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EFFICIENT BUFFERING FOR A SYSTEM
HAVING NON-VOLATILE MEMORY

BACKGROUND OF THE DISCLOSURE

[0001] NAND flash memory, as well as other types of non-
volatile memories (“NVMs”), are commonly used for mass
storage. For example, consumer electronics such as portable
media players often include flash memory to store music,
videos, and other media.

[0002] Because a file system of a device may perform mul-
tiple small synchronous input/outputs (“I/Os”), die parallel-
ism cannot be achieved in some cases. This consequently may
reduce system bandwidth, and increase the latency for pro-
gramming the pages of a NVM.

[0003] In some scenarios, the latency for programming a
NVM can be improved by buffering one or more I/Os prior to
programming the I/Os to the NVM. However, in other sce-
narios, if 1/Os can instead be directly programmed to the
NVM, indiscriminate buffering of all I/Os received from a file
system may actually slow down the programming process.

SUMMARY OF THE DISCLOSURE

[0004] Systems and methods are disclosed for efficient
buffering of a system having non-volatile memory (“NVM”).
The system can select to buffer writes where the buffering
will increase system performance, and select to program
writes directly to a NVM where the buffering would be a net
performance burden. In some embodiments, a system can use
heuristics to determine whether to perform buffering of one or
more write commands received from a file system. In other
embodiments, the system can minimize read energy and buft-
ering overhead by efficiently re-ordering write commands in
a queue along page-aligned boundaries of a buffer. In further
embodiments, the system can optimally combine write com-
mands from a buffer with write commands from a queue.
After combining the commands, the system can dispatch the
commands in a single transaction.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The above and other aspects and advantages of the
invention will become more apparent upon consideration of
the following detailed description, taken in conjunction with
accompanying drawings, in which like reference characters
refer to like parts throughout, and in which:

[0006] FIGS. 1 and 2 are block diagrams of electronic
devices configured in accordance with various embodiments
of the invention;

[0007] FIG. 3 is afunctional view of a non-volatile memory
in accordance with various embodiments of the invention;
[0008] FIG. 4 is a graphical view of illustrative timing
diagrams for various systems;

[0009] FIG.5is a graphical view of an illustrative program-
ming flow for a system configured in accordance with various
embodiments of the invention;

[0010] FIG. 6 is a graphical view of an illustrative buffer
configured in accordance with various embodiments of the
invention;

[0011] FIGS. 7A and 7B are flowcharts of an illustrative
process for efficient buffering in a non-volatile memory in
accordance with various embodiments of the invention; and
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[0012] FIG. 8 is a flowchart of an illustrative process for
determining whether to buffer in a non-volatile memory in
accordance with various embodiments of the invention.

DETAILED DESCRIPTION OF THE
DISCLOSURE

[0013] Systems and methods for efficient buffering of a
system having non-volatile memory (“NVM”) are provided.
A control circuitry of a system can use heuristics to determine
whether or not to buffer write commands received from a file
system. Any suitable heuristics can be used, such as, for
example, the size of a write command, the number of dis-
patched write command immediately preceding the write
command, the number of remaining write commands saved in
a queue, the amount of available space in memory, the size of
a buffer, and input/output (“I/O”) patterns.

[0014] In some embodiments, the control circuitry can
determine whether or not to buffer a write command based on
the size of command. For example, if the control circuitry
determines that the write command is a relatively small com-
mand (e.g., the size of the write command is below a pre-
determined threshold), the control circuitry can select a buft-
ered path for the write command (e.g., transfer the write
command to a buffer in memory). If the control circuitry
instead determines that the write command is a relatively
large command (e.g., the size of the write command exceeds
a pre-determined threshold), the control circuitry can select a
write path for the write command (e.g., direct a bus controller
to dispatch the write command to a NVM).

[0015] In some embodiments, instead of automatically
selecting a buffered path for small write commands, the con-
trol circuitry can use additional heuristics to determine if
write commands saved in a queue can be combined into a
write-multi command directly in the queue. Once the com-
mands have been combined into the write-multi command,
the control circuitry can dispatch the write-multi command
directly from the queue to a NVM via a write path.

[0016] Inother embodiments, in order to maximize concur-
rency, the control circuitry can attempt to re-order the write
commands in a queue along page-aligned boundaries of a
buffer. Consequently, read energy can be minimized on a
subsequent read because user data is often read with the same
alignments and granularity as the alignments and granularity
with which the user data was programmed. In further embodi-
ments, a control circuitry can combine buffered write com-
mands and queue write commands into the same batch or
transaction to improve system efficiency.

[0017] FIG. 1 illustrates a block diagram of electronic
device 100. In some embodiments, electronic device 100 can
be or can include a portable media player, a cellular tele-
phone, a pocket-sized personal computer, a personal digital
assistance (“PDA”), a desktop computer, a laptop computer,
and any other suitable type of electronic device.

[0018] Electronic device 100 can include system-on-a-chip
(“SoC”) 110 and non-volatile memory (“NVM”) 120. Non-
volatile memory 120 can include a NAND flash memory
based on floating gate or charge trapping technology, NOR
flash memory, erasable programmable read only memory
(“EPROM”), electrically erasable programmable read only
memory (“EEPROM”), Ferroelectric RAM (“FRAM”), mag-
netoresistive RAM (“MRAM?”), or any combination thereof.
[0019] NVM 120 can be organized into “blocks”, which
can the smallest erasable unit, and further organized into
“pages”, which can be the smallest unit that can be pro-
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grammed or read. In some embodiments, NVM 120 can
include multiple integrated circuits, where each integrated
circuit may have multiple blocks. Memory locations (e.g.,
blocks or pages of blocks) from corresponding integrated
circuits may form “super blocks”. Each memory location
(e.g., page or block) of NVM 120 can be referenced using a
physical address (e.g., a physical page address or physical
block address).

[0020] System-on-a-chip 110 can include SoC control cir-
cuitry 112, memory 114, encryption module 116, and NVM
interface 118. SoC control circuitry 112 can control the gen-
eral operations and functions of SoC 110 and the other com-
ponents of SoC 110 or device 100. For example, responsive to
user inputs and/or the instructions of an application or oper-
ating system, SoC control circuitry 112 can issue read or write
commands to NVM interface 118 to obtain data from or store
data in NVM 120. For clarity, data that SoC control circuitry
112 may request for storage or retrieval may be referred to as
“user data,” even though the data may not be directly associ-
ated with a user or user application. Rather, the user data can
be any suitable sequence of digital information generated or
obtained by SoC control circuitry 112 (e.g., via an application
or operating system).

[0021] SoC control circuitry 112 can include any combina-
tion of hardware, software, and firmware, and any compo-
nents, circuitry, or logic operative to drive the functionality of
electronic device 100. For example, SoC control circuitry 112
can include one or more processors that operate under the
control of software/firmware stored in NVM 120 or memory
114.

