SHAPE MEMORY MEDICAL DEVICE AND METHODS OF USE

Applicant: C. R. BARD, INC., Murray Hill, NJ (US)

Inventors: Matthew W. Bown, West Bountiful, UT (US); David M. Butts, Riverton, UT (US)

Assignee: C. R. BARD, INC., Murray Hill, NJ (US)

Appl. No.: 14/098,147

Filed: Dec. 5, 2013

Related U.S. Application Data
Division of application No. 12/028,555, filed on Feb. 8, 2008.

Publication Classification

Int. Cl. A61M 25/09 (2006.01)

U.S. Cl. 604/510

ABSTRACT

A method of treating a patient includes providing a guidewire having an elongate body defining a proximal end and a distal end, the elongate body including a shapeable portion disposed proximate the proximal end, the shapeable portion being malleable so as to be shaped into a shape and remain in the shape until reshaped. The distal end of the elongate body is advanced into a vasculature of the patient. The shapeable portion of the elongate body is shaped into a first shape that prevents advancement of the guidewire further into the vasculature of the patient.
SHAPE MEMORY MEDICAL DEVICE AND METHODS OF USE

CROSS-REFERENCE TO RELATED APPLICATION

This application is a division of U.S. patent application Ser. No. 12/028,555, filed Feb. 8, 2008, which claims the benefit of the U.S. Provisional Application No. 60/900,202, filed Feb. 8, 2007, each of which is incorporated herein by reference in its entirety.

TECHNOLOGY FIELD

The present invention generally relates to medical devices. In particular, embodiments of the present invention relate to a medical device, such as a guidewire, having a shaped proximal end to assist in the intravascular placement of various apparatus.

BRIEF SUMMARY

Guidewires are commonly employed to assist in placing medical apparatus intravascularly within a patient. One material commonly employed in forming guidewires is nitinol, an alloy containing both nickel and titanium. Nitinol is preferred for many guidewires because it offers excellent kink resistance, a quality that eases guidewire advancement into the blood vessel. It is generally advantageous to prevent a guidewire from advancing into the patient vasculature further than is desired. If not properly secured by a clinician during patient insertion, however, the guidewire may be inadvertently and undesirably pulled-by blood flow or other means-further into the vasculature. If the guidewire has been placed in its desired position prior to such inadvertent advancement, the clinician must then partially pull the guidewire out and position it anew, costing time and effort, and increasing the possibility of injury to the patient. A need therefore exists in the art to overcome these challenges.

The present invention has been developed in response to the above and other needs in the art. Briefly summarized, embodiments of the present invention are directed to a shaped guidewire for use in medical applications. The guidewire is shaped so as to prevent inadvertent advancement of the guidewire into the corpus of a patient during use.

In one embodiment, the guidewire includes an elongate body that defines proximal and distal ends. The guidewire body further defines a shaped portion that is positioned intermediate the proximal and distal ends. The shaped portion of the guidewire is at least partially composed of a shape memory material, such as nitinol, and is deflected from a longitudinal axis defined by an undeflected portion of the guidewire body.

The shaped portion is disposed in one embodiment at the proximal end of the guidewire so as to prevent the guidewire from undesirably advancing further into the vasculature of a patient during use. The shaped portion of the guidewire contacts the tissue or apparatus at the incision site of the patient, which causes the guidewire to cease further advancement. Various shaped configurations for the shaped portion are possible including semi-circular and geometric shapes.

In another embodiment, a proximal portion of the nitinol guidewire can be treated to impart malleability and enable deflection by a clinician. In this way, various devices such as needles, introducers, etc., can be fed over the proximal end of the guidewire before the shaped portion is formed. Methods for forming the shaped or malleable guidewire to include a deflected portion are also disclosed.

In yet another example embodiment, the guidewire can be composed of distinct materials according to guidewire region. For example, a proximal segment of the guidewire can include stainless steel while a distal segment includes nitinol. A guidewire so configured can be easily deflected and shaped at the proximal end due to its formation from stainless steel, while the nitinol distal segment retains desired kink-resistant qualities. The two segments can be joined together by welding or other suitable process.

