(12) STANDARD PATENT (11) Application No. AU 2014202257 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(61)

(21)
(30)

(31)

(43)
(43)
(44)
(71)
(72)

(74)

(56)

Title
Dynamic virtual machine sizing

International Patent Classification(s)
GOG6F 9/455 (2006.01)

Application No: 2014202257 (22) Date of Filing: 2014.04.24

Priority Data

Number (32) Date (33) Country
13/886,360 2013.05.03 us
Publication Date: 2014.11.20

Publication Journal Date: 2014.11.20
Accepted Journal Date: 2015.09.17

Applicant(s)
VMware, Inc.

Inventor(s)
ZHENG, Haogqgiang

Agent / Attorney
FB Rice, Level 14 90 Collins Street, Melbourne, VIC, 3000

Related Art
US 7433951

2014202257 24 Apr2014

Abstragt

A technique is described for managing processor (CPU} resources in a host having
virtual machines {VMs) executed thereon. A target size of a VM is determined based on its dermand
and CPU entitlement. 1f the VM's current size exceeds the target size, the technique dynamically
changes the size of @ VM in the host by increasing or decreasing the number of virtual CPUs
available to the VM. To “deactivate™ virtual CPUs, a high-priority balloon thread is launched and
pinned to one of the virtual CPUs targeted for deactivation, and the underlying hypervisor
deschedules exccution of the virtual CPU accordingly, To “activate” virtual CPUs, the number of

virtual CPUs, the launched balloon thread may be killed.

30 Jul 2015

2014202257

Dynamic Virtual Machine Sizing

Background

[0001] Virtual computing environments allow multiple virtual machine (VM) guests
to be run on a single physical platform and to share physical resources. Some virtual
computing environments allow configuring the VMs in a way where the total number of
processors designated for use by the VMs is more than the actual number of physical
processors available on the host. This is referred to as CPU over-commitment, and it
allows packing more VMs onto a single host. Further, virtual machines can be allocated
more than one virtual CPU, allowing users to run applications that spawn multiple
processes or multi-threaded application. However, configuring a virtual machine with
more virtual CPUs (vCPUs) than its workload can use increased resource usage due to
overhead, thereby impacting performance on heavily loaded systems. Examples of this
scenario include a single-threaded workload running in a multiple vCPU virtual
machine or a multi-threaded workload in a virtual machine with more vCPU than the
workload can effective use. Furthermore, virtual machines are allocated CPU resources
(and memory resources) at the time of deployment of the virtual machines, and
changing these allocations typically involves taking a virtual machine offline,
reconfiguring settings, and bringing the virtual machine back online. This process can
be time-consuming to system administrators and interrupts access to services on the
virtual machines.

[0001a] Any discussion of documents, acts, materials, devices, articles or the like
which has been included in the present specification is not to be taken as an admission
that any or all of these matters form part of the prior art base or were common general
knowledge in the field relevant to the present disclosure as it existed before the priority
date of each claim of this application.

[0001b] Throughout this specification the word "comprise", or variations such as
"comprises" or "comprising", will be understood to imply the inclusion of a stated
element, integer or step, or group of elements, integers or steps, but not the exclusion of

any other element, integer or step, or group of elements, integers or steps.

30 Jul 2015

2014202257

Summary of the Disclosure

[0002] A method for managing CPUs in a host having a virtual machine executing
thereon is provided, wherein the virtual machine is allocated a plurality of virtual CPUs,
the method comprising:

determining a target number of virtual CPUs for a virtual machine based on
processor demand by the virtual machine and that is less than of a current number of
virtual CPUs activated for the virtual machine;

launching, for execution in a first virtual CPU of the plurality of virtual CPUs
that is to be descheduled, a prioritized process thread in a guest operating system of the
virtual machine, wherein the prioritized process thread is associated with a first virtual
CPU of the plurality of virtual CPUs and includes a halt instruction;

executing, by operation of a guest scheduler in the guest operating system, the
prioritized process thread using the first virtual CPU of the plurality of virtual CPUs;
and

responsive to detecting, by operation of a hypervisor in the host, that the first
virtual CPU is executing the halt instruction, descheduling execution of the first virtual
CPU on one or more physical CPUs of the host.

[0002a] A computer system is provided, the computer system comprising:

a processor;

a virtual machine having a plurality of virtual processors, having a guest
operating system executing thereon, wherein the guest operating system includes a
device driver configured to determine a target number of virtual processors for the
virtual machine based on processor demand by the virtual machine and that is less than
a current number of virtual processors activated for the virtual machine;

wherein the device driver is further configured to launch, for execution in a
first virtual processor of the plurality of virtual processors that is to be descheduled, a
prioritized process thread in the guest operating system, wherein the prioritized process
thread is associated with a first virtual processor of the plurality of virtual processors
and includes a halt instruction;

wherein the guest operating system is further configured to execute the
prioritized process thread using the first virtual processor of the plurality of virtual

processors; and

-la-

30 Jul 2015

2014202257

a virtualization layer configured to manage sharing of the processor between
the plurality of virtual processors for the virtual machine, wherein the virtualization
layer is configured to, responsive to detecting that the first virtual processor is executing
the halt instruction, deschedule execution of the first virtual processor on the processor
of the computer system.