[0022] SoC control circuitry 112 can dispatch one or more
commands to NVM 120. In some embodiments, SoC control
circuitry 112 can include a block device driver or wrapper that
can be configured to dispatch application programming inter-
face (“API”) operations to NVM 120 or a controller of NVM
120. In some embodiments, SoC control circuitry 112 can
modify one or more parameters of the block device driver or
wrapper in order to transfer information to NVM 120. For
example, by modifying the one or more parameters, SoC
control circuitry 112 can transfer information associated with
commands used to access NVM 120 (e.g., read, program,
erase, and/or write-multi commands).

[0023] Memory 114 can include any suitable type of vola-
tile memory, such as random access memory (“RAM”) (e.g.,
static RAM (“SRAM”), dynamic random access memory
(“DRAM”), synchronous dynamic random access memory
(“SDRAM”), double-data-rate (“DDR”) RAM), cache
memory, read-only memory (“ROM”), or any combination
thereof. Memory 114 can include a data source that can
temporarily store user data for programming into or reading
from non-volatile memory 120. In some embodiments,
memory 114 may act as the main memory for any processors
implemented as part of SoC control circuitry 112.

[0024] Insomeembodiments, memory 114 can include one
or more command queues (not shown in FIG. 1) for saving
commands (e.g., read, write, and/or trim commands) received
from a file system that have not yet been dispatched to NVM
120. The one or more command queues can be block-device
level queues. For example, memory 114 can include a read
queue for retaining read commands, a write queue for retain-
ing write commands, and a trim queue for retaining trim
commands. Consequently, SoC control circuitry 112 can scan
one or more queues in order to select one or more commands
that may be dispatched to NVM 120. After the one or more
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commands have been dispatched, SoC control circuitry 112
can remove those commands from the queue. Persons skilled
in the art will appreciate that memory 114 may instead
include one queue configured to retain all types of commands
(e.g., read, write, and trim commands).

[0025] The one or more queues will generally be serviced
until the queues are empty. In some embodiments, SoC con-
trol circuitry 112 can have a set of fairness rules for servicing
each of the separate queues. For example, SoC control cir-
cuitry 112 may attempt to service the queues such that each of
the queues is serviced at approximately the same rate as the
number of commands that are currently included in the queue.
The order in which the queues are serviced affects the quality
of service of the system.

[0026] Insomeembodiments, because commands may not
be able to be saved in the queues indefinitely (e.g., other
threads or processes may be waiting for those I/Os to com-
plete), memory 114 can include a buffer (not shown in FIG. 1)
that can provide for longer-term storage of commands. For
example, in some cases, SoC control circuitry 112 can select
one or more write commands saved in a queue, and transfer
the selected write commands to the buffer. After saving the
write commands to the buffer, SoC control circuitry 112 can
remove those write commands from the queue.

[0027] Persons skilled in the art will appreciate that the
buffer in memory 114 can have any suitable size. For
example, the buffer may be a relatively small buffer capable
of storing less than one page of data. However, if the mini-
mum program granularity is one page or larger, the buffer
may be arelatively large buffer capable of storing one or more
pages of data. For instance, the buffer may have a size of one
page, one stripe, multiple stripes, a super block, or any other
suitable size.

[0028] Encryption module 116 can be or may include any
hardware or software, or combination thereof, configured to
perform encryption and decryption based on a suitable cipher.
For example, encryption module 116 can be based on the
Advanced Encryption Standard (“AES”), Data Encryption
Standard (“DES”), or RSA. Encryption module 116 can pro-
vide security for sensitive data, such as personal information
or billing information, stored on NVM 120 or transmitted/
received to/from SoC 110. Although encryption module 116
is shown in FIG. 1 as included in SoC 110, persons skilled in
the art will appreciate that encryption module 116 may
instead be implemented in NVM 120.

[0029] In some embodiments, encryption module 116 can
encrypt and decrypt data using one or more “encryption
seeds” provided by control circuitry (e.g., SoC control cir-
cuitry 112 or a controller on NVM 120), which may be
required by the encryption algorithm to perform encryption
or decryption. In some embodiments, and particularly for
AES-based encryption modules, the encryption seeds can
include a key and an initialization vector (“IV”). To recover
the original unencrypted data from encrypted data, the
encryption seeds used for decryption may need to be the same
as the seeds originally used for encryption.

[0030] NVM interface 118 may include any suitable com-
bination of hardware, software, and/or firmware configured
to act as an interface or driver between SoC control circuitry
112 and NVM 120. For any software modules included in
NVM interface 118, corresponding program code may be
stored in NVM 120 or memory 114.

[0031] NVM interface 118 can perform a variety of func-
tions that allow SoC control circuitry 112 to access NVM 120
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and to manage the memory locations (e.g., pages, blocks,
super blocks, integrated circuits) of NVM 120 and the data
stored therein (e.g., user data). For example, NVM interface
118 can interpret the read or write requests from SoC control
circuitry 112, perform wear leveling, and generate read and
program instructions compatible with the bus protocol of
NVM 120.

[0032] While NVM interface 118 and SoC control circuitry
112 are shown as separate modules, this is intended only to
simplify the description of the embodiments of the invention.
It should be understood that these modules may share hard-
ware components, software components, or both. For
example, SoC control circuitry 112 may execute a software-
based memory driver for NVM interface 118.

[0033] In some embodiments, electronic device 100 can
include a target device, such as a flash memory drive or
Secure Digital (“SD”) card, that includes NVM 120 and some
or all portions of NVM interface 118 (e.g., a translation layer,
discussed below). In these embodiments, SoC 110 or SoC
control circuitry 112 may act as the host controller for the
target device. For example, as the host controller, SoC 110
can issue read and write requests to the target device.

[0034] FIG. 2 illustrates a block diagram of electronic
device 200, which may illustrate in greater detail some of the
firmware, software, and/or hardware components of elec-
tronic device 100 (FIG. 1) in accordance with various
embodiments. Electronic device 200 may have any of the
features and functionalities described above in connection
with FIG. 1, and vice versa. As shown, dashed lines demar-
cate the layers. It is understood that the depiction of which
components fall within the demarcation lines are merely
illustrative and that one or more components can be affiliated
with a different layer.

[0035] Electronic device 200 can include file system 210,
NVM driver 212, NVM bus controller 216, and NVM 220. In
some embodiments, file system 210 and NVM driver 212 may
be software or firmware modules, and NVM bus controller
216 and NVM 220 may be hardware modules. Accordingly,
in these embodiments, NVM driver 212 may represent the
software or firmware aspect of NVM interface 218, and NVM
bus controller 216 may represent the hardware aspect of
NVM interface 218.

[0036] File system 210 can include any suitable type of file
system, such as a File Allocation Table (“FAT”) file system or
a Hierarchical File System Plus (“HFS+”), and may be part of
the operating system of electronic device 200 (e.g., part of
SoC control circuitry 112 of FIG. 1). In some embodiments,
file system 210 may include a flash file system, which pro-
vides alogical to physical mapping of pages. In these embodi-
ments, file system 210 may perform some or all of the func-
tionalities of NVM driver 212 discussed below, and therefore
file system 210 and NVM driver 212 may or may not be
separate modules.

