
(12) United States Patent
BrOWne et al.

USOO8473699B2

(10) Patent No.: US 8.473,699 B2
(45) Date of Patent: *Jun. 25, 2013

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)

(58)

FACILITATING DATA COMPRESSION
DURING REPLICATION USINGA
COMPRESSIBLE CONFIGURATION BIT

Inventors: Michael E. Browne, Staatsburg, NY
(US); Nancy J. Finn, Stormville, NY
(US); Christina Lara, Tucson, AZ (US);
Maria R. Ward, Pflugerville, TX (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 13/447,436

Filed: Apr. 16, 2012

Prior Publication Data

US 2012/O2O3987 A1 Aug. 9, 2012

Related U.S. Application Data
Continuation of application No. 12/607,118, filed on
Oct. 28, 2009.

Int. C.
G06F 12/00 (2006.01)
U.S. C.
USPC 711/162; 711/161: 707/610; 707/640;

707/661; 707/665; 707/667; 709/247; 714/4.11:

Field of Classification Search
None
See application file for complete search history.

Start of Frame
DELIMETER 520

Extender Headers
(OPTIONAL)

FRAME HEADER

Network Header
(OPTIONAL)

Association Header
(OPTIONAL)

device Header
(OPTIONAL)

PAYLOA

FIBYTES
(ASREQUIRED)

CRC

End of Frame
ELIMETER

(56) References Cited

U.S. PATENT DOCUMENTS

6,134,062 A 10/2000 Blumenau
6,339,787 B1 * 1/2002 Yohe et al. 709/217
6,532,121 B1 3/2003 Rust et al.
7,082,390 B2 7/2006 Bergsten
7,185,222 B2 2/2007 Burton et al.
7,200,603 B1 4/2007 Hitz et al.
7,257,648 B2 8/2007 McCartney et al.
7,277.431 B2 10/2007 Walter et al.

(Continued)
OTHER PUBLICATIONS

Notification of Transmittal of the International Search Report and the
Written Opinion for PCT Application No. PCT/EP2010/
064537(PCT Publication No. WO 2011/015995), dated Apr. 12,
2011.

(Continued)
Primary Examiner — Christian P Chace
Assistant Examiner — Alan Otto
(74) Attorney, Agent, or Firm — Steven Chiu, Esq.; Kevin P.
Radigan, Esq.; Heslin Rothenberg Farley & Mesiti P.C.
(57) ABSTRACT
A method is provided for facilitating data replication in a
storage system. A logical volume of a first storage array of a
replicated pair is preconfigured with one or more logical
Volume attributes, which include a compressible configura
tion bit that indicates whether data blocks to be stored to that
logical Volume are compressible during replication. Subse
quently, with receipt of a data block at the first storage array
to be stored to the logical volume, a check of the compressible
configuration bit is made to determine whether the data block
is compressible during replication, and if so, the data block is
compressed for replication. The compressible configuration
bit is placed into the payload region of the data packet being
replicated to the second storage array. At the second storage
array, the compressible configuration bit is used to determine
whether to uncompress the replicated data block.

7 Claims, 6 Drawing Sheets

COMPRESSIBLE
CONFIGURATIONBT

500

50

PAYLOA

US 8473,699 B2
Page 2

7,512,754
7,546,415
7,552,309

2006, O190643
2006/0206542
2007/OO73941
2007/O136541
2008/0095.192

U.S. PATENT DOCUMENTS

B1
B2
B2
A1
A1
A1
A1
A1

3, 2009
6, 2009
6, 2009
8, 2006
9, 2006
3, 2007
6, 2007
4, 2008

Chaitanya et al.
Blinicket al.
Zohar et al.
Kedem et al.
Wolfgang et al.
Brink et al.
Herz et al.
Collette et al.

2008/030.1164 A1 12/2008 ISObe

OTHER PUBLICATIONS

Browne, et al., Office Action for U.S. Appl. No. 12/607.118, filed Oct.
28, 2009 (U.S. Patent Publication No. 2011/0099344A1), dated Aug.
17, 2012.

