
(12) STANDARD PATENT (11) Application No. AU 2014202257 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Dynamic virtual machine sizing

(51) International Patent Classification(s)
G06F 9/455 (2006.01)

(21) Application No: 2014202257 (22) Date of Filing: 2014.04.24

(30) Priority Data

(31) Number (32) Date (33) Country
13/886,360 2013.05.03 US

(43) Publication Date: 2014.11.20
(43) Publication Journal Date: 2014.11.20
(44) Accepted Journal Date: 2015.09.17

(71) Applicant(s)
VMware, Inc.

(72) Inventor(s)
ZHENG, Haoqiang

(74) Agent / Attorney
FB Rice, Level 14 90 Collins Street, Melbourne, VIC, 3000

(56) Related Art
US 7433951

20
14

20
22

57

24
 A

pr
 2

01
4

Abstract

A technique is described for managing processor (CPU) resources- in a host having
virtual machines (VMs) executed thereon. A target size of a VM is determined based on its demand

and CPU entitlement. If the VM’s current size exceeds the target size, the technique dynamically
changes the size of a VM in the host by increasing or decreasing the number of virtual CPUs
available to the VM. To “deactivate” virtual CPUs, a high-priority balloon thread is launched and
pinned to one of the virtual CPUs targeted for deactivation, and the underlying hypervisor
deschedules execution of the virtual CPU accordingly, To “activate” virtual CPUs, the number of
virtual CPUs, the launched balloon thread may be killed.

20
14

20
22

57

30
 Ju

l 2
01

5 Dynamic Virtual Machine Sizing

Background

[0001] Virtual computing environments allow multiple virtual machine (VM) guests

to be run on a single physical platform and to share physical resources. Some virtual

computing environments allow configuring the VMs in a way where the total number of

processors designated for use by the VMs is more than the actual number of physical

processors available on the host. This is referred to as CPU over-commitment, and it

allows packing more VMs onto a single host. Further, virtual machines can be allocated

more than one virtual CPU, allowing users to run applications that spawn multiple

processes or multi-threaded application. However, configuring a virtual machine with

more virtual CPUs (vCPUs) than its workload can use increased resource usage due to

overhead, thereby impacting performance on heavily loaded systems. Examples of this

scenario include a single-threaded workload running in a multiple vCPU virtual

machine or a multi-threaded workload in a virtual machine with more vCPU than the

workload can effective use. Furthermore, virtual machines are allocated CPU resources

(and memory resources) at the time of deployment of the virtual machines, and

changing these allocations typically involves taking a virtual machine offline,

reconfiguring settings, and bringing the virtual machine back online. This process can

be time-consuming to system administrators and interrupts access to services on the
virtual machines.

[0001a] Any discussion of documents, acts, materials, devices, articles or the like

which has been included in the present specification is not to be taken as an admission

that any or all of these matters form part of the prior art base or were common general

knowledge in the field relevant to the present disclosure as it existed before the priority

date of each claim of this application.

[0001b] Throughout this specification the word "comprise", or variations such as

"comprises" or "comprising", will be understood to imply the inclusion of a stated

element, integer or step, or group of elements, integers or steps, but not the exclusion of

any other element, integer or step, or group of elements, integers or steps.

20
14

20
22

57

30
 Ju

l 2
01

5

Summary of the Disclosure

[0002] A method for managing CPUs in a host having a virtual machine executing

thereon is provided, wherein the virtual machine is allocated a plurality of virtual CPUs,

the method comprising:

determining a target number of virtual CPUs for a virtual machine based on

processor demand by the virtual machine and that is less than of a current number of

virtual CPUs activated for the virtual machine;

launching, for execution in a first virtual CPU of the plurality of virtual CPUs

that is to be descheduled, a prioritized process thread in a guest operating system of the

virtual machine, wherein the prioritized process thread is associated with a first virtual

CPU of the plurality of virtual CPUs and includes a halt instruction;

executing, by operation of a guest scheduler in the guest operating system, the

prioritized process thread using the first virtual CPU of the plurality of virtual CPUs;

and

responsive to detecting, by operation of a hypervisor in the host, that the first

virtual CPU is executing the halt instruction, descheduling execution of the first virtual

CPU on one or more physical CPUs of the host.

[0002a] A computer system is provided, the computer system comprising:

a processor;

a virtual machine having a plurality of virtual processors, having a guest

operating system executing thereon, wherein the guest operating system includes a

device driver configured to determine a target number of virtual processors for the

virtual machine based on processor demand by the virtual machine and that is less than

a current number of virtual processors activated for the virtual machine;

wherein the device driver is further configured to launch, for execution in a

first virtual processor of the plurality of virtual processors that is to be descheduled, a

prioritized process thread in the guest operating system, wherein the prioritized process

thread is associated with a first virtual processor of the plurality of virtual processors
and includes a halt instruction;

wherein the guest operating system is further configured to execute the

prioritized process thread using the first virtual processor of the plurality of virtual
processors; and

- la -

20
14

20
22

57

30
 Ju

l 2
01

5 a virtualization layer configured to manage sharing of the processor between

the plurality of virtual processors for the virtual machine, wherein the virtualization

layer is configured to, responsive to detecting that the first virtual processor is executing

the halt instruction, deschedule execution of the first virtual processor on the processor

of the computer system.