[0037] File system 210 may manage file and folder struc-
tures for the application and operating system. File system
210 may operate under the control of an application or oper-
ating system running on electronic device 200, and may pro-
vide write and read commands to NVM driver 212 when the
application or operating system requests that information be
read from or stored in NVM 220. Along with each read or
write command, file system 210 can provide a logical address
to indicate where the user data should be read from or written
to, such as a logical page address or a logical block address
(“LBA”) with a page offset.
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[0038] Filesystem 210 may provide read and write requests
to NVM driver 212 that are not directly compatible with
NVM 220. For example, the logical addresses may use con-
ventions or protocols typical of hard-drive-based systems. A
hard-drive-based system, unlike flash memory, can overwrite
a memory location without first performing a block erase.
Moreover, hard drives may not need wear leveling to increase
the lifespan of the device. Therefore, NVM interface 218 can
perform any functions that are memory-specific, vendor-spe-
cific, or both to handle file system requests and perform other
management functions in a manner suitable for NVM 220.
[0039] NVM driver 212 can include translation layer 214.
In some embodiments, translation layer 214 may be or
include a flash translation layer (“FTL”). On a write com-
mand, translation layer 214 can map the provided logical
address to a free, erased physical location on NVM 220. On a
read command, translation layer 214 can use the provided
logical address to determine the physical address at which the
requested data is stored. Because each NVM may have a
different layout depending on the size or vendor of the NVM,
this mapping operation may be memory and/or vendor-spe-
cific. Translation layer 214 can perform any other suitable
functions in addition to logical-to-physical address mapping.
For example, translation layer 214 can perform any of the
other functions that may be typical of flash translation layers,
such as garbage collection and wear leveling.

[0040] NVM driver 212 may interface with NVM bus con-
troller 216 to complete NVM access commands (e.g., pro-
gram, read, and erase commands). Bus controller 216 may act
as the hardware interface to NVM 220, and can communicate
with NVM 220 using the bus protocol, data rate, and other
specifications of NVM 220.

[0041] In some embodiments, upon receiving a command
(e.g., awrite command) from file system 210, NVM interface
218 can direct NVM bus controller 216 to dispatch a com-
mand (e.g., an API operation) to NVM 220. In some embodi-
ments, NVM interface 218 may use translation layer 214 to
obtain the physical addresses of one or more memory loca-
tions of NVM 220.

[0042] NVM interface 218 may manage NVM 220 based
on memory management data, sometimes referred to herein
as “metadata”. The metadata may be generated by NVM
driver 212 or may be generated by a module operating under
the control of NVM driver 212. For example, metadata can
include any information used for managing the mapping
between logical and physical addresses, bad block manage-
ment, wear leveling, error-correcting code (“ECC”) data used
for detecting or correcting data errors, or any combination
thereof. The metadata may include data provided by file sys-
tem 210 along with the user data, such as a logical address.
Thus, in general, “metadata” may refer to any information
about or relating to user data or used generally to manage the
operation and memory locations of a non-volatile memory.
[0043] NVM interface 218 may be configured to store
metadata in NVM 220. In some embodiments, NVM inter-
face 218 may store metadata associated with user data at the
same memory location (e.g., page) in which the user data is
stored. For example, NVM interface 218 may store user data,
the associated logical address, and ECC data for the user data
at one or more memory locations of NVM 220. NVM inter-
face 218 may also store other types of metadata about the user
data in the same memory location.

[0044] NVM interface 218 may store the logical address so
that, on power-up of NVM 220 or during operation of NVM
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220, electronic device 200 can determine what data resides at
that location. In particular, because file system 210 may ref-
erence the user data according to its logical address and not its
physical address, NVM interface 218 may store the user data
and logical address together to maintain their association.
This way, even if a separate table maintaining the physical-
to-logical mapping in NVM 220 becomes outdated, NVM
interface 218 may still determine the proper mapping at
power-up or reboot of electronic device 200, for example.
[0045] Asdiscussedabove,aNVM (e.g., NVM 120 of FIG.
1 or NVM 220 of FIG. 2) can be organized into dies, blocks,
pages, super blocks, and the like. For example, FIG. 3 shows
a schematic layout of NVM 300. NVM 300 can be the same
asor similar to NVM 120 (FIG. 1) or NVM 220 (FIG. 2). FIG.
3 is merely meant to illustrate the organizational layout of
NVM 300 and does not indicate an actual, physical layout of
the non-volatile memory. For instance, although die 0 is illus-
trated as being next to die 1 in FIG. 3, this is merely for
illustrating the functional relationship of these dies, and in the
actual, physical layout of NVM 300, these dies may or may
not be located near one another.

[0046] Moreover, although a certain number of dies,
blocks, and pages are shown in FIG. 3, this is merely for the
purpose of illustration and one skilled in the art could appre-
ciate that NVM 300 could include any suitable number of
dies, blocks, and pages. As one illustration, each die of NVM
300 can include 4096 blocks, each block may include 64, 128,
or 192 pages based on whether the block is an SLC block,
2-bit MLC block, or 3-bit MLC block. In addition, each page
of NVM 300 can have any suitable size such as, for example,
2 KiB, 4 KiB, 8 KiB, or 16 KiB.

[0047] As illustrated by FIG. 3, NVM 300 can include one
or more dies (i.e., integrated circuits), such as die 0, die 1, die
2, and die 3. Each die of NVM 300 may be organized into one
or more “blocks”. For example, dies 0-3 is illustrated as each
being organized into blocks 0-3.

[0048] Each block of the dies may be organized into one or
more pages. For example, block 0 of each of dies 0-3 is
illustrated as being organized into pages 0-3. Each page of
NVM 300 can include any suitable information. For example,
the pages can include user data, metadata, or both. In some
embodiments, metadata such as ECC data can be included in
the pages to provide for error detection and/or correction of
the information stored in NVM 300.

[0049] Over time, page sizes have increased in order to
compensate for the longer time that it takes to program a
NVM. That is, because memory cells of NVMs have
decreased in size, more precise pulses have to be applied to
memory cells of a NVM in order to program data in those
cells. Accordingly, by increasing the size of pages, the same
amount of user data can be programmed during any particular
period of time. The net effect of this is that a user of an
electronic device will not experience a reduction in the overall
programming speed of a NVM.

[0050] NVM 300 can also include one or more super blocks
that include one block from each die that has the same posi-
tion or “block number” in the die. For example, super block 0
of NVM 300 can include block 0 of each of dies 0-3. Simi-
larly, super block 1 of NVM 300 can include block 1 of each
of'dies 0-3, super block 2 of NVM 300 can include block 2 of
each of dies 0-3, and so forth.

[0051] Super blocks can be formed by virtually linking or
“striping” together one or more blocks. Blocks need not be in
the same row of each die to be virtually linked as a super
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block. In fact, blocks may be chosen randomly from two or
more dies to form a super block. In some embodiments, a
super block can include only one block. Super blocks provide
operational parallelism, thereby enabling programming,
reading, and erase operations to be performed on blocks
located in different dies in parallel.

