35 (d, 2H) ; 7,25 (s, 1H) ; 6,80 (d, 1H) ; 3,95 (t, 2H) ; 3,15 (m, 2H) ; 2,75 (s, 3H) ; 2,70 (s, 3H) ; 2,60 (s, 2H) ; 2,2-1,6 (m, 14H).

20 Exemple 7 : Chlorhydrate d'acide 2-[[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-chlorophényl)pyridin-2-yl]carbonyl]amino]adamantane-2-carboxylique
(composé N° 22)

25 7.1. 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-chlorophényl)pyridine-2-carboxylate de méthyle

Selon la séquence débenzylation/O-alkylation décrite dans les exemples 4.6 et 1.6 respectivement, on obtient, à partir de 625 mg (1,35 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-(2-chlorophényl)pyridine-2-carboxylate de méthyle, 173 mg de 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-chlorophényl)pyridine-2-carboxylate de méthyle sous forme d'huile.
Rendement = 28 %

Selon la séquence saponification/couplage peptidique décrite dans les exemples 1.7 et 1.8 respectivement, on obtient, à partir de 290 mg (0,63 mmole) de 6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2-chlorophényl)pyridine-2-carboxylate de méthyle et de 184 mg (0,94 mmole) d’acide 2-aminoadamantane-2-carboxylique, 120 mg de chlorhydrate d’acide 2-[[6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2-chlorophényl)pyridin-2-yl]carbonyl]amino]adamantane-2-carboxylique sous forme de poudre blanche.
Rendement = 29 %
F(°C) : 214

\[\text{M} = \text{C}_{34}\text{H}_{37}\text{Cl}_2\text{N}_3\text{O}_4 = 621 \; ; \; \text{M} + \text{H} = 622 \]

RMN°H (ppm, d6-DMSO, 400MHz) : 8,50 (s, 1H) ; 8,10 (d, 1H) ; 8,00 (d, 1H) ; 7,45 (m, 2H) ; 7,40 (d, 2H) ; 7,35 (d, 1H) ; 7,20 (dd, 1H) ; 6,90 (dd, 1H) ; 3,90 (m, 2H) ; 3,15 (m, 2H) ; 2,75 (s, 6H) ; 2,60 (s, 2H) ; 2,2-1,6 (m, 14H).

Exemple 8 : Chlorhydrate d’acide 1-[[6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2-méthylphényl)pyridin-2-yl]carbonyl]amino]cyclohexancarboxylique (composé N°34)

Selon la séquence saponification/couplage peptidique décrite dans les exemples 1.7 et 1.8 respectivement, on obtient, à partir de 465 mg (1,06 mmole) de 6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle (exemple 4.7) et de 174 mg (1,22 mmole) d’acide 2-amino-cyclohexane-2-carboxylique, 330 mg de chlorhydrate d’acide 1-[[6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2-méthylphényl)pyridin-2-yl]carbonyl]amino]cyclohexancarboxylique sous forme de poudre blanche.
Rendement = 53 %
F (°C) = 146-150

\[\text{M} = \text{C}_{35}\text{H}_{36}\text{ClN}_3\text{O}_4 = 549 \; ; \; \text{M} + \text{H} = 550 \]

RMN°H (ppm, d6-DMSO, 400 MHz) : 10,5 (s, 1H) ; 8,40 (s, 1H) ; 8,05 (d, 1H) ; 7,90 (d, 1H) ; 7,35 (d, 1H) ; 7,25 (m, 5H) ; 7,05 (dd, 1H) ; 3,80 (m, 2H) ; 3,1 (m, 2H) ; 2,75 (s, 6H) ; 1,75 (s, 3H) ; 2,2-1,6 (m, 12H).

Exemple 9 : Chlorhydrate d’acide cis-1-[[6-(4-chloro-3-[3-(diéthylamino)propoxy]phényl)-5-(2-méthylphényl)pyridin-2-yl]carbonyl]amino]-4-hydroxycyclohexane carboxylique (composé N°147)
A un mélange de 490 mg (1 mmole) de chlorhydrate d'acide 6-[4-chloro-3-[3-(diéthylamino)propoxy]phényl]-5-(2-méthylphényl)pyridine-2-carboxylique dans 5 mL de DMF anhydre, on ajoute successivement sous argon et à T.A., 127 mg (1,1 mmoles) de N-hydroxy succinimide et 211 mg (1,1 mmoles) d'EDC.HCl. Après 18 h d'agitation on ajoute successivement au milieu réactionnel (jaune vif et limpide) 0,9 mL (5,4 mmoles) de DIEA et 215 mg (1,1 mmoles) d'acide cis-1-amino-4-hydroxy cyclohexane carboxylique (J.Chem.Soc., Perkin Trans. 1 (1999) pp. 3375-3379). L'agitation est poursuivie 18 h à T.A. puis le mélange réactionnel est concentré sous pression réduite. Le résidu obtenu est ensuite traité 18 h à T.A. avec 7 mL (7 mmoles) d'HCl 1N puis concentré sous pression réduite. Le résidu est purifié par HPLC sur une colonne de RP18 en éluant avec un gradient HCl 10\(^{-3}\)N / acétonitrile de 0% à 100% d'acétonitrile. Après lyophilisation, on obtient 350 mg de chlorhydrate d'acide cis-1-[[6-[4-chloro-3-[3-(diéthylamino)propoxy]phényl]-5-(2-méthylphényl)pyridin-2-yl]carbonyl]amino]-4-hydroxy cyclohexane carboxylique sous forme de poudre blanche.

Rendement = 55%

\[F (^\circ C) = 168 \]
\[M = C_{33}H_{44}ClN_{3}O_{5} = 565 \text{ ; } M+H = 566 \]

RNM\(^1\)H (ppm, d6-DMSO, 400 MHz) : 8,55 (s, 1H) ; 8,05 (d, 1H) ; 7,90 (d, 1H) ; 7,25 (m, 6H) ; 6,90 (dd, 1H) ; 4,65 (s, 1H) ; 3,90 (m, 2H) ; 3,50 (m, 1H) ; 3,10 (m, 2H) ; 2,95 (q, 4H) ; 2,30 (m, 2H) ; 2,05 (m, 2H) ; 1,90 (s, 3H) ; 1,80 (m, 4H) ; 1,35 (m, 2H) ; 1,10 (t, 6H)

Exemple 10 : Chlorhydrate d'acide 3-[[4\(^\prime\)-chboro-3\(^\prime\)-[3-(diméthylamino)propoxy]-2,6-diméthoxy-1,1\(^\prime\):2\(^\prime\):1\(^\prime\)-terphényl-4\(^\prime\)-yl]carbonyl]amino]-4-méthylpentanoïque (composé N\(^\circ\)28)

10.1. 2-[3-(benzyloxy)-4-chlorophényl]-4,4,5,5-tétraméthyl-1,3,2-dioxaborolane

Une suspension de 20 g (67,2 mmoles) de 2-benzyloxy-4-bromo-1-chlorobenzène, de 28 g (94 mmoles) de 4,4',4',5,5,5',5'-octaméthyl-2,2'-bi-1,3,2-dioxaborolane et de 26,4 g (26,9 mmoles) d'acétate de potassium dans 280 mL de DMSO anhydre est agitée 10 minutes sous argon, puis on ajoute 2,46 g (3,4 mmoles) de PdCl\(_2\) (dppf) et on chauffe 1 h. à 110\(^\circ\)C. Après répartition dans 1 L d'un mélange éther/eau 1:1 suivie d'une filtration sur gâteau de célérite, la phase organique est lavée avec 100 mL d'eau, séchée sur Na\(_2\)SO\(_4\) puis concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient heptane/ACOEt de 0 à 10 % d'ACOEt. Après concentration sous pression réduite, on
obtient 17, 5 g de 2-[3-(benzyloxy)-4-chlorophényl]-4,4,5,5-tétraméthyl-1,3,2-dioxaborolane sous forme d'huile.
Rendement = 74 %.

10.2. 2-bromo-2',6'-diméthoxybiphenyl-4-carboxylate de méthyle

Une solution de 4,84 g (14,2 mmoles) de 3-bromo-4-iodobenzaote de méthyle (J. Med. Chem., 1999, 42, 4088) et de 3,88 g (21,29 mmoles) d'acide 2,6-diméthoxyphényl boronique dans 120 mL de DMF et 14,2 mL d'une solution aqueuse 2 M de carbonate de cézium est agitée 15 minutes sous azote, puis on ajoute 984 mg (0,85 mmole) de Pd(PPh₃)₄ et on chauffe 2 heures à 85°C. Après concentration sous pression réduite, le résidu obtenu est réparti dans 600 mL d'un mélange DCM/eau 1:1. La phase organique est lavée avec 100 mL d'eau, séchée sur MgSO₄ et concentrée sur pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient heptane / AcOEt de 0 à 10 % en AcOEt. Après concentration sous pression réduite, on obtient 2,79 g de méthyl 2-bromo-2',6'-diméthoxybiphenyl-4-carboxylate sous forme d'huile.
Rendement = 56 %

10.3. 3''-(benzyloxy)-4''-chloro-2,6-diméthoxy-1,1':2',1''-terphényl-4''-carboxylate de méthyle

Selon le procédé décrit dans l'exemple 10.2, on obtient à partir de 2,79 g (7,94 mmoles) de 2-bromo-2',6'-diméthoxybiphenyl-4-carboxylate de méthyle et de 3,28 g (9,53 mmoles) de 2-[3-(benzyloxy)-4-chlorophényl]-4,4,5,5-tétraméthyl-1,3,2-dioxaborolane, 1,75 g de 3''-(benzyloxy)-4''-chloro-2,6-diméthoxy-1,1':2',1''-terphényl-4''-carboxylate de méthyle sous forme d'huile.
Rendement = 45 %

10.4. 4''-chloro-3''-[3-(diméthylamino)propoxy]-2,6-diméthoxy-1,1':2',1''-terphenyl-4''-carboxylate de méthyle

Selon la séquence débenzylation/O-alkylation décrite dans les exemples 4.6 et 1.6 respectivement, on obtient, à partir de 1,75 g (3,58 mmoles) de 3''-(benzyloxy)-4''-chloro-2,6-diméthoxy-1,1':2',1''-terphényl-4''-carboxylate de méthyle, 900 mg de 4''-chloro-3''-[3-(diméthylamino)propoxy]-2,6-diméthoxy-1,1':2',1''-terphenyl-4''-carboxylate de méthyle sous forme d'huile.
Rendement = 52 %

10.5. Acide 4"-chboro-3"-[3-(diméthylamino)propoxy]-2,6-diméthoxy-1,1"-terphényl-4'-carboxylique.

Selon le procédé décrit dans l’exemple 1.7, on obtient, à partir de 900 mg (1,86 mmoles) de 4"-chboro-3"-[3-(diméthylamino)propoxy]-2,6-diméthoxy-1,1"-terphényl-4'-carboxylate de méthyle, 700 mg d’acide 4"-chboro-3"-[3-(diméthylamino)propoxy]-2,6-diméthoxy-1,1"-terphényl-4'-carboxylique sous forme de solide rosé.

Rendement = 82 %

F(°C) = 230.

10.6. Chlorhydrate d’acide 3-{[(4"-chboro-3"-[3-(diméthylamino)propoxy]-2,6-diméthoxy-1,1"-terphényl-4'-yl)carbonyl]amino}-4-méthypentanoïque

A une solution de 315 mg (0,67 mmole) d’acide 4"-chboro-3"-[3-(diméthylamino)propoxy]-2,6-diméthoxy-1,1"-terphényl-4'-carboxylique dans 7 mL de THF anhydre, on ajoute 141 mg (0,87 mmole) de CDI et le milieu réactionnel est agité à 55°C pendant 1 h. sous argon. On ajoute 70 mg (0,43 mmole) de carbonyl-1,1'-dimidazole et la réaction est poursuivie 1 h à 50°C. On ajoute alors une suspension de 97 mg (0,74 mmole) d’acide 3-amino-4-méthypentanoïque racémique dans un mélange de 4 mL de THF et 0,8 mL de DMF et l’agitation est poursuivie 15 h. à 55°C. Après concentration sous pression réduite, le résidu obtenu est réparti dans 30 mL d’un mélange DCM/éau 2:1. La phase organique est lavée avec 10 mL d’eau, séchée sur sulfate de magnésium (MgSO₄) et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient DCM / méthanol de 0 à 5 % en méthanol. Après concentration sous pression réduite, le résidu est concrétisé dans de l’éther, filtré sur frittre et lavé avec de l’éther. On obtient ainsi 91 mg de chlorhydrate d’acide 3-{[(4"-chboro-3"-[3-(diméthylamino)propoxy]-2,6-diméthoxy-1,1"-terphényl-4'-yl)carbonyl]amino}-4-méthypentanoïque sous forme de poudre blanche.