[0002b] Embodiments of the present disclosure provide a method for managing CPUs

in a host having a virtual machine executing thereon. The virtual machine is allocated a

plurality of virtual CPUs. The method includes determining a target number of virtual

CPUs for a virtual machine based on processor demand by the virtual machine and that

is in excess of a current number of virtual CPUs activated for the virtual machine. The

method further includes launching a prioritized process thread in a guest operating

system of the virtual machine. The prioritized process thread is associated with a first

virtual CPU of the plurality of virtual CPUs and includes a halt instruction. The method

includes executing, by operation of a guest scheduler in the guest operating system, the

prioritized process thread using the first virtual CPU of the plurality of virtual CPUs.

The method further includes, responsive to detecting, by operation of a hypervisor in the

host, that the first virtual CPU is executing the halt instruction, descheduling execution

of the first virtual CPU on one or more physical CPUs of the host.

- lb-

20
14

20
22

57

24
 A

pr
 2

01
4

[0003] It -should be appreciated that aspects of present disclosure can be implemented in
numerous ways, such as a process, an apparatus, a system, a device or a method on a computer
readable medium. Several embodiments of the present disclosure are described, below.

Brief Description of the Drawings
[0004] Figure I is a block diagram that shows a virtualized computer architecture in which
embodiments may be implemented,

[0005] Figure 2 is a flow diagram that illustrates the steps carried out. by a virtualization
layer for determining a. target virtual CPU size for a virtual machine.
[000'6] Figure 3 is a flow diagram that illustrates the steps carried out by a balloon driver to
implement a target virtual CPU size for a virtual machine in response to receiving a target virtual
CPU size from a kernel scheduler.
[0007] Figure 4A is a block diagram that illustrates dispatching of threads to virtual CPUs by
a guest scheduler of a virtual machine where the virtual CPU size is the same as a target virtual CPU
size received from a kernel scheduler.

[0008] Figure 4B is a block diagram that illustrates a guest scheduler of a virtual machine

dispatching threads to a plurality of virtual CPUs and a balloon thread to one virtual CPU where the
virtual CPU size exceeds a target virtual CPU size received from a kernel scheduler.

Detailed Description

[0009] Figure I depicts a block diagram of a computer system '100 that is representative of a

virtualized computer architecture in which embodiments may be implemented. As is illustrated,
computer system 100 hosts multiple virtual machines (VMs) 118-(-118^ that run on and share a
common hardware platform 102. Hardware platform 102 includes conventional computer hardware
components, such as one or more central processing units (CPUs) 104, random access memory
(RAM) 106, one or more network interfaces 108, and a persistent storage 110.

[0010] A virtualization software layer, referred to herein after as: hypervisor 111, is installed
on top of hardware platform 102. Hypervisor 111 makes- possible the concurrent instantiation and

execution of one or more VMs 1.18--11¾. The interaction of a VM 118 with hypervisor III is

facilitated by the virtual machine monitors (VMMs) 134, Each VMM 134j-l3¾ is assigned to and

monitors a corresponding. VM 118i~l 1 §N, In one embodiment, hypervisor 111 may be VMkemel™

which is implemented as a commercial product in VMware’s vSphere® virtualization product,

available from VMware™ Inc. of Palo Alto, CA. In an alternative embodiment, a host operating

20
14

20
22

57

24
 A

pr
 2

01
4

system is installed between, hypervisor 1 1 1 and hardware platform 102. In such an embodiment,
hypervisor 111 operates above an abstraction level provided by the host operating system.
[0011) After instantiation, each VM 118|-1 18n encapsulates a physical computing machine
platform that is executed under the control of hypervisor 111. Virtual devices of a VM 118 are

embodied in the virtual hardware platform 120, which is comprised of, but not limited to, one or
more virtual CPUs (vCPUs) 122; -122», a virtual random access memory (vRAM) 124, a virtual
network interface adapter (vN’iC) 126, and virtual storage (vStorage) 128, Virtual hardware
platform 120 supports the installation of a guest operating system (guest OS) 130, which is capable
of executing applications 132. Examples of a guest OS 130 include any of the well-known
commodity operating systems, such as Microsoft Windows, Linux, and the like.
[0012] In the embodiment shown in Figure I, guest OS 130 includes a scheduler component

(depicted as guest scheduler 133) to support, multitasking, which is a method by which multiple
computing tasks, referred to as processes, are performed during a same period of time and share
common processing resources. Guest scheduler 133 is configured to schedule and dispatch multiple
processes that execute and access computer resources (e.g., vCPUs 122) concurrently using a variety
of algorithms (e.g., round-robin, first-in-first-out, pre-emptive scheduling, etc.). For example, guest
scheduler 133 may manage access to a vCPU 122 by taking into account process priority, such that
processes having a higher execution priority are allowed more time than processes having a lower

priority. In another example, In multiprocessor environments (e.g., a VM having a plurality of
vCPUs 122), guest scheduler 133 may dispatch processes to vCPUs 122 that are less busy than other
vCPUs
[0013] As mentioned above, a VM 118 running within computer system 100 can be
configured to have one to many vCPUs 1221-122» (a VM having N vCPUs is sometimes referred to
as an Λ'-way virtual machine). For sake of discussion, a “large” virtual machine as used herein refers

