ABSTRACT: A device for elevating, as well as for tipping or tilting drums, containers and the like for dumping the contents therefrom, which device includes an upright or post supported on a base and a carriage member slideable on said upright and operated by means of a winch which raises and lowers the carriage member on said upright. The carriage member supports a rotatable member which carries means for engaging a drum container and the like so that the drum may be elevated as well as tipped or tilted.
DEVICE FOR ELEVATING, AS WELL AS TIPPING OR TILTING DRUMS, BARRELS, CONTAINERS AND THE LIKE TO DUMP THE CONTENTS THEREFROM

BRIEF SUMMARY OF THE INVENTION

One of the objects of this invention is to provide a device which may be used for lifting a drum, barrel, container and the like from the floor or ground surface to a desired elevated position where it may be removed to be placed on the higher elevation than the floor or ground surface on which it initially rests, or the device may be used to lift as well as to tilt or rotate the drum or container while in its lifted position for dumping the contents from the drum.

Another object of this invention is to provide a device which may be easily operated and which has positive controls for locking the device with the drum in a desired elevated position as well as in a tipped or tilted position.

Another object of this invention is to provide a device whose height can be readily increased so that a drum may be lifted from a first floor or the like so that the drum may be removed from the device at such an elevation.

Other objects will become apparent as this description progresses.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 is a perspective view looking at same from the rear of the device with parts broken away to conserve space.
FIG. 2 is a side elevational view thereof.
FIG. 3 is a front elevational view thereof.
FIG. 4 is a top plan view taken on line 4-4 of FIG. 2.
FIG. 5 is a view partly in section taken on line 5-5 of FIG. 2.
FIG. 6 is an enlarged elevational view of the lower portion of the device corresponding to that shown in FIG. 2. FIG. 7 is an enlarged front elevational view of the lower portion of the device corresponding to that shown in FIG. 3.
FIG. 8 is a view partly in section of the upper portion of the post or column and the pulley supported thereby.
FIG. 9 is an enlarged elevational view of a portion of the base and the supporting caster.
FIG. 10 is a front elevational view showing a drum supported in a tilted position.
FIG. 11 is a view showing the device with an extended upright column and with an outrigger base.
FIG. 12 is an enlarged view of the lower right-hand portion of FIG. 11, and
FIG. 13 is a view taken on line 13-13 of FIG. 11.
The device illustrated in FIGS. 1 through 10 will be first described as an elevated drum.

The device is adapted to be used for drums, barrels, containers and the like, however, for the purpose of this application the term "drum" will be used to designate the others.

The device has a base generally indicated at 14 which is generally of H-shaped configuration, having a pair of sides 15 spaced from each other and connected by a crossmember 16 which defines a space or area 17 within the confines of the base to accommodate the drum which may rest on a ground or floor surface. The base is supported on swively mounted rollers or casters 18, one at each of the opposite ends of the sides 15 of the base. The swively mounted rollers permits the entire device to be moved across a floor surface on which it rests. The crossmember 16 of the base has welded or otherwise fixedly secured to it a lower upright section 19 which is adapted to form the lower or bottom end of the upright, post or vertical column of the device upon which the carriage, presently to be described, is slidable up or down. The lower upright section 19 is hollow and generally square-shaped in cross section.

The upright column or post generally indicated at 20 includes a plurality of sections 22, preferably two, as shown in FIG. 2, each hollow and of generally square-shape in cross section, which telescope with each other and with the lower upright section 19. Attached to either end of each of the sections 22 is a sleeve 25 having the same configuration as the section but of a reduced dimension which extends outwardly of each of the sections so that it can be inserted into and nested or telescoped within the end of the adjacent section to interlock therewith. The nesting or telescopic arrangement of the sections forming the post or upright is similar to that shown in FIG. 8 in relation to the uppermost section of the post. The interlocking of the sections are the same.

To make up the upright post or column 20, the individual sections 22 are nested and interlocked in the manner described and the lowermost section 22 interlocks with the lower upright section 19. To complete the post, a top hollow section 24 (FIG. 8) of the same configuration as section 22 is secured to the uppermost section of the post in the manner described, that is, with the attached sleeve 25 of the top section 24 extending and telescoping within the top of section 22. The top section 24 supports a shaft 26 and a rotatable pulley 27 mounted thereon, which in turn supports a cable 28, which cable is secured at one end to a winch, generally indicated at 30, and at its other end to a carriage, generally indicated at 32. A shield or covering 29 secured to the top section 24 extends over the pulley 27 and serves to confine the cable in the pulley.