Rendement = 23 %

F(°C) = 152

M = C₃₂H₃₉ClN₂O₆ = 582 ; MNH = 583

RMN ¹H (ppm, d6-DMSO, 400 MHz) : 8,3 (d, 1H) ; 7,75 (d, 1H) ; 7,7 (s, 1H) ; 7,2 (m, 3H) ; 6,7 (m, 2H) ; 6,55 (d, 2H) ; 4,1 (q, 1H) 3,8 (t, 2H) ; 3,5 (s, 6H) ; 2,45 (m, 4H) ; 2,3 (s, 6H) ; 1,8 (m, 3H) ; 0,9 (d, 6H).
Exemple 11 : Chlorhydrate d’acide 3-[(5-[(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-6-(2-méthylphényl)pyridin-3-yl]carbonyl]amino)-4-méthylpentanoïque (composé 29)

11.1. 5-[3-(benzyloxy)-4-chlorophényl]-6-oxo-1,6-dihydropyridine-3-carboxylate de méthyle

Une solution de 4 g (14,35 mmoles) de 5-iodo-6-oxo-1,6-dihydropyridine-3-carboxylate de méthyle et de 6,42 g (18,64 mmoles) de 2-[3-(benzyloxy)-4-chlorophényl]-4,4,5,5-tétraméthyl-1,3,2-dioxaborolane dans un mélange de 160 mL de diméthoxyéthane (DME), 80 mL d’EtOH et de 120 mL d’une solution aqueuse saturée en NaHCO₃ est agitée 15 minutes sous argon, puis on ajoute 662 mg de Pd(PPh₃)₄ et le mélange réactionnel est chauffé 4 h30 à 90°C. Après concentration sous pression réduite, le résidu obtenu est réparti dans un mélange de 200 mL de DCM et 10 mL d’eau. La phase aqueuse est re-extrême avec 100 mL de DCM, les phases organiques sont réunies, séchées sur MgSO₄, filtrées et concentrées sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient DCM / méthanol de 0 à 2 % en méthanol. Après concentration sous pression réduite, le résidu est concrétisé dans un mélange méthanol / éther 5/95 puis filtré et lavé avec de l’éther. On obtient ainsi 1,99 g de 5-[3-(benzyloxy)-4-chlorophényl]-6-oxo-1,6-dihydropyridine-3-carboxylate de méthyle sous forme de solide beige.
Rendement = 40 %
F(°C) : 190

11.2. 5-[3-(benzyloxy)-4-chlorophényl]-6-[[trifluorométhyl]sulfonyl]oxy]nicotinate de méthyle

Selon le procédé décrit dans l’exemple 4.4, on obtient à partir de 1,99 g (5,38 mmoles) de 5-[3-(benzyloxy)-4-chlorophényl]-6-oxo-1,6-dihydropyridine-3-carboxylate de méthyle et 2,26 ml (13,45 mmoles) d’anhydre trifluorométhanesulfonique, 1,6 g de 5-[3-(benzyloxy)-4-chlorophényl]-6-[[trifluorométhyl]sulfonyl]oxy]nicotinate de méthyle sous forme d’huile.
Rendement = 60 %

11.3. 5-[3-(benzyloxy)-4-chlorophényl]-6-(2-méthylphényl)nicotinate de méthyle
Selon le procédé décrit dans l'exemple 4.5, on obtient à partir de 1,5 g (2,99 mmoles) de 5-[3-(benzyloxy)-4-chlorophényl]-6-[(trifluorométhyl)sulfonyl]oxy]nicotinate de méthyle et de 508 mg (3,74 mmoles) d'acide 2-méthylphényl boronique, 1,26 g de 5-[3-(benzyloxy)-4-chlorophényl]-6-(2-méthylphényl)nicotinate de méthyle sous forme d'huile.

Rendement = 95 %

11.4. 5-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-6-(2-méthylphényl)nicotinate de méthyle

Selon la séquence débenzylation/O-alkylation décrite dans les exemples 4.6 et 1.6 respectivement, on obtient, à partir de 1,26 g (2,84 mmoles) de 5-[3-(benzyloxy)-4-chlorophényl]-6-(2-méthylphényl)nicotinate de méthyle, 843 mg de 5-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-6-(2-méthylphényl)nicotinate de méthyle sous forme d'huile.

Rendement = 68 %

11.5. Chlorhydrate d'acide 3-[[5-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-6-(2-méthylphényl)pyridin-3-yl]carbonyl]amino]-4-méthylpentanoïque

Selon la séquence saponification/couplage peptidique décrite dans les exemples 1.7 et 10.6 respectivement, on obtient à partir de 835 mg (1,90 mmoles) de 5-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-6-(2-méthylphényl)nicotinate de méthyle et de 258 mg (1,97 mmoles) d'acide 3-amino-4-méthylpentanoïque racémique, 130 mg de chlorhydrate d'acide 3-[[5-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-6-(2-méthylphényl)pyridin-3-yl]carbonyl]amino]-4-méthylpentanoïque sous forme de solide blanc.

Rendement = 13 %

F(°C) = 139
M = C₃₀H₅₆ClN₃O₄ = 537 ; M+H = 538
RMN ¹H (ppm, d6-DMSO, 400 MHz) : 9,05 (d, 1H) ; 9,5 (d, 1H) ; 9,25 (d,1H) ; 8,3 (d, 1H) ; 7,3 (d, 1H) 7,15 (d, 1H) ; 7,15 (m, 4H) ; 4,25 (m, 1H) ; 3,8 (t, 2H) ; 2,65 (t, 2H) ; 2,45 (s, 6H) 1,95 (s, 3H) ; 1,85 (m, 5H) ; 0,90 (d, 6H).

Exemple 12 : Chlorhydrate d'acide 2-[[6-[3-[3-(diméthylamino)propoxy]-4-(trifluorométhyl)phényl]-5-(2-méthylphényl)pyridin-2-yl]carbonyl]amino)adamantane-2-carboxylique (composé N°43)
12.1. 2-iodo-5-nitrophénol

A une solution de 30,81 g (200 mmoles) de 2-amino-5-nitrophénol dans un mélange de 500 mL d’acide sulfurique à 30 % en poids et 500 mL de DMSO refroidie à 5°C est ajoutée goutte à goutte une solution de 20,7 g (300 mmoles) de nitrite de sodium (NaNO₂) dans 100 mL d’eau en maintenant la température à 5°C. Après une demi-heure à 5°C, on ajoute goutte à goutte une solution de 90 g (600 mmoles) d’iodure de sodium dans 100 mL d’eau puis le milieu réactionnel est ramené à T.A.. Après 2 h d’agitation, le milieu réactionnel est réparti dans 2 L d’un mélange éther/solution aqueuse à 10 % en poids d’hydrogénosulfite de sodium 1:1. La phase aqueuse est re-extraite avec 200 mL d’éther et les phases organiques réunies sont lavées avec 3 x 1 L d’eau puis séchées sur Na₂SO₄. Après concentration sous pression réduite, le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient cyclohexane / AcOEt de 0 à 10 % en AcOEt. Après concentration sous pression réduite, on obtient 39,8 g de 2-iodo-5-nitrophénol sous forme de solide marron.

Rendement = 75 %
F(°C) = 150

12.2. 2-(benzyloxy)-1-iodo-4-nitrobenzène

Selon le procédé décrit dans l’exemple 4.1., on obtient, à partir de 20,8 g (78,5 mmoles) de 2-iodo-5-nitrophénol et 9,3 mL (78,5 mmoles) de bromure de benzyle, 25,2 g de 2-(benzyloxy)-1-iodo-4-nitrobenzène sous forme d’huile.

Rendement = 90 %

12.3. 2-(benzyloxy)-4-nitro-1-(trifluorométhyl)benzène

A un mélange de 4,08 g (70,2 mmoles) de fluorure de potassium anhydre et de 13,36 g (70,18 mmoles) de Cul anhydre et 19,17 g (54 mmoles) de 2-(benzyloxy)-1-iodo-nitrobenzène dans 77 mL de NMP anhydre, on ajoute 10,4 mL (70,18 mmoles) de trifluorométhyltriméthylsilane et le milieu réactionnel est chauffé 18 h à 45°C sous argon. La suspension est répartie à T.A. dans 1 L d’un mélange éther/eau : 1:1, la phase organique est ensuite lavée avec 4 x 300 mL d’eau, séchée sur Na₂SO₄, puis concentrée sous pression réduite. On obtient ainsi 15 g de 2-(benzyloxy)-4-nitro-1-(trifluorométhyl)benzène sous forme d’huile.

Rendement = 94 %
12.4. 3-(benzyl oxy)-4-(trifluorométhyl)aniline

A un mélange de 15 g (50,3 mmoles) de 2-(benzyl oxy)-4-nitro-1-(trifluorométhyl)benzène dans 200 mL d'EtOH, 10 mL d'AcOH et 100 mL d'eau sont ajoutés 14,1 g (252 mmoles) de limaille de fer puis le mélange réactionnel est placé sous forte agitation à 70°C pendant 20 minutes. Après refroidissement à T.A., le mélange réactionnel est additionné lentement sur un mélange de 300 mL d'éther et 1 L d'une solution aqueuse saturée en Na₂CO₃. Après neutralisation, la phase aqueuse est re-extrait avec 2x100 mL d'éther. Les phases organiques sont réunies, lavées avec 100 mL d'eau, séchées sur chlorure de calcium et concentrées sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient pentane / AcOEt de 0 à 50 % d'AcOEt. Après concentration sous pression réduite, on obtient 8,1 g de 3-(benzyl oxy)-4-(trifluorométhyl)aniline sous forme d'huile.
Rendement = 60 %

12.5. 2-(benzyl oxy)-4-iodo-1-(trifluorométhyl)benzène

Selon le procédé décrit dans l'exemple 12.1., on obtient, à partir de 8 g (30 mmoles) de 3-(benzyl oxy)-4-(trifluorométhyl)aniline, 8 g de 2-(benzyl oxy)-4-iodo-1-(trifluorométhyl)benzène sous forme d'huile.
Rendement = 70 %

12.6. Acide [3-(benzyl oxy)-4-(trifluorométhyl)phényl]boronique

Selon le procédé décrit dans l'exemple 4.2, on obtient, à partir de 8 g (21,2 mmoles) de 2-(benzyl oxy)-4-iodo-1-(trifluorométhyl)benzène, 11,1 mL (22,2 mmoles) d'iPrMgCl et 5 mL (21,6 mmoles) de borate de triisopropyle, 4,95 g d'acide [3-(benzyl oxy)-4-(trifluorométhyl)phényl]boronique sous forme d'huile.
Rendement = 79 %

12.7. 6-[3-(benzyl oxy)-4-(trifluorométhyl)phényl]-5-hydroxypyridine-2-carboxylate de méthyle

Selon le procédé décrit dans l'exemple 4.3, on obtient, à partir de 4,95 g (16,7 mmoles) d'acide [3-(benzyl oxy)-4-(trifluorométhyl)phényl]boronique et 3,88 g (16,72 mmoles) de 6-bromo-5-hydroxy pyridine-2-carboxylate de méthyle, 4,38 g de 6-[3-(benzyl oxy)-4-
(trifluorométhyl)phényl]-5-hydroxy.pyridine-2-carboxylate de méthyle sous forme de solide blanc.

Rendement = 65 %

F(°C) = 82

12.8. 6-[3-(benzyloxy)-4-(trifluorométhyl)phényl]-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle

Selon la séquence triflate/couplage de Suzuki décrète dans les exemples 4.4 et 4.5 respectivement, on obtient, à partir de 4,38 g (10,9 mmoles) de 6-[3-(benzyloxy)-4-(trifluorométhyl)phényl]-5-hydroxy.pyridine-2-carboxylate de méthyle et 1,8 g (13,1 mmoles) d'acide 2-méthylphénylboronique, 4,63 g de 6-[3-(benzyloxy)-4-(trifluorométhyl)phényl]-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle sous forme de solide blanc.

Rendement = 89 %

F(°C) = 226

12.9. 6-[3-[3-(diméthylamino)propoxy]-4-(trifluorométhyl)phényl]-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle

Selon la séquence débenzylation/O-alkylation décrète dans les exemples 4.6 et 1.6 respectivement, on obtient à partir de 2,57 g (5,38 mmoles) de 6-[3-(benzyloxy)-4-(trifluorométhyl)phényl]-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle, 2,26 g de 6-[3-[3-(diméthylamino)propoxy]-4-(trifluorométhyl)phényl]-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle sous forme de solide blanc.

Rendement = 89 %

F(°C) = 142

12.10. Chlorhydrate 2-[[6-[3-[3-(diméthylamino)propoxy]-4-(trifluorométhyl)phényl]-5-(2-méthylphényl)pyridin-2-yl]carboxylamino]adamantane-2-carboxylique

Selon la séquence saponification/couplage peptidique décrète dans les exemples 1.7 et 1.8 respectivement, on obtient, à partir de 565 mg (1,19 mmoles) de 6-[3-[3-(diméthylamino)propoxy]-4-(trifluorométhyl)phényl]-5-(2-méthylphényl)pyridine-2-carboxylate de méthyle et 256 mg (1,31 mmoles) d’acide 2-amino-adamantane-2-carboxylique, 440 mg de chlorhydrate d’acide 2-[[6-[3-[3-(diméthylamino)propoxy]-4-
(trifluorométhyl)phényl]-5-(2-méthylphényl)pyridin-2-yl[carbonyl]amino)adamantane-2-carboxylique sous forme de poudre blanche.
Rendement = 55 %
F(°C) = 231
M = C₃₆H₄₀F₃N₃O₄ = 634 ; M+H = 635
RMN³¹H (ppm, d6-DMSO, 400 MHz) : 8,50 (s, 1H) ; 8,10 (d, 1H) ; 7,95 (d, 1H) ; 7,55 (d, 1H) ; 7,25 (m, 5H) ; 7,10 (d, 1H) ; 3,90 (m, 2H) ; 3,05 (m, 2H) ; 2,70 (s, 6H) ; 2,60 (s, 2H) ; 2,05 (m, 7H) ; 1,90 (s, 3H) ; 1,65 (m, 7H) .