to a virtual machine having many vCPUs. and a “small” virtual machine as used herein refers to a
virtual machine having few vCPUs. In one implementation, a VM 118 may be configured to have

up to 64 vCPUs. However, in some cases, VMS 118 that have many vCPUs 122 may operate less
efficiently than VMs 118 that have few vCPUs 122 in terms of utilization, throughput, and other

performance metrics of the underlying physical CPUs 104. A number of factors may contribute to

the inefficiency of large A-way VMs. Unused vCPUs still continue to consume timer interrupts in

some guest operating systems. Guest scheduler 133 might unnecessarily migrate a single-threaded

workload amongst multiple vCPUs, thereby losing cache locality. Guest OS 130 may execute an

idle loop during periods of inactivity, which results in consumption of resources that would

- 3

20
14

20
22

57

24
 A

pr
 2

01
4

otherwise be available for other uses. Maintaining a consistent view of virtual memory for all vCPUs
running in a VM can consume additional resources, both in guest OS 130 and in underlying
hypervisor 111. Because of such issues, system administrators may be reluctant to provision more
than a 2-way VM, even though modern computer applications are getting more demanding and
increasingly require large virtual machines. This VM sizing problem gives rise to a conflict between
VM efficiency (e.g., giving the user a 8-way VM will cause efficiency issues) and VM functionality
(e.g., giving the user a 2-way VM predudes use of demanding high-end applications that need large

VMs). Accordingly, embodiments of the present disclosure provide a technique, referred to herein
as CPU ballooning, that, dynamically “de-activates” vCPUs that are not needed by a VM. This
provides for large N~way virtual machines without incurring the efficiency costs, of running a virtual
machine with a large number of virtual CPUs,
[0014] Embodiments of the present disclosure provide a method or system known as CPU

ballooning for managing CPU resources in a host having a virtual machine executing thereon.
Figure 1 depicts a balloon driver 131. which is installed under guest OS 130. In one embodiment,
balloon driver 131 is a device driver executing under guest OS 130, In some embodiments, balloon

driver 131 executes periodically; that is, balloon driver 131 remains in an idle state until triggered by
a timer event. After executing, balloon driver 131 goes back into an idle state until triggered again
by another timer event. The frequency of the timer events may be configured by an administrator.
Balloon driver 131 obtains information fhom kernel scheduler 113 to adjust the number of vCPUs
122 that are available for use by VM 118. Balloon driver 131 is configured to maintain a count of a
current number of vCPUs activated for VM 118. For example, upon initial startup of a VM (e.g.,

VM 118Q, balloon driver 131 sets the count of a current number of vCPUs to be equal to the number

of vCPUs allocated to 'VM 118j, and increments and decrements the count accordingly during
operations described below,
[0015] As further shown in Figure 1, kernel scheduler 113 is a component of hypervisor 111.
Kernel scheduler 113 is responsible for allocating physical CPU 104 among the various processes
running on computer system 100 at a given time, wherein a process, as used here, is an executing
computer program. For example, kernel scheduler 113 may determine what processes should be run
on CPU 104 (or on. any of a number of CPUs in a multiprocessor complex), the order in which such

processes shall run, and what running processes should be preempted by a process having higher

priority. To make its scheduling decisions, kernel scheduler 113 may use specific data, including:

the set. of processes that are ready to run; the respective priorities of currently running processes; and

the set of processes that are currently waiting for one or more system resources.

-4-

20
14

20
22

57

24
 A

pr
 2

01
4

[0016] In addition to managing access to physical CPU 104, kernel scheduler 113, in

embodiments described herein, is configured to determine a target vCPU size, which is a target
number of vCPUs 122 that a particular VM 118 should use at a given point in. time. This target
vCPU size is communicated to balloon driver 131 of guest OS 130, for example, using calls to a
backdoor interface (depicted by directional line 114). Balloon driver 131 then uses this
recommendation to adjust the number of vCPUs 122 that'guest scheduler 133 dispatches processes

on, as described in greater detail below. For example, if the vCPUs 122 that VM 118 has at its
disposal are not fully utilized, balloon driver 131 will decrease the number of vCPUs 122 available
for use by VM 118. By contrast, if kernel scheduler 113 provides a target vCPU size tor VM 118
that exceeds the number of vCPUs used by VM 118, then balloon driver 131 will attempt to increase
the number of vCPUs 122 available for use by VM 118.