[0002b] Embodiments of the present disclosure provide a method for managing CPUs
in a host having a virtual machine executing thereon. The virtual machine is allocated a
plurality of virtual CPUs. The method includes determining a target number of virtual
CPUs for a virtual machine based on processor demand by the virtual machine and that
is in excess of a current number of virtual CPUs activated for the virtual machine. The
method further includes launching a prioritized process thread in a guest operating
system of the virtual machine. The prioritized process thread is associated with a first
virtual CPU of the plurality of virtual CPUs and includes a halt instruction. The method
includes executing, by operation of a guest scheduler in the guest operating system, the
prioritized process thread using the first virtual CPU of the plurality of virtual CPUs.
The method further includes, responsive to detecting, by operation of a hypervisor in the
host, that the first virtual CPU is executing the halt instruction, descheduling execution

of the first virtual CPU on one or more physical CPUs of the host.

-1b -

24 Apr 2014

2014202257

{0803} it should be appreciated that aspects of present disclosure can be implemented in
numerous ways, such as 8 process, an apparatus, a system, a device or a method on 8 computer

readable medium, Several embodiments of the present disclosure are described below.

Brief Description of the Drawines

{00041 Figure 1 s a block diagram that shows a virtualized computer architecturg in which
embodiments may be implemented,

[0065] Figure 2 is a flow diagram that iHustrates the steps carried out by a virtnalization
laver for determining a target virtual CPU size for a virtual machine.

{6005) Figure 3 is & flow diagram that illustrates the steps carried out by a balloon driver to
implement a target virtual CPU size for a virtual machine in response to receiving a target virtual
CPU stze from a kernel scheduler.

[6067) Figure 4A is a bleck diagram that iHustrates dispatching of threads to virtual CPUs by
a guest scheduler of a virtnal machine where the virtual CPU size is the same as a target virtual CPU
size received from a kemel scheduler.

[0008] Figure 4B is a block diagram that illustrates a guest scheduler of a virtual machine
dispatching threads to a plurality of virtual CPUs and a balloon thread to one virtual CPU where the

virtual CPU size exceeds a target virtual CPU size received from a kernel scheduler,

Detailed Deseription

{06091 Figure | depicts & block diagram of a computer system 100 that is representative of a
virtualized computer architecture in which embodiments may be implemented. As is illustrated,
computer system 100 hosts multiple virtual machines (VMs) 118-118y that run on and share a
commion hardware platform 102, Hardware platform 102 includes conventional computer hardware
components, such as one or more central provessing units (CPUR) 104, random access memory
(RAM]} 106, one or more network interfaces 108, and a persistent storage 110,

{0010} A virtualization software layer, referred to herein after as hypervisor 111, is installed
on top of hardware platformy 102, Hypervisor 11T makes possible the concurrent instantiation and
execution of one or more VM8 118;-118x. The interaction of a VM {18 sith hypervisor 111 is
facilitated by the virtual machine monitors {(VMMs} 134, Each VMM 134,-134y is assigned to and
menitors a corresponding VM 118-118y. In one embodiment, hypervisor 111 may be VMkernel™4
which is tmplemented as a commercial product in VMware’s vSphere® virtualization product,

available from VMware™ [ne. of Palo Alto, CA. In an alternative embodiment, a host operating

.

24 Apr 2014

2014202257

system is installed between hypervisor 111 and hardware platform 102, In such an embodiment,
hypervisor 111 operates above an abstraction level provided by the host operating system.

jon11] After instantiation, each VM 118,-118y encapsulaies g physical computing machine
platform that is executed under the contrel of hypervisor 111, Virtual devices of a VM 118 are
embodied in the virtual hardware platforme 120, which is comprised of, but not limited to, one or
more virtual CPUs (vOPUs) 122,~122y, & virtual random access memory (VRAM) 124, & virtual
network interface adapter (WNIC) 126, and virtual storage (vStorage) 128, Virtual hardware
platform 120 supports the installation of a guest operating system (guest 0O8) 130, which is capable
of executing applications 132, Examples of a guest OS 130 include any of the well-known
commodity operating systems, such as Microsofl Windows, Linux, and the like.

[6012) in the embodiment shown in Figure 1, guest O8 130 includes a scheduler component
{depicted as guest scheduler 133) to support multitasking, which is a methed by which multiple
computing tasks, referred to as processes, are performed during a same period of time and shave
common processing resources. Guest scheduler 133 1s configured to schedule and dispateh multiple
processes that execute and access computer resources (e.g., vCPUs 122) concurrently using a variety
of algorithms (e.g., vound-robin, first-in-first-out, pre-emptive scheduling, ete.). For example, guest
scheduler 133 may manage aceess 1o a vOPU 122 by taking into account process priority, such that
processes having a higher execution priority are allowed more time than processes having a lower
priority. In another example, In multiprocessor environments (e.g., a VM having a plurality of
vCPUs 122), guest scheduler 133 may dispatch processes to vOPUs 122 that ave less busy than other
vCPUs

