/025750 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 March 2003 (27.03.2003)

PCT

(10) International Publication Number

WO 03/025750 Al

(51) International Patent Classification’: GO6F 11/00

(21) International Application Number: PCT/US02/25740

(22) International Filing Date: 14 August 2002 (14.08.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/954,731 18 September 2001 (18.09.2001) US

(71) Applicant: CEDAR POINT COMMUNICATIONS,
INC. [US/US]; 16 Route 111 - Building 3, Derry, NH
03038 (US).

(72) Inventor: FITZGERALD, Jeffrey, J.; 3 Tanglewood
Way, Amberst, NH 03031 (US).

(74) Agents: LEWKOWICZ, Paul, E. et al.; Ropes & Gray,
One International Place, Boston, MA 02110-2624 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BE, BJ, CE CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND SYSTEM TO DETECT SOFTWARE FAULTS

] (57) Abstract: The present invention is directed to a system and method for actively auditing a software system to determine the
status. The software system includes a plurality of processes executed in an active processor domain. An active message is generated
for processing in the active processor domain. Each process receiving the message modifies it by adding an active S time indicator to
it; thereby creating a modified active message. The status of the active processor domain is determined in response to the modified

=

active message.

WO 03/025750 PCT/US02/25740

10

15

20

25

30

METHOD AND SYSTEM TO DETECT SOFTWARE FAULTS

Field of the Invention

[0001] The invention relates generally to fault detection in a computer
system and more specifically to a method and system for determining software faults
within a processor domain.

Background of the Invention

[0002) Generally, it is difficult to determine the health and status of software
processes in distributed software system due to the complex inter-relationships and
distributed nature of the software environment. Typically, fault detection
mechanisms in this environment are either very fine-grained for specific errors (e.g.,
bus errors) or very course-grained for general errors (e.g., protocol timeouts). There
are many other fault conditions (e.g., system hangs, priority inversion, scheduler
thrashing, and over-burdened queue depths) which are also detrimental to proper
system functionality but which are difficult to detect and isolate in distributed
software systems.

[0003] Typically, a redundant software system is employed to increase the
overall availability of the system. When a software fault is detected in one system
the redundant system takes control of the system operations. Generally, three
redundancy models are used that vary in cost and complexity. A first model,
depicted in FIG. 1, includes four processor domains 100a, 100b, 100c, 100d
(referred to generally as 100), grouped into two pairs. Each pair communicates with
its own non-redundant comparator function 110a, 110b (referred to generally as 110)
that checks the output from each pair separately in a synchronous fashion. Each
processor element in each of the processor domains 100 of the pair should generate
the same result (the same software is operating with the same data). When a
comparator function 110 determines mismatch in any result, the other pair of
processor domains 100 take over. If the comparator function 110 fails, the other pair
of processor domains 100 takes over. Thus both the active processor domains 100
and comparator function 110 are protected from single points of failures.

[0004] With reference to FIG. 2, a second redundancy model includes three

processor domains 200a, 200b and 200c (referred to generally as 200). The model
-1-

WO 03/025750 PCT/US02/25740

10

15

20

25

30

runs as a single lockstep entity (i.e., each processor domain runs the same code and
receives the same data). A comparator function 210 compares the output of all three
processor domains 200. If the results of one of the processor domains disagrees with
the results of the other two processor domains, that processor domain 200 is
declared faulty and it is taken out of service. If the comparator 210 fails then one
processor domain is taken out of service, but the other two processor domains
remain in service.

[0005] The third typical redundancy model includes two processors
domains, one active and one stand-by. The processor domains may be running in
lockstep or the stand-by processor domain could constantly be updated by state
messages from the active processor domain. There is no comparator function
because there is no way to determine which processor domain is functioning
correctly. Thus, failure is "self-determined” within a processor domain by running a
low-level "heartbeat" function or relying on system traps (e.g., bus error timeouts).
This model is generally less expensive than the other redundancy models mentioned
above. However, the ability to isolate faults is reduced because of the lack of
hardware comparator redundancy.