[00'17] It should be recognized that the various terms, layers, and categorizations used to

describe the components in Figure 1 may be referred to differently without departing from their
functionality or the spirit or scope of the disclosure. For example, VMMs 134rl34N may be
considered separate virtualization components between VMs 1lfo-11and hypervisor 111 since
there exists a separate VMM for each instantiated VM. Alternatively, each VMM may be
considered to be a component of its corresponding virtual machine since such VMM includes the

hardware emulation components for the virtual machine. In such an alternative conception, for
example, the conceptual layer described as virtual hardware platform 120 may be merged with and

into VMM 134.
[0018] Figure 2 is a flow diagram that depicts the steps taken by kernel scheduler 113 in
determining the target vCPU size for a particular VM. As shown in Figure 2,. at step 200, a number
of vCPUs demanded by the VM is determined based on the current system load of computer system
100. In one embodiment, kernel scheduler 113 determines a demanded number of vCPUs as shown
in Equation 1;

demandedv,3p.,s - [demandyw/ expectedUtilRatiovM’l (1)

The demanded number of vCPUs (i.e., demandedwpiJS) is based on: (I) the total demand of all

vCPUs 122 associated with a VM .118 (i.e., demandvM); and (2) the expected utilization ratio of all

vCPUs 122 associated with a VM 118 (i.e., expectedUtilRatiovM)·
[0019] In one embodiment, a vCPU’s demand is the amount of time the vCPU can consume
if there’s no “stolen” time. A vCPU’s stolen time includes: ready time, overlap cycles, time loss to

5-

20
14

20
22

57

24
 A

pr
 2

01
4

power management, time stolen by Hyper-threading, and. other variables. Ready time is the amount
of time that the vCPU is runnable, but not getting scheduled to run on a physical vCPU because the
system is busy with running other vCPUs. Overlaps cycles are the amount of time stolen by
interrupts and bottom halves (BHs) that preempted execution of this vCPU. Lost time due to power
management represents efficiency loss because of frequency scaling. For example, if the frequency

is dropped to 20 percent of the nominal frequency, 80 percent of the CPU is considered stolen. Time
loss to hyper-threading represents time stolen by workloads running on a partner physical CPU.
[1)0201 A vCPU’s demand may be estimated based on the amount of cycles actually used and
the amount of cycles the vCPU would have used if there were no “stolen” cycles. According to one
embodiment, the total demand of a vCPU associated with VM 118 (i.e., demandvw) is calculated as
in Equation 2:

demandwpu = CyclesUsedvcpu + CycIesStolenYCpu * CyclesCapacityvcpU (2)

As Equation 2 shows, the demand of a vCPU 122 is based on: (I) the percentage of cycles used by

the vCPU 122 executing within VM 118 in a given time period (i.e., CyclesUsedvcpu); (2) the
percentage-of cycles “stolen” from the vCPU 122 executing within VM 118 in a given time period
(i.e., CyclesStolenvef!U); and (3) the percentage of cycles that a vCPU 122 has the capacity to run in

the same time period (i.e., CyclesCapacity-vcpu)· The cycles used by a vCPU 122 are those cycles in
which that vCPU 122 executes instructions. By contrast, cycles stolen from a vCPU 122 are those
cycles where that vCPU 122 has instructions to execute, but is preempted from executing those

instructions due to, for example, system load,. Examples of stolen cycles include cycles where a
vCPU 122 was ready to run, but was not dispatched due to computer system 100 running the

processes of other VMs, and cycles where a vCPU 122 is preempted by computer system 100
handling external interrupts. Finally, the capacity of a vCPU 122 (i.e., CyclesCapacityvcpU) is the
percentage of cycles that a vCPU 122 has the ability to consume over a given time period if there are

no “stolen” cycles. Furthermore, the demand of VM 118 (i.e., demandvw) is the sum of the demands
of the vCPUs 122 executing within VM 118,

[0021] As shown in Equation 2, the percentage of used cycles ('CyciesU.sedvepU) is added to
the product of the percentage of stolen cycles (CyciesStolenvopu) of a vCPU 122 and the vCPU’s

capacity (CycleCapacitywu) over a given time period, the result of which is used as the current

demand of the vCPU (demandViPU)· For example, if the percentage of cycles used by the vCPUs 122
executing within VM 118 over a given time period is 30, the percentage of cycles stolen from the

-6-

20
14

20
22

57

24
 A

pr
 2

01
4

vCPUs 122 over a given time period is 50, and the capacity of a single vCPU 12.2 is 40 percent over
that same time period, the current demand of vCPU 122 would be 30 + 50 * 40%, which is equal to
50 percent

[0022] The expected utilization ratio (i.e., expectedlltilRatiovM) is a value that is
configurable for each VM that is instantiated by hypervisor 111 and represents, in percentage terms,
a rate of utilization that the vCPUs 122 of VM 118 should have and still provide acceptable

performance. The expected utilization ratio may be set. at the time VM 118 is configured by an
administrator, and may be altered during the .execution of VM 118. For example, the expected

utilization ratio may be configured as 70% based on a determination that applications running in. the
VM may continue to operate well when system utilization is 70% or less.
[0023] Once the current demand on VM 118 (demandyw) and the expected utilization ratio

of VM 118 (expectedUtiiRatiovw) have been determined, kernel scheduler 113 then computes the
number of demanded vCPUs 122 (i.e,, demanded*^) as in Equation 1. For example, if VM 118 has
a current demand of 110% and an expected utilization ratio of 70%, then its demanded number of
vCPUs 122 will be 2 (because [110/ 70] - 2).