The top section 24 of the vertical column or post supports a top crossmember, generally indicated by the numeral 34, which comprises a front arm 35 fixedly secured to the front of the top section, and a rear arm 36 fixedly secured to the rear of the top section. Said front arm is bow-shaped so that its opposite sides diverge towards the rear, with the rear arm being secured thereto at the ends. The top crossarm 36 has cables 38 and 39 anchored and attached to it at the turned-in ends 37, which cables are each adapted to encircle a larger rotatable pulley, generally designated at 40, which is connected to the carriage 32, as will be subsequently described. The cables 38 and 39 are each then connected to a separate foot pedal supported on the base 14.

Extending forwardly of one of the sections 22 of the column 20 (FIG. 2) is a horizontal tongue 42 to which is secured the winch 30. The winch is further supported by a pair of bracing rods 44, the upper ends of which are secured to the winch as at 45. The bracing rods 44 incline outwardly towards the bottom, with the bottom end of the bracing rod (FIG. 9) suitably secured as at 46 to the ears 47 extending from the sides 15 of the base 14. The winch 30 is therefore firmly supported on the upright or column as well as on the base to provide a positive support for the winch.

The winch 30 is of conventional construction and has two handles 48 which work in unison for operating same. It has a self-energizing brake which automatically takes over and locks the drum or container securely in place.

Reversing the right-hand control handle releases the brake and allows the carriage to descend under full control. As stated, the winch is of conventional commercial construction and the details thereof form no part of this invention.

The cable 28 is secured to the winch 30 and extends upwardly and around the small pulley 27 supported on the top of the post or column, with the opposite end of said cable secured to the carriage 32 which is slidable on the column or post through the operation of the winch.

The carriage 32 is of generally U-shaped configuration in plan so that it surrounds the post or column 20 as it engages same, except for the front open end portion of the carriage. The front open end of the carriage permits the carriage to move past the tongue 42 which supports the winch. This can be seen in FIGS. 2 and 5.

Secured to the top and bottom of the carriage 32 by brackets 52 on one side thereof are short shafts which rotatably support a pair of spaced rollers 54. The rollers engage the opposite sides of the column adjacent the top and bottom of the carriage and guide the carriage as it ascends or descends on the column 20. Suitably attached to and secured within the lower end of the carriage is a bottom rear rotatable roller 56 which engages the rear of the column 20. Rotatably secured to and within the upper front portion of the carriage is
a pair of spaced rotatable rollers 58 which are adapted to engage the front of the column 20. The front spaced rollers 58 are cleated to the column 20 at 42 to that the roller 58 will not be obstructed when ascending or descending on the column. The rollers 56 and 58 principally carry the load of the drum.

The cable 28 which is attached to the winch is attached to the top of the carriage 32 by means of an eye bolt 59, best shown in FIG. 6. The carriage 32 is secured to a large pulley 40 and the drum support member, generally designated by the numeral 60. The carriage 32, pulley 40, and drum supporting member 60 operate as a unit on ascending or descending on the column. As best seen in FIG. 5, the carriage 32 supports a rearwardly extending stub shaft 62 on which the hub 63 of the pulley 40 is rotatably supported. Ball bearings, not shown, are positioned between the shaft 62 and hub 63. Fixtures, or slots, cut in the side of the carriage 32 and supporting member 60 engage the shaft 62 and support the bearings. Spaced bracing members 65 also connect the pulley 40 to the arcuate-shaped band 64 to provide reinforcement and support for said band. The pulley 40 has a disc body 66 provided with axially spaced openings 67. The periphery of the pulley has two separate channels or grooves 68 and 69. Groove 68 receives one turn of cable 38 while groove 69 receives one turn of cable 39.

Cable 38 which is fixedly secured to the top crossmember 34, as previously described, extends downwardly from the top of the crossmember 34 and is loosely wound once around the pulley 40 in groove 68 and then extends downwardly from said pulley and is connected to a foot pedal generally designated by the numeral 71. The other cable 39 is secured to the opposite end of the crossmember 34 and extends downwardly and makes one loose wind around the pulley 40 in the channel or groove 69 and then extends downwardly thereof and is connected to another foot pedal designated generally by the numeral 73. Both said foot pedals are of identical construction and a description of one will suffice.