* cited by examiner

(LHV HORJd) |, "SO|-

US 8473,699 B2

/*

~~ ~~~~ </ /L
\ _^ 0 || ||`~~

Sheet 1 of 6 Jun. 25, 2013 U.S. Patent

00||

U.S. Patent Jun. 25, 2013 Sheet 4 of 6 US 8473,699 B2

CONFIGURING ALOGICAL VOLUME OF A STORAGE UNIT OFA
FIRST STORAGE ARRAY WITH A STORAGE VOLUMEATTRIBUTE 400

COMPRISINGA COMPRESSIBLE CONFIGURATION BIT

RECEIVING INTO CACHE MEMORY AT THE FIRST STORAGE
ARRAY ADATABLOCK (FROMAHOST SYSTEM) TO BE 410

WRITTENTO THE LOGICAL VOLUME OF THE STORAGE UNIT

CHECKING BY THE STORAGE CONTROLLER OF THE FIRST STORAGE
ARRAY. THE STORAGE VOLUMEATTRIBUTES ASSOCIATED WITH THE
LOGICAL VOLUME TO DETERMINE WHETHER THE LOGICAL VOLUME 420

IS PART OF AREPLICATION PAIR AND (FSO) WHETHERTO
COMPRESS THE DATABLOCKDURING REPLICATION

WHEN PART OF AREPLICATION PAIR AND COMPRESSIBLE,
STORAGE CONTROLLER ASSEMBLES DATABLOCK INTO ADATA
PACKET FOR REPLICATION TO ASECOND STORAGE ARRAY OF 430

THE REPLICATION PAIR, THE ASSEMBLING INCLUDES
COMPRESSING THE DATABLOCKAND PLACING THE COMPRESSED

DATABLOCKIN THE PAYLOAD REGION OF THE DATAPACKET,
ALONG WITH THE COMPRESSIBLE CONFIGURATION BIT

TRANSMITTING THE DATA PACKET OVERA 440
REPLICATIONLINK TO THE SECOND STORAGE ARRAY

RECEIVING INTO CACHE THE DATAPACKET 450
AT THE SECOND STORAGE ARRAY

STORAGE CONTROLLER OF THE SECOND STORAGE ARRAY CHECKS
THE COMPRESSIBLE CONFIGURATION BIT IN THE PAYLOAD REGION 460
TO DETERMINE WHETHER THE DATA PAYLOADWAS COMPRESSED

THE STORAGE CONTROLLER AT THE SECOND STORAGE ARRAY
REMOVES THE COMPRESSIBLE CONFIGURATION BITAND, IF
COMPRESSED, UNCOMPRESSES THE DATABLOCKBEFORE 470
PLACING ON THE DESTAGING OUEUE FORWRITING TO THE

STORAGE UNIT OF THE SECOND STORAGE ARRAY.

FIG. 4

U.S. Patent Jun. 25, 2013 Sheet 5 of 6 US 8.473,699 B2

Start of Frame
DELIMETER 520

Extender Headers
(OPTIONAL)

FRAME HEADER

Network Header
(OPTIONAL)

Association Header
(OPTIONAL)

Device Header
(OPTIONAL)

PAYLOAD 510

PAYLOAD

FILL BYTES
(AS REQUIRED)

CRC

End of Frame
DELIMETER

FIG. 5

U.S. Patent Jun. 25, 2013 Sheet 6 of 6 US 8473,699 B2

COMPUTER
PROGRAM
PRODUCT

600

N PROGRAM
CODE LOGIC

COMPUTER
READABLE

N MEDIUM
602

FIG. 6

US 8,473,699 B2
1.

FACILITATING DATA COMPRESSION
DURING REPLICATION USINGA

COMPRESSIBLE CONFIGURATION BIT

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. Ser. No. 12/607,
118, entitled “FACILITATING DATA COMPRESSION
DURING REPLICATION USING A COMPRESSIBLE
CONFIGURATION BIT filed Oct. 28, 2009, and published
Apr. 28, 2011, as U.S. Patent Publication No. 2011/0099344
A1, and which is hereby incorporated herein by reference in
its entirety.

BACKGROUND

The present invention relates in general to storage systems,
storage controllers and data compression, and more particu
larly, to facilitating data compression during replication
between storage arrays of a storage system.