These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

FIG. 1 is a side view of a guidewire configured in accordance with one example embodiment of the present invention;

FIG. 2 is a side view showing the guidewire of FIG. 1 received through a needle assembly;

FIG. 3 is a side view showing a proximal portion of a guidewire configured according to another example embodiment;

FIG. 4 is a side view showing a proximal portion of a guidewire configured to another example embodiment;

FIG. 5 is a side view showing a proximal portion of a guidewire configured according to yet another example embodiment;

FIG. 6 is a graph showing a typical transition hysteresis curve of nitinol material; and

FIG. 7 is a side view of a guidewire configured according to an example embodiment of the present invention.

DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the invention, and are not limiting of the present invention nor are they necessarily drawn to scale.

FIGS. 1-7 depict various features of embodiments of the present invention, which is generally directed to a guidewire for use in medical applications. The guidewire as disclosed herein includes a proximal portion that is deflected from the axis of the remainder of the guidewire so as to
prevent inadvertent advancement of the guidewire into the corpus of a patient during use. In one embodiment, the guidewire is at least partially composed of a shape memory material, such as nitinol. Methods for forming the guidewire so as to include a deflected proximal portion are also disclosed.

[0021] Reference is first made to FIG. 1, which shows a guidewire, generally designated at 10, configured according to one example embodiment. As shown, the guidewire 10 includes an elongate body 12 defining both a proximal end 14 and a distal end 16. In this embodiment, a tip portion 20 is included near the distal end 16 and includes a coil 22 wrapped about the body 12. The coil 22 assists in providing atraumatic advancement of the guidewire 10 through the vasculature of a patient, via a percutaneous slit. Note that, once disposed in a vessel of the patient, the coil 22 of the tip portion 20 can obstruct the flow of fluids, such as blood, circulating in the vessel. As such, the interaction of the fluid with coil 22 can impart a distally directed force on the guidewire 10, tending to undesirably advance the tip portion 20 deeper into the vasculature. Embodiments of the present invention are intended to prevent such an occurrence. Note that in other embodiments the tip portion at the guidewire body distal end can include other configurations, such as a “3”-tip that facilitates advancement of the guidewire through tortuous paths in the patient vasculature without piercing the vessel wall.

[0022] In accordance with the present embodiment, the guidewire further includes a shaped proximal portion (“shaped portion”), generally designated at 30. As shown, the shaped portion 30 is located proximate the proximal end 14 of the guidewire 10. The shaped portion 30 is configured so as to prevent unintended advancement of the guidewire 10 into the vasculature of the patient during use. In the illustrated embodiment, the shaped portion 30 is shown deflected from a longitudinal axis 32 in a semi-circular bend having a radius R. As shown and discussed below, however, the shaped portion can have one of a variety of shapes.

[0023] Together with FIG. 1, reference is now made to FIG. 2, which shows the guidewire 10 received in operable engagement with a needle assembly 40. Such a needle assembly 42 may be used in one embodiment to introduce the guidewire 10 into the vasculature of a patient. As shown, the guidewire 10 passes through both a needle 42 of the needle assembly 40 and a luer fitting 43. The shaped portion 30 of the guidewire 10, however, is sized and configured so as not to pass through the luer fitting 43, thereby preventing advancement of the guidewire 10 into the vasculature past a certain point. In other applications, the shaped portion will interact with a portion of another device, such as an introducer, or with the tissue of the patient proximate the incision, to inhibit further guidewire advancement.

[0024] Note that the shaped portion 30 of the guidewire 10 in one embodiment is somewhat flexible so as to enable medical devices, such as needles, introducers, and the like to be slid over the guidewire from the proximal end 14. Nonetheless, the shaped portion 30 is sufficiently stiff so as to return to its deflected state once any deforming load is removed therefrom.