[0024] At step 210, kernel scheduler 113 determines a number of vCPU to which the given

VM is entitled based on the number of vCPUs configured for the VM and the amount of ready time

for the vCPUs. A given VM’s effective CPU resource entitlement may be smaller than its demand,
for example, in cases when the system running the VM is over-committed, or in cases where the

VM’s resource allocation is small, or both. As such, it has been determined that it may be more
efficient to run the VM with less vCPUs for such cases. Ln one embodiment, the kernel scheduler
113 determines a reduced number of vCPUs for the VM such that the remaining vCPUs have less

ready time, thereby executing more efficiently.
[0025] In one embodiment, kernel scheduler 113 determines an effective number of vCPUs
to which VM 118 is entitled (i.e., entitledvepus) according to Equation 3 set forth below:

entitledvcpus - numvcpus ~ [ready]. (3)

In some embodiments, kernel scheduler 113 determines the number of vCPUs 122 that VM 118 is

entitled to (i.e., enfitledVCpus) by first recording the number of vCPUs 122 defined for VM 118 (i.e.s

numvcpus), which is set at the time VM 118 is configured, Kernel scheduler 113 then determines the

amount, of ready time for all vCPUs for the VM. As mentioned above, the ready time is the amount

of time a VM wants to run but has not been provided physical CPU resources on which to execute.

In one embodiment, ready time may be represented in a percentage format, for example, .a VM
having a ready time of 5% (or 0,05) means that the VM spent 5% of its last sample-period waiting

for available CPU resources. As such, in one example, if an 8-way VM. spent 200 percent, of the
time on the READY state, then the number of entitled vCPUs is 6 (because 8 — [2.00] = 6).

[0()26] At step 220, kernel scheduler 113 determines a target vCPU size (i.e., targetvepus) us)

for a particular VM 118 based on the lesser of the demanded number of vCPUs (demandedvcpus,
calculated in Equation 1) and the- entitled number of vCPUs for the particular VM (entitledyCpus,
calculated in Equation 3), as set forth in Equation 4:

20
14

20
22

57

24
 A

pr
 2

01
4

target^, = min(demandedv<spuss entitledvepuit)· (4)

[0027] Figure 3 is a flow diagram that illustrates the steps carried out by balloon driver 131
during one of its periodic execution cycles. First, balloon driver 131 “wakes up” after being

triggered by a timer event, At step 300, balloon driver 131 communicates with hypervisor 111

(specifically, with kernel scheduler 113) and receives a target vCPU size that kernel scheduler 113
calculates for VM 118, This target vCPU size represents the number of vCPUs 122 that, in the

estimation of kernel scheduler 113, VM 1 ig should use in its virtual hardware platform 120. Next,
at step 305, balloon driver 131 compares this target vCPU size to the number of vCPUs 122 that VM
118 is currently using. If the number of vCPUs 122 that VM 118 is currently using exceeds the

target vCPU size, then, at step 320, balloon driver 131 launches one or more balloon threads based
on the received target vCPU size. In step 325, balloon driver 131 specifies one or more vCPUs 122

that balloon: thread(s) will run on (i.e., balloon driver 131 “pins” thread(s) to vCPU(s) 122), Each
balloon thread is then pinned to one vCPU 122.
[0028] In one embodiment, a balloon thread is a thread configured to occupy a particular
vCPU (e.g., vCPUΟ such that guest scheduler 133 of guest OS 130 perceives vCPU .1221 as
unavailable for scheduling purpose. In some embodiments, a balloon thread is a prioritized process
thread having a high process priority relative to other processing executing within guest OS 130 such
that guest scheduler 133 may not preempt, or interrupt, execution of the balloon thread on a.
particular vCPU, In some implementations, a balloon thread may be a kernel thread, a lightweight

process (L WP), or other process executing within guest OS 130. Balloon driver 131 may further

configure the balloon thread to be “pinned” to a vCPU targeted for de-activation. For example,

balloon driver 131 may set a processor affinity setting on the balloon thread that signals to guest

~8~

20
14

20
22

57

24
 A

pr
 2

01
4

scheduler 133 that the balloon thread should be bound to a particular vCPU. Balloon threads are

configured to remain in. execution until terminated.
[0029] In one embodiment, a balloon thread may be further configured to execute an idle
instructions to communicate to hypervisor 111 that the particular vCPU 122 to which the balloon
thread is pinned should be descheduled. Therefore, hypervisor 111 will not incur the overhead of
maintaining that particular vCPU 122.. In one particular embodiment, a balloon thread may have
computer instructions that halts a processing unit (e.g., vCPU 122) until more work needs to be
done, and enters a halted (or ready state). An example implementation of a balloon thread for an
x86 computer architecture is shown as pseudo-code in Table I below.

while (1) {
HIT;

e i: Sample pse; clo-co !e of balloon thread

[0030] As shown, the balloon thread may be implemented as a loop that repeatedly issues a
HLT instruction, an assembly language instruction that halts a processing unit until more work needs
to be done (e.g., in an interrupt-driven processor, until a next external interrupt is fired). In other

embodiments, the balloon thread may include a sleep mode, MONITOR, MWAIT, or other
functionally equivalent instructions. In some embodiments, hypervisor 1 1 1 is configured to detect
when any guest processes running on VMs 118 that, are executing idle instructions and to deschedule
any vCPUs on which an idle instruction is executing from running on a physical CPU. In these
embodiments, a HLT instruction in the balloon thread serves to communicate to kernel scheduler
113 of hypervisor 111 that the particular vCPU 122 running the balloon thread may be descheduled.
As such, from the perspective of guest scheduler 133, the launched balloon thread is a high priority
thread that does not yield the vCPU, Meanwhile, from the perspective of kernel scheduler 113, the
vCPU is halted by the idle loop of the balloon thread and may be descheduled from the physical