In recent years, storage area networks (SANs) have
become popular. In a storage area network, the storage units
(or storage devices) are not locally attached to a particular
host, but rather are connected to a host or series of hosts
through a Switch fabric, where each host can access each
storage unit. In this manner, multiple hosts may share storage
units so that storage space can be more readily allocated
between the applications on the host(s).

In one example, a storage area network manages a plurality
of disk drives arranged in an array according to a RAID
(Redundant Array of Independent Disks) configuration. One
or more logical Volumes are formed in a physical storage
array provided by the plurality of disk drives, and these logi
cal Volumes are provided to the host system(s).

Since this type of storage system handles large Volumes of
data, data compression is often employed (e.g., during repli
cation) to increase performance of data transfer rates beyond
a default rate for uncompressed data itself. Certain existing
storage controller implementations utilize an all-or-nothing
approach to compressing data before transferring data across
a link. If compression is activated, then the storage controller
attempts to compress every frame of data, whether it is com
pressible, non-compressible or already compressed. The
result can be degradation in data transfer rates due to lost
performance from, for example, attempting to compress non
compressible frames of data, prior to transfer of the data
across the link.

BRIEF SUMMARY

In one aspect, a method of facilitating replication of data in
a storage system is provided. The method includes: configur
ingalogical Volume of a storage unit of a first storage array of
the storage system with at least one storage Volume attribute,
which comprises a compressible configuration bit, the com
pressible configuration bit indicating whether one or more
data blocks to be stored to the logical Volume are compress
ible during replication. Receiving a data block at the first
storage array to be stored to the logical Volume of the storage
unit; and checking the compressible configuration bit associ
ated with the logical Volume, and based thereon, determining
whether to compress the data block during replication thereof
from the first storage array to a second storage array of the
Storage System.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments

10

15

25

30

35

40

45

50

55

60

65

2
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

One or more aspects of the present invention are particu
larly pointed out and distinctly claimed as examples in the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of the invention
are apparent from the following detailed description taken in
conjunction with the accompanying drawings in which:

FIG. 1 is a block diagram illustrating one embodiment of a
storage system to utilize a data compression and replication
facility, in accordance with an aspect of the present invention;

FIG. 2 is a block diagram of one embodiment of a storage
controller of the storage system of FIG. 1, in accordance with
an aspect of the present invention;

FIG. 3 is a block diagram illustrating two storage arrays
logically coupled via a replication link, and utilizing a data
compression and replication facility, in accordance with an
aspect of the present invention;

FIG. 4 depicts one embodiment of a process for facilitating
data employing a compressible configuration bit, in accor
dance with an aspect of the present invention;

FIG. 5 depicts one example of a data packet format for
replication and illustrating a compressible configuration bit
inserted into the data payload region of the data packet, in
accordance with an aspect of the present invention; and

FIG. 6 depicts one embodiment of a computer program
product incorporating one or more aspects of the present
invention.

DETAILED DESCRIPTION

Reference is made below to the drawings (which are not
drawn to scale for ease of understanding), wherein the same
reference number is used throughout different figures to des
ignate the same or similar components.

FIG. 1 depicts one embodiment of a data storage system
100 comprising a storage area network. Central to the storage
area network is one or more storage area network (SAN)
fabrics 110, each of which is formed of a series of routers or
switches, such as Fibre Channel switches according to the
Fibre Channel specifications. These switches are intercon
nected to provide a full mesh (or fabric), allowing any node to
connect to any other node. Various nodes and devices can be
connected to SAN fabric 110. For example, a plurality of host
systems 120 are typically coupled to SAN fabric 110 to com
municate through the fabric to other devices. These other
devices include one or more storage arrays 130 (described
below). In addition, a management server 140 is shown con
nected to SAN fabric 110 for managing storage arrays 130. In
an alternate embodiment, a local area network could be
employed to couple the management server 140 to storage
arrays 130, without relying on SAN fabric 110.

Each host system 120 is a computer device comprising
information processing resources such as a central processing
unit and memory, and may be configured, for example, from
a personal computer, workstation, mainframe, etc.

