



US 20110308493A1

(19) **United States**

(12) **Patent Application Publication**

**Mitchell**

(10) **Pub. No.: US 2011/0308493 A1**

(43) **Pub. Date: Dec. 22, 2011**

(54) **PRE START FRICTION PROTECTION SYSTEM**

(52) **U.S. Cl. .... 123/196 R**

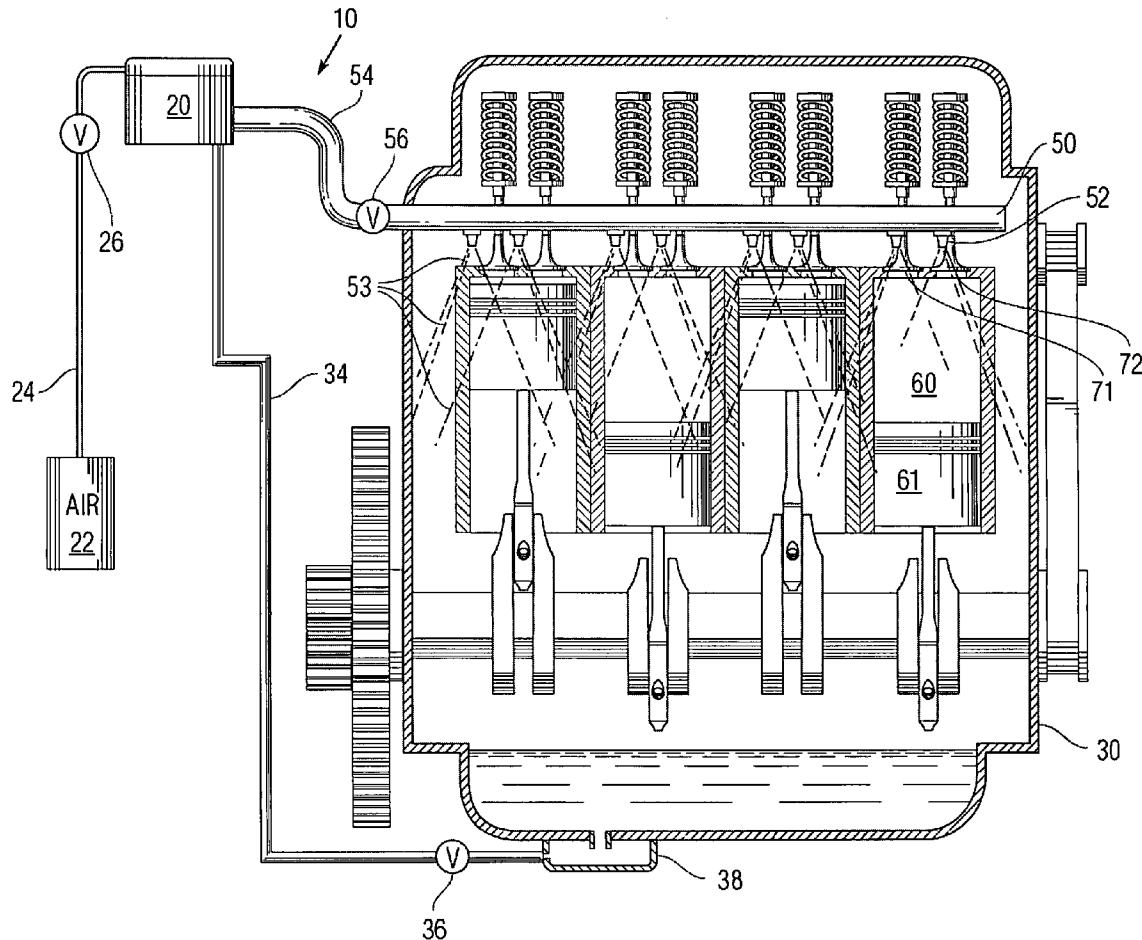
(76) Inventor: **Robert L. Mitchell, Cincinnati, OH (US)**

(57)

(21) Appl. No.: **13/134,829**

### **ABSTRACT**

(22) Filed: **Jun. 17, 2011**


#### **Related U.S. Application Data**

(60) Provisional application No. 61/356,030, filed on Jun. 17, 2010.