10 Exemple 13 : Chlorhydrate d'acide 1-{[(3-chloro-2'-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-2,3'-bipyridin-6'-yl)carbonyl]amino}cyclohexane carboxylique
(composé n°55)

13.1. 6-[3-(benzyloxy)-4-chlorophényl]-5-(4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)pyridine-2-carboxylate de méthyle

Une solution de 5 g (10 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-[(trifluorométhyl)sulfonyl]oxy]pyridine-2-carboxylate de méthyle et de 2,78 g (11 mmoles) de 4,4,4',4',5,5,5',5'-octaméthyl-2,2'-bi-1,3,2-dioxaborolane dans 50 mL de 1,4-dioxane anhydre est agitée 15 min sous barbotage d'argon puis on ajoute 2,93 g (30 mmoles) d'acétate de potassium anhydre et 0,37 g (0,45 mmoles) de PdCl₂(dppe) et on chauffe le mélange réactionnel 26 h à 80°. Le mélange réactionnel est ensuite réparti dans 100 mL d'un mélange AcOEt/saumure 1:1. La phase organique est séchée sur Na₂SO₄, filtrée puis concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de silice en éluant avec un gradient cyclohexane / AcOEt de 0 à 20 % d'AcOEt. Après concentration sous pression réduite, on obtient 3,2 g de 6-[3-(benzyloxy)-4-chlorophényl]-5-(4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)pyridine-2-carboxylate de méthyle sous forme d'une cire.
Rendement = 67 %

13.2. 2'-[3-(benzyloxy)-4-chlorophényl]-3-chloro-2,3'-bipyridine-6'-carboxylate de méthyle

Une solution de 850 mg (1,77 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-(4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)pyridine-2-carboxylate de méthyle et de 524 mg (3,54 mmoles) de 2,3-dichloropyridine dans un mélange de 4 mL de DME et 2 mL d'eau
est agitée 15 minutes sous argon puis on ajoute successivement 734 mg (5,32 mmoles) de K₂CO₃ et 61 mg (0,05 mmoles) de Pd(PPh₃)₄ et on chauffe le milieu réactionnel 4 h. à 85°C. Le mélange réactionnel est ensuite réparti entre 10 mL d’AcOEt et 10 mL de saumure. La phase organique est séchée sur Na₂SO₄, filtrée puis concentrée sous pression réduite. Le résidu obtenu est purifié sur une colonne de silice en éluant avec un gradient cyclohexane/AcOEt de 0 à 20% d’AcOEt. Après concentration sous pression réduite, on obtient 237 mg de 2’-[3-(benzyloxy)-4-chlorophényl]-3-chloro-2,3’-bipyridine-6’-carboxylate de méthyle sous forme d’huile.
Rendement = 28 %

13.3. 3-chloro-2’-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-2,3’-bipyridine-6’-carboxylate de méthyle

Selon la séquence débenzylation/O-alkylation décrite dans les exemples 4.6 et 1.6 respectivement on obtient, à partir de 360 mg (0,77 mmoles) de 2’-[3-(benzyloxy)-4-chlorophényl]-3-chloro-2,3’-bipyridine-6’-carboxylate de méthyle, 130 mg de 3-chloro-2’-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-2,3’-bipyridine-6’-carboxylate de méthyle sous forme d’huile.
Rendement = 37 %

13.4. Chlorhydrate d’acide 1-[[3-chloro-2’-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-2,3’-bipyridin-6’-yl]carbonyl]amino)cyclohexane carboxylique

Selon la séquence saponification/couplage peptidique décrite dans les exemples 1.7 et 1.8 respectivement, on obtient, à partir de 130 mg (0,28 mmoles) de 3-chloro-2’-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-2,3’-bipyridine-6’-carboxylate de méthyle et 44 mg (0,31 mmoles) d’acide 2-aminocyclohexanecarboxylique, 120 mg de chlorhydrate d’acide 1-[[3-chloro-2’-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-2,3’-bipyridin-6’-yl]carbonyl]amino)cyclohexane carboxylique sous forme de poudre blanche.
Rendement = 70 %
F(°C) = 140
M = C₂₉H₃₂Cl₂N₄O₄ = 570 ; M+H = 571
RMN1H (ppm, d₆-DMSO, 400 MHz) : 10,45 (s, 1H) ; 8,65 (d, 1H) ; 8,45 (s, 1H) ; 8,10 (s, 2H) ; 7,95 (d, 1H) ; 7,50 (dd, 1H) ; 7,35 (d, 1H) ; 7,25 (d, 1H) ; 6,90 (dd, 1H) ; 3,95 (t, 2H) ; 3,15 (m, 2H) ; 2,80 (d, 6H) ; 2,20 (m, 4H) ; 1,80 (t, 2H) ; 1,70-1,2 (m, 6H).
Exemple 14 : Chlorhydrate d’acide (3S)-3-[[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-chloro-5-méthylphényl)pyridin-2-yl]carbonyl]amino]-4-méthylpentanoïque

(composé N°72)

14.1. 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-chloro-5-méthylphényl)pyridine-2-carboxylate de méthyle

Selon la séquence débenzylation/O-alkylation décrite dans les exemples 4.6 et 1.6 respectivement on obtient, à partir de 743 mg (1.55 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-(2-chloro-5-méthylphényl)pyridine-2-carboxylate de méthyle, 530 mg de 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-chloro-5-méthylphényl)pyridine-2-carboxylate de méthyle sous forme d’huile.

Rendement = 72%

14.2. Chlorhydrate d’acide (3S)-3-[[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-chloro-5-méthylphényl)pyridin-2-yl]carbonyl]amino)-4-méthylpentanoïque

Selon la séquence saponification/couplage peptidique décrite dans les exemples 1.7 et 9 respectivement, on obtient, à partir de 385 mg (0.84 mmoles) de 6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2-chloro-5-méthylphényl)pyridine-2-carboxylate de méthyle et 130 mg (1 mmoles) d’acide (3S)-3-amino-4-méthylpentanoïque (J. Org. Chem., 1999, 6411-6417), 333 mg de chlorhydrate d’acide (3S)-3-[[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-chloro-5-méthylphényl)pyridin-2-yl]carbonyl]amino)-4-méthylpentanoïque sous forme de poudre blanche.

Rendement = 67 %

\([\alpha]_D^{22} = -18^\circ \) ; (c = 0.1 ; MeOH)

\(M = C_{30}H_{35}Cl_2N_2O_4 = 571 \); M+H = 572

RMN1H (ppm, d6-DMSO, 400 MHz) : 8.60 (dd, 1H) ; 8.10 (d, 1H) ; 7.95 (d, 1H) ; 7-40-7.15 (m, 5H) ; 6.90 (d, 1H) ; 4.15 (m, 1H) ; 3.90 (m, 2H) ; 3.15 (t, 2H) ; 2.75 (s, 6H) ; 2.55 (t, 2H) ; 2.25 (d, 3H (conformères)) ; 2.10 (m, 2H) ; 1.90 (m, 1H) ; 0.85 (dd, 6H (conformères)).

Exemple 15 : Chlorhydrate d’acide 1-[[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2,4-diméthylphényl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylique

(composé N°66)
15.1. 6-[3-(bényloxy)-4-chlorophényle]-5-(2,4-diméthylphényl)pyridine-2-carboxylate de méthyle

Selon le procédé décrit dans l'exemple 4.5, le couplage de Suzuki effectué entre 1 g (2 mmoles) de 6-[3-(bényloxy)-4-chlorophényle]-5-[[trifluorométhyl]sulfonyl]oxy]pyridine-2-carboxylate de méthyle et 418 mg (2,8 mmoles) d'acide 2,4-diméthylphénylboronique conduit à 820 mg de 6-[3-(bényloxy)-4-chlorophényle]-5-(2,4-diméthylphényl)pyridine-2-carboxylate de méthyle sous forme d'huile.
Rendement = 90 %

15.2. Chlorhydrate d'acide 6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2,4-diméthylphényl)pyridine-2-carboxylique

Selon la séquence débenzylation/O-alkylation/saponification décrite dans les exemples 4.6, 1.6 et 1.7 respectivement, on obtient à partir de 820 mg (1,8 mmoles) de 6-[3-(bényloxy)-4-chlorophényle]-5-(2,4-diméthylphényl)pyridine-2-carboxylate de méthyle, 659 mg de chlorhydrate d'acide 6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2,4-diméthylphényl)pyridine-2-carboxylique sous forme de gomme.
Rendement = 77 %

15.3. Chlorhydrate d'acide 1-[[6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2,4-diméthylphényl)pyridin-2-yl]carbonyl]amino)cyclohexane-carboxylique

Selon le procédé décrit dans l'exemple 1.8, le couplage peptidique effectué entre 356 mg (0,75 mmoles) de chlorhydrate d'acide 6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2,4-diméthylphényl)pyridine-2-carboxylique et 113 mg (0,79 mmoles) d'acide 2-aminocyclohexane-2-carboxylique conduit à 160 mg de chlorhydrate d'acide 1-[[6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2,4-diméthylphényl)pyridin-2-yl]carbonyl]amino)cyclohexane-carboxylique sous forme de poudre blanche.
Rendement = 38 %

F(°C) = 158
M = C_{32}H_{38}ClN_{3}O_{4} = 563. ; M+H = 564
RMN°H (ppm, d6-DMSO, 400 MHz) : 12,45 (s, 1H) ; 10,40 (s, 1H) ; 8,45 (s, 1H) ; 8,05 (d, 1H) ; 7,95 (d, 1H) ; 7,40 (s, 1H) ; 7,20 (s, 1H) ; 7,15 (s, 2H) ; 2,75 (s, 6H) ; 7,10 (d, 1H) ; 7,05 (d, 1H) ; 3,90 (m, 2H) ; 3,20 (t, 2H) ; 2,70 (s, 6H) ; 2,35 (s, 3H) ; 2,2-2,05 (m, 4H) ; 1,90 (s, 3H) ; 1,85 (t, 2H) ; 1,75-1,30 (m, 6H).
Exemple N°16 : Chlorhydrate d’acide (3S)-3-(([6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2,4-diméthylphényl)pyridin-2-yl]carbonyl]amino)-4,4-diméthylpentanoique.
(composé N°117)

Selon le procédé décrit dans l’exemple 9, le couplage peptidique effectué entre 950 mg (2 mmoles) de chlorhydrate d’acide 6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2,4-diméthylphényl)pyridine-2-carboxylique et 412 mg (2,05 mmoles) de (3S)-3-amino-4,4-diméthylpentanoate de tert-butyle (J. Org. Chem. , 1999, 64, 6411-6417) conduit à 830 mg de chlorhydrate d’acide (3S)-3-([6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2,4-diméthylphényl)pyridin-2-yl]carbonyl]amino)-4,4-diméthylpentanoïque sous forme de poudre blanche.

Rendement = 70%
F(°C) = 130

$[\alpha]_\text{D}^{22} = -5$° ; (c = 0,1 ; MeOH)

$\text{M} = C_{23}H_{40}ClN_3O_4 = 565$; M+H = 566

RMN'H (ppm, d6-DMSO, 400 MHz) : 10,09 (s, 1H) ; 8.2 (d, 1H) ; 7.85 (d, 1H) ; 7.70 (d, 1H) ; 7.10 (d, 1H) ; 6.95 (d, 1H) ; 6.85 (m, 3H) ; 6.80 (t, 1H) ; 4.10 (t, 1H) ; 3.65 (m, 2H) ; 2.95 (m, 2H) ; 2.50 (d, 6H) ; 2.40 (dd, 1H) ; 2.30 (dd, 1H) ; 2.10 (s, 3H) ; 1.85 (m, 2H) ; 1.65 (s, 3H) ; 0.70 (d, 9H, conformères).

Exemple N°17 : Chlorhydrate d’acide 1-[[3,5-dichloro-2’-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-2,3’-bipyridin-6’-yl]carbonyl]amino)cyclohexanecarboxylique
(composé N°65)

17.1. 2’-[3-(benzyloxy)-4-chlorophényl]-3,5-dichloro-2,3’-bipyridine-6’-carboxylate de méthyle

Selon le procédé décrit dans l’exemple 13.2, le couplage de Suzuki-Myaura effectué entre 4,4 g (9,17 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-(4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)pyridine-2-carboxylate de méthyle et 2,5 g (11 mmoles) de 2-bromo-3,5-dichloropyridine conduit à 3 g de 2’-[3-(benzyloxy)-4-chlorophényl]-3,5-dichloro-2,3’-bipyridine-6’-carboxylate de méthyle sous forme d’huile.

Rendement = 65 %
17.2. 3,5-dichloro-2'-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-2,3'-bipyridine-6'-carboxylate de méthyle

Selon la séquence débenzylation/O-alkylation décrite dans les exemples 4.6 et 1.6 respectivement, on obtient à partir de 3 g (6,2 mmoles) de 2'-[3-(benzyloxy)-4-chlorophényl]-3,5-dichloro-2,3'-bipyridine-6'-carboxylate de méthyle, 1,8 g de 3,5-dichloro-2'-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-2,3'-bipyridine-6'-carboxylate de méthyle sous forme de gomme.
Rendement = 58 %

17.3. Chlorhydrate d’acide 1-[[3,5-dichloro-2'-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-2,3'-bipyridin-6'-yl]carbonyl]amino)cyclohexanecarboxylique

Selon la séquence saponification / couplage peptidique décrite dans les exemples 1.7 et 1.8 respectivement, on obtient, à partir de 1,8 g (3,62 mmoles) de 3,5-dichloro-2'-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-2,3'-bipyridine-6'-carboxylate de méthyle et 472 mg (3,3 mmoles) d’acide 2-amino cyclohexane-2-carboxylique, 1,12 g de chlorhydrate d’acide 1-[[3,5-dichloro-2'-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-2,3'-bipyridin-6'-yl]carbonyl]amino)cyclohexanecarboxylique sous forme de poudre blanche.
Rendement = 50 %
F(°C) = 165
M C_{29}H_{31}Cl_{3}N_{4}O_{4} = 604 ; M+H = 605
RMN1H (ppm, d6-DMSO, 400 MHz) : 8,75 (s, 1H) ; 8,45 (s, 1H) ; 8,30 (d, 1H) ; 8,15 (dd, 2H) ; 7,35 (d, 1H) ; 7,30 (s, 1H) ; 6,75 (dd, 1H) ; 4,00 (t, 2H) ; 3,20 (m, 2H) ; 2,75 (d, 6H) ; 2,3-1,3 (m, 12H).