FIG. 2 illustrates one embodiment of a storage array 130 of
a storage system, such as depicted in FIG. 1. As illustrated,
storage array 130 is connected to storage area network (SAN)
fabric 110, and includes a storage controller 200, and a stor
age unit 210. Storage controller 200 comprises, in the illus
trated embodiment, a frontend interface 201, a data transfer
controller 202, a CPU 203, local memory 204, cache memory

US 8,473,699 B2
3

205 and a backend interface 206. As shown, data transfer
controller 202 includes a compression controller 207 (which
is distinct from an encryption/decryption controller (not
shown), which also may conventionally be included within
the data transfer controller of the storage controller).

Storage controller 200 controls a plurality of storage mod
ules of storage unit 210, such as a plurality of hard disk drives
211. In one example, control of the storage unit is based on a
RAID level defined in a so-called RAID system. In an RAID
system, a plurality of hard disk drives 211 are managed as a
single RAID group. A plurality of logical Volumes 212 are
defined in the RAID group as access units from the host
system 120 (FIG. 1). A LUN (logical unit number) is allo
cated to each logical Volume 212.

Frontend interface 201 is a controller for controlling the
interface with one or more host systems and, for instance, has
a function for receiving a data block input/output (I/O)
request from a host system based (for example) on the Fibre
Channel protocol. Frontend interface 201 further includes
controls for sending and receiving control signals to and from
the management server of the storage area network. CPU 203
is a processor which controls a write access or read access to
the plurality of hard disk drives 211 in response to a data I/O
request from a host system. Further, CPU 203 executes pro
cessing according to various commands sent from the man
agement server 140 (see FIG. 1), and the processing of pro
grams stored in local memory 204. Local memory 204 stores
various types of data and programs to facilitate control of the
storage array 130.

Data transfer controller 202 connects cache memory 205,
frontend interface 201, backend interface 206, and CPU 203.
Data transfer controller 202 again includes compression con
troller 207, and controls the data transfer between a host
system (see FIG. 1) coupled to the SAN fabric 110 and the
hard disk drives 211 of storage unit 210.

Cache memory 205 is a buffer memory for temporarily
storing write data to be written into the hard disk drives 211,
read data being read from the hard disk drives 211 and data to
be sent to the cache memory of another storage controller
during a replication operation. Compression controller 207 is
a controller for reading and compressing (or uncompressing)
data temporarily stored in cache memory 205.

Backend interface 206 is a controller for controlling the
interface with the hard disk drives 211, and for instance, has
a function of controlling the data I/O requests to the hard disk
drives 211 based on a protocol for controlling the hard disk
drives.

Hard disk drives 211 are storage devices configured, by
way of example, from FC (Fibre Channel) disk drives, SATA
(Serial Advanced Technology Attachment) disk drives, PATA
(Parallel Advanced Technology Attachment) disk drives,
FATA (Fibre Advanced Technology Attachment) disk drives,
SAS (Serial Advanced SCSI) disk drives, SCSI (Small Com
puter System Interface) disk drives, etc.

Referring to FIG. 1, management server 140 is, for
instance, a computer system comprising hardware resources
Such as a CPU, a memory and a display. Employing manage
ment server 140, input operations may be performed by a
system operator. The system operator is able to send com
mands for managing one or more of the storage arrays. These
commands may include, for example, a command for increas
ing or decreasing the number of hard disk drives 211, or
changing the RAID configuration, a command for installing
the CPU's micro-programs in local memory, a command for
confirming the operational status of a storage array, or a
command for defining one or more logical Volumes 212
within storage unit 210.

10

15

25

30

35

40

45

50

55

60

65

4
In one embodiment, each storage array 130 is configured as

described above in connection with the storage array depicted
in FIG. 2. When a write access is requested from the host
system, data transfer controller 202 foremost writes the data
received from the host system via frontend interface 201 into
cache memory 205. Subsequently, data transfer controller
202 transfers the data to backend interface 206 in order to
perform asynchronous writing to the hard disk drives 211.
When read access is requested from the host system, data
transfer controller 202 writes the data read from the hard disk
drives 211 via backend interface 206 into cache memory 205,
and subsequently transfers the data to the frontend interface
201. Frontend interface 201 then transfers the compressed
data to the requesting host system.