[0006] What is needed is a redundancy scheme capable of providing high
availability with an increased sensitivity to process faults within a processor domain.
Summary of the Invention

[0007] The present invention is directed to providing a highly available
vredundancy scheme sensitive to individual process faults within a processor domain.
A message is provided to processes in a processor domain in a "daisy-chained"
fashion and each process time-stamps the message and passes it on to the next
process in a list. The list is included in the message and represents all the processes
within the given processor domain that will receive the message. The same method
is implemented in a redundant (stand-by) processor domain. Once the messages
have been time-stamped by all the processes, the time-stamped messages are
communicated to a separate processor domain that verifies the time-stamped process
list as correct, thereby determining the health and correctness of the audited

processor domains.

WO 03/025750 PCT/US02/25740

10

15

20

25

30

[0008] One aspect of the present invention is directed to a method of actively
auditing a software system to determine the status. The software system includes a
plurality of processes executed in an active processor domain. The method includes
the steps of generating an active message to be processed by the active processor
domain, generating a modified active message by providing an active time indicator
associated with the active message for at least one of the processes of the plurality,
and determining the status of the active processor domain in response to the
modified active message.

[0009] In one embodiment, the status of the active processor domain is
determined in response to the active time indicator. Ln another embodiment, the
active time indicator includes a time-stamp indicating the time that the at least one.
process completed processing the active message. In an alternate embodiment, the
time-stamp indicates the time elapsed while the at least one process completed
processing the active message.

[0010] In another embodiment, the method includes the steps of determining
a statistical characteristic of the active processor domain, and determining the status
of the active processor domain in response to the statistical characteristic. In a
further embodiment, the step of determining a statistical characteristic includes
generating a time average of the duration of the at least one process of the plurality
of processes for a plurality of active messages. In still a further embodiment, the step
of determining a statistical characteristic includes generating a standard deviation
from the time average.

[0011] In another embodiment, the method includes the steps of generating a
stand-by message to be processed in a stand-by processor domain that includes a
plurality of stand-by processes, and generating a modified stand-by message by
providing a stand-by time indicator for at least one process of the plurality of stand-
by processes in the stand-by domain. In a further embodiment, the method includes
the step transforming the active processor domain to the standby processor domain
in response to the modified active message.

[0012] Another aspect of the present invention is directed to a system for
actively auditing a software system to determine status. The system includes an

active processor domain, a time-stamp mechanism and a redundancy manager. The
-3-

WO 03/025750 PCT/US02/25740

10

15

20

25

30

active processor domain has at least one processor executing at least on process that
receives an active message and generates a modified active message in response.
The time-stamp mechanism is in communication with the at least one process and
provides an active time indicator for use in generation of the modified active
message. The redundancy manager is in communication with the active processor
domain and determines the status of the active processor domain in response to the
modif ed active message.

[0013] In one embodiment, the system includes a stand-by processor
domain. The stand-by processor domain includes at least one processor executing at
least one stand-by process that receives a stand-by message and generates a
modified stand-by message in response. In this embodiment, the redundancy
manager determines the status of the stand-by proceséor domain in response to the
modified stand-by message. In a further embodiment, the system includes a control
determination module that transforms the active processor domain into the stand-by
processor domain in response to the modified active message.

Brief Description of the Drawings .

[0014] The invention is pointed out with particularity in the appended
claims. The advantages of the invention may be better understood by referring to the
following description taken in conjunction with the accompanying drawing in
which:

[0015] FIG. 1 is a block diagram depicting an embodiment of a prior art
redundancy scheme:

[0016] FIG. 2 is a block diagram of another embodiment of a prior art
redundancy scheme;

[0017] FIG. 3A is a block diagram of an embodiment of software audit
system constructed in accordance with the present invention;

[0018] FIG. 3B is a block diagram of another embodiment of software audit
system constricted in accordance with the present invention;

[0019] FIG. 4 is a flow chart representation of an embodiment of a method
of the present invention,

[0020] FIG. 5 is a flow chart representation of an embodiment of a method

step of the present invention; and
_4-

WO 03/025750 PCT/US02/25740

10

15

20

25

30

[0021] FIG. 6 is a flow chart representation of an embodiment of a method

step of the present invention.