Exemple N°18 : Chlorhydrate d’acide 1-[[6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(3,5-diméthyl-1H-pyrazol-1-yl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylique
(composé N°75)

18.1. 6-[3-(benzyloxy)-4-chlorophényl]-5-[2-(diphénylméthylidène)hydrazino]pyridine-2-carboxylate de méthyle
Dans un tube à vis, on introduit 2 g (4 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-[(trifluorométhyl)sulfonyle]oxy)pyridine-2-carboxylate de méthyle dans 10 mL de toluène anhydre. A la solution placée sous argon, sont ajoutés successivement 938 mg (4,78 mmoles) de benzophénone hydrzone, 1,95 g (6 mmoles) de carbonate de césium et 65 mg (0,08 mmoles) de PdCl₂ (dpff). Le mélange réactionnel est placé 3 h à 90°C sous agitation puis réparti dans 100 mL d'un mélange éther/eau 1:1. La phase organique est séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice, en éluant avec un gradient DCM/acétone de 0 à 5 % en acétone. Après concentration sous pression réduite, on obtient 1,94 g de 6-[3-(benzyloxy)-4-chlorophényl]-5-[2-(diphenylméthylidène)hydrazino]pyridine-2-carboxylate de méthyle sous forme d'huile. Rendement = 88 %

18.2. 6-[3-(benzyloxy)-4-chlorophényl]-5-(3,5-diméthyl-1H-pyrazol-1-yl)pyridine-2-carboxylate d'éthyle

Dans un tube à vis on introduit 600 mg (1,08 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-[2-(diphenylméthylidène)hydrazino]pyridine-2-carboxylate de méthyle, 378 mg (3,78 mmoles) de 2,4-pentanènone, 186 mg (1,08 mmoles) d'acide paratoluènesulfonique et 5 mL d'éthanol. Le mélange est chauffé à 120°C sous agitation pendant 48 h, refroidi puis concentré sous pression réduite. Le résidu est ensuite réparti dans 50 mL d'AcOEt et 50 mL d'une solution aqueuse saturée en NaHCO₃. La phase organique est séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient heptane/AcOEt de 0 à 50 % en AcOEt. Après concentration sous pression réduite, on obtient 235 mg de 6-[3-(benzyloxy)-4-chlorophényl]-5-(3,5-diméthyl-1H-pyrazol-1-yl)pyridine-2-carboxylate d'éthyle sous forme d'huile. Rendement = 47 %

30. Chlorhydrate d'acide 6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(3,5-diméthyl-1H-pyrazol-1-yl)pyridine-2-carboxylique

Selon la séquence débenzylation /O-alkylation / saponification décrite dans les exemples 4.6, 1.6 et 1.7 respectivement, on obtient à partir de 1 g (2,25 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-(3,5-diméthyl-1H-pyrazol-1-yl)pyridine-2-carboxylate d'éthyle, 460 mg de chlorhydrate d'acide 6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(3,5-diméthyl-1H-pyrazol-1-yl)pyridine-2-carboxylique.
Rendement = 43 %

18.4. Chlorhydrate d'acide 1-[[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(3,5-diméthyl-1H-pyrazol-1-yl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylique

Selon le procédé décrit dans l'exemple 9, le couplage peptidique effectué entre 460 mg (1 mmole) de chlorhydrate d'acide 6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(3,5-diméthyl-1H-pyrazol-1-yl)pyridine-2-carboxylique et 156 mg (1,09 mmoles) d'acide 2-amincyclohexane-2-carboxylique conduit à 270 mg de chlorhydrate d'acide 1-[[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(3,5-diméthyl-1H-pyrazol-1-yl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylique sous forme de poudre blanche. Rendement = 46 %

F(°C) = 202

M C_{29}H_{36}ClN_{2}O_{4} = 553 ; M+H = 554

15 RMN'H (ppm, d6-DMSO, 400 MHz) : 12,45 (s, 1H) ; 10,3 (s, 1H) ; 8,40 (s, 1H) ; 8,15 (s, 2H) ; 7,45 (d, 1H) ; 7,00 (m, 2H) ; 6,05 (s, 1H) ; 3,95 (t, 2H) ; 3,15 (m, 2H) ; 2,75 (d, 6H) ; 2,20 (s, 3H) ; 2,15 (m, 4H) ; 1,70 (s, 3H) ; 2,9-1,2 (m, 8H).

Exemple N°19 : Chlorhydrate d'acide 1-[[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-méthylphényl)pyrazin-2-yl]carbonyl]amino)cyclohexanecarboxylique (composé N°80)

19.1. 5-aminopyrazine-2-carbonitrile

Une suspension de 1,85 g (20,7 mmoles) de cyanure de cuivre et de 1 g (20,7 mmoles) de cyanure de sodium dans 20 ml de DMF est portée sous agitation à 135°C. A la solution obtenue sont ajoutés 3,6 g (20,7 mmoles) de 5-bromopyrazin-2-amine et la température de 135°C est maintenue pendant 18 h. On rajoute alors 2 équivalents de cyanure de sodium et de cyanure de cuivre et le chauffage est maintenu pendant encore 24 h. Après refroidissement, on ajoute 100 mL d'une solution aqueuse 0,3 N de cyanure de sodium, on agite le mélange 1 h à 40°C puis on le répartit dans 300 mL d'un mélange AcOEt / eau 1:1. Après lavage avec 2 x 100 mL d'eau, la phase organique est séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient cyclohexane/AcOEt de 0 à 100 % en AcOEt. Après concentration sous pression réduite, on obtient 1,24 g de 5-aminopyrazine-2-carbonitrile sous forme d'huile. Rendement = 50 %
19.2. 5-aminopyrazine-2-carboxylate de méthyle

Une solution de 2,24 g (18,65 mmoles) de 5-aminopyrazine-2-carbonitrile et de 9,45 mL (74,40 mmoles) d'étherate de trifluorure de bore dans 50 mL de méthanol est portée 2 h à reflux. Le mélange réactionnel est concentré sous pression réduite et le résidu obtenu est repris par 200 mL d'AcOEt et 10 mL d'une solution aqueuse saturée en NaHCO₃. La phase organique est séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un mélange cyclohexane/AcOEt 1:1. Après concentration sous pression réduite, on obtient 1,4 g de 5-aminopyrazine-2-carboxylate de méthyle sous forme d'huile. Rendement = 49 %

19.3. 5-amino-6-bromopyrazine-2-carboxylate de méthyle

A une solution de 1,4 g (9,14 mmoles) de 5-aminopyrazine-2-carboxylate de méthyle dans 10 mL d'acétone sont ajoutés 1,79 g (10,05 mmoles) de N-bromosuccinimide. Le mélange réactionnel est agité 2 h à 20°C puis réparti dans 100 mL d'un mélange AcOEt / eau 1:1. La phase organique est lavée avec 2x50 mL d'eau, séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient cyclohexane / AcOEt de 0 à 50 % en AcOEt. Après concentrations sous pression réduite, on obtient 1,66 g de 5-amino-6-bromopyrazine-2-carboxylate de méthyle sous forme de cire jaune. Rendement = 78 %

19.4. 5-amino-6-[3-(benzylxoy)-4-chlorophényl]pyrazine-2-carboxylate de méthyle

Une suspension de 137 mg (0,36 mmoles) de dichlorure de (bis-benzonitrile)-palladium II et de 183 mg (0,43 mmoles) de diphenylphosphinobutane dans 7 mL de toluène sous argon est agitée 30 min à température ambiante. On ajoute ensuite sous barbotage d'argon 1,66 g (7,15 mmoles) de 5-amino-6-bromopyrazine-2-carboxylate de méthyle, 1,97 g (7,51 mmoles) d'acide [3-(benzylxoy)-4-chlorophényl]boronique, 2,4 mL d'éthanol et 3,58 mL (7,15 mmoles) d'une solution aqueuse 2N de carbonate de sodium. Le milieu réactionnel est porté 5h30 à reflux puis réparti dans 100 mL d'un mélange eau/AcOEt 1:1. La phase organique est lavée avec 50 mL d'eau, séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient cyclohexane/AcOEt de 50 à 100 % d'AcOEt.
Après concentration sous pression réduite, on obtient 1,33 g de 5-amino-6-[3-(benzyloxy)-4-chlorophényl]pyrazine-2-carboxylate de méthyle sous forme de cire jaune.
Rendement = 50 %

19.5. 6-[3-(benzyloxy)-4-chlorophényl]-5-bromopyrazine-2-carboxylate de méthyle

A une solution de 1,28 g (3,46 mmoles) de 5-amino-6-[3-(benzyloxy)-4-chlorophényl]pyrazine-2-carboxylate de méthyle dans 10 mL d'acétonitrile anhydre refroidie à 0°C sous argon sont ajoutés goutte à goutte 0,82 mL (6,9 mmoles) de nitrite de tert-butyle. Après 2 h à 0°C, on ajoute 1,54 g de dibromure de cuivre et la suspension obtenue est agitée 1h30 à 65°C. Après refroidissement, le mélange réactionnel est réparti dans 100 mL d'un mélange AcOEt/eau 1:1. La phase organique est lavée avec 3 x 50 mL d'eau et 50 mL de saumure puis est séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient cyclohexane / AcOEt de 0 à 30 % en AcOEt. Après concentration sous pression réduite, on obtient 645 mg de 6-[3-(benzyloxy)-4-chlorophényl]-5-bromopyrazine-2-carboxylate de méthyle sous forme de cire jaune.
Rendement = 43 %

19.6. 6-[3-(benzyloxy)-4-chlorophényl]-5-(2-méthylphényl)pyrazine-2-carboxylate de méthyle

Selon le procédé décrit dans l'exemple 4.5, le couplage de Suzuki effectué entre 545 mg (1,26 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-bromopyrazine-2-carboxylate de méthyle et 205 mg (1,51 mmoles) d'acide 2-méthylphénylboronique conduit à 430 mg de 6-[3-(benzyloxy)-4-chlorophényl]-5-(2-méthylphényl)pyrazine-2-carboxylate de méthyle sous forme de cire.
Rendement = 76 %

19.7. Chlorhydrate d'acide 1-[[6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2-méthylphényl)pyrazin-2-yl]carbonyl]amino)cyclohexanecarboxylique

Selon la séquence débenzylation / O-alkylation / saponification / couplage peptidique décrite dans les exemples 4.6, 1.6, 1.7 et 9, on obtient à partir de 485 mg (1,09 mmoles) de 6-[3-(benzyloxy)-4-chlorophényl]-5-(2-méthylphényl)pyrazine-2-carboxylate de méthyle, 154 mg de chlorhydrate d'acide 1-[[6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2-méthylphényl)pyrazin-2-yl]carbonyl]amino)cyclohexanecarboxylique sous forme de poudre blanche.
Rendement = 20 %
F (°C) = 162
M C_{39}H_{36}ClN_{4}O_{4} = 550. ; M+H = 551
RMN^1H (ppm, d6-DMSO, 400 MHZ) : 10.40 (s, 1H) ; 9.15 (s, 1H) ; 8.40 (s, 1H) ; 7.40 (d, 1H) ; 7.30 (m, 5H) ; 7.10 (dd, 1H) ; 3.85 (t, 2H) ; 3.15 (m, 2H) ; 2.75 (d, 6H) ; 1.95 (s, 3H) ; 2.3-1.3 (m, 12H).

Exemple N°20 : Chlorhydrate d’acide 1-((3-amino-6-(4-chloro-3-[3-(diméthylamino)propoxy]phényl)-5-(2-méthylphényl)pyrazin-2-yl)[carboxyl]amino)cyclohexanecarboxylique (composé N°129)

20.1. 3-amino-6-chloro-5-(2-méthylphényl)pyrazine-2-carboxylate de méthyle

Dans un tube à vis, on introduit 5 g (22,5 mmoles) de 3-amino-5,6-dichloropyrazine-2-carboxylate de méthyle, 3,2 g (23,65 mmoles) d’acide 2-méthylphényl boronique dans 45 mL de toluène anhydre. Après solubilisation, on ajoute 34 mL (67,6 mmoles) d’une solution aqueuse 2N de carbonate de sodium et le mélange biphasique est dégazé 30 min par barbotage d’argon. On ajoute alors 1,3 g (1,13 mmoles) de Pd(PPh₃)₄ et le mélange réactionnel est agité vigoureusement à 110°C pendant 48 h. Après refroidissement, la solution est répartie dans 500 mL d’un mélange AcOEt/saumure 1:1 et la phase aqueuse est re-extraite par 4 x 50 mL d’AcOEt. Les phases organiques sont réunies, séchées sur Na₂SO₄ et concentrées sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient cyclohexane/AcOEt de 0 à 20 % en AcOEt. Après concentration sous pression réduite, on obtient 2 g de 3-amino-6-chloro-5-(2-méthylphényl)pyrazine-2-carboxylate de méthyle sous forme de cire jaune.
Rendement 50 %

20.2. 3-amino-6-[3-(benzyloxy)-4-chlorophényl]-5-(2-méthylphényl)pyrazine-2-carboxylate de méthyle

Selon le procédé décrit précédemment (exemple 20.1), le couplage de Suzuki effectué entre 1,7 g (6,12 mmoles) de 3-amino-6-chloro-5-(2-méthylphényl)pyrazine-2-carboxylate de méthyle et 3,2 g (12,24 mmoles) de 5-amino-6-bromopyrazine-2-carboxylate de méthyle, 1,97 g (7,51 mmoles) d’acide [3-(benzyloxy)-4-chlorophényl]boronique conduit à
2,7 g de 3-amino-6-[3-(benzyloxy)-4-chlorophényl]-5-(2-méthylphényl)pyrazine-2-carboxylate de méthyle sous forme de gomme.
Rendement = 80 %

20.3. Chlorhydrate d'acide 1-[[3-amino-6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2-méthylphényl)pyrazin-2-yl]carbonyl]amino)cyclohexanecarboxylique

Selon la séquence débenzylation / O-alkylation / saponification / coupage peptidique décrite dans les exemples 4.6, 1.6, 1.7 et 9, on obtient à partir de 263 mg (0,57 mmoles) de 3-amino-6-[3-(benzyloxy)-4-chlorophényl]-5-(2-méthylphényl)pyrazine-2-carboxylate de méthyle, 40 mg de chlorhydrate d'acide 1-[[3-amino-6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2-méthylphényl)pyrazin-2-yl]carbonyl]amino)cyclohexanecarboxylique sous forme de poudre blanche.
Rendement = 12,5 %

F(°C) = 138
M C₃₀H₃₆ClN₅O₄ = 565 ; M+H = 566
RMN¹H (ppm, d₆-DMSO, 400 MHz) : 12,40 (s, 1H) ; 10,1 (s, 1H) ; 8,30 (s, 1H) ; 7,55 (s, 2H) ; 7,30 (q, 1H) ; 7,20 (m, 4H) ; 7,05 (s, 1H) ; 6,85 (d, 1H) ; 3,80 (t, 2H) ; 3,10 (m, 2H) ; 2,70 (s, 6H) ; 2,15 (d, 2H) ; 2,05 (m, 2H) ; 1,95 (s, 3H) ; 1,75 (t, 2H) ; 1,55 (m, 3H) ; 1,40 (m, 2H) ; 1,25 (m, 1H).