For data availability, data replication is often employed
within a storage system such as depicted in FIGS. 1 & 2. Data
replication occurs between preconfigured replication pairs of
storage arrays of the storage system (e.g., between replication
pairs of logical Volumes), and is generally, a point-to-point
transfer of data from one storage array to another storage
array. When possible, data compression increases data trans
ferrates during replication beyond a default rate for uncom
pressed data. However, the types of data that can be com
pressed vary. Certain storage controllers available today
utilize an all-or-nothing approach to compressing data during
replication from one storage array to another storage array.
For example, EMC Corporation, headquartered in Hopkin
ton, Mass., USA, offers a Symmetrix DMX-4 series high-end
storage system with storage controllers that have a built-in
capability to automatically attempt to compress data during
replication. However, when compression is enabled. Such
storage controllers attempt to compress every data block,
whether it is compressible or non-compressible. The storage
controller has no knowledge or any way of determining
whether or not the replicated data is compressible for repli
cation.

Presented herein is a solution. Specifically, a data compres
sion and replication facility is disclosed, which provides the
storage controller with processing intelligence to selectively
compress a data block being replicated from a first storage
array to a second storage array of the storage system if it is in
fact compressible. This ability to know which data blocks are
compressible before attempting compression improves data
transfer rates between the storage arrays and thus, facilitates
the replication operation.

FIG. 3 illustrates a replicated pair of storage arrays in a
storage system comprising (in one embodiment) multiple
storage Subsystems. As illustrated, the replicated pair
includes a first storage array 130A and a second storage array
130B, each coupled to storage area network fabric 110. First
storage array 130A and second storage array 130B are each
configured as described above in connection with the storage
area array of FIG. 2, with reference 'A' being added to the
reference numerals for the first storage array 130A, and ref
erence “B” being added to the reference numerals for the
second storage array 130B. In one embodiment, the first
storage array 130A and the second storage array 130B are in
different storage Subsystems of a set of storage Subsystems,
that are in the same, or more typically, different geographic
locations.

In FIG. 3, first storage array 130A is shown to include a
transmit/receive buffer 300A within data transfer controller
202A, and second storage array 130B includes a transmit/
receive buffer 300B within data transfer controller 202B. A
replication link 310 couples (in one example) the transmit/
receive buffers 300A, 300B. This replication link 310 may
comprise a physical link, or a logical representation of a link,

US 8,473,699 B2
5

for example, through SAN fabric 110. Further, although
shown within data transfer controllers 202A, 202B, the trans
mit/receive buffers 300A, 300B might reside elsewhere; for
example, within the respective cache memories 205A, 205B
of the storage controllers 200A, 200B.
As noted, during replication of a data block from first

storage array 130A to second storage array 130B, compres
sion controller 207A conventionally attempts (in an all-or
nothing approach) to compress every data block being repli
cated. This slows the data transfer rate in those cases where
the data block is non-compressible data. To address this issue,
a new bit, referred to herein as the compressible configuration
bit, is employed, both as a storage Volume attribute associated
with a logical volume where the data block is to be stored, as
well as part of a header string placed in the data payload
region of the data packet being replicated from the first stor
age array to the second storage array. This use of the com
pressible configuration bit is described further below with
reference to FIG. 4.

In FIG. 4, a process is depicted for facilitating replication
of data in a storage system. The process, which is described
below with reference to the storage system of FIG. 1 and the
replicated pair of FIG. 3, includes configuring a logical Vol
ume of a storage unit of a first storage array with one or more
storage Volume attributes that include a compressible con
figuration bit (STEP 400). For example, a system administra
tor might employ the management server 140 (see FIG. 1) to
instruct the first storage array to associate a new storage
volume attribute with one or more of the logical volumes of
the storage unit of the storage array. This new storage Volume
attribute that includes the compressible configuration bit may
be set by the system administrator ON or OFF for each par
ticular logical volume within the storage unit of the first
storage array. Alternatively, the compressible configuration
bit could be ON or OFF by default for a particular logical
Volume, depending upon the implementation. In the example
described below, it is assumed that the compressible configu
ration bit is set ON, that is, any data block to be written to the
particular logical Volume is defined to be compressible during
replication.