Best Mode for Carrying Out the Invention

[0022] With reference to FIG. 3A, one embodiment of the present invention
includes an active processor domain 310 including an active redundancy manager
314 and a plurality of active processes 318a, 318b, 318c 318x (referred to
generally a 318), a redundant processor domain 320 including a redundant
redundancy manager 324 and a plurality of redundant processes 328a, 328b, 328¢
328x (referred to generally a 328), and a voting processor domain 330 including a
voting redundancy manger 334.

[0023] In operation, active processor domain 310 is fully active (i.e.,
performing system functions). Active redundancy manger 314 generates an active
message. The active message includes a list of the plurality of active processes 318
that will receive the active message and the location of the voting redundancy
manager 334. The active message is communicated to the first active process 318,
more specifically in this illustrative example active process 318a. Active process
318a receives the active message and in response time-stamps the message to
generate a modified active message and communicates it to the next active process
318b. This process continues until the final active process in the list receives the
modified active message and timestamps it. Upon completion of processing the
modified active message by the last active process 318m, the modified active
message is communicated to the voting redundancy manager 334. In a preferred
embodiment, the time-stamp includes the time the active message was received by
an active process 318. In an alternative embodiment, the time-stamp includes the
time an active process 318 completes the processing of the active message. In yet
another embodiment, the time-stamp includes the time elapsed while the active
process 318 completed processing the active message.

[0024] Generally, redundancy processor domain 304 mirrors (i.e., contains
the same processes as) active processor domain 310. Redundant processor domain
320 tracks the state of active processor domain 310, thus the processing load of the

redundant processor domain 320 is significantly less than that of active processor
-5-

WO 03/025750 PCT/US02/25740

10

15

20

25

30

domain 310. Similar to active redundancy manager 314, redundant redundancy
manger 324 generates a redundant message. The redundant message includes a list
of which of the plurality of redundant process 328 that will receive the redundant
message and the location of the voting redundancy manager 334. The redundant
message is communicated to the first redundant processes 328, more specifically in
this illustrative example redundant process 328a. Redundant process 328a receives
the redundant message and in response time-stamps the message to generate a
modified redundant message and communicates it to the next redundant process
328b. This process continues until the final redundant process in the list receives the
modified redundant message and time-stamps it. Upon completion of processing the
modified redundant message by the last redundant process 328m, the modified
redundant message is communicated to the voting redundancy manager 334. In
another embodiment, redundant processor domain 314 does not mirror active
processor domain 310. Additionally, redundant processor domain 320 and active
processor domain 310 do not have to have synchronized time measurement means.
[0025] Voting redundancy manager 334 receives both the modified active
message and the modif ed redundant message. Voting redundancy manager 334 logs
the received messages and generates a statistical characteristic for the modified
active message and the modified redundant message. In one embodiment, the
statistical characteristic includes a running mean of the time need to complete the
active software audit and a standard deviation therefrom. If the standard deviation
determined for the modified active message exceeds a predetermined threshold
value (e.g., 2 standard deviations), voting redundancy manger 334 instructs the
redundant processor domain 320 to become the fully active (i.e., an active processor
domain). Consequently, active processor domain 310 is instructed to transition to a
second state and function as a redundant processor domain. The voting function
performed by voting processor domain 330 requires a small amount of processing
time and thus does not place a large burden on the overall processing resources of
the voting processor domain 330. As a result, active redundancy manager 314 can
also function as a voting redundancy manager 334' for voting processor domain 330

and a fourth processor domain 340.