#### **Publication Classification**

(51) **Int. Cl. F01M 1/08**

(2006.01)



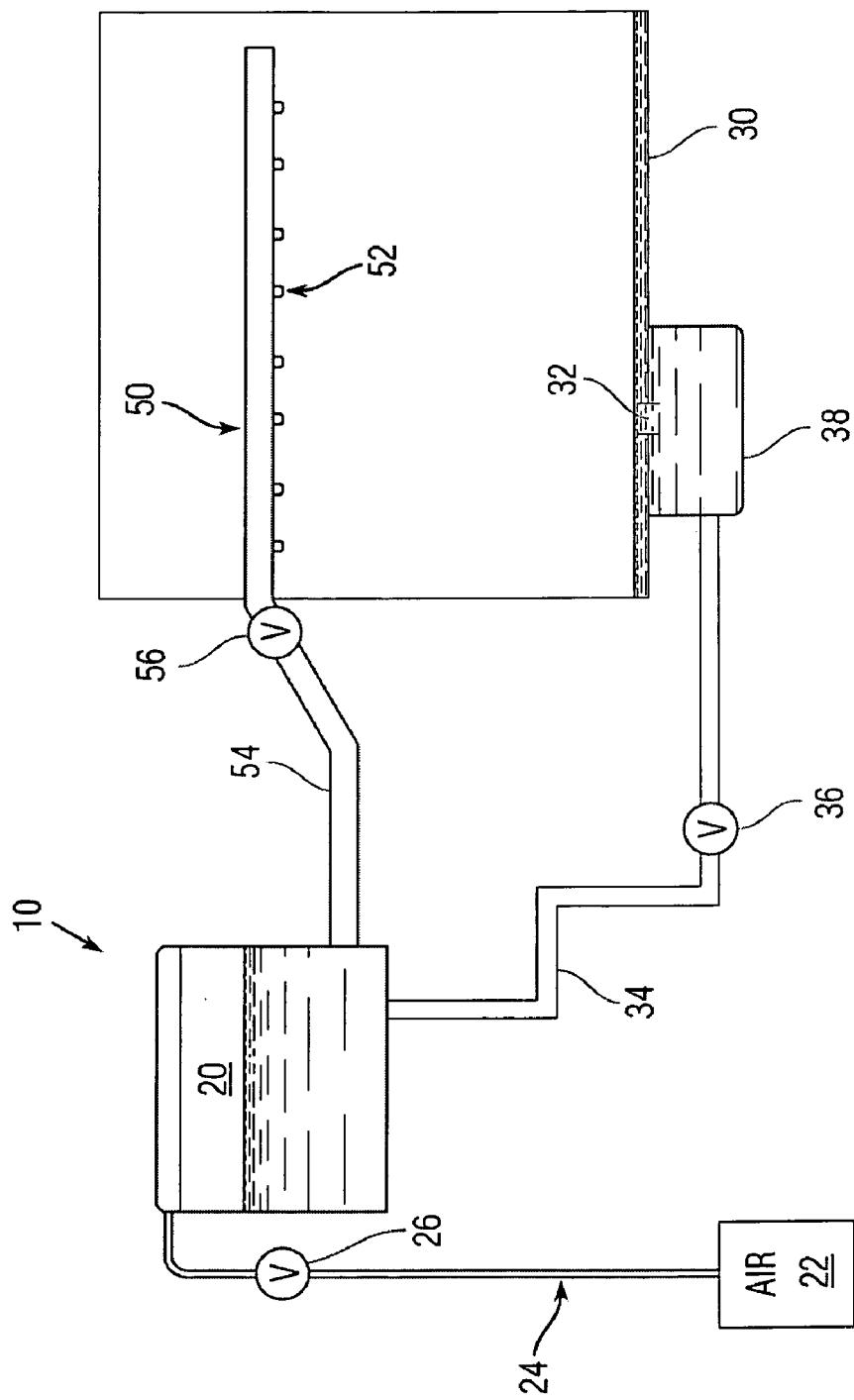
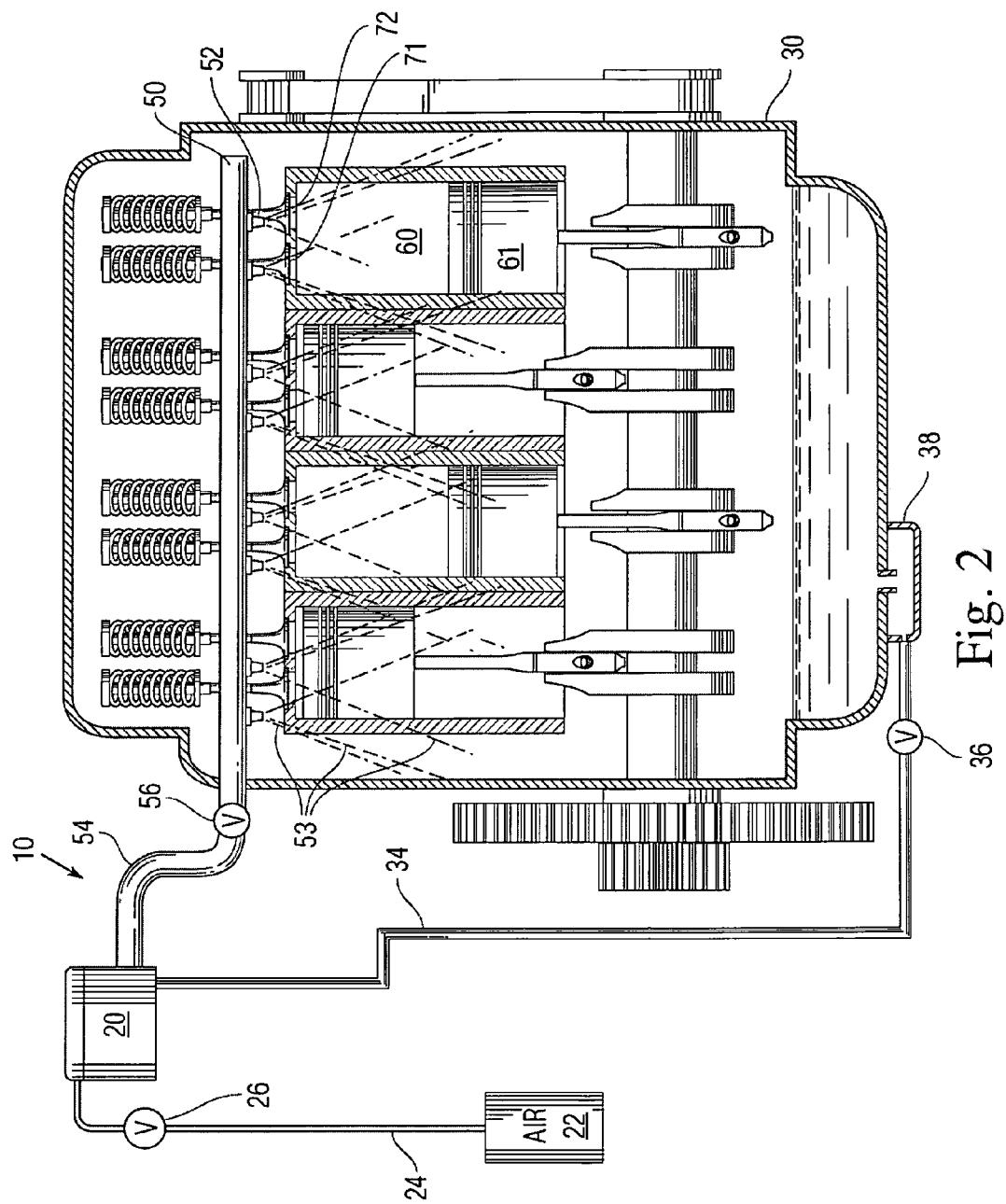