Subsequently, a write data block request is received at the
first storage array with a particular blockaddress in one of the
logical Volumes of the storage unit of the first storage array.
The write data block request is received from a host system (in
one example), through the SAN fabric to the first storage
array 130A (see FIG. 3), into storage controller 202A via
frontend interface 201A. The data transfer controller 202A
then places the received data block into cache memory 205A
(STEP 410, FIG. 4).

Storage controller 200A (FIG. 3) checks the storage vol
ume attributes associated with the logical volume to which
the data block is to be written, and determines whether the
logical Volume is part of a replication pair and (if so), whether
to compress the data block during replication (STEP 420).
Indicating that the logical Volume is part of a replication pair
is (in one embodiment) via the new storage Volume attribute
associated with the logical Volume (which includes the com
pressible configuration bit that has been set as described
above). By way of example, assume that the compressible
configuration bit is set ON, meaning that any data block to be
storated to that logical Volume is compressible during repli
cation, and further, assume that the storage controller 200A
has a default setting where the storage controller does not
attempt to compress data blocks during replication. In this
case, the compressible configuration bit being set ON means
that the data block will be compressed by the storage control
ler during replication. (Alternatively, the storage controller

10

15

25

30

35

40

45

50

55

60

65

6
could be set by default to compress data blocks automatically
during replication, in which case the compressible configu
ration bit could be used to override the automatic compres
sion for those data blocks that are non-compressible.)
As a further aspect, the replicated data can include an

indication of whether the data block was compressed by the
first storage array during replication to the second storage
array. To accomplish this, the storage controller could either
immediately place a compressible configuration bit in the
data payload region of the data packet being assembled for
replication (e.g., wrapped in an appropriate string placed into
the data payload region of the packet), or set a bit in a track
able table for use in Subsequently inserting a string into the
data payload region of the packet when assembling the data
packet for replication. In one example, the data packet is a
Fibre Channel packet assembled for transmission across a
Fibre Channel replication link logically or physically cou
pling storage controller 200A (FIG. 3) of first storage array
130A and storage controller 200B of second storage array
13OB.

FIG. 5 illustrates one example of a compressible configu
ration bit 500 (e.g., inserted as a reference string) into the data
payload region 510 of a data packet frame 520 being repli
cated from the first storage array to the second storage array.
In this example, it is assumed that the data packet is a Fibre
Channel (FC) data packet being transmitted across a Fibre
Channel link. This implementation, however, is provided by
way of example only. Note that, conventionally, the frame
header information resides outside of the data payload region
of the data packet, as defined by existing Fibre Channel speci
fication. In accordance with the present invention, however,
the reference String containing the compressible configura
tion bit is inserted into the data payload region (specified by
the packet protocol to receive the data block), and therefore,
no change to the existing packet header configuration is
required, e.g., no change to the existing Fibre Channel speci
fication is required to implement the present invention.

Continuing with FIG. 4, when the logical volume into
which the data block is to be placed is part of a replication
pair, and the logical Volume is configured with a compressible
configuration bit set for compression of the data block during
replication, the storage controller schedules the data block for
actual replication on a link and assembles the data block into
a data packet for replication on the link (STEP 430). This
assembling includes (in this example) compressing the data
block and placing the compressed data block in the data
payload region of the data packet, along with the compress
ible configuration bit (as illustrated in FIG. 5) (STEP 440,
FIG. 4). In one embodiment, the data packet is placed into the
transmit/receive buffer 300A (FIG. 3) of the storage control
ler for transmission of the data packet over replication link
310 to second storage array 130B, and in particular, to trans
mit/receive buffer 300B of data transfer controller 202B of
storage controller 200B.

Data transfer controller 200B (FIG. 3) of the second stor
age array receives the data packet into cache memory 205B
(STEP 450, FIG. 4), and checks whether the compressible
configuration bit in the reference string in the data payload
region of the data packet indicates that the data block was
compressed prior to replication (STEP 460). The storage
controller strips the compressible configuration bit from the
payload region, and if the data was compressed during repli
cation, uncompresses the data block prior to placing the data
block on the de-staging queue in the second storage array for
writing of the data to storage unit 210B (FIG. 3) of the second
storage array 130B (STEP 470, FIG. 4).