[0052] In addition, pages from two or more dies may be
virtually linked together to form super pages or “stripes”. For
instance, stripe 302 can include page 0 from block 0 of each
of dies 0-3. Similarly, stripe 304 can include page 3 from
block 0 of each of dies 0-3. A translation layer (e.g., transla-
tion layer 214 of FIG. 2) being implemented in an NVM
interface may keep track of super blocks or stripes. Generally,
the programming time can remain the same for pages that are
included in a particular stripe (e.g., stripe 302 or 304).
[0053] A file system of a system (e.g., file system 210 of
FIG. 2) can operate in a logical space. Thus, as discussed
above, each file in the system can map to one or more LBAs.
Correspondingly, the one or more LBAs can be mapped to
one or more physical page addresses in the NVM.

[0054] However, when a NVM is configured to have larger
pages capable of storing multiple LBAs, the file system may
sometimes issue a write command that may not completely
fill up a physical page in a NVM. In conventional systems, a
control circuitry (e.g., control circuitry 112 of FIG. 1) can pad
out the unfilled portions of a page with invalid data, and
program the write command along with the invalid data to the
NVM. This operation wastes space in the NVM, and may
consequently increase the amount of GC that needs to be
performed on the NVM.

[0055] Accordingly, in order to increasing system effi-
ciency, a system can be configured to dispatch multiple write
commands to a NVM in a single transaction.

[0056] FIG. 4 show illustrative timing diagrams for various
systems. For example, as shown in FIG. 4, the programming
time (t_prog) is not substantially different if one page (as
shown in timing diagram 400) or multiple pages (as shown in
time diagram 402) are being programmed in a single opera-
tion (e.g., as a write-multi command). This may be particu-
larly true if the multiple pages are included in a single stripe.
[0057] In addition, the time for startup programming
(t_startup) also do not vary substantially if one page or mul-
tiple pages are being programmed in a single operation. As
used herein, the “time for startup programming” refers to the
time that it takes to activate the NVM interface (e.g., NVM
interface 218 of FIG. 2).

[0058] Moreover, under most scenarios, the time that it
takes to transfer contents to a page buffer (t_transfer) is rela-
tively short as compared to t_prog. For example, as shown in
timing diagram 402, t_transfer for programming a write-
multi command can still be of shorter duration as compared to
t_prog. However, as shown in timing diagram 404, program-
ming multiple pages separately is less efficient due to the
combination of multiplet_progs. The efficiency of the system
is especially impacted if the amount of user data that can be
programmed each time is relatively small.

[0059] Consequently, to increase the amount of die pro-
gramming that can be performed in parallel and the amount of
user data that can be programmed in a particular I/O transac-
tion, a control circuitry can combine multiple write com-
mands into a single write-multi command. Persons skilled in
the art will appreciate that a write-multi command can be
formed using any suitable approach. For example, the control
circuitry can form a write-multi command by combining a set



US 2012/0221767 Al

of logical addresses, a set of counters, and a set of buffers
associated with the multiple commands into an array of logi-
cal addresses, an array of counters, and an array of buffers,
respectively.

[0060] After forming the write-multi command, the control
circuitry can dispatch the write-multi command to a NVM
(e.g., in the form of an API operation). By forming and dis-
patching a write-multi command, user data can be pro-
grammed more efficiently in the NVM without wasting valu-
able space.

[0061] Insomeembodiments, the system may have several
options for splitting data writes into multiple write paths.
FIG. 5 shows a graphical view of an illustrative programming
flow 500 for a system.

[0062] As discussed, a file system (e.g., file system 210 of
FIG. 2) can issue one or more commands (e.g., read, write,
and/or trim commands) that can be saved in one or more
queues in the system. For example, as shown in FIG. 5, queue
502 can represent a write queue that can be configured to
retain one or more write commands. However, persons skilled
in the art will appreciate that the system may include addi-
tional queues for storing read and/or trim commands. Alter-
natively, queue 502 can be configured to store write, read, and
trim commands.

[0063] In some embodiments, after a write command is
received in queue 502, a control circuitry (e.g., control cir-
cuitry 112 of FIG. 1) can select one of two paths for dispatch-
ing the write command. For example, the control circuitry can
select a write path (e.g., path 504) for dispatching the write
command to NVM 510. NVM 510 can be the same as or
similar to NVM 120 (FIG. 1), NVM 220 (FIG. 2), or NVM
300 (FIG. 3).

[0064] Insome cases, by selecting path 504, the write com-
mand can be dispatched directly to hardware engine 506.
Hardware engine 504 can be, for example, a direct memory
access (“DMA”) engine.

[0065] Insomeembodiments, prior to dispatching the write
command to hardware engine 506, the control circuitry can
encrypt the write command using an encryption module (e.g.,
encryption module 116 of FIG. 1). As discussed, the encryp-
tion module can encrypt the write command using any suit-
able encryption standard such as, for example, AES, DES, or
RSA.

[0066] Subsequently, the control circuitry can pass the
write command to NVM interface 508. NVM interface 508
can be the same as or substantially similar to NVM interface
218 of FIG. 8. Once NVM interface 508 receives the write
command, a NVM bus controller (e.g., NVM bus controller
216 of FIG. 2) can be directed to dispatch the write command
to NVM 510 across bus 512.

[0067] In some cases, instead of selecting path 504, the
control circuitry can select a buffered path (e.g., path 520) for
a particular write command. By selecting path 504, the con-
trol circuitry can transfer the write command from queue 502
to buffer 522. As discussed above, buffer 522 can be stored in
volatile memory (e.g., memory 114 of FIG. 1), and can be
configured to store any suitable number of write commands.
[0068] By storing one or more write commands in buffer
522, the control circuitry can wait to receive additional write
commands from the file system before directing a bus con-
troller to concurrently dispatch multiple commands to NVM
510 via path 524. For example, the multiple commands can be
combined as a write-multi command, which can then be
dispatched to NVM 510.
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[0069] In some embodiments, the control circuitry can
direct an encryption module to encrypt the write command
before the write command is transferred to buffer 522. After
encrypting the write command, the control circuitry can store
the encrypted write command in buffer 522.

[0070] In other embodiments, the control circuitry can
transfer an unencrypted write command to buffer 522. In such
embodiments, however, the control circuitry may need to
copy one or more encryption seeds (e.g., one or more keys and
1Vs) to volatile memory (e.g., memory 114 of FIG. 1). Then,
when the write command is ready to be dispatched from
buffer 522, the control circuitry can direct an encryption
module to use the stored encryption seeds to encrypt the write
command. Consequently, for such a configuration, buffer 522
may be associated with unique encryption characteristics
(e.g., a fixed set of encryption seeds).

[0071] In order to retain system coherency, one or more
“side-band signals” may be issued by an application, operat-
ing system, or file system of a system. As used herein, “side-
band signals™ can refer to any suitable signal that may be
generated by a cache algorithm of an application, operating
system, or file system to maintain coherency. For example,
one type of side-band signal may be a synchronized cache
signal, which may be generated by one or more applications
in the system. Another side-band signal may be a force unit
access (“FUA”) signal, which can be generated by HFS+.
[0072] In response to receiving one or more of these side-
band signals, the control circuitry can direct a bus controller
to flush the buffer. That is, the control circuitry can direct the
bus controller to dispatch all of the commands currently
stored in the buffer to the NVM via path 524.