CPUs.
[0031] In one embodiment, balloon driver 131 launches a number of balloon threads to

satisfy the difference in the target number of vCPUs and current number of vCPUs. After launching

and pinning each balloon thread, balloon driver updates the count of the current number of vCPUs

activated for the virtual machine. For example, balloon driver 131 may decrement the count of the

current number of virtual CPUs activated for the VM for each balloon thread launched.

20
14

20
22

57
 24 Ap

r 2
01

4

[0.032J At step 300, if balloon driver 131 receives a target, number of vCPUs 122 from kernel

scheduler 113 that exceeds the number of vCPUs 122 currently used by VM 118, at step 340,
balloon driver 131 determines whether a previously launched a balloon thread was pinned to one of
the vCPUs 122, If such a balloon thread was launched, and is currently running on a vCPU 122. at
step 345, balloon driver 131 kills execution of the balloon thread in guest OS 130. From the
standpoint of guest scheduler 133, this will free that vCPU 122 for scheduling other processes.
Further, balloon driver 131 kills execution of as many balloon threads as possible in order to tree
additional vCPUs 122 for process scheduling. In one embodiment, responsive to killing a balloon
thread, balloon driver updates the count of the current number of vCPUs activated for the virtual
machine. For example, balloon driver 131 may increment the count of the current number of virtual
CPUs activated for the VM for each balloon thread killed.

[0033] After performing the aforementioned steps, balloon driver 131. goes back into an idle
state (or “sleeps”) until triggered again by a timer interrupt.

[0034] Figure 4A is a block diagram of VM 118] having four allocated vCPUs 122]-1.22<on
which processes that are scheduled and dispatched on by guest scheduler 133. Guest scheduler 133
of guest OS 130 allocates time on one or more vCPUs 1221-122« to processes (or threads) for
executing computer instructions. Region 402 depicted in Figure 4A represents an amount of demand
associated with each vCPU, as a portion of time spent by each vCPU executing instructions. In the

example shown, load balancing among the plurality of vCPUs is performed by guest scheduler 133,

yielding similar amounts of demand on each vCPU, though it should be recognized that vCPUs may
have varying amounts of demand and cycles used for executing processes: and threads.
[003S] Figure 4B is a block diagram of VM 11 fo having four vCPUs 1221-1224 on which
processes are scheduled and dispatched to one or more by guest scheduler 133 when balloon driver
131 has determined that VM I '18] is utilizing more vCPUs 122 than a target number of vCPUs 122

recommended by hypervisor 111. In this illustration, balloon driver 131 communicates with
hypervisor 111 (e.g., via backdoor call) as depicted by line 408, and receives a target number of
vCPUs 122 that VM 118.f should utilize. Balloon driver 131 compares this target number of vCPUs

122 to the current number of vCPUs 122 that are activated and available for use by VM 118i.

Balloon driver 131 launches one: or more balloon threads 404 if the current number of vCPUs

use exceeds the target number of vCPUs 122. In the example shown, balloon driver 131 determines

that the target number of vCPUs for the VM is three vCPUs, which is in excess of the current
number of vCPUs (e.g., four, as initially alloeated), and launches one balloon thread 404,

- .10-

20
14

20
22

57

24
 A

pr
 2

01
4

[0036] .Balloon driver 131 specifies that a processor affinity of balloon thread 404 to a

particular vCPU targeted for de-activation (e.g., vCPU 12¾). thereby pinning the balloon thread to
the vCPU. Further, balloon thread 404 may be a kernel thread having a high priority relative to other
processes and threads-running, on guest OS 130, thus preempting all other processes on the particular
vCPU 122«. Thus, guest scheduler 133 dispatches balloon thread 404 on vCPU 1224 with the
specified priority. It should be recognized that, in some embodiments, guest scheduler 133 may not
dispatch other processes on VCPU4. The occupation of vCPU 1224 by balloon thread 404, whereby
balloon thread 404 utilizes all of the CPU cycles of vCPU 1224, is depicted in Figure 4B by the
region 406. Guest scheduler 133 dispatched and re-schedules processes and threads., including those
processes and threads formerly executing on vCPU 1224 on. the remaining: available vCPUs 122;-
122.·;. Regions 410 depicted in Figure 4B represent increased demand on each vCPUs 122i, 1222,
1.22s· as a result of vCPU 1224 no longer being available. Accordingly, embodiments of the present
disclosure effectively have de~activated a vCPU based on demand, without having to shutdown or
bring offline a VM.