{0013} As mentioned above, a VM 118 running swithin computer system 100 can be
configured to have one to many vCPUs [22)-122y (a VM having ¥ vCPUs 13 sometimes referred to
as an N-way virtual machine). For sake of discussion, a “large™ virtual machine as used herein refers
to a virtual machine having wany vCPUs, and a “small” virtual machine as used herein refers to a
virtual machine having few vCFUs. [n one implementation, a VM 118 may be configured to have
up to 64 vCPUs. However, in some cases, VMg 118 that have many vOPUs 122 may operate less
efficiently than VMs 118 that have few vOPUs 122 in terms of utilization, throughput, and other
performance metrics of the underlying physical CPUs 104, A number of factors may contribute to
the inefficiency of large N-way VMs, Unused vUPUs still continue to consume timer interrupts in
some gunest operaling systems, Guest scheduler 133 might unngcessarily migrate a single-threaded
workload amongst maltiple vCPUs, thereby losing cache locality, Guest OS 130 may execute an
idle loop during perinds of inactivity, swhich results in consumption of resources that would

e

)

24 Apr 2014

2014202257

atherwise be available for other uses. Maintaining a consistent view of virtual memory for all vCPUs
running in a VM can consume additional resources, both in guest O 130 and in underlying
hiypervisor 111, Because of such issues, systern administrators may be reluctant to provision more
than a Z-way VM, even though modern computer applications are getting more demanding and
increasingly vequire farge virtual machines. This VM sizing problem gives rise to g conflict between
VM efficiency (c.g., giving the user a §-way VM will cause efficiency issues) and VM functionality
(c.g., giving the user a 2-way YM precludes use of demanding high-end applications that need large
VMs). Accordingly, embodiments of the present disclosure provide a technique, referred to herein
as CPL ballooning, that dynamically “de-activates™ vCPUs that are not needed by a VM. This
provides for large N-way virtual machines witheut incurring the efficiency costs of running a virtual
machine with a large number of virtual CPUs,

{00144 Embodiments of the present disclosure provide a method or system known as CPL
ballooning for managing CPU resources in a host having a virtual maching executing thereon.
Figure | depicts a balloon driver 131, which is instalied ander guest OS 130, In one embodiment,
balloon driver 131 is a device driver executing under guest OS 130, In some embodiments, balloon
driver 131 executes periodically; that is, balloon driver 131 remains in an idle state until triggered by
a timer event. After executing, balloon driver 131 goes back into an idle state until triggered again
by another timer gvent. The frequency of the timer events may be configured by an administrator.
Balloon driver 131 obtains information from kernel scheduler 113 to adjust the number of vCPUs
122 that are available for use by VM 118, Balloon driver 131 is configured to maintain a count of a
current munber of vOPUs activated for VM 118 For example, upon initial startup of @ VM (e.g.,
VM 118), balloon driver 131 sets the count of a current nuraber of vCPUs to be equal to the number
of vCPUs allocated to VM 118y, and increments and decrements the count accordingly during
operations described below,

{0015} As further shown in Figure 1, kernel scheduler 113 1s a component of hypervisor 111,
Kernel scheduler 113 is responsible for allocating physical CPU 104 among the various processes
running on computer system 100 at 4 given time, wherein a process, as used here, is an exgecuting
computer pragram, For example, kernel scheduler 113 may determine what processes should be run
ont CPU 104 (or on any of a number of CPUs in a multiprocessor complex), the erder in which such
processes shall run, and what running processes should be preempted by a process having higher
priority. To make ite scheduling decisions, kernel schedaler 113 may use specific data, including:
the set of processes that are ready to run; the respective priorities of currently running processes; and

the set of processes that are currently swaiting for one or more syatem resources,

i -

2014202257 24 Apr 2014

{0016} In addition to managing access to physical CPU 104, kernel scheduler 113, in
embodiments described herein, is configured to determine a target vCPU size, which is a target
number of vCPUs 122 that a particular VM 118 should use at a given point in time. This target
vCPU size is communicated to balloon driver 131 of guest O§ 130, for example, using calls to a
backdoor interface {(depicted by directional line 114). Balloon driver [31 then uses this
recommendation to adjust the number of vCPUs 122 that guest scheduler 133 dispatches processes
on, as described in greater detail below. For example, if the vCPUs 122 that VM 118 has at iis
disposal are not fully utilized, balloon driver 131 will decrease the number of vCPUs 122 available
for use by YM 118, By contrast, if kernel scheduler 113 provides a target vCPU size for VM 118
that exceeds the number of vCPUs used by VM 118, then balloon driver 131 sill attempt to increase
the number of vCPUs 122 available for use by VM 118.

(6017} it should be recognized that the various terms, layers, and categorizations used to

describe the compenents in Figure | may be referred to differently without departing from their

functionality or the spirit or scope of the disclosure, For example, VMMs 134,-134y may be

considered separate virtualization components between VMs 118,118y and hypervisor 111 since
there exists a separate VMM for each instantiated VM. Alternatively, each VMM may be
considered to be a component of its corresponding virtval machine since such VMM includes the
hardware emulation components for the virtual machine. In such an alternative conception, for
example, the conceptual layer described as virtual hardware platform 120 may be merged with and
into VMM 134,

{0018} Figure 2 is a flow diagram that depicts the steps taken by kemel scheduler 113 in
determining the target vOPU size for a particalar VM. As shown in Figure 2, at step 200, a number
of vCPLs demanded by the VM is determined based on the current system Joad of computer system
100, In one embodiment, kernel scheduler 113 determines a demanded number of vCPUs as shown

in Equation :
demanded s = [demanduyy / expected Ut Ratioyy] {1

The demanded number of vCPUs (i.e., demanded,cpys) is based on: (1) the total demand of all
vCPUs 122 associated with a VM 118 (l.e., demandyy); and (2) the expected utitization ratio of all
vCPUs 122 associated with a VM TR (.., expectedttilRatiovy).