[0073] Because path 520 involves an extra step of copying
a write command from queue 502 to buffer 522, additional
traffic may be generated in the system. As a result, in some
scenarios, path 520 may be less efficient as compared to path
504. For example, if the transferred command is a large com-
mand, it may be more efficient to directly program the com-
mand to NVM 510 via path 504.

[0074] Ontheotherhand, if the control circuitry indiscrimi-
nately selects path 504 for dispatching all commands (includ-
ing small commands), system performance may also
decrease. Accordingly, the control circuitry may need to
apply one or more heuristics to select a path that is best suited
for dispatching a particular write command.

[0075] One of the heuristics that may be used is the size of
awrite command. Based at least in part on the size of the write
command, the control circuitry can determine whether or not
to buffer a write command.

[0076] For example, the control circuitry can first deter-
mine the size of a write command that is saved in queue 502.
The control circuitry can then determine if the size of the
write command is below a pre-determined threshold. In
response to determining that the size of the write command is
below the pre-determined threshold (e.g., the write command
is a relatively small write command), the control circuitry can
determine to perform buffering of the write command.
[0077] Consequently, the control circuitry can transfer the
write command from queue 502 to buffer 522 via path 520.
Once the write command has been stored in buffer 522, the
command can be combined with other write commands at a
later time.

[0078] If the control circuitry instead determines that the
size of the write command is above the pre-determined
threshold (e.g., the write command is a relatively large write
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command), the control circuitry can determine not to perform
buffering of the write command. As a result, the control
circuitry can direct a bus controller to dispatch the write
command from queue 502 to NVM 510 via path 504.

[0079] Accordingly, by selecting a path based on the size of
a write command, the control circuitry can reduce the total
required bandwidth for executing write commands from an
overall system perspective.

[0080] In other embodiments, in addition to the size of a
write command, the control circuitry can use other heuristics
to determine which of path 504 or path 520 to select. For
example, the control circuitry can use one or more heuristics
to determine if system efficiency can be improved by com-
bining multiple write commands into a write-multi command
directly in queue 502. In particular, once the write commands
have been combined into the write-multi command, the write-
multi command can be dispatched directly from queue 502
via path 504.

[0081] One of the heuristics that can be used is the number
of write commands saved in queue 502. For instance, the
control circuitry can determine whether the number of write
commands saved in queue 502 exceeds a pre-determined
number. In response to determining that the number of write
commands exceeds the pre-determined number, the control
circuitry can combine the write commands into a write-multi
command, and can direct a bus controller to dispatch the
write-multi command from queue 502 to NVM 510. This
way, the control circuitry can gain the benefits of concurrently
dispatching multiple write commands, while also avoiding
the extra step of copying a write command to buffer 522.
[0082] Another heuristic that may be used is 1/O patterns.
For example, the control circuitry can assume that [/O gen-
erally arrive in batches. For instance, during a particular
period of time, the control circuitry may be more likely to
receive a burst of read commands or write commands rather
than write commands interspersed with read commands.
Consequently, if the control circuitry has already received a
series of sequential writes, the control circuitry may expect to
receive additional sequential writes in the near future.
[0083] Under such an assumption, the control circuitry can
determine whether a set of the most recently received write
commands in queue 502 is sequential. In response to deter-
mining that the set of the most recently received write com-
mands is sequential, the control circuitry can wait to receive
additional write commands in queue 502.

[0084] Once the control circuitry receives those additional
write commands, the control circuitry can combine the addi-
tional write commands with the set of the most recently
received commands into a write-multi command. The control
circuitry can then direct a bus controller to dispatch the write-
multi command from queue 502 to NVM 510. Consequently,
the control circuitry can bypass buffer 522 for sequential
write commands.

[0085] Insome embodiments, while the control circuitry is
waiting to receive additional write commands in queue 502,
the control circuitry can instead service a read queue and/or a
trim queue stored in memory. As such, the control circuitry
can ignore existing fairness rules, and allow write commands
to stack up in queue 502.

[0086] As another example, the control circuitry can deter-
mine whether or not to buffer a small write command based
on the number of dispatched write commands immediately
preceding the write command and/or the amount of time that
has elapsed since the last dispatched write command. That is,
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based on an observation of past access patterns, the control
circuitry can determine that additional write commands may
likely arrive in the near future. Consequently, it may be more
efficient to hold on to a small write command in queue 502,
and wait for additional write commands.

[0087] For instance, if the control circuitry determines that
the number of dispatched write commands immediately pre-
ceding the write command exceeds a pre-determined number,
the control circuitry can wait to receive one or more additional
write commands in queue 502. Similarly, the control circuitry
may wait to receive additional write commands if the amount
of time that has elapsed since the last dispatched write com-
mand is less than a pre-determined time period (e.g., a few
milliseconds).

[0088] Once the control circuitry receives one or more
additional write commands in queue 502, the control circuitry
can combine the additional write commands with the small
write command into a write-multi command. The control
circuitry can then direct a bus controller to dispatch the write-
multi command from queue 502 to NVM 510.

[0089] In the examples discussed above, persons skilled in
the art will appreciate that the control circuitry can transfer
one or more write commands from queue 502 to buffer 522
after a period of time has elapsed (e.g., a few milliseconds).
That is, if the control circuitry does not actually receive the
expected write commands, the control circuitry can transfer
the small write command to buffer 522.

[0090] As yet another example, the control circuitry can
determine whether or not to buffer a small write command
based on the number of remaining write commands saved in
queue 502. For instance, if queue 502 only has a single write
command or a small number of write commands, the control
circuitry can transfer the small write command to buffer 522.
[0091] As afurther example, the control circuitry can deter-
mine whether to perform buffering based at least in part on the
amount of available space in memory. For instance, if the
amount of available space in memory is below a pre-deter-
mined threshold, the control circuitry can select path 504 and
bypass buffering. On the other hand, if the amount of avail-
able space is above the pre-determined threshold, the control
circuitry can select path 520, and buffer a small write com-
mand.

[0092] As yet a further example, the control circuitry may
use past performance of the /O scheduling algorithm to
determine whether or not to buffer. For instance, the control
circuitry can maintain a scorecard of past performance of the
scheduling algorithm, which can include the success rate of
past buffering decisions. If the control circuitry determines
that the success rate is relatively low, the control circuitry can
adapt the heuristics used in determining whether or not to
buffer.

[0093] As another example, the control circuitry can deter-
mine whether or not to buffer based on the size of the buffer,
or, particularly, the size of the buffer relative to the size of a
write command. For example, if the size of the write com-
mand is the same as or larger than the size of buffer 522, the
control circuitry can determine not to transfer the write com-
mand to buffer 522, and instead select to dispatch the write
command directly to NVM 510 via path 504.

[0094] If, however, the size of the buffer is greater than the
size of the write command, the control circuitry can apply one
or more algorithms in order to reduce fragmentation across
dies for a particular write span. In particular, an assumption
can be made that user data is generally read from a NVM with
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the same granularity as the granularity with which the user
data was programmed (e.g., along similar boundaries). For
example, a system may save a text document to a NVM.
Subsequently, the system will likely load the entire document
as well. As another example, when a system programs a
database in a NVM, the database is programmed using small,
random updates. Likewise, at a later time, the database will
likely be accessed using random reads. As such, the system
can expect that user data associated with a sequence of small
write commands will be read simultaneously.