Fig. 1



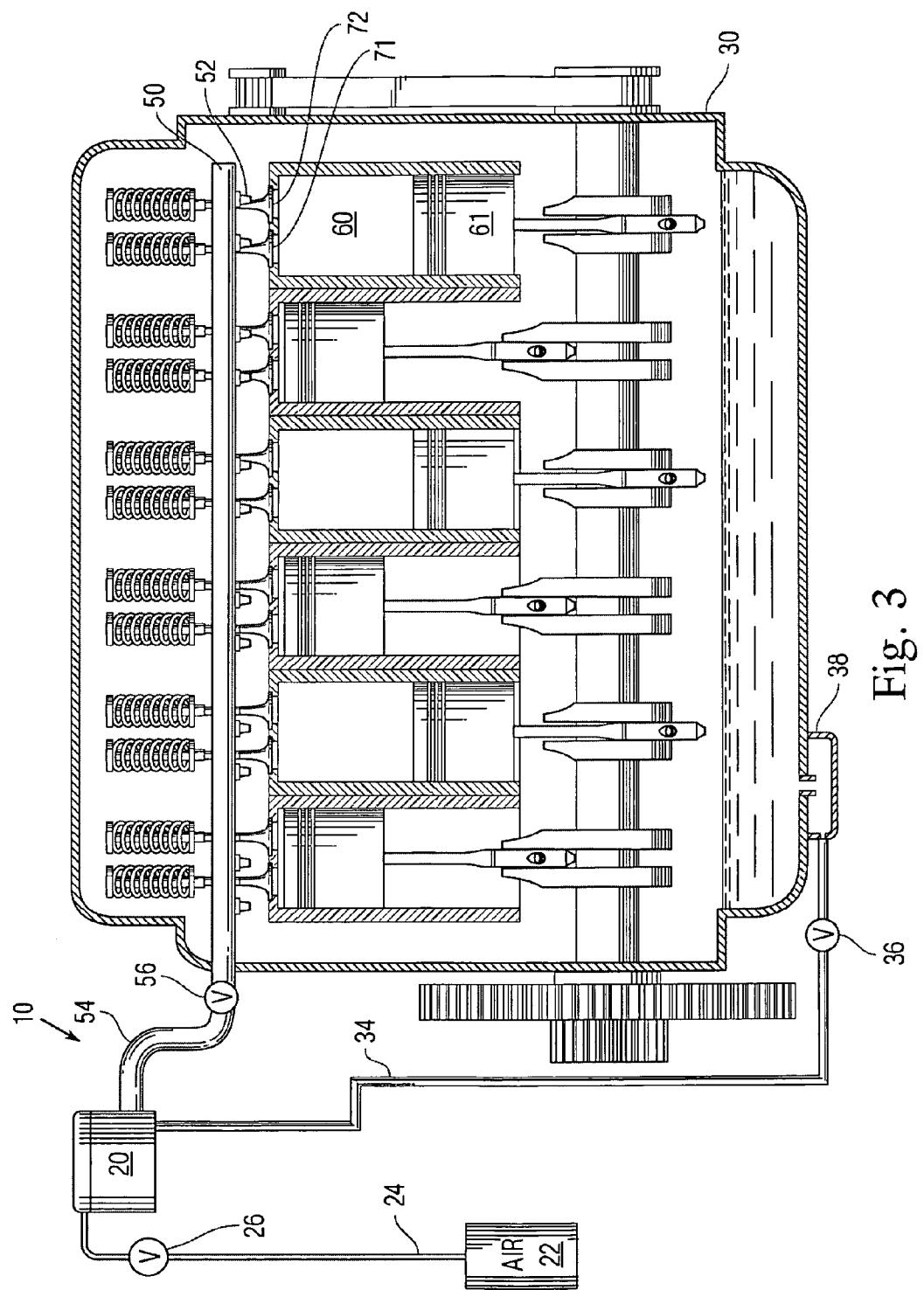



Fig. 3

## PRE START FRICTION PROTECTION SYSTEM

### CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Application No. 61/356,030 filed on Jun. 17, 2010 entitled "Pre Start Friction Protection System", the entirety of which is incorporated herein.

### BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The invention relates to a system used cooperatively with an engine to reduce friction at start up by delivering lubricant to engine parts before start up.

[0004] 2. Background

[0005] Engine wear is difficult to prevent and can affect engine performance. Engine start up is a major cause of engine wear due to excessive friction during start up. A significant factor in the amount of friction at start-up is the lack of sufficient lubricant on the engine components. Current mechanical systems which attempt to address this problem often include systems which pump oil from the oil reservoir and push the oil to the internal oil pressure system to lubricate the wearing parts. However, the current systems have many moving parts and do not provide an easy solution for distributing the oil evenly across the wearing parts during pre-start.

[0006] Accordingly, there is a need for a system which minimizes friction during start up by effectively delivering lubricant, such as oil, evenly to the engine wearing parts before ignition.

### SUMMARY OF THE INVENTION

[0007] This summary is provided to introduce a selection of concepts in a simplified form that are further described in the detailed description of the invention. This summary is not intended to identify key or essential inventive concepts of the claimed subject matter, nor is it intended for determining the scope of the claimed subject matter.

[0008] The present invention provides a pre-start lubrication system for an engine which is comprised of an oil canister for holding a volume of oil; an air supply unit fluidly connected to the oil canister through an air intake line and an air intake valve for providing air under pressure to the canister; an oil intake line fluidly connected to an engine oil reservoir and the oil canister wherein the oil intake line includes an oil intake valve for controlling the flow of oil from the oil reservoir to the oil canister; an oil distribution line fluidly connected to the canister and an oil distribution rod, wherein the oil distribution line includes an oil distribution valve for controlling the flow of oil from the canister to the oil distribution rod; and wherein the oil distribution rod has a plurality of dispensing ports for dispensing oil; a controller for receiving a signal and powering the air supply unit to provide air to the canister through the air intake line and air intake valve which will push oil from the canister through the oil distribution line and oil distribution valve to the oil distribution rod wherein the oil will exit the distribution rod through the dispensing ports. The dispensing ports may be nozzles including cone spray nozzles. The dispensing ports may be aligned over a plurality of valves or pistons. The controller may receive the signal to power the air supply unit as part of an engine ignition sequence. The controller may control the power to the air

supply unit or how long the air supply unit is provided power. The controller may also control one or more of the air intake valve, the oil intake valve, and the oil discharge valve.