{0819} In one embodiment, a vCPU's demand is the amount of time the vCPU can consume

if there’s no “stolen™ time. A vCPU's stolen time includes ready time, overlap cycles, time loss to

2014202257 24 Apr 2014

power management, ime stolen by Hyper-threading, and other variables. Ready time is the amount
of time that the vCPU is runnable, but not getting scheduled to run on a physical vCPU because the
system is busy with running other vCPUs. Overlaps cycles are the amount of time stolen by
interrupts and bottom halves (BHs) that preempted execution of this vCPU. Lost time due to power
management represents efficiency loss because of frequency scaling. For example, if the frequency
is dropped to 20 percent of the nominal frequency, 80 percent of the CPLI Is considered stolen. Time
foss to hyper-threading represents time stolen by workloads running on a partner physical CPUL

{0020} A vCPU's demand may be estimated based on the amount of cycles actually used and
the amount of eycles the vCPU would have used if there were no “stolen™ cyeles. According to one
embodiment, the total demand of & vCPU associated with VM 118 (ie., demandvy) is calculated as

in Equation 2:
demande, = CyelesUsedyepy + CyelesStolenyey, * CyclesCapacityvep {2)

As Equation 2 shows, the demand of a v(CPU 122 is based on: (1) the percentage of eyeles used by
the vCPU 122 executing within VM 118 in a given time period (i.c., CyelesUsedip); (2) the
percentage of cycles “stolen™ from the vCPU 122 executing within VM 118 in a given time period
{i.e., CyclesStolenyy); and (3) the psreentage of cycles that a vCPU {22 has the capacity to run in
the same time period (i.e., CyclesCapacitywn). The cveles used by a vOPU 122 ave those cyeles in
which that vOCPU 122 execuoles instructions. By contrast, cveles stolen from a vCPU 122 are those
cycles where that vCPU 122 has instructions to execute, but is preempted from executing those
instructions due to, for example, system load. Examples of stolen cycles include cveles where a
vCPU 122 was ready to run, but was not dispatched due to computer system 100 running the
processes of other VMs, and cyeles where a vCPU 122 is preempted by computer system 100
handling external interrupts. Finally, the capacity of a vCPU 122 (i.e., CyclesCapacity i) is the
percentage of cycles that a vOPU 122 has the ability to consume over a given time period if there are
no “stolen” cvcles, Furthermore, the demand of VM 118 (i.e., demiandyy) is the sum of the demands
of the vCPUs 122 executing within VM 118,

{6021} As shown in Equation 2, the percentage of used cycles (CyclesUsedigp) ts added to
the product of the percentage of stolen cycles (CyclesStoleny,) of a vCPU 122 and the vCPU's
ecapacity (CyeleCapacityn,) over a given time period, the result of which is used as the current
demand of the vCPU {demandeyy). For example, if the percentage of cycles used by the vCPUs 122

executing within VM HIR over a given time period is 30, the percentage of cycles stolen from the

.6 -

24 Apr 2014

2014202257

vCPUs 122 over a given time period is 50, and the capacity of a single vCOPU 122 is 40 percent over
that same time period, the current demand of vCPU 122 would be 30 + 50 ¥ 40%, which is equal to
S0 percent.

{6622} The expected utilization ratin {(Le.. expectedUtiRatioyn) is a value that is
configurable for each VM that is instantiated by hypervisor 111 and represents, in percentage terms,
a rate of utilization that the vCPUs 122 of VM 118 should have and still provide acceptable
performance. The expected utilization ratio may be set at the time VM 118 is configured by an
adnuinistrator, and may be altered during the execution of VM 118, For example, the expected
utilization ratio may be configured as 70% based on a determination that applications running in the
VM may continue to operate well when svstem utilization is 70% or less,

{0023] Onee the current demand on VM 118 (demandyy) and the expected utilization ratio
of VM 118 {expectedUtitRatioyy) have been determined, kernel scheduler 113 then computes the
nwmber of demanded vCPUs 122 (i.e., demanded,gps) as in Equation 1. For example, if VM 11§ has
a current demand of 110% and an expected utihization ratio of 70%, then its demanded number of
vCPUs 122 will be 2 (because {110/ 70] = 2).

{0024 At step 210, kernel scheduler 113 determines a number of vCPU to which the given
VM is entitled based oun the number of vOPUs configured for the VM and the amount of ready time
for the vCPUs. A given VM’s effective CPU resource entitlement may be smaller than its demand,
for example, in cases when the svstem running the VM is over-comumitied, or in cases where the
VM's resource allocation is small, or both. As such, it has been determined that it may be more
efficient to v the VM with less vCPUs for such cases. in ove embodiment, the kernel scheduler
113 determines a reduced number of wCPUs for the VM such that the remaining vCPUs have less
ready time, thereby exscuting more efficiently,

j0025] fn one embodiment, kernel scheduler 113 determines an effective number of vCPUs

to which VM 118 is entitled (i.e., entitied,qus) according to Equation 3 set forth below:

In some embodiments, kemel scheduler 113 determines the number of vCPUs 122 that VM 118 is
entitled to (i.e., entitled,gpu) by first recording the number of vCPUs 122 defined for VM 118 (ie.,
Mifyepus), Which is set at the time VM 118 is configured, Kerne! scheduler 113 then determines the
arvount of ready time for all vCPUs for the VM. As mentioned above, the ready time is the amount

of time a ¥ M wants to run bus has not been provided physical CPU resources on which to execute.