Secured to the top of the side 15 of the base is a U-shaped bracket 74 which pivotally supports, as at 75, the rear end of the foot pedal 71 or 73. The foot pedal has an inwardly extending lateral extension 76 which is internally threaded to receive an eye bolt 77 to which the end of the cable (either 38 or 39) is secured. The front end of the foot pedal terminates in a round plate 78 so that the operator's foot can be positioned thereon to pivot the foot pedal downwardly and thereby turn the respective cable, which turn in turn will cause the pulley 40 to rotate in the direction in which the respective cable is wound when the carriage 32 and pulley 40 are moved upwardly. Thus, for example, as viewed from the rear in FIG. 1, if foot pedal 73 is depressed the cable 39 will tighten and thereby rotate pulley 40 clockwise as the pulley moves upwardly on the post 20 and will tip or tilt the drum supported thereon to the right. If the opposite foot pedal 71 is depressed the cable 38 will tighten around the pulley and will cause the pulley 40 to rotate in the opposite direction, namely, to the left when the carriage and pulley are moved upwardly relative to the post.

Positioned under each of the foot pedals 71, 73 and supported on the base 14 is a coil spring 79 which normally urges the foot pedal upwardly when it is released. Extending laterally inwardly of each of the ears 47 of the base is a pin 80 which serves to lock the foot pedal in its depressed position. In depressing each of the foot pedals, the foot pedal is moved slightly inwardly to bypass the inwardly extending pin 80 and then it is pushed back under the pin so that when the operator removes his foot from the pedal the pin will prevent the foot pedal from springing upwardly. This maintains the pulley 40 in the position to which it has been rotated, provided the pulley and drum are maintained in the elevated position at which they have been stopped. To release it, the foot pedal is pushed inwardly so that it can bypass the pin 80 and then it assumes the position on top of the pin, as shown in FIG. 1. The drum, providing it is bottom heavy will swing to a vertical position.

The pivotal connection 75 between the arm of the foot pedal and the U-shaped bracket 74 is such that there is sufficient leeway to permit the side movement of the arm of the foot pedal. The winch when released will maintain the drum at the vertical position as the load is lowered due to both cables 38 and 39 being loose to slip on pulley 40.

The means for locking the drum in its tipped or tilted position will now be described.

As previously described, the disc 66 of the pulley 40 is provided with spaced openings 67 so that in FIGS. 5, 6 and 7, a locking arm designated by the numeral 82 has a lower end 83 turned at right angles to the axis of the arm, which lower end is pivotally or rotatably secured as at 84 to the side of the carriage 32. The upper end 85 of the arm is bent rearwardly at right angles to the axis of the arm and a collar 86 is fixed thereto spaced from the end. The upper end 85 of the arm is adapted to be inserted into the openings 67 in the disc 66 of the pulley 40 aligned with the end of the arm. When the locking arm 82 is in engagement with the pulley 40, the pulley is prevented from rotating and will by virtue thereof maintain the pulley, the drum support, and the drum support thereon in the position thus locked. To release or unlock the pulley the locking arm 82 is manually withdrawn from the opening in the disc of the pulley.

As best shown in FIGS. 1, 2, and 4, the drum, designated by the letter D, is supported against the arcuate-shaped band 64 which has substantially the same radius as the conventional drum or barrel. Adjacent one side of said band FIGS. 1 and 5) between and connecting the band and the pulley 40 is a supporting strut 88 with an outwardly turned end 89 which receives a threaded adjustable eye bolt 90, which in turn is connected to one end of a chain 91. A strut 92 connects the opposite side of the band 64 to the pulley 40. The end of the band 64 adjacent the strut 92 has spaced outwardly laterally extending ears 93 to which are pivotally secured as at 94 the spaced ends 95 of a hand operated lever generally designated at 96. The spaced ends 95 of the lever converge and have fixedly affixed thereto a handle 97 which is inclined inwardly of the axis of the spaced ends 95. A pin 98 extends between the spaced ends 95. A hook 99 is affixed to the pin 98. The unfastened end 100 of the chain 91 is adapted to be detachably secured to said hook. The end 100 of the chain can be detached from the hook and is adapted to be positioned around the drum D, as shown in FIGS. 2 and 4, with the barrel resting against the arcuate band 64. The lever 96 operates over center, as shown in FIG. 4, to lock the chain to the drum to support the drum for elevation and for tilting of the drum.