[0009] The present invention also provides a system for reducing friction in an engine during start-up which includes a canister for holding a volume of lubricant; an air supply unit fluidly connected to the canister through an air intake line and a one way air intake valve for providing air under pressure to the canister; the one way air intake valve configured to allow air into the canister while preventing air from escaping the canister; a bypass valve in the canister for releasing air in the canister if the pressure is too high; a lubricant intake line fluidly connected to an engine lubricant reservoir and the canister wherein the lubricant intake line includes a lubricant intake valve for controlling the flow of lubricant from the lubricant reservoir to the canister; a lubricant distribution line fluidly connected to the canister and a lubricant distribution rod with a plurality of discharge ports, wherein the lubricant distribution line includes an lubricant distribution valve for controlling the flow of lubricant from the canister to the distribution rod; and upon engine ignition lubricant is delivered to the distribution rod and exits through the plurality of discharge ports to predetermined engine parts. Further, the dispensing ports may be nozzles including cone spray nozzles. The dispensing ports may be aligned over a plurality of valves or pistons. The controller may receive the signal to power the air supply unit as part of an engine ignition sequence. The controller may control the power to the air supply unit or how long the air supply unit is provided power. The controller may also control one or more of the air intake valve, the oil intake valve, and the oil discharge valve.

[0010] The present invention also provides a method of lubricating an engine prior to starting the engine including filling an oil canister with a volume of oil from an oil reservoir through an oil intake line and an oil intake valve; receiving a signal to initiate the pre-start lubrication process; controlling an air supply unit to provide air to the oil canister through an air intake line and an air intake valve; wherein the air added to the canister forces the oil within the canister to flow from the canister to an oil distribution rod through an oil distribution line and an oil distribution valve; and wherein the oil is dispensed through a plurality of dispensing ports in the oil distribution rod. The method might further include controlling how long the air supply unit provides air to the oil canister or controlling how much air pressure the air supply unit provides to the oil canister.

[0011] The components of the invention are a lubricant reservoir canister, a pressure line for delivering lubricant to the canister, a bypass valve and an oil distribution rod, wherein upon engine ignition, lubricant is delivered to predetermined engine parts.

### BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The foregoing summary, as well as the following detailed description of the invention, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, exemplary constructions of the invention are shown in the drawings. However, the invention is not limited to the specific methods and instrumentalities disclosed herein.

[0013] FIG. 1 illustrates the pre-start Friction Protection system in accordance with the present invention.

[0014] FIG. 2 illustrates an four cylinder engine with the pre-start system connected thereto;

[0015] FIG. 3 illustrates a six cylinder engine with the pre-start system connected thereto.

#### DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0016] Particular embodiments of the present invention will now be described in greater detail with reference to the figures.

[0017] FIGS. 1-3 illustrate a Pre-Start Friction Protection System 10 which is cooperatively mounted to an engine 30, in accordance with the present invention. The system 10 is configured to reduce pre-start friction between components by delivering fluid or oil to critical parts before the engine is started. As such, the system 10 cooperatively works with the engine 30 and its components. The system 10 comprises an oil canister 20, a pressure line 24, an air supply 22, an air line valve 26, an oil intake line 34, an oil intake line valve 36, and oil reservoir 38, an oil distribution line 54, an oil distribution valve 56 and an oil distribution rod 50.

[0018] The oil reservoir canister 20 has an intake line 34 for receiving oil and a distribution line 54 for dispensing or transferring oil from the canister 20 to the distribution rod 50. Oil is stored in the oil reservoir canister 20 for distribution to the engine 30 through the distribution rod 50. The intake line 34 is connected to the main oil gallery of engine 30. The intake line 34 may connect directly to the main oil gallery or may be connected to an oil reservoir 38. The oil reservoir 38 would be in fluid communication with the main oil gallery via opening 32. Oil from the engine or oil reservoir 38 flows through the intake line 34 to fill canister 20. Valve 36 controls flow between the oil reservoir 38 and canister 20 and can be opened to allow oil to fill up canister 20. The valve 36 could also be a two way valve which allows oil to flow from canister 20 back through line 34 to reservoir 38. Using a two way valve for valve 36 would be useful if the pressure in canister 20 becomes too high to prevent an over oiling or an over pressurized delivery of oil through distribution rod 50. In an over pressurized system, valve 36 would open in the reverse allowing oil to flow back to reservoir 38.