WO 03/025750 PCT/US02/25740

10

15

20

25

30

[0026] FIG. 3B depicts an embodiment of the present invention in which six
processor domains are being audited for faults. In this embodiment, a redundancy
manager 334 of a third processor domain 330 performs the voting function for a first
processor domain 310 and a second processor domain 320. Additionally, a
redundancy manager 354 of a fifth processor domain 350 performs the voting
function for the third processor domain 330 and a forth processor domain 340. As
shown, one can see that this method can be extended to any number of processor
domains and is not limited to the above-described illustrative embodiments.

[0027] In addition to determining if the processor domain contains a faulted
process, the present invention provides the ability to isolate which process or
processes in the processor domains have faulted. By subtracting the time-stamp from
a process in the list and the previous process in the list, the elapsed time needed for
the process to complete the time-stamping function can be determined and logged
each time the software audit is performed. Voting redundancy manager 334
generates a running average for each process in the processor domains, and also a
standard deviation from the running average for each process in the current audit. If
the standard deviation for a process exceeds a predetermined threshold (e.g., two
standard deviations), the process is determined to have faulted. This information can
be stored or communicated for use in restoring the faulted processor domain to a
non-faulty state.

[0028] With reference to FIG. 4, one embodiment of the present invention
relates to a method 400 of actively auditing a software system to determine its status.
In step 410, a message is generated for processing by a first processing domain. In
one embodiment, the message includes a list of all the processes that will receive the
message and process it. In step 430, a modified message is created by a process in
the first processor domain. After each process in the list has attempted to modify the
message, the modified active message is provided to a determination processor
domain in step 450. The determination processor domain is separate from the first
processor domain and determines the status of the first processor domain in response
to the modified active message in step 470.

[0029] With reference to FIG. 5, the creating of a modified active message in

step 430 of method 400 includes, in more detail step 432, receiving the message by a
-7-

WO 03/025750 PCT/US02/25740

10

15

20

25

30

first process (I~ of a plurality of processes running in the first processor domain. The
message is time-stamped in step 434 by process N. In one embodiment, if process N
is not running or has faulted in another manner, an error message is added to the
active message in place of the time-stamp. After the message is modified, a decision
is made in step 436 to determine if process N is the last process in the list of
processes to receive the message. If process N is not the last process on the list, the
method proceeds to step 438 and the message is provide to process N+1, (i.e., the
next process in the list) and the time-stamping étep 434 is repeated. Once the list
process in the list is reached, the modified active message is provided to the
determination processor domain in step 450.

[0030] With reference to FIG. 6, in more detail step 470, determining the
status of the first (active) processor domain, includes receiving the modified
message by the determination processor domain in step 472. Step 476 determines
whether or not the modified active message contains an error message. If an error
message is present, the method proceeds to step 480 and the first processor domain
is transformed into a stand-by processor domain, and the stand-by processor domain
is transformed into an active processor domain. If an error message is not present in
the modified message, the method continues to step 484 and a statistical
characteristic of the modified message is generated. The statistical characteristic is
analyzed to determine if it exceeds a predetermined threshold in step 488. If the
statistical characteristic exceeds the predetermined threshold, the method proceeds
to step 480 and the first processor domain is transformed into a stand-by processor
domain, and the stand-by processor domain is transformed into an active processor
domain. If the statistical characteristic does not exceed the predetermined threshold
then method 400 is repeated. In one embodiment, this method is repeated about once
per second, although other periods of repetition are possible without departing from
the spirit and scope of the present invention.

[0031] Having shown the preferred embodiments, one skilled in the art will
realize that many variations are possible within the scope and spirit of the claimed
invention. It is therefor the intention to limit the invention only by the scope of the

claims.