FIG. 1 shows the level 96 with the chain 91 loose, however, when the chain is around the drum the lever 96 is manually engaged and pivoted to its overcenter position, as in FIGS. 2 and 4, where the handle 97 is positioned to extend forwardly of the pivot 94 of the lever to lock the lever in its locking position.

FIG. 2 shows the chain 91 and the band 64 connecting the drum at approximately the center of the height of the drum. If it is desired to connect the chain and band to the lower portion of the drum, as in FIG. 10, then this may be accomplished by first connecting it to the drum in the manner shown in FIG. 2 and then elevating the drum so that a support or block is positioned under the drum, which elevates the drum in relation to the carriage 32. The lever 96 is then operated so that the chain releases the drum, after which the carriage 32 is lowered. This then positions the arcuate band 64 and chain 91 to engage the lower portion of the drum, as shown in FIG. 10. By supporting the drum at its lower end the drum will move outwardly beyond the side of the device to facilitate dumping or pouring of the contents of the drum, whereas if it were more centrally connected the relative position of the barrel when tilted would be as shown in FIG. 3.

FIGS. 11, 12 and 13

FIG. 11 shows a device as previously described but built with an upright post or column 20' of a greater height so that
the drum may be lifted to a higher elevation than that possible with a shorter column. The construction remains the same and therefore will not be redescibed. The greater height of the column or post 20' is accomplished by additional column sections, similar to the column sections 22 previously described, and by providing longer cables 38' and 39' which are connected to the pulley 40 and a longer cable 28' connected to the winch. The increased height of the device permits the drum to be elevated to the height of a second floor, indicated by the letter F in FIG. 11. The drum can thus be elevated to a second floor level and can be removed at such level, or it can be turned or tilted for a dumping operation at such level.

By virtue of the increased height of the device an outrigger base is necessary to prevent the device from capsizing. The outrigger base consists of one or more hollow square-shaped bars 102 which are detachably secured to the base 14 to extend laterally outwardly of the base. More specifically, the square-shaped bars 102 support at each of their opposite ends an adjustable leveling member 104 which may be a threaded bolt 105 in threaded engagement with the bar 102 and provided with means for adjusting same vertically. The bottom of the bolt has a rubber base 106 which rests on the ground surface. Also secured to said bar or bars 102 by means of threaded eye bolts 107 are guide cables 108, the upper ends of which are suitably attached to the top crossmember 34. The bars 102 rest on top and across the two sides 15 of the base 14 and are clamped or secured thereto by means of a C-shaped clamp 110 secured to the underside of the bar, which clamp engages the sides 15 of the base. A threaded bolt 111 passes through the center portion of the C-shaped clamp and likewise passes through an opening in the bar to thereby secure the bar to the two sides of the base and removably locks the outrigger bar to said base. The bars 102 may be readily attached to the base for supporting the device of the height shown in FIG. 11 and may be readily removed and/or detached from the base as desired.

The device as shown in FIGS. 1 to 10 may be readily adapted to form a height as shown in FIG. 11 and is readily supported to be properly balanced against tipping or capsizing.

OPERATION

The operation of the device has been described in connection with the parts, however, a brief summary of the operation will now be set forth. The description of the operation is the same for that shown in FIGS. 1 through 10, as well as for the device shown in FIG. 11.

To secure the drum along the center of the height of the drum, as shown in FIG. 2, the drum is placed on the ground or floor surface in the open space 17 between the sides 15 of the base. The carriage 32 is lowered to its lowermost position by rotating the handles 48 of the winch 30 so that the winch unwinds the cable 28 connected to the carriage 32. The cable passes over the top pulley 27 to lower the carriage. The accuate band 64 will then be positioned approximately midway of the height of the drum. The chain 91 is then positioned around the balance of the circumference of the drum and then by pivoting the lever 96 to its offcenter position, as in FIG. 5, the chain is locked in a locked position and the drum is positioned between the accuate-shaped band and the chain. The drum is thereby locked in a secure position to the drum supporting member. When the drum thus secured, the slidable carriage 32 is elevated or raised vertically on the post or column 20 by rotating the handles 48 of the winch 30, which in turn will wind the cable 28 into the winch, and as the winding of the cable takes place the carriage 32 is elevated on the post and with it the drum supported thereby. When rotation of the handles 48 is stopped, the winch will maintain the cable 28 in the withdrawn position and lock the barrel or drum in the elevated position, with the drum in a vertical or upright position. To lower the drum the handles of the winch are rotated in the opposite direction.