Exemple N°21 : Chlorhydrate d'acide 1-[[6-[4-chloro-3-[3-(diméthylamino)propoxy]phényl]-5-(2-chloro-5-éthoxyphényl)pyridin-2-yl]carbonyl]amino)cyclohexanecarboxylique
(composé N°105)

21.1. 4-chloro-3-iodophénol

Selon la séquence réduction / réaction de Sandmeyer décrite dans les exemples 12.4 et 12.1 respectivement, on obtient à partir de 25 g (144 mmoles) de 4-chloro-3-nitrophénol 24 g de 4-chloro-3-iodophénol sous forme d'huile.
Rendement = 66 %

21.2. 1-chloro-2-iodo-4-éthoxybenzène

A une solution de 2,45 g (9,6 mmoles) de 4-chloro-3-iodophénol dans 30 mL de DMF sont ajoutés 2 g (14,5 mmoles) de K₂CO₃ et 1,16 mL (14,5 mmoles) de iodoéthane. Le milieu réactionnel est chauffé à 50°C sous agitation pendant 3 h puis réparti dans 200 mL
d'un mélange éther/eau 1:1. La phase organique est lavée avec 3x50 mL d'eau puis séchée sur Na₂SO₄ et concentrée sous pression réduite. On obtient 2,38 g de 1-chloro-2-iodo-4-éthoxybenzène sous forme d'huile.

Rendement = 87 %

21.3. Acide (2-chloro-5-éthoxyphényl) boronique

A une solution de 2,38 g (8,4 mmoles) de 1-chloro-2-iodo-4-éthoxybenzène dans 50 mL de THF anhydre refroidie sous argon à -78°C, sont ajoutés goutte à goutte 5,5 mL (8,8 mmoles) d'une solution 1,6 N de butyllithium dans l'hexane pendant 30 min. Après 2 h à -70°C, on ajoute 1,74 g (9,2 mmoles) de borate de triisopropyle et le milieu réactionnel est agité 3 h à température ambiante puis on réparti dans 200 mL d'un mélange AcOEt/HCl aq 5N 1:1. La phase organique est lavée avec 50 mL d'eau, séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient DCM/méthanol de 0 à 10 % en méthanol. Après concentration sous pression réduite, on obtient 990 mg d'acide (2-chloro-5-éthoxyphényl) boronique, sous forme d'huile.

Rendement = 59 %

21.4. 5-(2-chloro-5-éthoxyphényl)-6-{(4-méthoxybenzyl)oxy}phényl)pyridine-2-carboxylate de méthyle

Selon le procédé décrit dans l'exemple 4.5, la réaction de Suzuki effectuée entre 452 mg (2,26 mmoles) d'acide (2-chloro-5-éthoxyphényl) boronique et 1 g (1,88 mmoles) de 6-{4-chloro-3-{(4-méthoxybenzyl)oxy}phényl}-5-([(trifluorométhyl)sulfonyle]oxy)pyridine-2-carboxylate de méthyle (obtenu en 3 étapes à partir de 1-chloro-4-iodo-2-{(4-méthoxybenzyl)oxy}benzène selon la séquence borylation / couplage de Suzuki / triflate décrite dans les exemples 4.2, 4.3 et 4.4 respectivement) conduit à 700 mg de 5-(2-chloro-5-éthoxyphényl)-6-{4-chloro-3-{(4-méthoxybenzyl)oxy}phényl)pyridine-2-carboxylate de méthyle sous forme d'huile.

Rendement = 70 %

21.5. 5-(2-chloro-5-éthoxyphényl)-6-{(4-chloro-3-hydroxyphényl)pyridine-2-carboxylate de méthyle

A une solution de 700 mg (1,3 mmoles) de 5-(2-chloro-5-éthoxyphényl)-6-{4-chloro-3-{(4-méthoxybenzyl)oxy}phényl)pyridine-2-carboxylate de méthyle dans 10 mL de DCM agitée...
à 0°C sont ajoutés 1 mL (13 mmoles) d’acide trifluoroacétique. Le mélange réactionnel est agité 2 h à 20°C puis concentré sous pression réduite. Le résidu est repris par 50 mL de DCM et lavé avec 50 mL d’une solution aqueuse saturée en NaHCO₃. La phase organique est séchée sur Na₂SO₄ et concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur une colonne de gel de silice en éluant avec un gradient cyclohexane / AcOEt de 0 à 30 % en AcOEt. Après concentration sous pression réduite, on obtient 524 mg de 5-(2-chloro-5-éthoxyphényl)-6-(4-chloro-3-hydroxyphényl)pyridine-2-carboxylate de méthyle sous forme d’huile.
Rendement = 96 %

21.6. Chlorhydrate d’acide 1-{[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-chloro-5-éthoxyphényl)pyridin-2-yl]carbonyle}amino)cyclohexanecarboxylique

Selon la séquence O-alkylation / saponification / couplage peptidique décrite dans les exemples 1.6, 1.7 et 9, on obtient à partir de 524 mg (1,25 mmoles) de 6-{4-chloro-3-[4-méthoxybenzyl]oxy}phényl)-5-{[(trifluorométhyl)sulfonyl]oxy}pyridine-2-carboxylate de méthyle, 125 mg de chlorhydrate d’acide 1-{[6-{4-chloro-3-[3-(diméthylamino)propoxy]phényl}-5-(2-chloro-5-éthoxyphényl)pyridin-2-yl]carbonyle}amino)cyclohexanecarboxylique sous forme de poudre blanche.

Rendement = 18 %

F(°C) = 160
M C₃₂H₃₇Cl₂N₃O₅ = 613 ; M+H = 614
RMN¹H (ppm, d6-DMSO, 400 MHz) : 8,45 (s, 1H) ; 8,10 (d, 1H) ; 8,00 (d, 1H) ; 7,40 (d, 2H) ; 7,35 (s, 1H) ; 7,00 (m, 3H) ; 4,05 (m, 2H) ; 3,95 (m, 2H) ; 3,20 (m, 2H) ; 2,80 (s, 6H) ; 2,20 (d, 2H) ; 2,15 (m, 2H) ; 1,85 (t, 2H) ; 1,65 (m, 3H) ; 1,45 (m, 2H) ; 1,35 (m, 1H) ; 1,30 (t, 3H).

Le tableau qui suit illustre les structures chimiques et les propriétés physiques de quelques exemples de composés selon l’invention ;
TABLEAU DES COMPOSES

![Chemical Structure](image)

Certains des composés présentés ci-dessous sont sous forme de chlorhydrate.

<table>
<thead>
<tr>
<th>N°</th>
<th>A</th>
<th>B</th>
<th>R₁</th>
<th>R₂</th>
<th>Z</th>
<th>Point de fusion (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MoO₂(CH₃)₃</td>
<td>Y</td>
<td>(CH₃)₃</td>
<td>0</td>
<td>(CH₃)₃</td>
<td>175</td>
</tr>
<tr>
<td>2</td>
<td>MoO₂(CH₃)₃</td>
<td>X</td>
<td>(CH₃)₃</td>
<td>NMe₂</td>
<td></td>
<td>> 200</td>
</tr>
</tbody>
</table>

U, H, N, Cl
<table>
<thead>
<tr>
<th>Point de fusion (°C)</th>
<th>200</th>
<th>200</th>
<th>164</th>
<th>202</th>
<th>166</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point de fusion (°C)</th>
<th>200</th>
<th>200</th>
<th>164</th>
<th>202</th>
<th>166</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Y</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>X</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>W</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>R₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point de fusion (°C)</th>
<th>200</th>
<th>200</th>
<th>164</th>
<th>202</th>
<th>166</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| R₁ | | | | | | |
| R₂ | | | | | | |
| B | | | | | | |
| Z | | | | | | |
| A | | | | | | |</p>
<table>
<thead>
<tr>
<th>Nº</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>NMe₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>NMe₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>NMe₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>NMe₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>NMe₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point de fusion (°C)</th>
<th>>200</th>
<th>>200</th>
<th>>200</th>
<th>>200</th>
<th>>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Y</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>X</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>W</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>R₁</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMe₂</td>
<td>H</td>
<td>0</td>
</tr>
<tr>
<td>(CH₃)₂</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NMe₂</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>(CH₃)₂</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>NMe₂</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>(CH₃)₂</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

CA 02659928 2009-02-03
PCT/FR2007/001357
<table>
<thead>
<tr>
<th>N°</th>
<th>R_1</th>
<th>R_2</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(CH_2)_4</td>
<td>NMe_2</td>
<td>MeO _ phenyle</td>
<td>(CH_2)_8</td>
</tr>
<tr>
<td>16</td>
<td>(CH_2)_4</td>
<td>NMe_2</td>
<td>MeO _ phenyle</td>
<td>(CH_2)_8</td>
</tr>
<tr>
<td>17</td>
<td>(CH_2)_4</td>
<td>NMe_2</td>
<td>MeO _ phenyle</td>
<td>(CH_2)_8</td>
</tr>
<tr>
<td>18</td>
<td>(CH_2)_4</td>
<td>NMe_2</td>
<td>MeO _ phenyle</td>
<td>(CH_2)_8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point de fusion (°C)</th>
<th>215</th>
<th>231</th>
<th>184</th>
<th>224</th>
<th>217</th>
<th>219</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Y</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>X</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>W</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
</tr>
</tbody>
</table>

Note: The table represents various chemical structures and their respective points of fusion.
<table>
<thead>
<tr>
<th>N°</th>
<th>R_1</th>
<th>R_2</th>
<th>Point de fusion (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>(CH_3)_2</td>
<td>NMe_2</td>
<td>192</td>
</tr>
<tr>
<td>22</td>
<td>(CH_3)_2</td>
<td>NMe_2</td>
<td>199</td>
</tr>
<tr>
<td>23</td>
<td>(CH_3)_2</td>
<td>NMe_2</td>
<td>189</td>
</tr>
<tr>
<td>24</td>
<td>(CH_3)_2</td>
<td>NEt_2</td>
<td>197</td>
</tr>
<tr>
<td>25</td>
<td>(CH_3)_2</td>
<td>NMe_2</td>
<td>219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(CH_3)_2</td>
<td>21</td>
</tr>
<tr>
<td>0</td>
<td>(CH_3)_2</td>
<td>22</td>
</tr>
<tr>
<td>0</td>
<td>(CH_3)_2</td>
<td>23</td>
</tr>
<tr>
<td>0</td>
<td>(CH_3)_2</td>
<td>24</td>
</tr>
<tr>
<td>0</td>
<td>(CH_3)_2</td>
<td>25</td>
</tr>
<tr>
<td>0</td>
<td>(CH_3)_2</td>
<td>26</td>
</tr>
<tr>
<td>R_2</td>
<td>R_1</td>
<td>Z</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>Point de</td>
<td>R₁</td>
<td>R₂</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>fusion (°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>CH</td>
<td>H</td>
</tr>
<tr>
<td>V</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>W</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>X</td>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
</tr>
<tr>
<td>A</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>NMe₂</td>
<td>NMe₂</td>
</tr>
<tr>
<td>C</td>
<td>(CH₃)</td>
<td>(CH₃)</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point de fusion (°C)</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>U</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Y</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>X</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>W</td>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>R_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>(CH_3)_2</td>
<td>(CH_3)_2</td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>N°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>R₁</td>
<td>R₂</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>53</td>
<td>CH₄CH(OH)CH₂</td>
<td>NMMe₂</td>
</tr>
<tr>
<td>54</td>
<td>CH₂H₂</td>
<td>NMMe₂</td>
</tr>
<tr>
<td>55</td>
<td>CH₂H₂</td>
<td>NMMe₂</td>
</tr>
<tr>
<td>56</td>
<td>CH₂H₂</td>
<td>NMMe₂</td>
</tr>
<tr>
<td>57</td>
<td>CH₂H₂</td>
<td>NMMe₂</td>
</tr>
<tr>
<td>58</td>
<td>CH₂H₂</td>
<td>NMMe₂</td>
</tr>
</tbody>
</table>

N°: Numéro d'identification
R₁: Origine du premier atome
R₂: Origine du second atome
Point de fusion: Température de fusion
B: Localisation de l'atome
Z: Structure de l'atome
<table>
<thead>
<tr>
<th>N°</th>
<th>A</th>
<th>B</th>
<th>Z</th>
<th>U</th>
<th>Y</th>
<th>X</th>
<th>W</th>
<th>p</th>
<th>R₁</th>
<th>R₂</th>
<th>CH(Me)₂</th>
<th>CH₂CH(OH)</th>
<th>CH₃CH₂</th>
<th>CH₃CH₂</th>
<th>CH₃CH₂</th>
<th>CH₃CH₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td></td>
<td>(CH₂)₂</td>
<td>NMe₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>(CH₂)₂</td>
<td>NMe₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>(CH₂)₂</td>
<td>NMe₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>(CH₂)₂</td>
<td>NMe₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>(CH₂)₂</td>
<td>NMe₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>(CH₂)₂</td>
<td>NMe₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>(CH₂)₂</td>
<td>NMe₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point de fusion (°C)</td>
<td>237</td>
<td>156</td>
<td>144</td>
<td>196</td>
<td>157</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td>R₂</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>R₁</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

The compounds are represented by their chemical structures.
<table>
<thead>
<tr>
<th>Point de fusion (°C)</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>230</td>
<td>202</td>
<td>160</td>
<td>200</td>
<td>158</td>
<td>164</td>
</tr>
<tr>
<td>R₁</td>
<td>H</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>R₂</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>CH₂CH₃</td>
<td>Cl</td>
</tr>
<tr>
<td>B</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>Z</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
</tr>
<tr>
<td>A</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
</tr>
<tr>
<td>N°</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td>162</td>
</tr>
</tbody>
</table>

Diagram:

- **A:** Chemical structures for compounds 74 to 80.