[0025] In accordance with one embodiment, the shaped portion 30 of the guidewire 10 is composed of a shape memory material, including shape memory alloys, ferromagnetic shape memory materials, shape memory polymers, and the like. A “shape memory material” is understood herein to mean a material that can return to some previously defined shape after deformation, i.e., it “remembers” its geometry when subjected to an appropriate thermal procedure (a “one-way effect”) or after a deforming load is removed therefrom, typically at higher ambient temperatures (“superelasticity”).

[0026] One example of a shape memory material is nitinol, an alloy including, in one implementation, about 55-56% nickel and 44-45% titanium. In one embodiment, the shaped portion 30 includes nitinol. As mentioned above, nitinol can be employed as an excellent guidewire material for its kink-resistant properties. However, forming a bent or shaped portion in a nitinol guidewire has been difficult due to its shape memory properties. As will be disclosed, embodiments of the present invention contemplate forming such a bent portion, such as the shaped portion 30 shown in FIGS. 1 and 2, in a nitinol guidewire. Note that the shaped portion 30 may be composed entirely or partially of nitinol, or the entire guidewire 10 may include nitinol. Additionally, the relative concentrations of nickel and titanium in the nitinol material may vary from what is explicitly described herein.

[0027] In one embodiment the guidewire 10 has a diameter in the range of from about 0.018 to 0.038 inch and a length in a range of from about 35 to 180 centimeters, though other diameters and lengths are, of course, possible.

[0028] By way of example, shape memory materials can include alloys such as copper-zinc-aluminum alloys, copper-aluminum-nickel alloys, and nickel-titanium alloys. The shape memory properties of shape memory alloys are due to a temperature-dependent martensite phase transformation from a low-symmetry to a highly symmetric crystallographic structure. Those crystal structures are known as martensite and austenite. The temperatures at which a shape memory alloy changes its crystallographic structure are characteristic of the alloy and can be tuned by varying the elemental ratios. \(A_s \) and \(A_f \) are referred to as the temperatures at which the reverse transformation from martensite to austenite start and finish, respectively. By way of example, \(A_s \) (austenite start), in some materials, varies between approximately 150 degrees Celsius to 200 degrees Celsius and \(A_f \) (austenite finish) can range from changes in temperature from two to greater than 20 degrees Celsius.

[0029] Many shape memory alloys exhibit both shape memory and superelastic behavior. Alloy composition and the material’s thermo-mechanical processing history dictate the temperatures where these properties exist. Superalasticity occurs when a shape memory alloy is mechanically deformed at a temperature above its \(A_s \) temperature. This deformation causes a stress-induced phase transformation from austenite to martensite. The stress-induced martensite is unstable at temperatures above its \(A_s \) so that when the stress is removed the material will immediately spring back or return to the austenite phase and its pre-stressed position. For reference, a graph 300, showing a phase transformation hysteresis curve 310, is included in FIG. 6.

[0030] In one embodiment, a guidewire having a proximal portion composed at least partially of nitinol can be processed by a “shape set annealing” process to define the shaped portion 30 as seen in FIGS. 1 and 2. To do so, the portion of the guidewire 10 proximate the proximal end 14 is deformed to a desired shape, then constrained to remain in the desired shape. This may be accomplished by a mandrel or other suitable device. The guidewire portion is then heat treated. Though actual temperatures and heating times vary according to the particular composition and characteristics of the portion being shaped, in one embodiment, the guidewire portion
is heated to 500-550 degrees Celsius, followed by a rapid cooling, including for instance a water quench of the guidewire portion. In addition to maintaining the superelastic and shape memory properties, this process will impart to the guidewire portion a desired shape, such as the semi-circular configuration of the shaped portion 30 of the guidewire 10 shown in FIGS. 1 and 2.