[0037] Although one or more embodiments have been described herein in some detail for
clarity of understanding, it should be recognized that certain changes and modifications may be

made without departing from the spirit of the disclosure. For example, in some embodiments, guest
operating system 130 may be configured to support dynamic CPU onlining and offlining. In such
embodiments, rather than launch balloon threads, balloon driver 131 may be configured to adjust- the
number of vCPUs for the VM within guest OS 130. In one implementation, balloon driver 131 may
adjust the number of vCPUs for a VM running a Linux guest operating system be writing the target
vCPU size to a device driver filesystem (e.g., sysfs), such as a change to a
/sys/devices/sy sic m/cpu/c upi d/on line sy s node.
[0038] The various embodiments described herein may employ various computer-

implemented operations Involving data stored in computer systems. For example, these operations
may require physical manipulation of physical quantities—usually, though not necessarily, these
quantities may take the form of electrical or magnetic signals, where they or representations of them
are capable of being stored, transferred, combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to in terms, such as producing, yielding, identifying,

determining, or comparing. Any operations described herein that form part of one or more

embodiments of the disclosure may be useful machine operations. In addition, one or more

embodiments of the disclosure also relate to a device or an apparatus for performing these

operations. The apparatus may be specially constructed for specific required, purposes, or it may be

-11 -

20
14

20
22

57

24
 A

pr
 2

01
4

a general purpose computer selectively activated or configured bv a computer program stored in the
computer. In particular, various general purpose machines may be used with computer programs
written in accordance with the teachings herein, or it may be more convenient to construct a more

specialized apparatus to perform the required operations.

[0039] The various embodiments described herein may be practiced with other computer
system configurations including hand-held devices, microprocessor systems, microprocessor-based
or programmable consumer electronics, minicomputers, mainframe computers, and the like,
[0040] One or more embodiments of the present disclosure may be implemented as one or

more computer programs or as one or more computer program modules embodied in one or more
computer readable media. The term computer readable medium refers to any data storage device

that can store data which can thereafter be input to a computer system—computer readable media
may be based on any existing or subsequently developed technology for embodying computer
programs in a manner that enables them to be read by a computer. Examples of a computer readable
medium include a hard drive, network attached storage (NAS), read-only memory, random-access
memory (e.g., a flash memory device), a CD (Compact Discs) -CD-ROM, a CD-R, or a CD-RW, a
DVD (Digital Versatile Disc), a magnetic tape, and other optical and non-optical data storage
devices. The computer readable medium can also be distributed over a network coupled computer
system so that the computer readable code is stored and executed in a distributed fashion.
[0041] Although one or more embodiments of the present disclosure have been described in

some detail for clarity of understanding, it will be apparent that certain changes and modifications
may be made within the scope of the claims. Accordingly, the described embodiments are to be
considered as illustrative and not restrictive, and the scope of the claims is not to be limited to detai ls
given herein, but may be modified within the scope and equivalents of the claims. In. the claims,
elements and/or steps do not imply any particular order of operation, unless explicitly stated in the
claims.

[6042] Virtualization systems in accordance with the various embodiments, may be

implemented as hosted embodiments, non-hosted embodiments or as embodiments that tend to blur
distinctions between the two, are all envisioned. Furthermore, various virtualization operations may

be wholly or partially implemented in hardware, For example, a hardware implementation may

employ a look-up table for modification of storage access requests to secure n.on-disk data.

[0043] Many variations, modifications, additions,· and improvements are possible, regardless

the degree of virtualization. The virtualization software can therefore include components of a host,

console, or guest operating system that performs virtualization, functions. Plural instances may be

-12-

20
14

20
22

57

24
 A

pr
 2

01
4

provided for components, operations or structures described herein as a single instance. Finally,
boundaries between various components, operations and data stores are somewhat arbitrary, and
particular operations are illustrated in the context of specific illustrative configurations. Other
allocations of functionality are envisioned and may fall within the scope· of the disclosure^). In
general, structures and functionality presented as separate components in exemplary configurations
may be implemented as a combined structure or component. Similarly, structures and functionality

presented as a single component may be implemented as separate components. These and other
variations, modifications, additions, and improvements may fall within the scope of the appended
claim(s).

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

20
14

20
22

57

30
 Ju

l 2
01

5

1. A method for managing CPUs in a host having a virtual machine

executing thereon, wherein the virtual machine is allocated a plurality of virtual CPUs,

the method comprising:

determining a target number of virtual CPUs for a virtual machine based on

processor demand by the virtual machine and that is less than of a current number of

virtual CPUs activated for the virtual machine;

launching, for execution in a first virtual CPU of the plurality of virtual CPUs

that is to be descheduled, a prioritized process thread in a guest operating system of the

virtual machine, wherein the prioritized process thread is associated with a first virtual

CPU of the plurality of virtual CPUs and includes a halt instruction;

executing, by operation of a guest scheduler in the guest operating system, the

prioritized process thread using the first virtual CPU of the plurality of virtual CPUs;

and

responsive to detecting, by operation of a hypervisor in the host, that the first

virtual CPU is executing the halt instruction, descheduling execution of the first virtual

CPU on one or more physical CPUs of the host.

2. The method of claim 1, further comprising:

decrementing the current number of virtual CPUs activated for the virtual

machine based on an amount of prioritized process threads launched.

3. The method of claim 1 or 2, wherein the prioritized process thread

comprises a kernel thread having a HLT instruction.