Note: The table and diagram are related to the chemical properties and structures of the compounds listed.
<table>
<thead>
<tr>
<th>Point de fusion (°C)</th>
<th>U</th>
<th>H</th>
<th>136</th>
<th>H</th>
<th>140</th>
<th>H</th>
<th>175</th>
<th>H</th>
<th>169</th>
<th>H</th>
<th>146</th>
<th>H</th>
<th>163</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>CH</td>
</tr>
<tr>
<td>X</td>
<td>N</td>
</tr>
<tr>
<td>W</td>
<td>Cl</td>
</tr>
<tr>
<td>R₂</td>
<td>H</td>
</tr>
<tr>
<td>R₁</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>N°</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table contains chemical structures and point of fusion values.

Chemical Structures:
- 81: [Chemical Structure Image]
- 82: [Chemical Structure Image]
- 83: [Chemical Structure Image]
- 84: [Chemical Structure Image]
- 85: [Chemical Structure Image]
- 86: [Chemical Structure Image]
<p>| Point de | R₁ | R₂ | 117 | 148 | 186 | 152 | 165 | 170 | 134 |</p>
<table>
<thead>
<tr>
<th>de fusion (°C)</th>
<th>U</th>
<th>Y</th>
<th>X</th>
<th>W</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>H</td>
<td>CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td></td>
<td></td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(CH₃)₂</td>
<td>(Me)₃</td>
<td>(Me)₃</td>
<td>(CH₃)₂</td>
<td>(Me)₃</td>
<td>(CH₃)₂</td>
</tr>
<tr>
<td>N°</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point de fusion (°C)</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>168</td>
<td>147</td>
<td>154</td>
<td>149</td>
<td>140</td>
<td>196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_1</td>
<td>R_2</td>
<td>P</td>
<td>B</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>U</td>
<td>157</td>
<td></td>
<td></td>
<td>H</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>CH</td>
<td></td>
<td></td>
<td>CH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td>Cl</td>
<td>Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>(CH$_2$)$_2$</td>
<td>(CH$_3$)$_2$</td>
<td>(CH$_2$)$_2$</td>
<td>(CH$_3$)$_2$</td>
<td>(CH$_2$)$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table contains chemical structures and their corresponding numbers.
<table>
<thead>
<tr>
<th>Point de fusion (°C)</th>
<th>R1</th>
<th>R2</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Y</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>X</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>W</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NMMe_2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NMMe_2</td>
<td>(CH_3)_3</td>
</tr>
<tr>
<td>3</td>
<td>NMMe_2</td>
<td>(CH_3)_3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NMMe_2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NMMe_2</td>
<td>(CH_3)_3</td>
</tr>
<tr>
<td>3</td>
<td>NMMe_2</td>
<td>(CH_3)_3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N°</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>NMMe_2</td>
<td>0</td>
</tr>
<tr>
<td>107</td>
<td>NMMe_2</td>
<td>(CH_3)_3</td>
</tr>
<tr>
<td>108</td>
<td>NMMe_2</td>
<td>(CH_3)_3</td>
</tr>
<tr>
<td>109</td>
<td>NMMe_2</td>
<td>(CH_3)_3</td>
</tr>
<tr>
<td>Point de fusion (°C)</td>
<td>176</td>
<td>185</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>U</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Y</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>X</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>W</td>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>R<sub>1</sub></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>NMe<sub>2</sub></td>
<td>NMe<sub>2</sub></td>
</tr>
<tr>
<td>Z</td>
<td>(CH<sub>2</sub>)<sub>3</sub></td>
<td>(CH<sub>2</sub>)<sub>3</sub></td>
</tr>
<tr>
<td>N°</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>N°</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td>Point de fusion (°C)</td>
<td>U</td>
<td>Y</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>CH</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>CH</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>N</td>
</tr>
<tr>
<td>144</td>
<td>134</td>
<td>135</td>
</tr>
<tr>
<td>(CH<sub>2</sub>)<sub>3</sub></td>
<td>(CH<sub>2</sub>)<sub>3</sub></td>
<td>(CH<sub>2</sub>)<sub>3</sub></td>
</tr>
<tr>
<td>121</td>
<td>122</td>
<td>123</td>
</tr>
<tr>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
</tr>
</tbody>
</table>

N°
<table>
<thead>
<tr>
<th>B</th>
<th>Z</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R₁</td>
<td>R₂</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>R₂</td>
</tr>
<tr>
<td></td>
<td>N°</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Z</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>R₁</td>
<td>R₂</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>R₂</td>
</tr>
<tr>
<td></td>
<td>N°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td></td>
<td>NMe₂</td>
<td>NMe₂</td>
</tr>
<tr>
<td></td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td></td>
<td>NMe₂</td>
<td>NMe₂</td>
</tr>
<tr>
<td></td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td></td>
<td>NMe₂</td>
<td>NMe₂</td>
</tr>
<tr>
<td></td>
<td>(CH₂)₃</td>
<td>(CH₂)₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>126</td>
<td>127</td>
</tr>
<tr>
<td>U</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>X</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>W</td>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>Point de fusion (°C)</td>
<td>U</td>
<td>Y</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>CH</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>CH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>p</th>
<th>(CH₃)₂</th>
<th>(CH₃)₂</th>
<th>CH₂(CHF)CH₂</th>
<th>(CH₃)₂</th>
<th>(CH₃)₂</th>
<th>(CH₃)₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
<td>NMe₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
<th>N°</th>
<th>131</th>
<th>132</th>
<th>133</th>
<th>134</th>
<th>135</th>
<th>136</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Compound A: Structure 1
- Compound B: Structure 2
- Compound C: Structure 3
- Compound D: Structure 4
- Compound E: Structure 5
- Compound F: Structure 6
- Compound G: Structure 7
- Compound H: Structure 8

Diagram:
- Structure 1: Compound A
- Structure 2: Compound B
- Structure 3: Compound C
- Structure 4: Compound D
- Structure 5: Compound E
- Structure 6: Compound F
- Structure 7: Compound G
- Structure 8: Compound H
TABLEAU DES COMPOSES

TABLEAU II

<table>
<thead>
<tr>
<th>N°</th>
<th>A</th>
<th>Z</th>
<th>B</th>
<th>Point de fusion (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>Me</td>
<td>(CH₃)₂</td>
<td>NMe₂</td>
<td>170</td>
</tr>
<tr>
<td>138</td>
<td>Me</td>
<td>(CH₃)₂</td>
<td>NMe₂</td>
<td>166</td>
</tr>
</tbody>
</table>

R₆ représente

(Ibis)
<table>
<thead>
<tr>
<th>Z</th>
<th>A</th>
<th>B</th>
<th>Point de fusion (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nomé</td>
<td>180-190</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NMe₂</td>
<td>190-200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>148</td>
</tr>
<tr>
<td>(CH₃)₂</td>
<td>139</td>
<td>Me</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>Me</td>
<td></td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>142</td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>143</td>
<td>Me</td>
<td></td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>Me</td>
<td></td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>Me</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>Me</td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>Rᵦ</td>
<td>Point de fusion (°C)</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>NE₂</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>(CH₃)₂</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>NMe₂</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>NMe₂</td>
<td>167-170</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>NMe₂</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>NMeEt</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>NE₂</td>
<td>162</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Me</td>
</tr>
<tr>
<td>148</td>
<td>Me</td>
</tr>
<tr>
<td>149</td>
<td>Me</td>
</tr>
<tr>
<td>150</td>
<td>Me</td>
</tr>
<tr>
<td>151</td>
<td>Me</td>
</tr>
<tr>
<td>152</td>
<td>Me</td>
</tr>
<tr>
<td>153</td>
<td>Me</td>
</tr>
<tr>
<td>N°</td>
<td>Z</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>154</td>
<td>(CH<sub>3</sub>)<sub>3</sub>NMe<sub>2</sub></td>
</tr>
<tr>
<td>155</td>
<td>(CH<sub>3</sub>)<sub>3</sub>NMe<sub>2</sub></td>
</tr>
<tr>
<td>156</td>
<td>(CH<sub>3</sub>)<sub>3</sub>NMe<sub>2</sub></td>
</tr>
<tr>
<td>157</td>
<td>(CH<sub>3</sub>)<sub>3</sub>NMe<sub>2</sub></td>
</tr>
<tr>
<td>158</td>
<td>(CH<sub>3</sub>)<sub>3</sub>NMe<sub>2</sub></td>
</tr>
<tr>
<td>159</td>
<td>(CH<sub>3</sub>)<sub>3</sub>NMe<sub>2</sub></td>
</tr>
<tr>
<td>160</td>
<td>(CH<sub>3</sub>)<sub>3</sub>NMe<sub>2</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>6</th>
<th>Me</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>6</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>162</td>
<td>6</td>
<td>Me</td>
<td>Me</td>
</tr>
<tr>
<td>163</td>
<td>6</td>
<td>Me</td>
<td>Me</td>
</tr>
<tr>
<td>164</td>
<td>6</td>
<td>Me</td>
<td>Me</td>
</tr>
</tbody>
</table>

Diagramme de structures de molécules.
Les composés selon l'invention ont fait l'objet d'essais pharmacologiques en vue de déterminer des propriétés des composés de l'invention, avec en particulier :

- un test in vitro de mobilisation calcique intracellulaire (test FlipR) mettant en jeu des antagonistes à l'Urotensine II (les composés de la présente invention) du récepteur GPR14 humain,
- un test fonctionnel de contraction d'anneaux aortiques de rat mettant également en jeu des antagonistes à l'Urotensine II représentés par les composés de la présente invention.

Ces deux tests sont décrits ci-dessous :

1. Protocole FlipR (Fluorometric Imaging Plate Reader)

1.1 Objectif

L'objectif est de mesurer l'activation du Récepteur GPR14 par l'Urotensine II humaine.

1.2. Principe du Test

Le GPR14 est un récepteur à 7 domaines transmembranaires couplé Gq. Son activation par un ligand spécifique provoque une augmentation de Ca$^{2+}$ dans la cellule via la voie PLC (Phospholipase C), IP3 (Inositol-1,4,5-triphosphate) DAG (Diacylglycerol). L'augmentation de Ca$^{2+}$ dans la cellule est mesurée à l'aide de la sonde perméante Fluo4AM (sonde mono excitation, mono émission) qui se lie au Ca$^{2+}$ libre et émet à 520 nm. La sonde libre est non fluorescente en absence de Ca$^{2+}$.

1.3. Protocole

Plan de l'expérience

1) Ensemencement des cellules à J-1 (Jour -1) ou J-2
2) Incorporation/charge (J0) de la sonde (1 h)
3) Ajout des produits au FlipR et mesure
4) Ajout du ligand au FlipR et mesure en présence des produits
5) Traitement et export des données

Cellules CHO GPR14
Les cellules sont cultivées en milieu complet en Flask T225. Pour les expériences, les cellules sont repiquées dans 200µl de milieu de culture en plaques 96 puits noires à fond transparent à raison de 60.000 cellules/puits pour une utilisation à J+1 ou 40.000 cellules/puits pour une utilisation à J+2.

Incorporation du Fluo 4 M

Le Fluo-4AM est préparé à 20 mM puis aliquoté (50 µl) et conservé à -20°C à l'abri de la lumière. Une solution d'acide pluronique à 200mg/ml dans le DMSO est également préparée (elle se conserve une semaine à température ambiante à l'abri de la lumière).

Les cellules sont chargées avec le mélange Fluo-4AM + acide pluronique (aliquot 50µl + 50µl d'acide pluronique) dilués au1/100 dans le tampon de mesure.

Après un lavage des puits par 150 µl de tampon de mesure (cf annexe), les cellules sont ensuite chargées de la manière suivante :
- répartition de 100µl de tampon de mesure dans chaque puits
- addition de 10µl du mélange Fluo-4AM + acide pluronique dilué au 1/100.

Les cellules sont incubées 1 h à 37°C à l'abri de la lumière, dans un incubateur en présence de 5% de CO₂.

Les cellules sont ensuite lavées 3 fois par 150 µl de tampon de mesure pour éliminer l'excès de sonde. Un volume de 150 µl de tampon est ajouté dans chaque puits en fin de lavage.

Après une incubation des plaques 20 min à température ambiante à l'abri de la lumière, celles-ci sont placées dans le FlipR en vue de la mesure de la fluorescence.

Le niveau d'incorporation de base du Fluo-4 est vérifié pour chaque plaque (sd < 10%) avant la première injection.

Après une stabilisation du signal de base, les composés inhibiteurs du GPR14 sont injectés par le FlipR sous un volume de 50 µl à partir d'une plaque de dilution effectuée au Biomek 2000 en tampon de mesure. L'Urotensine II (3 nM final, concentration égale à la CE₅₀) est rajoutée sous un volume de 50 µl par le FlipR sur les cellules à partir d'une plaque stock à 15 nM diluée dans le tampon de mesure.
L'enregistrement des données s'effectue en continu pendant toute la durée de l'expérience.

1.4. Analyse des données

Pour chaque plaque, la fluorescence de base avant l'injection des composés est normalisée par la fonction « spatial uniformity correction » du FlipR. Les valeurs de fluorescence mesurées juste avant l'injection de l'Urotensine II (min) ainsi que celles de la fluorescence mesurée au pic de l'effet de l'Urotensine II (max) sont exportées sous Excel. Dans chaque plaque, une série de puits est traitée par l'Urotensine seule en l'absence de composé inhibiteur. Les valeurs de fluorescence min et max pour ces puits sont moyennées et permettent de définir le 100 % de l'effet de l'Urotensine II.