[0019] Initially, when an ignition switch is turned into the “on” position in the vehicle, an electronic switch is activated signaling the air supply 22, such as an air compressor, to provide air to canister 20 through air intake line 24. Valve 26 is ideally a one way valve allowing air to flow into the pressurized canister 20 but not allowing air or oil to flow in the opposite direction. Upon pressurization of canister 20 oil flows from canister 20 through distribution line 54 and valve 56 into distribution rod 50. The oil flows evenly through distribution rod 50 to the exit nozzles 52. The exit nozzles 52 allow for even flow and distribution of the oil from the distribution rod 50 into the engine 30.

[0020] In an exemplary embodiment, valve 56 is a pressure sensitive valve that allows oil to pass through the valve when the pressure or force of the oil on the valve forces it to open. When the pressure in canister 20 falls below a certain threshold the valve 56 will shut and oil will stop flowing to the distribution rod 50. The canister 20 may also have an air exhaust valve such that is the air pressure within the canister 20 exceeds a certain pressure the exhaust valve would open allowing air within canister 20 to be released and reduce pressure.

[0021] The main oil supply of engine 30 follows its normal course. While the engine 30 is in operation, the oil in the oil canister 20 fills to capacity as oil flows from reservoir 38 or

the main oil supply of engine 30 through oil intake line 34 and valve 36. Once capacity is reached, shut-off valve 36 is activated, preventing additional oil from entering into canister 20. Oil reservoir 38 may be placed down line of the engine 30 oil filter (not shown) such that clean oil is used to fill canister 20.

[0022] In the preferred embodiment, the canister 20 capacity would be approximately one pint. After the engine 30 is turned off, although most of the oil in engine 30 returns to the oil pan, the oil in canister 20 is prevented from returning because of valve 36.

[0023] The next time the vehicle’s ignition switch is turned on; the pressurized air forces the oil contained in the oil canister 20 to be immediately dispersed to critical engine parts through distribution rod 50. This process significantly reduces the pre-start friction experienced upon ignition. Alternatively, the system 10 could be designed such that the canister 20 uses gravity instead of air pressure to force oil flow to the distribution rod 50.

[0024] As seen in FIG. 2, the system 10 is employed on an inline four cylinder engine 30. The distribution rod 50 contains one or more openings or nozzles 52. In the preferred embodiment, there are nozzles 52 associated with each valve or piston. As oil flows through the distribution rod 50 the oil is dispensed out of the nozzles 52 and sprayed upon the engine 30 components. The engine 30 components include valves 71, 72, the piston chamber 60, the piston head 61, as well as the rocker arms, springs, and cam shafts.

[0025] In one exemplary embodiment, the distribution rod 50 is enclosed below the valve cover but above the valves 71, 72, piston chamber 60, and piston head 61. The system 10 and the distribution rod 50 would be configured to provide a sealed engagement with the engine 30 and valve cover.

[0026] FIG. 3 shows another exemplary embodiment of the present invention with the pre-start friction protection system 10 and distribution rod 50 designed for an inline six cylinder engine 30. The distribution rod 50 has a plurality of nozzles 52. The distribution rod 50, depicted in FIG. 3 has twelve nozzles 52 designed such that each nozzle 52 sprays oil onto a desired valve 71, 72. The oil spray 53 can be defined in shape and size by the design of the nozzle. The nozzles 52 could also be arranged to provide an even oil spray over other internal parts and need not be aligned over a valve 71, 72.

[0027] In operation, when canister 20 reaches its capacity, the bypass valve 36 is activated closing the oil feed line 34 to prevent additional oil from entering the canister 20. With the filling of oil in canister 20 complete, when the ignition is turned to an “on” position, the air pressure in canister 20 increases which rapidly sends the oil through distribution line 54, through valve 56 to distribution rod 50. The present invention provides a precise oil distribution system which distributes oil equally among the nozzles 52 which then provide a precise oil distribution to the rocker arms, pistons, and valves.