4. The method of claim 1, 2 or 3, further comprising:

determining a second target number of virtual CPUs for the virtual machines and

that is in excess of the current number of virtual CPUs activated for the virtual machine;
and

killing execution of the prioritized process thread in the guest operating system.

- 14-

20
14

20
22

57

30
 Ju

l 2
01

5 5. The method of any one of the preceding claims, wherein the step of

determining the target number of virtual CPUs for the virtual machine based on

processor demand by the virtual machine further comprises:

determining the target number of virtual CPUs as a lesser of a demanded number

of virtual CPUs for the virtual machine and an entitled number of virtual CPUs for the

virtual machine.

6. The method of claim 5, wherein the demanded number of virtual CPUs

for the virtual machine is determined based on a total demand for the plurality of virtual

CPUs allocated to the virtual machine and on an expected utilization ratio for the virtual

machine.

7. The method of claim 5 or 6, wherein the entitled number of virtual CPUs

for the virtual machine is determined based on a number of virtual CPUs allocated to

the virtual machine and on an amount of ready time associated with the virtual machine.

8. The method of any one of claims 1 to 4, wherein the step of determining

the target number of virtual CPUs for the virtual machine based on processor demand

by the virtual machine further comprises:

receiving, by operation of a device driver executing in the guest operating

system, the target number of virtual CPUs from the hypervisor via a backdoor call.

9. A non-transitory computer readable storage medium having stored

thereon computer readable program code for managing CPUs in a host having a virtual

machine executing thereon, wherein computer readable program code when executed

performs the method of any of claims 1 to 8.

10. A computer system, comprising:

a processor;

a virtual machine having a plurality of virtual processors, having a guest

operating system executing thereon, wherein the guest operating system includes a

device driver configured to determine a target number of virtual processors for the

- 15 -

20
14

20
22

57

30
 Ju

l 2
01

5 virtual machine based on processor demand by the virtual machine and that is less than

a current number of virtual processors activated for the virtual machine;

wherein the device driver is further configured to launch, for execution in

a first virtual processor of the plurality of virtual processors that is to be

descheduled, a prioritized process thread in the guest operating system, wherein

the prioritized process thread is associated with a first virtual processor of the

plurality of virtual processors and includes a halt instruction;

wherein the guest operating system is further configured to execute the

prioritized process thread using the first virtual processor of the plurality of

virtual processors; and

a virtualization layer configured to manage sharing of the processor between the

plurality of virtual processors for the virtual machine, wherein the virtualization layer is

configured to, responsive to detecting that the first virtual processor is executing the halt

instruction, deschedule execution of the first virtual processor on the processor of the

computer system.

11. The computer system of claim 10, wherein the device driver is further

configured to decrement the current number of virtual processors activated for the

virtual machine based on an amount of prioritized process threads launched.

12. The computer system of claim 10, wherein the prioritized process thread

comprises a kernel thread having a HLT instruction.

13. The computer system of claim ,10, wherein the device driver is further
configured to:

determine a second target number of virtual processors for the virtual machines

and that is in excess of the current number of virtual processors activated for the virtual
machine; and

kill execution of the prioritized process thread in the guest operating system.

14. The computer system of claim 10, wherein the target number of virtual

processors is determined as a lesser of a demanded number of virtual processors for the

virtual machine and an entitled number of virtual processors for the virtual machine.

- 16-

20
14

20
22

57

30
 Ju

l 2
01

5

15. The computer system of claim 14, wherein the demanded number of

virtual processors for the virtual machine is determined based on a total demand for the

plurality of virtual processors allocated to the virtual machine and on an expected

utilization ratio for the virtual machine.

16. The computer system of claim 14, wherein the entitled number of virtual

processors for the virtual machine is determined based on a number of virtual

processors allocated to the virtual machine and on an amount of ready time associated
with the virtual machine.

17. The computer system of claim 10, wherein the device driver is further

configured to receive the target number of virtual processors from the virtualization
layer via a backdoor call.

- 17-

20
14

20
22

57

24
 A

pr
 2

01
4

VM Applications 132

COMPUTER

Kernel Scheduler 113

J

Guest Operating System 130

Guest Scheduler 133

virtual Hardware Platform 12Q

I
I vCPU1 » « vGPUn VRAM vNIC vStorage
I 12& 122m 124 12& 12S

Hypervisor 111
/ ■
I Virtual Machine Monitor (VMM) 1341
K..

Hardware Platform 102

20
14

20
22

57

24
 A

pr
 2

01
4

, ____________V
Determine a number of vCPUs

demanded by the VM, based on current
system load

200

Determine a number of vCPUs to which
the VM is entitled, based on the number
of vCPUs configured for the VM and the

amount of ready time for the VM
210

Determine a target vCPU size for the
VM, based on the lesser of the number
of vCPUs demanded by the VM and the

number of vCPUs to which the VM is
entitled

220

End

’ΓΙ­
Ο
(Μ

’Π-
(Ν

20
14

20
22

57 hypervisor 111 the
target vCPU size for

the VM
300

No

Pin balloon
thread to
vCPUfs)

325

Kill
balloon

thread]©)
on

vCPU(s)
345

20
14

20
22

57

24
 A

pr
 2

01
4

5/5

20
14

20
22

57

24
 A

pr
 2

01
4