Les pourcentages d'inhibition calculés pour chaque concentration d'inhibiteur sont calculés de la manière suivante :

- pour chaque puits Uro II (Urotensine II) + inhibiteur, calcul de la valeur delta produit = max – min
- pour les puits Uro II seule, calcul de la valeur delta Uroll (moyenne max – moyenne min)

Le pourcentage d'inhibition pour chaque concentration de produit est calculé comme décrit ci-dessous :

\[\text{Inhibition (\%)} = 100 \times \left(\text{delta Uro II} - \text{delta produit} \right) / \text{delta Uroll} \]

1.5. Annexe

| Composition du tampon de mesure (dans l'eau déminéralisée à préparer extemporanément) |
|---|----------------|----------------|
| HBSS | 50 mL | 100 mL | 200 mL |
| MgSO₄ 19,72 g/L | 5 mL | 10 mL | 20 mL |
| Hépes | 2,38 g | 4,76 g | 9,52 g |
| Na₂CO₃ 35 g/L | 5 mL | 10 mL | 20 mL |
| CaCl₂ 14,7 g/L | 5 mL | 10 mL | 20 mL |
| BSA 10% | 50 mL | 100 mL | 200 mL |

HBSS = Hanks' Balanced Salt Solution
BSA = Bovine Serum Albumine
Les différentes solutions salines peuvent être conservées en stock 2 mois à 4°C.

Ajuster le volume H$_2$O et ajouter le probenecid dissout dans la soude 1 N

| + Probenecid | 0,355 g dans 5 mL de NaOH 1N | 0,71 g dans 10 mL de NaOH 1N | 1,42 g dans 20 mL NaOH 1N |

Vérifier le PH 7.4.

1.6. Matériel

10	Urotensine II humaine (Bachem H-4768)
15	Fluo-4AM (Molecular Probes F14202 5 x 1mg)
20	Probenecid (Sigma P8761 100g)
20	Acide Pluronique (Molecular Probes P6867)
20	HBSS 10x (Gibco 14185-045)
20	HEPES (acide) (Sigma H3375)
20	Sodium carbonate (Sigma S7795) Na$_2$CO$_3$
20	Magnesium sulfate (Sigma M7774) MgSO$_4$
20	Calcium chlorure (Sigma C5080) CaCl$_2$
20	Pointes noires (Molecular Devices 9000-0549)
20	Plaques noires 96 puits (Beckton Dickinson 356640)
20	DMSO (Sigma D 5879)

1.7. Résultats

Les composés testés ont un IC50 dans le test FlipR inférieur à 10000 nM. Certains de ces composés ont un IC50 dans le test FlipR inférieur à 100 nM. À titre d'exemples, les composés n° 18, 34, 37, 58, 61, 65, 66, 67, 70, 71, 75, 79, 120, 123, 129 du tableau présentent des CI50 de 19, 25, 72, 28, 9, 32, 4, 2, 13, 32, 24, 21, 31, 16, 4, 2 et 15 nM, respectivement.
2. Contraction Aorte Rat

2.1. Protocole.

Des rats mâles Sprague-Dawley (400-500 g; C. River, France) sont anesthésiés avec du pentobarbital sodique à 6% (Ceva Santé Animale) par injection intrapéritonéale (0,4-0,5 ml) puis euthanasiés par exsanguination. Les aortes prélevées, nettoyées et débarrassées de l’endothélium sont découpées en 4 anneaux de 0,2-0,3 cm environ. Chaque fragment est placé dans une cuve à organes isolés contenant 20 mL d’une solution de Krebs de composition suivante (mM): NaCl 118; KCl 4,7; MgCl₂ 1,2; CaCl₂ 2,6; NaHCO₃ 25; glucose 11,1; (pH = 7,4).

Le tissu, maintenu à 37° et aéré par un courant de carbogène (95% O₂-5% CO₂), est relié à un capteur isométrique Grass FT03 sous une tension basale de 2 g, et connecté à un amplificateur Gould série 6600 permettant l’enregistrement des variations tensionnelles.

L’acquisition des données se fait automatiquement sur un PC Compaq hp grâce au logiciel IOX (version 2.2) de la société Emka.

Après 60 min de stabilisation, la viabilité de la préparation est testée par une préstimulation avec 60 mM de KCl. Cette contraction est répétée une deuxième fois et la tension développée servira de référence (100 %) pour normaliser la réponse à l’Urotensine II.

La courbe concentration-réponse contractile à l’Urotensine II est alors construite de façon cumulative jusqu’à l’obtention d’une réponse maximale.

Une seule courbe concentration-réponse est effectuée du fait des effets de désensibilisation induits par l’Urotensine II.

Les antagonistes ou le véhicule (DMSO 0,15 % maximum) sont ajoutés dans la cuve 30 min avant l’agoniste.

2.2. Composé

L’urotensine II humaine provient de chez Bachem Ltd (UK) et est dissoute dans 0,1 % de BSA.

2.3. Analyse des données

Les réponses sont exprimées en % de la contraction maximale observée avec KCl. Les résultats représentent la moyenne +/- sem des réponses individuelles. N correspond au nombre d’animaux par lot.
L'analyse des courbes sigmoïdes en utilisant le logiciel Everstat (De Lean A, Munson PJ, Rodbard D., Am J Physiol 1978 ;235(2) :E97-102.), a permis de déterminer les CE_{50} (concentration produisant 50% de la réponse maximale) et les E_{max} (effet maximum).

Si plusieurs concentrations d'antagoniste sont testées, le pA2 (limites de confiance) est calculé par la méthode de Schild plot (Arunlakshana O and Schild HO, Br J Pharmacol, 1959;14:48-58).

2.4. Résultats

Les composés testés ont un pKb compris entre 5,5 et 8,15. A titre d'exemples, les composés n° 18, 34, 37, 58, 61, 65, 66, 67, 70, 71, 75, 79, 120, 123, 129 du tableau présentent un pKb de 6,5 ; 7,1 ; 7,5 ; 6,6 ; 7,1 ; 6,5 ; 6,7 ; 6,2 ; 6,3 ; 6,6 ; 6,8 ; 7,1 ; 6,5 ; 6,8 respectivement.

Les composés selon l'invention peuvent donc être utilisés pour la préparation de médicaments, en particulier de médicaments inhibiteurs des récepteurs de l'Urotensine II.

Ainsi, selon un autre de ses aspects, l'invention a pour objet des médicaments qui comprennent un composé de formule (I), ou un sel d'addition de ce dernier à un acide pharmaceutiquement acceptable du composé de formule (I).

Ces médicaments trouvent leur emploi en thérapeutique, notamment dans le traitement et/ou la prévention de l'insuffisance cardiaque congestive, de l'ischémie cardiaque, de l'infarctus du myocarde, de l'hypertrophie et la fibrose cardiaque, des maladies coronaires et de l'athérosclérose, de l'hypertension artérielle systématique, de l'hypertension pulmonaire, de la resténose post angioplastie, des insuffisances rénales et plus particulièrement aigüe et chronique d'origine diabétique et/ou hypertensive, du diabète, de l'inflammation en général, de la fibrose en général et des anévrismes.
Ces médicaments trouvent également leur emploi en thérapeutique, dans le traitement et/ou la prévention des désordres du système nerveux central, incluant notamment les maladies neurodégénératives, les accidents vasculaires cérébraux, le stress, l’anxiété, l’agressivité, la dépression, la schizophrénie ou encore des maladies du sommeil.

Des médicaments comprenant des composés antagonistes de l’Urotensine II tels que les composés selon l’invention trouvent également leur emploi en thérapeutique, dans le traitement et/ou la prévention des vomissements.

Ces médicaments trouvent également leur emploi en thérapeutique dans le traitement de certains cancers.

Ces médicaments trouvent également leur emploi en thérapeutique, dans le traitement et/ou la prévention de l’asthme et des maladies respiratoires.

Selon un autre de ses aspects, la présente invention concerne des compositions pharmaceutiques comprenant, en tant que principe actif, un composé selon l’invention. Ces compositions pharmaceutiques contiennent une dose efficace d’au moins un composé selon l’invention, ou un sel pharmaceutiquement acceptable dudit composé, ainsi qu’au moins un excipient pharmaceutiquement acceptable.

Lesdits excipients sont choisis selon la forme pharmaceutique et le mode d’administration souhaité, parmi les excipients habituels qui sont connus de l’homme du métier.

Dans les compositions pharmaceutiques de la présente invention pour l’administration orale, sublinguale, sous-cutanée, intramusculaire, intra-veineuse, topique, locale, intratrachéale, intranasale, transdermique ou rectale, le principe actif de formule (I) ci-dessus, ou son sel, peut être administré sous forme unitaire d’administration, en mélange avec des excipients pharmaceutiques classiques, aux animaux et aux êtres humains pour la prophylaxie ou le traitement des troubles ou des maladies ci-dessus.

Les formes unitaires d’administration appropriées comprennent les formes par voie orale telles que les comprimés, les gélules molles ou dures, les poudres, les granules et les solutions ou suspensions orales, les formes d’administration sublinguale, buccale, intratrachéale, intra-oculaire, intranasale, par inhalation, les formes d’administration topique, transdermique, sous-cutanée, intramusculaire ou intraveineuse, les formes d’administration rectale et les implants. Pour l’application topique, on peut utiliser les composés selon l’invention dans des crèmes, gels, pommades ou lotions.
A titre d’exemple, une forme unitaire d’administration d’un composé selon l’invention sous forme de comprimé peut comprendre les composants suivants :

<table>
<thead>
<tr>
<th>Composé selon l’invention</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composé selon l’invention</td>
<td>50,0 mg</td>
</tr>
<tr>
<td>Mannitol</td>
<td>223,75 mg</td>
</tr>
<tr>
<td>Croscaramellose sodique</td>
<td>6,0 mg</td>
</tr>
<tr>
<td>Amidon de maïs</td>
<td>15,0 mg</td>
</tr>
<tr>
<td>Hydroxypropyl-méthylcellulose</td>
<td>2,25 mg</td>
</tr>
<tr>
<td>Stéarate de magnésium</td>
<td>3,0 mg</td>
</tr>
</tbody>
</table>

La présente invention, selon un autre de ses aspects, concerne également une méthode de traitement des pathologies ci-dessus indiquées qui comprend l’administration, à un patient, d’une dose efficace d’un composé selon l’invention, ou un de ses sels pharmaceutiquement acceptables.
REVENDICATIONS

1. Composés répondant à la formule (I) :

\[
\begin{align*}
\text{U} & \quad \text{X} \quad \text{O} \\
\text{Y} & \quad \text{N} \quad \text{H} \\
\text{A} & \quad \text{W} \\
\end{align*}
\]

(l)

dans laquelle :

10 \(X \) et \(Y \) représentent indépendamment l'un de l'autre un atome d'azote ou un chainon -CR3-, où \(R3 \) représente un atome d'hydrogène ou d'halogène ou un groupe alkyle ou alcoxy ;

U représente un atome d'hydrogène ou un groupe NHR7 où R7 est un atome d'hydrogène ou un groupe alkyle ;

A représente un groupe arylique, hétéroarylique ou hétérocycloalkyle éventuellement substitué ;

20 W représente un atome d'halogène, un groupe alkyle ou un groupe halogénoalkyle ;

Z représente une liaison, un groupe cycloalkylène ou un groupe alkylène éventuellement substitué par un ou plusieurs groupes choisis parmi un atome d'halogène et les groupes alkyle, hydroxy et alcoxy ;
B représente :
- soit un groupe \(-\text{NR4R5}\), où R4 et R5 représentent indépendamment l'un de l'autre un groupe alkyle, cycloalkyle, hydroxyalkyle ou fluoroalkyle, ou bien R4 et R5 forment, avec l'atome d'azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, tel qu'un cycle pyrrolidinyle ou pipéridinyle, éventuellement substitué par un groupe alkyle,
- soit un hétérocycle de formule suivante :

\[
\begin{align*}
&\bigg(\bigg)_{m}^N \quad R6 \\
&\bigg(\bigg)_{m} \quad R7
\end{align*}
\]

où m et n représentent indépendamment l'un de l'autre 0, 1 ou 2, et où R6 et R7 représentent indépendamment l'un de l'autre un atome d'hydrogène ou un groupe alkyle ou cycloalkyle ;

R1 et R2 représentent :
- soit, indépendamment l'un de l'autre, un atome d'hydrogène ou un groupe alkyle, cycloalkyle, phényle, benzyle ou \(-\text{CH2-indolye}\), ces groupes étant éventuellement substitués par un ou plusieurs groupes choisis parmi les atomes d'halogène et les groupes alkyle, fluoroalkyle, alcoxy, hydroxy et \(-\text{O-CO-alkyle}\), au moins l'un de R1 ou R2 étant différent d'un atome d'hydrogène,
- soit R1 et R2 forment ensemble, avec l'atome de carbone auquel ils sont rattachés, un système mono ou polycyclique choisi parmi : cycloalkyle, indanyl, tétrahtydropyranyle, pipéridine, tétrahtyronaphtyle, bicyclo[2,2,1]heptyle, bicyclo[3,3,1]nonyle et adamantyle, ledit système mono ou polycyclique étant éventuellement substitué, en une position quelconque (y compris sur un atome d'azote, s'il y a lieu) par un ou plusieurs groupes choisis parmi un atome d'halogène et les groupes alkyle, fluoroalkyle, hydroxy, alcoxy, \(-\text{O-CO-alkyle}\) et acyle ;

p représente un nombre entier égal à 0 ou 1 ;

leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.
2. Composés selon la revendication 1, dans lesquels X et Y représentent indépendamment l'un de l'autre un atome d'azote ou un chaînon -CR3-, où R3 représente un atome d'hydrogène ou d'halogène ou un groupe alkyle ou alcoxy ; leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.