[0031] The shaped portion 30 represents only one example of a variety of shapes and deflections that can be formed on a nitinol guidewire. FIGS. 3-5 depict various examples of this principle. Specifically, FIG. 3 shows a proximal shaped portion 130 on a guidewire 10 that is bent with respect to the longitudinal axis 32 of the undeflected portion of the guidewire body 12. The shaped portion 130 is deflected so as to define an angle 0 with the axis 32. FIG. 4 shows a proximal shaped portion 230 that defines a right angle 0 with the axis 32 of the guidewire body 12. FIG. 5 depicts yet another example of a deflection, wherein a portion of the guidewire 10 intermediate the guidewire proximal end 14 and distal end 16 is geometrically shaped to resemble a plateau, thus defining a shaped intermediate portion 330. It is therefore appreciated that the shaped portion can be positioned proximate the proximal guidewire end, or in some other intermediate location along the guidewire. It is further appreciated that the shaped portion can be shaped any one of a variety of ways, such as hook-shaped, circular, semi-circular, square, or other geometric or angled shapes or portions thereof.

[0032] In yet another embodiment, a portion of the guidewire manufactured from nitinol or other suitable shape memory material is subjected to heat treatment (e.g., annealing) without first deflecting the portion. By treating it in this manner at a desired temperature, the guidewire portion loses its superelastic characteristics and becomes malleable. Later, when the clinician advances the guidewire into the patient vasculature, the distal portion of the guidewire retains its kink-resistant qualities while the heat-treated portion is malleable. This allows the clinician to bend the guidewire portion, such as the proximal portion, to form a hook or other angled member to prevent migration of the guidewire 10 into the vasculature of the patient. In one possible implementation, the clinician can advance a needle, or other medical apparatus (e.g., vessel dilator, catheter), over the guidewire before bending the proximal portion of the guidewire. In one example embodiment, a 10 cm proximal portion of a nitinol guidewire having a total length of about 50 cm is heat treated so as to be malleable. The remaining 40 cm of the guidewire is left untreated so as to retain preferred kink-resistant qualities. The lengths of the various portions described above are variable according to need for a particular application.

[0033] The proximal portion of the guidewire in this embodiment is subject to heat treatment from about thirty seconds to about fifteen minutes at temperatures ranging from about 200 to about 450 degrees Celsius. The guidewire can be heat treated in a conventional oven, an IR oven, by laser, or by any other suitable method. In one aspect, following heat treatment, the guidewire is subjected to a water bath. Note that the temperature and time parameters specified above can vary according to a particular application.

[0034] In another example embodiment, the guidewire can be composed of distinct materials according to regional specification. This is shown in FIG. 7, wherein the guidewire 10 includes a body 112. The guidewire body 112 includes a proximal segment 112A and a distal segment 112B. The proximal segment 112A, representing a portion of the guidewire body 112 extending from the proximal end 14 and including the shaped portion 30, includes stainless steel, thus giving the proximal portion bendability in order to form the shaped portion.

[0035] In contrast, the distal segment 112B extending from the distal end 16, includes nitinol, which gives the distal segment preferred kink-resistant qualities. The proximal and distal segments 112A and 112B can be joined by any suitable process, including bonding, welding, and the like. The relative portion of the guidewire 10 that is defined by the proximal and distal segments 112A and 112B can vary according to the particular application. Further, note that other materials in addition or alternative to stainless steel and nitinol can be included in the respective guidewire segments.

[0036] Note that, while the discussion above has focused on guidewires, in other embodiments the principles of the present invention can be applied to other medical apparatus, including for example a stiffening member for use with intravenous catheters. Also, the length of the shaped guidewire portion can vary according to the particular needs of an application.

[0037] The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

What is claimed is:

1. A method of treating a patient, comprising:
 providing a guidewire having an elongate body defining a proximal end and a distal end, the elongate body including a shapeable portion disposed proximate the proximal end, the shapeable portion being malleable so as to be shaped into a shape and remain in the shape until reshaped;
 advancing the distal end of the elongate body into a vasculature of the patient; and
 shaping the shapeable portion of the elongate body into a first shape that prevents advancement of the guidewire further into the vasculature of the patient.