-7

24 Apr 2014

2014202257

In one embodiment, ready time may be represented in a percentage format, for example, a VM
having a ready time of 5% (or 0.05) means that the VM spent 5% of its last sample period waiting
for avatlable CPU resources. As such, in one examiple, if an 8-way VM spent 200 percent of the
time on the READY state, then the number of entitled vCPUs is 6 (because 8 — [2.00] = &),

[3026) At step 220, kernel scheduler 113 determines a target vCPU size (1., targetiepys) us)
for a particular VM 118 based on the lesser of the demanded number of vCPUs (demanded ey,
caleulated in Equation 1) and the entitled number of vCPUs for the particular VM (entitledpys,

caleulated in Equation 3), as set forth in Equation 4:

targetyepus = Min{demanded, s, entitled,qpu) {4)
{0027 Figure 3 is a flow diagram that iliustrates the steps carvied out by balloon driver 131

during one of its periodic execution cycles. First, balloon driver 131 “wakes up” after being
triggered by a timer event, At step 300, balloon driver 131 communicates with hypervisor 111
{specifically, with kernel scheduler 113) and receives a target vCPU gize that kernel scheduler 113
calenlates for VM 118, This target vCPU size represents the number of vCPUs 122 that, in the
estimation of kernel scheduler 113, VM 118 should use in its virtual hardware platform 120, Next,
at step 308, balloon driver 131 compares this target vOPU size to the number of vCPUs 122 that VM
118 is currently using. If the number of vCPUs 122 that VM 118 is currently using exceeds the
target vOPU size, then, at step 320, balloon driver 131 launches one or more balloon threads based
on the received target vOPU stze. i step 325, balloon driver 131 specifies one or more vCPUs 122
that balloon thread(s) will run on (i.e., balloon driver 131 “pins™ thread(s) to vCPU(sy 122). Each
balioon thread is then pinued to one vCPU 122.

{6028] In one embodiment, a halloon thread is a thread configured to occupy a particula
vCPU (e.g., vOPU,) such that guest scheduler 133 of guest GS 130 perceives viOPU 122 as
unavailable for scheduling purpose. In some embodiments, a balloon thread is a prioritized process
thread having a high process priority relative to other processing executing within guest 05 130 such
that guest scheduler 133 may not preempt, or interpupt, sxecution of the balloon thread on a
particular vOPU. In some implementations, a balloon thread may be a kernel thread, a lightweight
process (LWP), or other process execuiing within guest OS 130, Balloon driver 131 may forther
configure the balloon thread to be “pinned™ to a vCPU targeted for de-activation. For example,

balloon driver 131 may set a processor affinity setting on the balloon thread that signals to guest

2014202257 24 Apr2014

scheduler 133 that the balloon thread should be bound to a particular vCPU. Balloon threads are
configured to remain in execution until terminated.

[0029] in one embodiment, a balloon thread may he further configured to execute an idle
jnstructions to communicate to hypervisor 111 that the particular vCPU 122 to which the balloon
thread is pinned should be descheduled. Therefore, hypervisor 111 will not incur the overhead of
maintaining that particular vCPU 122, In one particular embodiment, a balloon thread may have
computer instructions that halts a processing unit (¢.g., vCPU 122) until more work needs to be
done, and cnters a halted {or ready state). An example tmplementation of a balloon thread for an

x8&6G computer architecture is shown as pseudo-~-code in Table 1 below,

while (1) {
HLT;

Table 1: Sample pseudo-code of balloon thread

{00306} As shown, the balloon thread may be implernented as a loop that repeatedly issues a
HLT instruction, an assembly language instruction that halts a processing unit until more work needs
to be done (e.g., in an interrupt-driven processor, until a next external interrupt is fired). Tn other
embodiments, the balloon thread may include a sleep mode, MONITOR, MWAIT, or other
functionally equivalent jnstructions. In some embodiments, hypervisor 111 is configured to detect
when any guest processes running on ¥Ms 118 that are executing idle instructions and to deschedute
any vCPUs on which an idle instruction is exeenting from running on a physical CPU. in these
embodiments, a HLT instruction in the balloon thread serves to communicate to kernel scheduler
113 of hypervisor 111 that the particular vCPU 122 runping the balloon thread may be descheduled.
As such, from the perspective of guest scheduler 133, the launched balloon thread is a bigh priority
thread that does not yield the vCPU. Meanwhile, from the perspective of kernel seheduler 113, the
vCPU s halted by the idle loop of the balloon thread and may be descheduled from the physical
CPUs:

{8031} In one gmbodiment, balloon driver 131 launches a number of balloow threads to
satisfy the difference in the target number of vCPUs and current number of vCPUs. Afier launching
and pinning each balloon thread, balloon driver updates the count of the current number of vCPUs
activated for the virtual machine. For example, balloon driver 131 may decrement the count of the

current number of virtual CPUs activated for the YM for each baltoon thread launched.