In any elevated position the drum may be tilted or tipped either to the right or to the left for dumping the contents of the drum, or it may be completely rotated. This is accomplished by operating and depressing either one of the foot pedals 71 or 73, dependent upon which direction it is desired to tip or tilt the drum. Depression of the foot pedal will tighten the corresponding cable around the pulley 40 and the continued upward movement or lifting of the carriage, pulley and drum will then cause the drum to tip or tilt. For example, if it is desired to tilt the drum to the operator's left, or dotted line position shown in FIG. 3, the foot pedal 73 which will normally be positioned above the retaining pin 80 is depressed at first swiveling it so that it passes the retaining pin and then beneath the retaining pin it will be locked thereby, as previously described. By depressing the foot pedal 73, the cable 39 which is wound around and in groove 69 of pulley 40 is tightened around the pulley. This in effect acts like a clutch so that when the carriage, pulley and drum move upwardly the pulley will rotate counterclockwise (as viewed from the front of FIG. 3) to thereby tilt the drum to the left as shown in dotted lines in FIG. 3). The drum may be rotated and tilted in the opposite direction, or to the operator's right, in a similar manner by depressing the foot pedal 71 which will tighten cable 38 around the pulley, and as the carriage, pulley and drum move upwardly the pulley will rotate clockwise (as viewed from the front in FIG. 3) to thereby tilt the drum to the right.

If the carriage and drum are kept at the elevated position at which it has been stopped, the drum will be maintained at the tilted or tipped position in which it has been placed. The depressed and locked foot pedal will maintain such tilted position. However, the drum may be positively locked in such tilted position by means of the locking arm 82 which is then pivoted so that the upper end 85 thereon engages the aligned opening in the disc 66 of the pulley 40 to lock the pulley in a locked position. This positive locking should take place before the foot pedal is released to its elevated or unlocking position.

If the drum is not pivoted to the desired tilted position before locking same, as previously described, the angle or tilt of the drum may be increased relative to the vertical by continuing the raising or elevating of the carriage 32 with the drum supported thereon through the operation of the winch. The tilting or inclination of the drum may be increased or decreased by either raising or lowering the carriage and with it the drum. After the cable has been tightened around the pulley by the depression of the appropriate foot pedal, the higher the carriage ascends on the column 20 the greater can be the inclination or tilt of the drum, and the converse is also true. If it is desired to lock the drum in any of its tilted positions the locking bar is then pivoted to engage the opening 67 in the pulley to lock the pulley against rotation. With the elevation of the drum being maintained in its elevated adjusted position the drum will be tilted and will remain in a fixed locked position.

To unlock the tilted position of the drum, the end 85 of the locking arm 82 is withdrawn from the opening 67 and the foot pedal 71 is moved from under the locking pin 80 to above it so that the pulley 40 will be free to rotate in any direction. Thus, the device serves to elevate the drum and serves to tilt it in either a right or left position and to the desired inclination to permit the drum to be emptied.

If it is desired to support the drum on the supporting member adjacent the lower end of the drum, as shown in FIG. 10, the drum is first elevated in the manner previously described in connection with FIG. 2 and then a block is placed under the drum in its elevated position and the drum supporting member is released from the drum and the carriage is lowered so that the drum supporting means can engage adjacent the drum. By this arrangement it will be seen, as for example in FIG. 10, that the drum when tilted extends further outwardly or laterally from the sides of the device than that shown in FIG. 3. In some instances it is preferable that the drum extend when tilted further laterally
The following illustration is for the purpose of clarity and not a limitation. If the pulley 40 has a circumference of 6 feet, depressing the appropriate foot pedal to tighten the cable around the pulley and then elevating the pulley 1 foot will cause the pulley to rotate or revolve 60°. Raising the pulley 2 feet will produce a 120° revolution of the pulley, and elevating the pulley 3 feet will produce a 180° revolution. To rotate the pulley 360° the pulley is raised 6 feet after the cable has been tightened around the pulley. The revolution of the pulley will appropriately tilt the drum supported on the pulley, or with a complete revolution of the pulley the drum will be completely inverted. In FIG. 3 the drum has been lifted approximately 4 feet or tipped 30° for pouring. The drum may be merely lifted the first or last 2 feet of its travel and the remaining 2 feet of travel rotated 120° by depressing the foot pedal. Depressing both foot pedals and locking them in the depressed position will serve as a safety feature in that the winch will be prevented from operating and the drum cannot be raised or lowered but will remain immobile.