[0095] Conventionally, a system may separately program
each write command to a NVM. As a result, the user data
associated with the write commands may be split among
multiple dies, which can increase the energy (e.g., the overall
power consumption) that it will take to read the user data at a
later time. This is because each die needs to be activated in
order to read the user data.

[0096] Accordingly, in order to maximize concurrency
(e.g., minimize channel doubling) and minimize read energy,
the control circuitry can attempt to re-order the write com-
mands in a queue along page-aligned boundaries of a buffer.
In particular, the control circuitry can attempt to select one or
more commands from a queue in order to fill a buffer along
one or more page-aligned boundaries.

[0097] Thus, under such a scenario, the system may take
page alignment into consideration when storing write com-
mands into a buffer. For example, as shown in FIG. 6, buffer
600 includes 8 page-aligned portions (e.g., page-aligned por-
tions 0-7), where each page-aligned portion includes space to
hold four LBAs. Each page-aligned portion of buffer 600 may
be configured to store the same amount of data as a page of a
NVM (e.g., NVM 300 of FIG. 3 or NVM 510 of FIG. 5).
Persons skilled in the art will appreciate that buffer 600 may
include any suitable number of page-aligned portions.

[0098] For example, as shown, page-aligned portions 0 and
1 of buffer 600 have been completely filled with write com-
mands, and page-aligned portion 2 of buffer 600 has only
been partially filled. In particular, write commands 0-3 are
stored in page-aligned portion 0, write commands 4-7 are
stored in page-aligned portion 1, and write commands 8 and
9 are stored in page-aligned portion 2. The remaining portions
of bufter 600 are empty.

[0099] Based on this information, the control circuitry can
determine that the write commands stored in buffer 600 are
not currently aligned with at least one page boundary (e.g.,
page-aligned portion 2 has not been completely filled). In
response to determining that the write commands are not
aligned in buffer 600, the control circuitry can detect afill size
that is needed to fill bufter 600 to at least one page boundary.
For page-aligned portion 2, for instance, the control circuitry
can determine that the fill size is the size of two LBAs (e.g.,
sections 602 and 604).

[0100] The control circuitry can then determine if there is at
least one write command in a queue (e.g., queue 502 of FIG.
5) that has a size equal to the fill size. For example, for
page-aligned portion 2 of buffer 600, the control circuitry can
select one write command with a LBA size of two or two write
commands each with aLBA size of one. Persons skilled in the
art will appreciate that any suitable algorithm can be used to
determine if there is at least one write command in a queue
that has a size equal to the fill size such as, for example, a
best-fit algorithm. Persons skilled in the art will also appre-
ciate that if there are multiple write commands in a queue that
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satisfy the fill size, the control circuitry can use one or more of
the heuristics discussed above to select write command(s) for
filling the buffer.

[0101] Thus, ifthe control circuitry determines that there is
atleast one write command that has a size equal to the fill size,
the control circuitry can transfer the at least one write com-
mand from the queue to buffer 600. In the example shown in
FIG. 6, for instance, the control circuitry can completely fill
page-aligned portion 2 of buffer 600 (e.g., fill sections 602
and 604 with one or more write commands).

[0102] Once buffer 600 has been filled to at least one page-
aligned portion (e.g., the write commands stored in buffer 600
is aligned with page-aligned portion 2), the control circuitry
can combine the commands into a write-multi command.
After generating the write-multi command, the control cir-
cuitry can direct a bus controller to dispatch the write-multi
command from buffer 600 to a NVM.

[0103] Insomeembodiments, if'the write commands stored
in buffer 600 are encrypted commands, the control circuitry
can first direct an encryption module to encrypt the at least
one command prior to transferring the command from a
queue to buffer 600. After the command has been encrypted,
the control circuitry can store the at least one encrypted com-
mand in buffer 600.

[0104] As discussed above, the control circuitry may
receive one or more side-band signals (e.g., synchronized
cache or FUA signals) before a page-aligned portion of buffer
600 has been completely filled. In such a scenario, the control
circuitry can fill buffer 600 to the end of the page-aligned
portion (e.g., page-aligned portion 2) with invalid data (e.g.,
fill sections 602 and 604 with invalid data). The control cir-
cuitry can then combine the write commands stored in buffer
600 with the invalid data into a write-multi command, and
direct the bus controller to dispatch the write-multi command
from buffer 600 to the NVM.

[0105] Accordingly, by optimally re-ordering write com-
mands in a queue and fitting one or more of these write
commands into page-aligned portions in a buffer, the system
can minimize read energy on the read path, minimize bufter-
ing overhead, and reduce fragmentation in a NVM.

[0106] Referring back to FIG. 5, instead of selecting path
504 or path 520, a control circuitry can combine buffered
write commands and queue write commands into the same
batch or transaction (e.g., as a write-multi command) via path
530. For example, the control circuitry can select at least a
first write command from queue 502 and at least a second
write command from buffer 522, where the first and second
write commands may be selected to minimize page crossings
in NVM 510. After selecting the first and second write com-
mands, the control circuitry can combine the commands to
form a write-multi command. Finally, the control circuitry
can direct a bus controller to dispatch the write-multi com-
mand to the NVM via path 530.

[0107] Insome cases, in combining write commands from
a buffer with write commands from a queue, the control
circuitry may need to combine multiple types of encryption
characteristics in a single transaction. For instance, the con-
trol circuitry can apply at least a first encryption seed to the
one or more write commands selected from queue 502. In
addition, if write commands stored in buffer 522 are unen-
crypted commands, the control circuitry can retrieve one or
more encryption seeds from memory (e.g., memory 114 of
FIG. 1). After retrieving the one or more encryption seeds, the
control circuitry can apply the one or more encryption seeds
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to the one or more write commands selected from buffer 522.
The control circuitry can then combine the first and second
encrypted write commands into a write-multi command, and
dispatch the write-multi command to NVM 510.

[0108] Referring now to FIGS. 7A-7B and 8, flowcharts of
illustrative processes are shown in accordance with various
embodiments of the invention. These processes may be
executed by one or more components in a system (e.g., elec-
tronic device 100 of FIG. 1 or electronic device 200 of FIG.
2). For example, at least some of the steps in the processes of
FIGS. 7A-7B and 8 may be performed by control circuitry
(e.g., SoC control circuitry 112 of FIG. 1). Persons skilled in
the art will appreciate that one or more of the steps may be
performed by a NVM interface (e.g., NVM interface 118 of
FIG. 1 or NVM interface 218 of FIG. 2). Dashed boxes are
meant to illustrate steps that may or may not be performed
based on the configuration of the system.

[0109] Turning first to FIGS. 7A and 7B, process 700 is
shown for efficient buffering in a NVM (e.g., NVM 120 of
FIG.1,NVM 220 0fFIG.2,NVM 300 of FIG. 3,or NVM 510
of FIG. 5). Process 700 may begin at step 702, and at step 704,
the control circuitry can receive a first write command from a
file system (e.g., file system 210 of FIG. 2) for programming
toaNVM.