[0028] Although the distribution rod 50 depicted in FIGS. 1-3 shows a single distribution rod 50 applied to an inline engine the system 10 could employ more than one distribution rods to different parts of the motor. For example, in a V-type engine the system 10 might employ two distribution rods 50 connected to each other, connected to valve 56, or to the canister 20. Thus, the system 10 could be comprised of several distribution rods 50, distribution lines 54 and valves 56.

[0029] Further, the ignition switch could be connected to a controller which controls the air supply unit 22 as well as

control one or more valves **26, 36, 56**. The controller, air supply unit **22**, and valves **26, 36, 56** could be controlled by one or more timers designed to regulate or control the time period air or oil are pumped into canister **20** or the time period oil is distributed to the distribution rod **50**.

**[0030]** The various components of the system **10** may be made from common or standard materials including cast iron, aluminum alloys, steel, titanium, or other metal alloys capable of handling the temperatures range as well as resistance to wear, corrosion, and damage. The valves **26, 36, 56** may be ball valves, solenoid valves, spring controlled valves and the like.

**[0031]** The nozzles **52** on the distribution rod **50** may be of various types which are fastened to or integrated into the rod **50**. The nozzles **52** enable the application to provide a profile spray and oil is dispensed. The nozzle **52** design enables spray profiles to include a solid cone spray, a semi solid cone spray, and a hollow cone spray. Further, the distribution rod **50** need not use nozzles **52** and may instead use machined openings or ports which when providing or dispensing oil under pressure provide sufficient exhaust spray.

**[0032]** The present invention may also make use of a controller (not shown) which may be independent, integrated with, or be a part of the control system of the vehicle with the engine. The controller may receive a signal to initiate the pre-start lubrication process. The signal may be part of an ignition sequence to start the engine. Upon receipt of the initiation signal, the controller will control the air supply to begin providing air into the canister **20**. The controller may control the air supply by controlling the power provided to the air supply unit, by controlling the time air is provided, or by providing the power or amount of air provided. The controller may also control the various valves in the system such as the air intake valve **26**, the oil intake valve **36**, and the oil discharge valve **56** to control the amount of air or oil provided to the canister **20** or the control the oil provided to the distribution rod **50**.

**[0033]** In summary the present invention provides a pre-start lubrication system for an engine which is comprised of an oil canister for holding a volume of oil; an air supply unit fluidly connected to the oil canister through an air intake line and an air intake valve for providing air under pressure to the canister; an oil intake line fluidly connected to an engine oil reservoir and the oil canister wherein the oil intake line includes an oil intake valve for controlling the flow of oil from the oil reservoir to the oil canister; an oil distribution line fluidly connected to the canister and an oil distribution rod, wherein the oil distribution line includes an oil distribution valve for controlling the flow of oil from the canister to the oil distribution rod; and wherein the oil distribution rod has a plurality of dispensing ports for dispensing oil; a controller for receiving a signal and powering the air supply unit to provide air to the canister through the air intake line and air intake valve which will push oil from the canister through the oil distribution line and oil distribution valve to the oil distribution rod wherein the oil will exit the distribution rod through the dispensing ports. The dispensing ports may be nozzles including cone spray nozzles. The dispensing ports may be aligned over a plurality of valves or pistons. The controller may receive the signal to power the air supply unit as part of an engine ignition sequence. The controller may control the power to the air supply unit or how long the air

supply unit is provided power. The controller may also control one or more of the air intake valve, the oil intake valve, and the oil discharge valve.

**[0034]** The system of the present invention is not limited to oil and any logical lubricant could be used. The system may include a bypass valve in the canister for releasing air in the canister if the pressure is too high. Further, the dispensing ports may be nozzles including cone spray nozzles. The dispensing ports may be aligned over a plurality of valves or pistons. The controller may receive the signal to power the air supply unit as part of an engine ignition sequence. The controller may control the power to the air supply unit or how long the air supply unit is provided power. The controller may also control one or more of the air intake valve, the oil intake valve, and the oil discharge valve.

**[0035]** In addition, the present invention also provides a method of lubricating an engine prior to starting the engine including the steps of filling an oil canister with a volume of oil from an oil reservoir through an oil intake line and an oil intake valve; receiving a signal to initiate the pre-start lubrication process; controlling an air supply unit to provide air to the oil canister through an air intake line and an air intake valve; wherein the air added to the canister forces the oil within the canister to flow from the canister to an oil distribution rod through an oil distribution line and an oil distribution valve; and wherein the oil is dispensed through a plurality of dispensing ports in the oil distribution rod. The method might further include controlling how long the air supply unit provides air to the oil canister or controlling how much air pressure the air supply unit provides to the oil canister.