It will be understood that various changes and modifications may be made from the foregoing without departing from the spirit and scope of the appended claims.

I claim:

1. A device for lifting and tipping or tilting drums, said device comprising a base, an upright supported on said base, a carriage member slideable on said upright, a drum supporting member including a pulley rotatably secured to said carriage, said pulley capable of being rotated 360°, said drum supporting member adapted to move vertically with said carriage, means connected to said carriage for raising and lowering said carriage and drum supporting member, a cable operatively connected to said pulley, which cable is adapted to tighten on said pulley when actuated, a foot operated member connected to said cable so that when said foot operated member is depressed said pulley will be rotated when the drum supporting member is moved vertically relative to said upright support for tilting the drum supporting member and the drum supported thereby, and means for locking said foot operated member in depressed position to maintain the drum supporting member in a fixed upright, tilted or tipped position upon completion of vertical carriage movement.

2. A device as set forth in claim 1 in which the drum supporting member secured to said carriage includes an arcuate-shaped band to engage a portion of the circumference of the drum and in which means are connected to said arcuate-shaped band to engage the remainder of the circumference of the drum to retain said drum.

3. A device as set forth in claim 2 in which the means connected to the band is a flexible member and in which an off center lever is connected to said flexible member to lock said flexible member against the drum to retain said drum.

4. A device as set forth in claim 1 which includes a winch and a cable connecting the carriage for moving the carriage vertically on the upright.

5. A device as set forth in claim 4 in which the upright is formed of a plurality of sections connected together and in which the uppermost section of the upright supports a pulley which in turn supports the cable from the winch to the carriage.

6. A device as set forth in claim 1 in which the carriage which is movable on the upright has roller means engaging the upright.

7. A device as set forth in claim 1 in which the top of the upright has means to which guide cables are secured in which an outrigger member is secured to the base, with the guide cables secured to the outrigger member to prevent the device from capsizeing.

8. A device for lifting and tipping or tilting drums, said device comprising a base, an upright supported on said base, a carriage member slideable on said upright, a drum supporting member including a pulley rotatably secured to said carriage, said pulley operatively connected to a pair of cables for selectively rotating said pulley in either direction for correspondingly tilting the drum supporting member, a foot operated member connected to each cable so that when the foot operated member is depressed the respective cable causes the pulley to tilt the drum correspondingly when moved vertically, said drum supporting member adapted to move vertically with said carriage, and means connected to said carriage for raising and lowering said carriage and drum supporting member.

9. A device as set forth in claim 8 in which the pulley has a pair of grooves, each groove receiving a cable which is connected to the foot operated pedal.

10. A device for lifting and tipping or tilting drums, said device comprising a base, an upright supported on said base, a carriage member slideable on said upright, a drum supporting member including a pulley rotatably secured to said carriage, said drum supporting member adapted to move vertically with said carriage, means connected to said carriage for raising and lowering said carriage and drum supporting member, means for tilting or tipping the drum supporting member and the drum supported thereby, said means for tilting or tipping the drum supporting member including a pair of foot pedals supported on said base, each foot pedal being connected to a cable, which cables are operatively connected to said pulley connected to the drum supporting member so that operation of the foot pedals will cause the pulley to rotate and to tilt the drum supporting member as the pulley is moved vertically with respect to the upright.

11. A device for lifting and tipping or tilting drums, said device comprising a base, an upright supported on said base, a carriage member slideable on said upright, a drum supporting member including a pulley rotatably secured to said carriage, said pulley operatively connected to a cable, which cable when actuated will tighten on said pulley to rotate said pulley for tilting the drum supporting member when the pulley is moved vertically relative to said upright support, said drum supporting member adapted to move vertically with said carriage, means connected to said carriage for raising and lowering said carriage and drum supporting member, said pulley having a disc provided with spaced openings, a locking member secured to the carriage and adapted to engage one of the openings in the pulley for locking the pulley against rotation to maintain the drum supporting member in a fixed upright, tilted or tipped position.

12. A device as set forth in claim 11 in which the locking member secured to the carriage comprises an arm pivotally secured to the carriage and having an outer end substantially at right angles to the axis of the arm, which end is adapted to engage one of the openings in the pulley to lock the pulley against rotation.