3. Composés selon la revendication 1, dans lesquels U représente un atome d'hydrogène ou un groupe NHR7 où R7 est un atome d'hydrogène ou un groupe alkyle ; leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.

4. Composés selon la revendication 1, dans lesquels A représente un groupe aryle, hétéroarylé ou hétérocycloalkyle choisi parmi les groupes phényle, benzodioxolyle, thényle, thiazolyle, pyridinyle, pyrimidinyle, pyridazinyle, pyrazinyle, pyrazolyde et pyrroolidinone, ledit groupe aryle, hétéroarylé ou hétérocycloalkyle étant éventuellement substitué en des positions quelconques par un ou plusieurs groupes choisis parmi un atome d'halogène et les groupes cyano, alkyle, halogénoalkyle, hydroxy, alcoxy, -O-(CH₂)ₚ-O-alkyle, halogénoalcoxy, -NRR', -NR-CO-alkyle, -SO- et -SO₂-alkyle, où R et R' représentent indépendamment l'un de l'autre un atome d'hydrogène ou un groupe alkyle et p est un nombre entier compris entre 1 et 5 ; leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.

5. Composés selon la revendication 1, dans lesquels W représente un atome d'halogène, un groupe alkyle ou un groupe halogénoalkyle ; leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.

6. Composés selon la revendication 1, dans lesquels Z représente une liaison, un groupe cycloalkylène ou un groupe alkylène éventuellement substitué par un ou plusieurs groupes choisis parmi un atome d'halogène et les groupes alkyle, hydroxy et alcoxy ; leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.

7. Composés selon la revendication 1, dans lesquels B représente un groupe −NR4R5, où R4 et R5 représentent indépendamment l'un de l'autre un groupe alkyle, cycloalkyle, hydroxyalkyle ou fluoroalkyle, ou bien R4 et R5 forment, avec l'atome d'azote auquel ils
sont rattachés, un cycle à 5 ou 6 chaînons, tel qu'un cycle pyrroldinyle ou pipéridinyle, éventuellement substitué par un groupe alkyle,
leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.

8. Composés selon la revendication 1, dans lesquels B représente un hétérocycle de formule suivante :

\[
\begin{array}{c}
\text{N} \\
\text{R6} \\
\text{R7}
\end{array}
\]

où m et n représentent indépendamment l'un de l'autre 0, 1 ou 2, et où R6 et R7 représentent indépendamment l'un de l'autre un atome d'hydrogène ou un groupe alkyle ou cycloalkyle ;
leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.

9. Composés selon la revendication 1, dans lesquels R1 et R2 représentent, indépendamment l'un de l'autre, un atome d'hydrogène ou un groupe alkyle, cycloalkyle, phényle, benzyle ou -CH₂-indolye, ces groupes étant éventuellement substitués par un ou plusieurs groupes choisis parmi les atomes d'halogène et les groupes alkyle, fluoroalkyle, alcoxy, hydroxy et -O-CO-alkyle, au moins l'un de R1 ou R2 étant différent d'un atome d'hydrogène,
leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.

10. Composés selon la revendication 1, dans lesquels R1 et R2 forment ensemble, avec l'atome de carbone auquel ils sont rattachés, un système mono ou polycyclique choisi parmi : cycloalkyle, indanyle, tétrahydropyranyle, pipéridine, tétrahydronaphtyle, bicyclo[2,2,1]heptyle, bicyclo[3,3,1]nonyle et adamantyle, ledit système mono ou polycyclique étant éventuellement substitué, en une position quelconque (y compris sur un atome d'azote, s'il y a lieu) par un ou plusieurs groupes choisis parmi un atome d'halogène et les groupes alkyle, fluoroalkyle, hydroxy, alcoxy, -O-CO-alkyle et acyle ;
leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.
11. Composés selon la revendication 1, dans lesquels :

X et Y représentent indépendamment l'un de l'autre un atome d'azote ou un chaînon -CR3-, où R3 représente un atome d'hydrogène ou un groupe alcoxy ;

U représente un atome d'hydrogène ou un groupe NHR7 où R7 est un atome d'hydrogène ou un groupe alkyle ;

A représente un groupe aryle, hétéroaryle ou hétérocycloalkyle choisi parmi les groupes phényle, benzodioxoleyle, thiényle, thiazolyne, pyridinyle, pyrazolyne et pyrrolidinone, ledit groupe aryle ou hétéroaryle étant éventuellement substitué en des positions quelconques par un ou plusieurs groupes choisis parmi un atome d'halogène et les groupes cyano, alkyle, halogénoalkyle, hydroxy, alcoxy, -O-(CH₂)ₚ-O-alkyle, halogénoalcoxy, -NRR', -NR-CO-alkyle et -SO₂-alkyle, où R et R' représentent indépendamment l'un de l'autre un atome d'hydrogène ou un groupe alkyle et p est un nombre entier compris entre 1 et 5 ;

W représente un atome d'halogène, un groupe alkyle ou un groupe halogénoalkyle ;

Z représente une liaison ou un groupe alkylène éventuellement substitué par au moins un groupe choisi parmi un atome d'halogène et les groupes alkyle et hydroxy ;

B représente :

- soit un groupe –NR₄R₅, où R₄ et R₅ représentent indépendamment l'un de l'autre un groupe alkyle, hydroxyalkyle, ou bien R₄ et R₅ forment, avec l'atome d'azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, tel qu'un cycle pyrrolidinyle ou pipéridinyle,

- soit un hétérocycle de formule suivante :

```
R7
  \n
R6
```

où m et n représentent indépendamment l'un de l'autre 0, 1 ou 2, et où R₆ et R₇ représentent indépendamment l'un de l'autre un atome d'hydrogène ou un groupe alkyle ou cycloalkyle ;
R1 et R2 représentent :

- soit, indépendamment l'un de l'autre, un atome d'hydrogène ou un groupe alkyle, cycloalkyle, phényle, benzyle ou -CH₂-indolyle, ces groupes étant éventuellement substitués par un ou plusieurs groupes hydroxy, au moins l'un de R1 ou R2 étant différent d'un atome d'hydrogène,
- soit R1 et R2 forment ensemble, avec l'atome de carbone auquel ils sont rattachés, un système mono ou polycyclique choisi parmi : cycloalkyle, indanyle, tétrahydropryanyle, pipéridine, bicyclo[2,2,1]heptyle, bicyclo[3,3,1]nonyle et adamantyle, ledit système mono ou polycyclique étant éventuellement substitué, en une position quelconque (y compris sur un atome d'azote, s'il y a lieu) par un ou plusieurs groupes choisis parmi les groupes alkyle, hydroxy et alcoxy ;

p représente un nombre entier égal à 0 ou 1 ;

leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.

12. Composés selon la revendication 1, dans lesquels :

X et Y représentent indépendamment l'un de l'autre un atome d'azote ou un groupe CH ;

A représente un groupe phényle, pyridinyle, ou pyrrolidinone, substitué en des positions quelconques par 1 à 2 groupes choisis parmi un atome d'halogène, et les groupes alkyle, trifluorométhyle, méthoxy et N,N-diméthylamine ;

U représente un atome d'hydrogène ou un groupe NHR7 où R7 est un atome d'hydrogène ;

W représente un atome de chlore ou un groupe trifluorométhyle ;

Z représente une liaison ou un groupe alcylène éventuellement substitué par un
groupe méthyle ;
B représente :

- soit un groupe –NR4R5, où R4 et R5 représentent indépendamment l’un de l’autre un groupe alkyle ou bien R4 et R5 forment, avec l’atome d’azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons,

- soit des hétérocycles de formule suivante :

\[
\begin{align*}
\text{\textbullet} & \quad \text{R1 et R2 représentent :} \\
\text{\textbullet} & \quad \text{soit, indépendamment l’un de l’autre, un atome d’hydrogène ou un groupe isopropyle, tertbutyle,} \\
\text{\textbullet} & \quad \text{soit R1 et R2 forment ensemble, avec l’atome de carbone auquel ils sont rattachés, un système mono ou polycyclique choisi parmi : cycloalkyle,} \\
\text{\textbullet} & \quad \text{térahydropryanyle, bicyclo[2,2,1]heptyle, bicyclo[3,3,1]nonyle et adamantyle, ledit groupe cycloalkyle étant éventuellement substitué dans les positions 3 et 4 par un groupe méthyle, hydroxy ou méthoxy ou un ou deux atomes d’halogène,}
\end{align*}
\]

\[p \text{ représente 0 ou 1 ;} \]

- leur sel, leurs hydrates ou solvats ainsi que leurs énantiomères et diastéréoisomères, y compris leurs mélanges racémiques.

13. Composés selon au moins l’une des revendications précédentes, dans lesquels :

\[
X \text{ représente un atome d’azote et } Y \text{ un groupe CH ;}
\]

A représente un groupe phényle ou pyridinyle, substitué dans les positions 2, 4, 5 et 6 par un ou deux groupes choisis parmi un atome d’halogène, tel que chlorure ou fluor, et les groupes alkyles, tels que méthyle, éthyle ou isopropyle, trifluorométhyle, méthoxy et N,N-diméthylamine ;

\[
U \text{ représente un atome d’hydrogène ou un groupe NHR7 où R7 est un atome d’hydrogène ;}
\]
W représente un atome de chlore ou un groupe trifluorométhyle ;

Z représente une liaison ou un groupe éthylène, propylène ou méthylpropylène ;

5 B représente :
 • soit un groupe –NR4R5, où R4 et R5 représentent indépendamment l’un de
 l’autre un groupe méthyle, éthyle ou propyle ou forment ensemble avec l’atome d’azote
 auquel ils sont rattachés un cycle à 5 ou 6 chaînons,
 • soit un hétérocycle de formule suivante :

 N
 *---Me

R1 et R2 représentent :
 • soit R1 est un atome d’hydrogène et R2 un groupe isopropyle, tertbutyle,
 l’atome de carbone portant les groupes R1 et R2 adoptant la configuration absolue S,
 • soit R1 et R2 forment ensemble, avec l’atome de carbone auquel ils sont
 rattachés, un groupe cycloalkyle, et adamantyle, ledit groupe cycloalkyle étant
 éventuellement substitué dans les positions 3 et 4 par un groupe méthyle, hydroxy ou
 méthoxy.

20 p représente 0 ou 1 ;

leurs sels, leurs hydrates ou solvats ainsi que leurs énantiomères et
diastéréoisomères, y compris leurs mélange racémiques.

14. Procédé de préparation d’un composé de formule (I) selon l’une quelconque des
revendications 1 à 13, caractérisé en ce que l’on fait réagir un composé de formule (III)
dans laquelle X, Y, Z, W, A et B sont tels que définis dans la revendication 1, avec un composé de formule (II)

\[
\begin{array}{c}
H_2N \\
\text{COOH}
\end{array}
\]

10
dans laquelle p, R1 et R2 sont tels que définis dans la revendication 1, en présence d'un agent de couplage, d'une base organique faible et d'un solvant polaire aprotique à température ambiante.

15. Procédé de préparation d'un composé de formule (I) selon l'une quelconque des revendications 1 à 13, comprenant les étapes suivantes :

a) réaction d'un composé de formule (V)

\[
\begin{array}{c}
\text{COOMe} \\
\text{A} \\
\text{X} \\
\text{W}
\end{array}
\]

15
dans laquelle X, Y, W et A sont tels que définis dans la revendication 1,

- soit avec un dérivé chloré Cl-Z-B en présence d'une base minérale faible dans un solvant polaire aprotique à une température comprise entre 80°C et 100°C.

- soit avec un alcool de formule HO-Z-B en présence de triphénylphosphine,

d'azodicarboxylate de diisopropyle (DIAD), et d'une quantité catalytique de base organique faible à 0°C dans un solvant aprotique,

avec Z et B tels que définis pour la revendication 1,

afin d'obtenir un composé de formule (IV)
dans laquelle X, Y, W, A, Z et B sont tels que définis dans la revendication 1,

b) saponification dudit composé de formule (IV) à l'aide d'une base minérale forte
dans un mélange eau/méthanol maintenu à température ambiante ou chauffé à
reflux, puis acidification, afin d'obtenir un composé de formule (III) telle que défini
dans la revendication 14 ;

c) réaction dudit composé (III) avec un composé de formule (II) telle que défini à la
revendication 14.

16. Médicament, caractérisé en ce qu'il comprend un composé de formule (I) selon l'une
quelconque des revendications 1 à 13, ou un sel d'addition de ce composé à un acide
pharmaceutiquement acceptable ou encore un hydrate ou un solvat.

17. Composition pharmaceutique, caractérisé en ce qu'il comprend un composé de
formule (I) selon l'une quelconque des revendications 1 à 13, ou un sel d'addition de ce
composé à un acide pharmaceutiquement acceptable, un hydrate ou un solvat ainsi
qu'au moins un excipient pharmaceutiquement acceptable.

18. Utilisation d'un composé de formule (I) selon l'une quelconque des revendications 1 à
13 pour la préparation d'un médicament destiné au traitement et/ou à la prévention de
l'insuffisance cardiaque congestive, de l'ischémie cardiaque, de l'infarctus du myocarde,
de l'hypertrophie et la fibrose cardiaque, des maladies coronaires et de l'athérosclérose,
de l'hypertension artérielle systémique et pulmonaire, de la resténose post-angioplastie,
des insuffisances rénales aigüe et chronique d'origine diabétique et/ou hypertensive, du
diabète, d'inflammation, de fibroses et des anévrismes, des désordres du système
nerveux central, incluant les maladies neurodégénératives, les accidents vasculaires
cérébraux, le stress, l'anxiété, l'agressivité, la dépression, la schizophrénie ou encore des
maladies du sommeil et de cancers ou de maladies respiratoires, de l'asthme.
19. Utilisation d’un composé de formule (I) selon l’une quelconque des revendications 1 à 13 pour la préparation d’un médicament destiné au traitement et/ou à la prévention des vomissements.

20. Utilisation d’un antagoniste de l’urotensine II pour la préparation d’un médicament destiné au traitement et/ou à la prévention des vomissements.