-9

24 Apr 2014

2014202257

[6032] At step 300, if balloon driver 131 receives a target number of vCPUs 122 from kernel
scheduler 113 that exceeds the number of vCPUs 122 currently used by VM 118, at step 340,
baltoon driver 131 determines whether a previously lannched a balloon thread was pinned to one of
the vCPUs 122. If such a balioon thread was taunched, and s currently running on a vOPU 122, at
step 345, balloon driver 131 kills execution of the balloon thread in guest O8 130, From the
standpoint of guest scheduler 133, this will free that vCPU 122 for scheduling other processes.
Farther, balloon driver 131 kills execution of as many balloon threads as possible in order to free
additional vCPUs 122 for process scheduling. In one embodiment, responsive to killing a baltoon
thread. balloon driver updates the count of the current number of vCPUs activated for the virtual
machine, For example, balloon driver 131 may increment the count of the current number of virtual
CPUs activated for the VM for each balloon thread killed,

{0033] After performing the aforementioned steps, balloon driver 131 goes back jnto an idle
state (or “sleeps™) until triggered again by a timer interrupt.

[0034] Figure 4A is a block diagram of VM 118, having four allocated vCPUs 122,~1224 on
which processes that are scheduled and dispatched on by guest scheduler 133, Guest scheduler 133
of guest OS 130 allocates time on one or more vCPUs 122,-122y to processes (or threads) for
executing computer instruetions. Region 402 depicted in Figure 4A represents an amount of demand
associated with each vCPU, as a portion of time spent by each vCPU gxecuting instructions. In the
example shown, toad balancing among the plurality of vCPUs is performed by guest scheduler 'I_B:S,
yielding similar amounts of demand on each vCPU, though it should be recognized that vCPUs may
have varying amounts of demand and cycles used for executing processes and threads.

{0035] Figure 48 is a block diagram of VM 118, having four vCPUs 122,~122¢ on which
processes are scheduled and dispatched to one or more by goest scheduler 133 when balloon driver
13) has determined that VM 118, is utilizing more vCPUs 122 than a target number of vOPUs 122
recommended by hypervisor 111, In this illustration, balloon driver 131 communicates with
hypervisor 111 {e.g., via backdoor call} as depicted by fine 408, and receives a target number of
vCPUs 122 that ¥M {18 should utilize. Balloon driver 131 compares this target number of vCPUs
122 to the current number of vCPUs 122 that are activated and available for use by VM 118,,
Balloon driver 131 launches one or more balioon threads 404 if the current number of vCPUs 122 in
use exceeds the target number of vCPUs 122, In the example shown, balloon driver 131 determines
that the target number of vOCPUs for the VM is three vCPUs, which is in excess of the current

number of vCPUs (e.g., four, as initially aflocated), and launches ene balloon thread 404,

- 10 -

24 Apr 2014

2014202257

[0036] Balloon driver 131 specifies that a processor affinity of balloon thread 404 to a
particular vCPU targeted for de-activation {e.g., vCPU 1224). thereby pinning the balloon thread to
the v CPUL Further, balloon thread 404 may be a kemnel thread having a high priority relative to other
processes and threads running on gusst O8 130, thus preempting all other processes on the particalar
vCPL} 122;. Thus, guest scheduler 133 dispatehes balloon thread 404 on «CPU 1224 with the
specified priority. {t should be recognized that, in some embodiments, guest scheduler 133 may not
dispatch other proeesses ou vOPUy. The oceupation of vCPU 1224 by balloon thread 404, whereby
balloon thread 404 utilizes all of the CPU eyeles of vCPU 1224, is depicted in Figure 4B by the
region 406, Guest scheduler 133 dispatched and re~-schedules processes and threads, inchuding those
processes and threads formerly executing on vCPU 1224 on the remaining available vCPUs 122~
1225. Regions 410 depicted in Figure 4B represent increased demand on each vCPUs 122, 1225,
1225 as a result of vCPUJ 1224 no longer being available. Accordingly, embodiments of the present
disclosure effectively have de~activated a vCPU based on demand, without having to shutdown or
bring offline a VM,

{6037] Although one or more embodiments have been described herein in some detail for
clarity of understanding, it should be recognized that certain changes and modifications may be
made without departing from the apicit of the disclosure. For example, i some embodiments, guest
operating system 130 may be configured to support dynamic CPU onlining and offhining. In such
embodiments, rather than launch balloon threads, balloon driver 131 may be configured to adjust the
number of vCPUs for the VM within guest OS 130, In one implementation, balloon driver 131 may
adjust the number of vCPUs for a VM runming a Lintx guest operating system be writing the target
vCPU size to a device driver filesystem (e.g., sysfs), such as a change to a
fsysidevices/system/cpuicupid/onling sys node.

{0038} The various cmbodiments described herein may employ various computer-
implemented aperations Involving data stored in computer systems, For example, these operations
may require physical manipulation of physical guantities—usnally, though not necessarily, these
quantitics may take the form of electrical or magnetic signals, where they or representations of them
are capable of being stored, transferred, combined, compared, or otherwise manipulated. Further,
such manipulations are often referred 0 in terms, such as producing, vielding, identifying,
determining, or comparing. Any operations described herein that form part of one or more
embodiments of the disclosure may be useful machine operations. In addition, one or more
embodiments of the disclosure also relate to a device or an apparatus for performing these

operations. The apparatus may be specially coustructed for specific required purposes, or it may be

<11 -

24 Apr 2014

2014202257

a general purpose computer selectively activated or configured by a computer program stored in the
computer. In particudar, various general purpose machines may be used with computer programs
written in accordance with the teachings herein, or it may be more convenient to construet a more
specialized apparatus to perforn the required operations.