US 8,473,699 B2
7

Those skilled in the art will note from the above description
that the data block replication facility presented herein pro
vides processing intelligence to the storage controller that
allows the storage controller to avoid, for example, attempt
ing to compress non-compressible data blocks during repli
cation. Data that is determined to be compressible via the
compressible configuration bit associated with the logical
volume to which the data is to be stored will automatically be
compressed by the storage controller before replication,
while data that is non-compressible (as determined by the
compressible configuration bit) can immediately be transmit
ted through the replication link, thereby enhancing replica
tion rates. The compressible configuration bit described
herein is both a storage volume attribute associated with the
logical Volume to which a data block is to be stored, and part
of a reference string placed into the data payload region of the
data packet assembled during replication of the data block
from the first storage array to the second storage array of a
replication pair. Advantageously, the data block replication
facility described herein is independent of various implemen
tations of the Fibre Channel standard or other link standards.

In an alternate implementation, the data storage system
may ensure that replicated logical Volume pairs are guaran
teed to always have matching compressible configuration bit
attributes. This would require that there be no window of time
in which the compressible configuration bits associated with
the logical Volumes in the replicated logical Volume pair
mismatch. In Such a case, the compressible configuration bit
need not be included as part of the reference string incorpo
rated into the data payload region of the packet assembled
during replication of the data block from the first storage array
to the second storage array of the replicated pair. The second,
receiving storage array in this example would check the Stor
age Volume attributes associated with its respective logical
volume to determine whether the compressible configuration
bit was set, and then act accordingly on the received repli
cated data.
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system'. Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read
able program code embodied thereon.
Any combination of one or more computer readable medi

um(s) may be utilized. The computer readable medium may
be a computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, or semiconductor System, appa
ratus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com
puter readable storage medium include the following: an
electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD
ROM), an optical storage device, a magnetic storage device,
or any suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be

10

15

25

30

35

40

45

50

55

60

65

8
any tangible medium that can contain or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Referring now to FIG. 6, in one example, a computer
program product 600 includes, for instance, one or more
computer readable media 602 to store computer readable
program code means or logic 604 thereon to provide and
facilitate one or more aspects of the present invention.

Program code embodied on a computer readable medium
may be transmitted using an appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for

aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language. Such as Java,
Smalltalk, C++ or the like, and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
lucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara
tus or other devices to produce a computer implemented
process Such that the instructions which execute on the com
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.
The flowchart and block diagrams in the figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of

US 8,473,699 B2
9

code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in Some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard
ware and computer instructions.

In addition to the above, one or more aspects of the present
invention may be provided, offered, deployed, managed, ser
Viced, etc. by a service provider who offers management of
customer environments. For instance, the service provider
can create, maintain, Support, etc. computer code and/or a
computer infrastructure that performs one or more aspects of
the present invention for one or more customers. In return, the
service provider may receive payment from the customer
under a Subscription and/or fee agreement, as examples.
Additionally or alternatively, the service provider may
receive payment from the sale of advertising content to one or
more third parties.

In one aspect of the present invention, an application may
be deployed for performing one or more aspects of the present
invention. As one example, the deploying of an application
comprises providing computer infrastructure operable to per
form one or more aspects of the present invention.
As a further aspect of the present invention, a computing

infrastructure may be deployed comprising integrating com
puter readable code into a computing system, in which the
code in combination with the computing system is capable of
performing one or more aspects of the present invention.
As yet a further aspect of the present invention, a process

for integrating computing infrastructure comprising integrat
ing computer readable code into a computer system may be
provided. The computer system comprises a computer read
able medium, in which the computer medium comprises one
or more aspects of the present invention. The code in combi
nation with the computer system is capable of performing one
or more aspects of the present invention.