[0110] At step 706, the control circuitry can save the first
write command in a queue (e.g., queue 502 of FIG. 5). Con-
tinuing to step 708, the control circuitry can apply one or
more heuristics to the first write command in order to deter-
mine whether to transfer the first write command to a buffer
(e.g., buffer 522 of FIG. 5 or buffer 600 of F1G. 6). That is, the
control circuitry can determine whether to perform buffering
of the first write command.

[0111] If, at step 710, the control circuitry determines notto
transfer the first write command, process 700 may move to
step 712. At step 712, the control circuitry can direct an
encryption module (e.g., encryption module 116 of FIG. 1) to
encrypt the first write command. Then, at step 714, the control
circuitry can direct a bus controller (e.g., NVM bus controller
216 of FIG. 2) to dispatch the encrypted write command to the
NVM (e.g., via path 504 of FIG. 5). For example, the control
circuitry may be configured to direct the bus controller to
dispatch the encrypted write command to a hardware engine
(e.g., hardware engine 506 of FIG. 5). Process 700 may then
end at step 716.

[0112] If, at step 710, the control circuitry instead deter-
mines to transfer the first write command, process 700 may
move to step 718 or, alternatively, to step 720. In particular, if
the system is configured such that commands are encrypted
prior to storage in a buffer, then, at step 718, the control
circuitry can direct an encryption module to encrypt the first
write command. On the other hand, ifthe system is configured
such that unencrypted commands are stored in the buffer,
process 700 may directly move to step 720. In such a con-
figuration, the control circuitry can also copy one or more
encryption seeds to memory (e.g., memory 114 of FIG. 1).
Thus, at step 720, the control circuitry can store either the
encrypted command or the unencrypted command in the
buffer (e.g., via path 520 of FIG. 5).

[0113] Continuing to step 722, the control circuitry can
determine if the write commands stored in the buffer are
currently aligned with at least one page boundary. If, at step
722, the control circuitry determines that the write commands
stored in the buffer are currently aligned with at least one page
boundary, process 700 may move to step 724 or step 726. That
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is, if unencrypted commands are stored in the buffer, at step
724, the control circuitry can direct an encryption module to
encrypt the write commands using one or more stored encryp-
tion seeds. If, however, encrypted commands are stored in the
buffer, process 700 may move directly to step 726.

[0114] At step 726, the control circuitry can combine the
write commands in the buffer into a write-multi command.
Then, at step 728, the control circuitry can direct a bus con-
troller to dispatch the write-multi command from the buffer to
the NVM (e.g., via path 524 of FIG. 5). Process 700 may then
end at step 716.

[0115] If, at step 722, the control circuitry instead deter-
mines that the write commands stored in the buffer are not
currently aligned with at least one page boundary, process
700 may move to step 730. At step 730, the control circuitry
can detect a fill size that is needed to fill the buffer to the at
least one page boundary.

[0116] Continuing to step 732, the control circuitry can
determine if there is at least one write command in the queue
that has a size equal to the fill size. If at step 732, the control
circuitry determines that there is at least one write command
that has a size equal to the fill size, process 700 may move to
step 734.

[0117] At step 734, the control circuitry can transfer the at
least one write command from the queue to the buffer. Process
700 may then return to step 724 or step 726 (e.g., depending
on whether or not the write commands in the buffer are
encrypted).

[0118] If, at step 732, the control circuitry instead deter-
mines that there is not at least one write command in the
queue that has a size equal to the fill size, process 700 may
move to step 736. At step 736, the control circuitry can wait
for additional write commands to arrive (e.g., wait to receive
additional write commands from a file system). Process 700
may then end at step 716.

[0119] Turning now to FIG. 8, process 800 is shown for
determining whether or not to buffer in a NVM (e.g., NVM
120 of FIG. 1, NVM 220 of FIG. 2, NVM 300 of FIG. 3, or
NVM 510 of FIG. 5). In some embodiments, process 800 may
represent a more detailed view of the applying at least one
heuristic step 708 and the determining whether to transfer
step 710 of process 700 (FIG. 7).

[0120] Process 800 may begin at step 802, and at step 804,
the control circuitry can determine the size of a write com-
mand saved in a queue (e.g., queue 502 of FIG. 5).

[0121] Then, at step 806, the control circuitry can deter-
mine whether the size of the write command is below a
pre-determined threshold. If| at step 806, the control circuitry
determines that the size of the write command is not below the
pre-determined threshold (e.g., the write command is a large
write command), process 800 may move to step 808.

[0122] At step 808, the control circuitry can direct a bus
controller to dispatch the write command from the queue to a
NVM (e.g., viapath 504 of FIG. 5). Process 800 may then end
at step 810.

[0123] If, at step 806, the control circuitry instead deter-
mines that the size of the write command is below a pre-
determined threshold (e.g., the write command is a small
write command), process 800 may move to step 812.

[0124] At step 812, the control circuitry can determine
whether the number of write commands saved in the queue
exceeds a pre-determined number. If| at step 812, the control
circuitry determines that the number of write commands



US 2012/0221767 Al

saved in the queue exceeds the pre-determined number, pro-
cess 800 may move to step 814.

[0125] At step 814, the control circuitry can combine the
write commands into a write-multi command. Process 800
may then move to step 808, where the write-multi command
can be dispatched from the queue to the NVM.

[0126] If, at step 812, the control circuitry instead deter-
mines that the number of write commands saved in the queue
does not exceed the pre-determined number, process 800 may
move to step 816.

[0127] At step 816, the control circuitry can determine
whether a set of most recently received write commands in
the queue is sequential. If; at step 816, the control circuitry
determines that the set of most recently received write com-
mands is sequential, process 800 may move to step 818.
[0128] At step 818, the control circuitry can wait to receive
additional write commands in the queue. Then, at step 820,
the control circuitry can determine if at least one additional
write command has been received from a file system (e.g., file
system 210 of FIG. 2). For example, the control circuitry can
make this determination after a short period of time (e.g., a
few milliseconds).

[0129] If, at step 820, the control circuitry determines that it
has received at least one additional write command from the
file system, process 800 may move to step 814, where the
write commands can be combined into a write-multi com-
mand.

[0130] If, at step 820, the control circuitry instead deter-
mines that it has not received at least one additional write
command from the file system, process 800 may move to step
822. At step 822, the control circuitry can transfer the write
command to a buffer (e.g., via path 520 of FIG. 5). Process
800 may then end at step 810.

[0131] If, at step 816, the control circuitry instead deter-
mines that a set of most recently received write commands in
the queue are not sequential, process 800 may move to step
824. At step 824, the control circuitry can determine whether
the number of dispatched write commands immediately pre-
ceding the write command exceeds a pre-determined number.
[0132] If, at step 824, the control circuitry determines that
the number of dispatched write commands exceeds a pre-
determined number, process 800 may move to step 818,
where the control circuitry can wait to receive additional
commands in the queue. If, at step 824, the control circuitry
instead determines that the number of dispatched write com-
mands does not exceed a pre-determined number, process 800
may move to step 822, where the control circuitry can transfer
the write command to the buffer.