{8039} The vartous embodiments described herein may be practiced with. other computer
systery configurations including hand-held devices, microprocessor systems, microprocessor-based
or programmable consumer electronics, minicomputers, mainframe computers, and the like,

{0040} One or more erbodiments of the present disclosure may be iimplemented as one or
more computer programs or as one or more computer program modules embodied in one or more
computer readable media. The term conputer readable medium refers to any data storage device
that can store data which can thereafter be input to a computer system—-computer readable media
roay be based on any existing ov subseguently developed technology for embodying computer
programs in a manner that enables them to be read by a computer. Examples of 2 computer readable
medium include a hard drive, network attached storage (NAS), read-only memory, random-access
memory (e.g., a flash memory device), 8 CD (Compact Discs) --CD-ROM, a CD-R, or a CD-RW, a
DVD (Digital Versatile Disc), a magnetie tape, and other optical and non-optical data storage
devices. The computer readable medium can also be distributed over a network coupled computer
system so that the computer readable code is stored and executed in a distributed fashion,

{0041} Although one or more embodiments of the present disclosure have been described in
some detait for clarity of anderstanding, it will be apparent that certain changes and modifications
may be made within the scope of the claims. Accordingly, the described embodiments are to be
considered as illustrative and not restrictive, and the scope of the claims is not to be limited to details
given herein, but may be modified within the scope and equivalents of the claims. In the claims,
elements and/or steps do not imply any particular order of operation, unless explicitly stated in the
claims.

[0042] Virtualization systems in accordance with the various embodiments, may be
implemented as hosted embodiments, non-hosted embodiments or as embodiments that tend to blur
distinctions between the two, are all epvisioned. Furthermore, various virtualization operations may
be wholly or partielly implemented in hardware, For example, a hardware implementation may
employ a look-up table for modification of storage access requests to secure non-disk data.

{0043] Many variations, modifications, additions, and improvements are possible, regardless
the degree of virtualization. The virtnalization software can therefore include components of a host,

console, or guest operating system that performs virtualization functions, Plural instances may be

- 12 -

24 Apr 2014

2014202257

provided for components, operations or structures described berein as a single instance. Finally,
boundaries between various components, vperations and data stoves are somewhat arbitrary, and
particular operations are illustrated in the context of specific lustrative configurations. Other
allocations of functionality are envisioned and may fall within the scope of the disclosure(s). In
general, structures and functionality presented as separate components in exemplary configurations
may be implemented as a combined structure or component. Similarly, structures and functionality
presented as a single component may be implemented as separate components. These and other
varfations, modifications, additions, and improvements may fall within the scope of the appended

clarmds).

p—

30 Jul 2015

2014202257

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for managing CPUs in a host having a virtual machine
executing thereon, wherein the virtual machine is allocated a plurality of virtual CPUs,
the method comprising:

determining a target number of virtual CPUs for a virtual machine based on
processor demand by the virtual machine and that is less than of a current number of
virtual CPUs activated for the virtual machine;

launching, for execution in a first virtual CPU of the plurality of virtual CPUs
that is to be descheduled, a prioritized process thread in a guest operating system of the
virtual machine, wherein the prioritized process thread is associated with a first virtual
CPU of the plurality of virtual CPUs and includes a halt instruction;

executing, by operation of a guest scheduler in the guest operating system, the
prioritized process thread using the first virtual CPU of the plurality of virtual CPUs;
and

responsive to detecting, by operation of a hypervisor in the host, that the first
virtual CPU is executing the halt instruction, descheduling execution of the first virtual

CPU on one or more physical CPUs of the host.

2. The method of claim 1, further comprising:
decrementing the current number of virtual CPUs activated for the virtual

machine based on an amount of prioritized process threads launched.

3. The method of claim 1 or 2, wherein the prioritized process thread

comprises a kernel thread having a HLT instruction.

4, The method of claim 1, 2 or 3, further comprising:
determining a second target number of virtual CPUs for the virtual machines and
that is in excess of the current number of virtual CPUs activated for the virtual machine;

and

killing execution of the prioritized process thread in the guest operating system.

- 14 -

30 Jul 2015

2014202257

5. The method of any one of the preceding claims, wherein the step of
determining the target number of virtual CPUs for the virtual machine based on
processor demand by the virtual machine further comprises:

determining the target number of virtual CPUs as a lesser of a demanded number
of virtual CPUs for the virtual machine and an entitled number of virtual CPUs for the

virtual machine.

6. The method of claim 5, wherein the demanded number of virtual CPUs
for the virtual machine is determined based on a total demand for the plurality of virtual
CPUs allocated to the virtual machine and on an expected utilization ratio for the virtual

machine.

7. The method of claim 5 or 6, wherein the entitled number of virtual CPUs
for the virtual machine is determined based on a number of virtual CPUs allocated to

the virtual machine and on an amount of ready time associated with the virtual machine.

8. The method of any one of claims 1 to 4, wherein the step of determining
the target number of virtual CPUs for the virtual machine based on processor demand
by the virtual machine further comprises:

receiving, by operation of a device driver executing in the guest operating

system, the target number of virtual CPUs from the hypervisor via a backdoor call.

9. A non-transitory computer readable storage medium having stored
thereon computer readable program code for managing CPUs in a host having a virtual
machine executing thereon, wherein computer readable program code when executed

performs the method of any of claims 1 to 8.