**[0036]** The foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present method and product disclosed herein. While the invention has been described with reference to various embodiments, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Further, although the invention has been described herein with reference to particular means, materials, and embodiments, the invention is not intended to be limited to the particulars disclosed herein; rather, the invention expands to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims. Those skilled in the art, having the benefit of the teachings of this specification, may affect numerous modifications thereto and changes may be made without departing from the scope and spirit of the invention in its aspects.

What is claimed:

1. A pre-start lubrication system for an engine comprising: an oil canister for holding a volume of oil; an air supply unit fluidly connected to the oil canister through an air intake line and an air intake valve for providing air under pressure to the canister; an oil intake line fluidly connected to an engine oil reservoir and the oil canister wherein the oil intake line includes an oil intake valve for controlling the flow of oil from the oil reservoir to the oil canister; an oil distribution line fluidly connected to the canister and an oil distribution rod, wherein the oil distribution line includes an oil distribution valve for controlling the flow of oil from the canister to the oil distribution rod; and wherein the oil distribution rod has a plurality of dispensing ports for dispensing oil;

a controller for receiving a signal and powering the air supply unit to provide air to the canister through the air intake line and air intake valve which will push oil from the canister through the oil distribution line and oil distribution valve to the oil distribution rod wherein the oil will exit the distribution rod through the dispensing ports.

**2.** The system of claim **1**, wherein the dispensing ports are nozzles.

**3.** The system of claim **2**, wherein the nozzles are cone spray nozzles.

**4.** The system of claim **1**, wherein the plurality of dispensing ports are aligned over a plurality of valves.

**5.** The system of claim **1**, wherein the plurality of dispensing ports are aligned over a plurality of piston chambers.

**6.** The system of claim **1**, wherein the controller receives the signal to power the air supply unit as part of an engine ignition sequence.

**7.** The system of claim **6**, wherein the controller controls power to the air supply unit.

**8.** The system of claim **1**, wherein the controller controls how long the air supply unit provides air.

**9.** The system of claim **1**, wherein the controller controls one or more of the air intake valve, the oil intake valve, and the oil discharge valve.

**10.** A system for reducing friction in an engine during start-up comprising:

a canister for holding a volume of lubricant;  
an air supply unit fluidly connected to the canister through an air intake line and a one way air intake valve for providing air under pressure to the canister;

the one way air intake valve configured to allow air into the canister while preventing air from escaping the canister;  
a bypass valve in the canister for releasing air in the canister if the pressure is too high;

a lubricant intake line fluidly connected to an engine lubricant reservoir and the canister wherein the lubricant intake line includes a lubricant intake valve for controlling the flow of lubricant from the lubricant reservoir to the canister;

a lubricant distribution line fluidly connected to the canister and a lubricant distribution rod with a plurality of discharge ports, wherein the lubricant distribution line

includes an lubricant distribution valve for controlling the flow of lubricant from the canister to the distribution rod; and

wherein upon engine ignition lubricant is delivered to the distribution rod and exits through the plurality of discharge ports to predetermined engine parts.

**11.** The system of claim **10**, wherein the dispensing ports are nozzles.

**12.** The system of claim **11**, wherein the nozzles are cone spray nozzles.

**13.** The system of claim **10**, wherein the plurality of dispensing ports are aligned over a plurality of valves.

**14.** The system of claim **10**, wherein the plurality of dispensing ports are aligned over a plurality of piston chambers.

**15.** The system of claim **10**, wherein the controller receives the signal to power the air supply unit as part of an engine ignition sequence.

**16.** The system of claim **10**, wherein the controller controls power to the air supply unit.

**17.** The system of claim **10**, wherein the controller controls how long the air supply unit provides air.

**18.** The system of claim **10**, wherein the controller controls one or more of the air intake valve, the oil intake valve, and the oil discharge valve.

**19.** A method of lubricating an engine prior to starting the engine comprising the steps of:

filling an oil canister with a volume of oil from an oil reservoir through an oil intake line and an oil intake valve;

receiving a signal to initiate the pre-start lubrication process;

controlling an air supply unit to provide air to the oil canister through an air intake line and an air intake valve; wherein the air added to the canister forces the oil within the canister to flow from the canister to an oil distribution rod through an oil distribution line and an oil distribution valve; and

wherein the oil is dispensed through a plurality of dispensing ports in the oil distribution rod.

**20.** The method of claim **19**, further including the step of controlling how long the air supply unit provides air to the oil canister.

\* \* \* \* \*