[0133] It should be understood that processes 700 and 800
of FIGS. 7A-7B and 8 are merely illustrative. Any of the steps
may be removed, modified, or combined, and any additional
steps may be added, without departing from the scope of the
invention.

[0134] The described embodiments of the invention are
presented for the purpose of illustration and not of limitation.

What is claimed is:
1. A method for splitting data writes into multiple write
paths, the method comprising:

receiving a first write command from a file system for
programming to a non-volatile memory (“NVM”);

saving the first write command in a queue;

determining the size of the first write command;

determining whether to perform buffering based at least in
part on the size of the first write command; and
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in response to determining to perform buffering, transfer-

ring the first write command from the queue to a buffer.

2. The method of claim 1, wherein in response to determin-
ing not to perform buftering, dispatching the first write com-
mand from the queue to the NVM.

3. The method of claim 2, further comprising:

determining whether the amount of time that has elapsed

since a last dispatched write command is less than a
pre-determined time period; and
in response to determining that the amount of time that has
elapsed since a last dispatched write command is less
than the pre-determined time period, waiting to receive
additional write commands in the queue before dis-
patching the first write command from the queue to the
NVM.
4. The method of claim 1, wherein the determining whether
to perform buffering further comprises:
determining if the size of the first write command is below
a pre-determined threshold; and

in response to determining that the size of the first write
command is below the pre-determined threshold, deter-
mining whether the number of write commands saved in
the queue exceeds a pre-determined number.

5. The method of claim 4, further comprises:

in response to determining that the number of write com-

mands saved in the queue exceeds the pre-determined
number, combining the write commands into a write-
multi command; and

dispatching the write-multi command from the queue to

the NVM.

6. The method of claim 1, wherein the determining whether
to perform buffering further comprises:

determining whether a set of most recently receive write

commands in the queue is sequential;

in response to determining that the set of the most recently

receive write commands is sequential, waiting to receive
additional write commands in the queue.

7. The method of claim 6, further comprising:

receiving at least one additional write command from the

file system;

combining the at least one additional write command with

the set of most recently received write commands into a
write-multi command; and

dispatching the write-multi command from the queue to

the NVM.

8. A memory interface for accessing a non-volatile
memory (“NVM”), the memory interface comprising:

a bus controller operative to communicate with the NVM;

and

control circuitry operative to:

receive a first write command in a queue;

apply at least one heuristic to the first write command in
order to determine whether to transfer the first write
command to a buffer;

in response to determining not to transfer the first write
command to the buffer, direct an encryption module
to encrypt the first write command; and

direct the bus controller to dispatch the encrypted write
command to the NVM.

9. The memory interface of claim 8, wherein the control
circuitry is further operative to direct the bus controller to
dispatch the encrypted write command to a direct memory
access (“DMA”) engine.
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10. The memory interface of claim 8, wherein in response
to determining to transfer the first write command to the
buffer, the control circuitry is further operative to:

direct the encryption module to encrypt the first write com-

mand; and

store the encrypted write command in the buffer.

11. The memory interface of claim 8, wherein in response
to determining to transfer the first write command to the
buffer, the control circuitry is further operative to:

copy at least one encryption seed to the volatile memory;

and

store the first write command in the buffer.

12. The memory interface of claim 8, wherein the at least
one heuristic comprises at least one of the size of the first
write command, the number of dispatched write commands
immediately preceding the first write command, the number
of remaining write commands saved in the queue, the amount
of available space in the volatile memory, a size of the buffer,
and input/output patterns.

13. The memory interface of claim 12, wherein the control
circuitry is further operative to:

determine if the size of the first write command is the same

as or larger than the size of the buffer;

in response to determining that the size of the first write

command is the same as or larger than the size of the
buffer, determine not to transfer the first write command
to the buffer.
14. The memory interface of claim 12, wherein the control
circuitry is further operative to:
determine if the number of dispatched write commands
immediately preceding the first write command exceeds
a pre-determined number;

in response to determining that the number of write com-
mands exceeds the pre-determined number, wait to
receive at least one additional write command in the
queue.

15. The memory interface of claim 14, wherein the control
circuitry is further operative to:

receive at least one additional write command in the queue;

combine the at least one additional write command with

the first write command into a write-multi command;
and

direct the bus controller to dispatch the write-multi com-

mand from the queue to the NVM.

16. The memory interface of claim 8, wherein the control
circuitry is further operative to:

receive at least one side-band signal; and

direct the bus controller to dispatch all of the commands

stored in the buffer to the NVM.

17. A method for combining write commands for dispatch
to a non-volatile memory (“NVM”), the method comprising:

selecting at least a first write command from a queue and at

least a second write command from a buffer, wherein the
at least the first and second write commands are selected
to minimize page crossings in the NVM;

combining the at least the first and second write commands

to form a write-multi command; and

dispatching the write-multi command to the NVM.

18. The method of claim 17, wherein the combining the at
least the first and second write commands further comprises
applying at least a first encryption seed to the at least the first
write command.

19. The method of claim 18, wherein the at least the second
write command is unencrypted.
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20. The method of claim 19, wherein the combining the at
least the first and second write commands further comprises:

retrieving at least a second encryption seed from volatile
memory; and

applying the at least the second encryption seed to the at
least the second write command.

21. A system comprising:

anon-volatile memory (“NVM”) comprising a plurality of
pages;

a bus controller operative to communicate with the NVM;

volatile memory comprising a queue and a buffer for stor-
ing a set of write commands; and

control circuitry operative to:

determine if the set of write commands stored in the
buffer is currently aligned with at least one page
boundary;

in response to determining that the set of write com-
mands stored in the buffer is not currently aligned
with the at least one page boundary, detect a fill size
that is needed to fill the buffer to the at least one page
boundary;

determine if there is at least one write command in the
queue that has a size equal to the fill size; and

in response to determining that there is at least one write
command in the queue that has a size equal to the fill
size, transfer the at least one write command from the
queue to the buffer.

22. The system of claim 21, wherein the control circuitry is
operative to use a best-fit algorithm to determine if there is at
least one write command in the queue that has a size equal to
the fill size.

23. The system of claim 21, wherein in response to deter-
mining that the set of write commands stored in the buffer is
currently aligned with the at least one page boundary, the
control circuitry is operative to:

combine the set of write commands into a write-multi

command; and

direct the bus controller to dispatch the write-multi com-

mand from the buffer to the NVM.

24. The system of claim 21, wherein the control circuitry is
operative to:

receive at least one side-band signal;

fill the buffer to the end of at least one page-aligned portion

with invalid data;

combine the set of write commands with the invalid data

into a write-multi command; and

direct the bus controller to dispatch the write-multi com-

mand from the buffer to the NVM.

25. The system of claim 21, wherein the set of write com-
mands comprises encrypted commands.

26. The system of claim 25, further comprising an encryp-
tion module, and wherein in response to determining that
there is at least one command in the queue with a size equal to
the fill size, the control circuitry is operative to:

direct the encryption module to encrypt the at least one

command; and

store the at least one encrypted command in the buffer.
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