10. A computer system, comprising:

a processor;

a virtual machine having a plurality of virtual processors, having a guest
operating system executing thereon, wherein the guest operating system includes a

device driver configured to determine a target number of virtual processors for the

-15 -

30 Jul 2015

2014202257

virtual machine based on processor demand by the virtual machine and that is less than
a current number of virtual processors activated for the virtual machine;
wherein the device driver is further configured to launch, for execution in
a first virtual processor of the plurality of virtual processors that is to be
descheduled, a prioritized process thread in the guest operating system, wherein
the prioritized process thread is associated with a first virtual processor of the
plurality of virtual processors and includes a halt instruction;
wherein the guest operating system is further configured to execute the
prioritized process thread using the first virtual processor of the plurality of
virtual processors; and
a virtualization layer configured to manage sharing of the processor between the
plurality of virtual processors for the virtual machine, wherein the virtualization layer is
configured to, responsive to detecting that the first virtual processor is executing the halt
instruction, deschedule execution of the first virtual processor on the processor of the

computer system.

11. The computer system of claim 10, wherein the device driver is further
configured to decrement the current number of virtual processors activated for the

virtual machine based on an amount of prioritized process threads launched.

12. The computer system of claim 10, wherein the prioritized process thread

comprises a kernel thread having a HLT instruction.

-13. The computer system of claim ,10, wherein the device driver is further
configured to:

determine a second target number of virtual processors for the virtual machines

and that is in excess of the current number of virtual processors activated for the virtual

machine; and

kill execution of the prioritized process thread in the guest operating system.
14, The computer system of claim 10, wherein the target number of virtual

processors is determined as a lesser of a demanded number of virtual processors for the

virtual machine and an entitled number of virtual processors for the virtual machine.

-16 -

30 Jul 2015

2014202257

15. The computer system of claim 14, wherein the demanded number of
virtual processors for the virtual machine is determined based on a total demand for the
plurality of virtual processors allocated to the virtual machine and on an expected

utilization ratio for the virtual machine.

16. The computer system of claim 14, wherein the entitled number of virtual
processors for the virtual machine is determined based on a number of virtual

processors allocated to the virtual machine and on an amount of ready time associated

with the virtual machine.

17. The computer system of claim 10, wherein the device driver is further
configured to receive the target number of virtual processors from the virtualization

layer via a backdoor call.

-17 -

2014202257 24 Apr 2014

. et ity vy s A ot e i ety cowr vy vewy i cooo wxxm mxmm ay

COMPUTER SYSTEM 100

|

I R RN S N S S T NN M W A 4 4w e oo o e ~
L%
;1.!;;1 Applications 132 Y VM
| "' 8| | 118

Guest Operating System 130
Guest Scheduler 133 | {Balloon Driver 131

-
& s [E-R -
2]
Virtual Hardware Platform 120

3
|
(1 vOPU1 lg of vCPU | vRAM || wNic || vStorage ;
; |

184 128w 124 128 128
S e o o et et et o
Cdainr. e Tan | A s, e waa . ARAR AR A N e v an A v e e e e et e] e e v o] ~
Hypervisor 111
e T T S I S
| Virtual Machine Monitor (VMM) 134, | AVV VR VMM,
P e o e s S - P 184 1 134wt
Bnans oan o Novnans anns o
| Kemel Scheduler 113 ™ 14
\ B
Hardware ??atform 182
CPU(s) RAM ,th‘r’;io* Storage
104 108 fpriresy 110
MAASS

2014202257 24 Apr2014

215

(| Start)

Determine a number of vCPUs
demanded by the VM, based on current
system foad
200

¥

Determine a number of vCPUs to which
the VM is entitled, based on the number
of vCPUs configured for the VM and the
amount of ready time for the VM
210

¥

Determine a target vOPU size for the
VM, based an the lesser of the number
of vCPUs demanded by the VM and the |

number of vCPUs to which the VM is

entitled

220

2014202257 24 Apr 2014

3/5
. Wakeup)

Receive from
hypervisor 111 the
target vOPU size for
the VM
360

“Targets

4 Launch high
vOPU sizg <

Yeas priority

current # of ballcon
vCPUs thread(z)

a20

T arget™.
“vCPU size >
cUrrent # of
yGPUs

7 Balloon™
thread
running on

" No

SN VCPU(s)?

™, Yes

Pin balloon
thread to
vCPU(s)

325

thread(s)

Kl
halloon
@15

VOPU(s)

415

2014202257 24 Apr 2014

Y 14

(el

1

|

Application(s) 132

e

Guest O8 1

(€]
Lo

|

AN

Guest Scheduler 133 Balloon Driver 131

Wirtual Hardware Platiorm 120

-
o
e

402

122, 122, 122, 23,
%
Hypervisor 111 7T T e e o
i Kernel Scheduter 113 |

Hardware Platform {102

2014202257 24 Apr 2014

VM 118

Application{s) 132

&
y

Guest O8 130

Guest Scheduler 133 b

Balloon Driver 131 M1

Balloon thread 404 e

Virtual Hardware Platform 120

A
410
MVCPU S yepU, S vCPUs
1224 1225 1225
&
’ 408 |
Hypervisor 111 P s s 5 g ;
{ Kemel Scheduler 113 lfw ——
\‘ MMMMMM e }
&
¥
Hardware: Platform 102
CPU(s) 104