2. The method according to claim 1, further comprising advancing an apparatus over the guidewire to an incision site on a corpus of the patient before shaping the shapeable portion of the elongate body into the first shape, the first shape interacting in contact with the apparatus to prevent advancement of the guidewire further into the vasculature of the patient.

3. The method according to claim 2, wherein the first shape interacts in contact with a proximal end of the apparatus to prevent advancement of the guidewire further into the vasculature of the patient.

4. The method according to claim 2, wherein the apparatus includes a vessel dilator, and the first shape interacts in contact with the vessel dilator to prevent advancement of the guidewire further into the vasculature of the patient.

5. The method according to claim 2, wherein the apparatus is a needle assembly including a needle configured to allow at least a portion of the guidewire to pass therethrough, and the first shape interacts in contact with the needle assembly to prevent advancement of the guidewire further into the vasculature of the patient.
6. The method according to claim 5, wherein the needle assembly includes a luer fitting that interacts in contact with the first shape to prevent advancement of the guidewire further into a vasculature of the patient.

7. The method according to claim 1, wherein before the shapeable portion of the elongate body is shaped into the first shape, the proximal end points in a first direction, and wherein shaping the shapeable portion of the elongate body into the first shape includes shaping the shapeable portion such that the proximal end points in a second direction different from the first direction.

8. The method according to claim 7, wherein shaping the shapeable portion such that the proximal end points in a second direction different from the first direction includes shaping the shapeable portion such that the second direction is at an angle oblique to the first direction.

9. The method according to claim 1, wherein shaping the shapeable portion of the elongate body into the first shape includes shaping the shapeable portion into a circular shape.

10. The method according to claim 1, wherein shaping the shapeable portion of the elongate body into the first shape includes shaping the shapeable portion into a hook shape.

11. The method according to claim 10, wherein shaping the shapeable portion of the elongate body into the hook shape includes reorienting the proximal end of the elongate body such that the proximal end points in a direction toward the distal end of the elongate body.

12. The method according to claim 1, wherein the providing a guidewire comprises providing the shapeable portion with a shape memory material that has been heat-treated to lose its superelastic characteristics and become malleable.

13. The method according to claim 12, wherein the providing a guidewire comprises providing the shapeable portion with a length of about 10 cm.

14. The method of claim 12, wherein the providing a guidewire comprises providing the elongate body with a distal portion comprising untreated shape memory material that retains its superelastic characteristics.

15. The method of claim 1, further comprising reshaping the shapeable portion of the elongate body from the first shape into a second shape different from the first shape.

16. A method of treating a patient, comprising: providing a guidewire having an elongate body defining a proximal end and a distal end, the elongate body including a shaped portion disposed proximate the proximal end, the shaped portion comprising a shape memory material and being deflectable from a longitudinal axis defined by an undeflected portion of the body, wherein the shaped portion is substantially deformable when a load is applied thereon, and wherein the shaped portion returns to its undeformed shape when the load is removed; advancing the distal end of the elongate body into a vasculature of the patient; causing the guidewire to cease further advancement into the vasculature of the patient by bringing the shaped portion into contact with an apparatus or tissue of the patient at an incision site.

17. The method of claim 16, further comprising advancing the apparatus over the guidewire to the incision site on a corpus of the patient and then causing the guidewire to cease further advancement into the vasculature of the patient by bringing the shaped portion into contact with the apparatus.

18. The method of claim 17, wherein the shaped portion interacts in contact with a proximal end of the apparatus to prevent advancement of the guidewire further into the vasculature of the patient.

19. The method of claim 17, wherein the apparatus is a needle assembly including a needle configured to allow at least a portion of the guidewire to pass therethrough, and the shaped portion interacts in contact with the needle assembly to prevent advancement of the guidewire further into the vasculature of the patient.

20. The method of claim 16, wherein the shaped portion is configured such that the proximal end of the elongate body points in a direction toward the distal end of the elongate body.

* * * * *