Further, other types of computing environments can benefit
from one or more aspects of the present invention. As an
example, an environment may include an emulator (e.g., Soft
ware or other emulation mechanisms), in which a particular
architecture (including, for instance, instruction execution,
architected functions, such as address translation, and archi
tected registers) or a Subset thereof is emulated (e.g., on a
native computer system having a processor and memory). In
Such an environment, one or more emulation functions of the
emulator can implement one or more aspects of the present
invention, even though a computer executing the emulator
may have a different architecture than the capabilities being
emulated. As one example, in emulation mode, the specific
instruction or operation being emulated is decoded, and an
appropriate emulation function is built to implement the indi
vidual instruction or operation.

In an emulation environment, a host computer includes, for
instance, a memory to store instructions and data; an instruc
tion fetch unit to fetch instructions from memory and to
optionally, provide local buffering for the fetched instruction;
an instruction decode unit to receive the fetched instructions
and to determine the type of instructions that have been
fetched; and an instruction execution unit to execute the

5

10

15

25

30

35

40

45

50

55

60

65

10
instructions. Execution may include loading data into a reg
ister from memory; storing data back to memory from a
register, or performing some type of arithmetic or logical
operation, as determined by the decode unit. In one example,
each unit is implemented in Software. For instance, the opera
tions being performed by the units are implemented as one or
more subroutines within emulator software.

Further, a data processing system suitable for storing and/
or executing program code is usable that includes at least one
processor coupled directly or indirectly to memory elements
through a system bus. The memory elements include, for
instance, local memory employed during actual execution of
the program code, bulk storage, and cache memory which
provide temporary storage of at least Some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.

Input/Output or I/O devices (including, but not limited to,
keyboards, displays, pointing devices, DASD, tape, CDs,
DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening
I/O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net
works. Modems, cable modems, and Ethernet cards are just a
few of the available types of network adapters.
The terminology used herein is for the purpose of describ

ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an and “the are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms "comprises” and/or "com
prising, when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components and/or groups thereof.
The corresponding structures, materials, acts, and equiva

lents of all means or step plus function elements in the claims
below, if any, are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiment with various modifications as are suited to the
particular use contemplated.

What is claimed is:
1. A method of facilitating replication of data in a storage

system, the method comprising:
configuring a logical Volume of a storage unit of a first

storage array of the storage system with at least one
logical Volume attribute, the at least one logical Volume
attribute comprising a compressible configuration bit
indicating whether all data blocks to be stored to the
logical Volume are compressible during replication
thereof to a second storage array of the storage system;

receiving a data block at the first storage array to be stored
to the logical volume of the storage unit of the first
storage array; and

US 8,473,699 B2
11

checking the compressible configuration bit of the at least
one logical volume attribute with which the logical vol
ume is configured, and based thereon, determining
whether to compress the data block during replication
thereof from the first storage array to the second storage
array of the storage system.

2. The method of claim 1, wherein the method further
comprises replicating the data block from the first storage
array to the second storage array, the replicating comprising
placing the compressible configuration bit into a data payload
region of a data packet for transmission of the data block from
the first storage array to the second storage array.

3. The method of claim 2, wherein the replicating com
prises compressing the data block into a compressed data
block at the first storage array and placing the compressed
data block into the data payload region of the data packet, the
compressing occurring based on the compressible configura
tion bit indicating that the data block is compressible during
replication.

4. The method of claim 2, wherein the replicating com
prises replicating the data block from the first storage array to
the second storage array without compression of the data

10

15

12
block based on the checking of the compressible configura
tion bit indicating that the data block is non-compressible
during replication.

5. The method of claim 2, wherein the storage system
further comprises a replication link coupling the first storage
array and the second storage array, and wherein the replicat
ing comprises transmitting the data packet from the first stor
age array to the second storage array across the replication
link.

6. The method of claim 5, wherein the replication link
comprises a Fibre Channel link, and wherein the placing
comprises placing the compressible configuration bit in the
data payload region of the data packet without requiring
modification to the Fibre Channel protocol, wherein the data
packet is a Fibre Channel data packet.

7. The method of claim 2, further comprising receiving the
data packet at the second storage array, checking the data
payload region of the data packet for the compressible con
figuration bit, and if set, uncompressing the data block at the
second storage array, and discarding the compressible con
figuration bit at the second storage array, and writing the data
block to a logical Volume of a storage unit of the second
Storage array.