WO 03/025750 PCT/US02/25740

10

15

20

25

30

Claims:

1. A method of actively auditing a software system to determine status,
the software system comprising a plurality of processes executed in an active
processor domain, the method comprising the steps of:

generating an active message for processing by the active processor domain;

generating a modified active message by providing an active time indicator
associated with the active message for at least one process of the plurality of
processes; and

determining the status of the active processor domain in response to the
modified active message.

2. The method of claim 1 wherein the step of determining the status of
the active processor domain is responsive to the active time indicator.

3. The method of claim 1 wherein a respective active time indicator is
associated with each process of the plurality of processes, and wherein the step of
determining the status of the active processor domain is responsive to more than one
of the active time indicators.

4. The method of claim 1 wherein the active time indicator comprises a
time-stamp indicating the time the at least one process completed processing the
active message.

5. The method of claim 1 wherein the active time indicator comprises a
time-stamp indicating the time elapsed while the at least one process processed the
active message.

6. The method of claim 1 wherein the step of determining the status
comprises;

determining a statistical characteristic of the active processor domain; and

determining the status of the active processor domain in response to the
statistical characteristic.

7. The method of claim 6 wherein the step of determining a statistical
characteristic comprises generating a time average of the duration of the at least one
process of the plurality of processes for a plurality of active messages.

8. The method of claim 7 wherein the step of determining a statistical

characteristic comprises generating a standard deviation from the time average.
-9.

WO 03/025750 PCT/US02/25740

10

15

20

25

30

9. The method of claim 1 further comprising the steps of:

generating a stand-by message for processing in a stand-by processor
domain, the stand by processor domain comprising a plurality of stand-by processes;
and

generating a modified stand-by message by providing a stand-by time
indicator for at least one process of the plurality of stand-by prbcesses in the stand-
by domain.

10. The method of claim 9 wherein the step of determining the status of
the stand-by processor domain is responsive to the stand-by time indicator.

11. The method of claim 9 wherein a respective stand-by time indicator is
associated with each process of the plurality of stand-by processes of the stand-by
domain and wherein the step of determining the status of the stand-by processor
domain is responsive to at least two of the 4 stand-by time indicators.

12. The method of claim 9 further comprises the step of transforming the
active processor domain to the stand-by processor domain in response to the
modified active message.

13. A system for actively auditing a software system to determine status

comprising:

an active processor domain, the active processor domain having at least one
processor, the at least one processor executing at least one process, the at least one
process receiving an active message and generating a modified active message in
response thereto;

a time-stamp mechanism in communication with the at least one process and
for providing an active time indicator for use in generation of the modified active
message; and

a redundancy manager in communication with the active processor domain,
the redundancy manager determining the status of active processor domain in
response to the modified active message.

14. The system of claim 13 wherein the redundancy manager determines

the status of the active processor domain in response to the active time indicator.

-10-

WO 03/025750 PCT/US02/25740

10

15

20

25

30

15. The system of claim 13 wherein the active time indicator comprises a
time-stamp indicating the time the at least one process completed processing the
active message.

16. The system of claim 13 wherein the active time indicator comprises a
time-stamp indicating the time elapsed while the at least one process processed the
active message.

17. The system of claim 13 wherein the redundancy manager determines
a statistical characteristic of the active processor domain and determines the status of
the active processor domain in response to the statistical characteristic.

18. The system of claim 17 wherein the statistical characteristic
comprises a time average of the duration of the at least one process.

19. The system of claim 18 wherein the statistical characteristic
comprises a standard deviation from the time average.

20. The system of claim 13 further comprising a stand-by processor
domain, the stand-by processor domain having at least one processor, the at least one
processor executing at least one stand-by process, the at least one stand-by process
receiving a stand-by message and generating a modified stand-by message in
response thereto, and wherein the redundancy manager determines the status of the
stand-by processor domain in response to the modified stand-by message.

21. The system of claim 20 wherein the redundancy manager further
comprises a control determination module, the control determination module
transforming the active processor domain into the stand-by processor domain in
response to the modified active message.

22. A system for actively auditing a software system to determine status
comprising:

means for executing at least one process in an active processor domain
configured to receive an active message and generate a modified active message in
response thereto;

means for time-stamping in communication with the at least one process, the
means for time-stamping generating an active time indicator for use by the means

for executing; and

-11-

WO 03/025750 PCT/US02/25740

means for the status of the active processor domain in response to the

modified active message.

-12-

WO 03/025750 PCT/US02/25740
1/7

FIG. 1 (Prior Art)

Processor Domain 1 Processor Domain 2
004 1008
Y v
Comparator
o4
| 2o
Decision Module
Cbmparator
y A
100C. 100D
‘ Processor Domain 4 Processor Domain 3

WO 03/025750 PCT/US02/25740

2/7

FIG. 2 (Prior Art)

Processor Domain 1 Processor Domain 2
2004
R 2008
i

Processor Domain 3
200¢C

——

210
—

Comparator

WO 03/025750 PCT/US02/25740
3/7
Processor Domain 1 | Redundancy Processor Domain2 | Redundancy
50 Manager |4— 320 Manager
= EL RS

Processor Domain 3 | Redundancy Processor Domain4 | Redundancy

330 Manager . Manager

' 334 3

33 o1 3
P2 P3 HP4

P2.1 P3.1 P4.1
P2.2 P3.2 P4.2
P2.3 P3.3 P4.3

PCT/US02/25740

WO 03/025750

4/7

FI1G. 3B

Manager

Domain 6 |Redundanc

WO 03/025750 PCT/US02/25740

5/7
FIG. 4
Hoo
v
gio

Create a modified message
in a first processor domain

use |

Provide modified message to a
determination processor domain

Determine status of
first processor domain

WO 03/025750 PCT/US02/25740

6/7
FIG. 5
32
Receive the message
at process N
" 22
g Time-stamp the message
. . U3
Provide modified
message to
process N+1
‘ No

A

Is this the last
430

process in the list ——
?

4dse

————

Provide modified message to a
determination processor domain

WO 03/025750

PCT/US02/25740

7/7

FIG. 6

urnz
Receive the modified message

Yes

cmm—

Does the
modified

Y.

Transform the Yo

message
contain an error
4?

first processor
domain to the
stand-by processor

. 4y,
Generate statistical characteristic for

the modified message

domain

3

Yes

Does the
statistical

characteristic

exceed a

Yy

prasisl- o

predetermined
threshold

International application No.

INTERNATIONAL SEARCH REPORT

PCT/US02/25740
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GO6F 11/00
US CL 1 714/55, 10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 714/55, 10, 11, 12, 13, 23, 31, 41

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y. P US 6,425,093 B1 (SINGH et al) 23 July 2002 (23.07.2002), Abstract 1-6
Y US 5,471,631 A (BEARDSLEY et al) 28 November 1995 (28.11.1995), Abstract 1-6
A US 5,572,620 A (REILLY et al) 05 November 1996 (05.11.1996), entire document 1-22
A US 5,604,863 A (ALLEN et al) 18 February 1997 (18.02.1997), entire document 1-22
A US 5,432,715 A (SHIGEMATSU et al) 11 July 1995 (11.07.1995), entire document 1-22
A US 5.983,371 A (LORD et al) 09 November 1999 (09.11.1999), entire document 122

l:l Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T” later document published after the internationa filing date or priority
date and not in conflict with the application but cited to understand the
“A" document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“X” document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step
when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as “yr document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“0” document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P” document published prior to the international filing date but later than the “&" document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
0CT 2002
09 September 2002 (09.09.2002) 02
Name and mailing address of the ISA/US Authorized officer

Commissioner of Patents and Trademarks

Box PCT Robert Beausoliel ﬁ W t;b
Washington, D.C. 20231 mea H. fYlctbia

Facsimile No. (703)305-3230 Telephone No. 703-305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

