Barrier films are prepared from a blend of two high density polyethylene blend components and a high performance organic nucleating agent. The two high density polyethylene blend components have substantially different melt indices. Large reductions in the moisture vapor transmission rate of the film are observed in the presence of the nucleating agent when the melt indices of the two blend components have a ratio of greater than 10/1. The resulting barrier films are suitable for the preparation of packaging for dry foods such as crackers and breakfast cereals.
BARRIER FILM FOR FOOD PACKAGING

REFERENCE TO RELATED APPLICATION

[0001] This application is a continuation of U.S. patent application Ser. No. 13/856,627 filed on Apr. 4, 2013 and is a continuation of U.S. patent application Ser. No. 11/983,284 filed on Nov. 8, 2007.

FIELD OF THE INVENTION

[0002] This invention relates to barrier films which are prepared from a blend of at least two high density polyethylene (hdpe) resins and a nucleating agent. The films are used to prepare packaging for dry foods such as crackers and breakfast cereals.

BACKGROUND OF THE INVENTION

[0003] Polyethylene may be classified into two broad families, namely “random” (which is commercially prepared by initiation with free radicals under polymerization conditions that are characterized by the use of very high ethylene pressures) and “linear” (which is commercially prepared with a transition metal catalyst, such as a “Ziegler Natta” catalyst, or a “chromium” catalyst, or a single site catalyst or a “metallocene catalyst”).

[0004] Most “random” polyethylene which is commercially sold is a homopolymer polyethylene. This type of polyethylene is also known as “high pressure low density polyethylene” because the random polymer structure produces a lower polymer density. In contrast, most “linear” polyethylene which is commercially sold is copolymer of ethylene with at least one alpha olefin (especially butene, hexene or octene). The incorporation of a comonomer into linear polyethylene reduces the density of the resulting copolymer. For example, a linear ethylene homopolymer generally has a very high density (typically greater than 0.955 grams per cubic centimeter (g/cc)—but the incorporation of small amounts of comonomer results in the production of so-called “high density polyethylene” (or “hdpe”)—typically, having densities greater than 0.935 g/cc) and the incorporation of further comonomer produces so-called “linear low density polyethylene” (or “lldpe”)—typically having a density of from about 0.905 g/cc to 0.935 g/cc).

[0005] Some plastic film is made from hdpe. One particular type of hdpe film is used to prepare food packaging with “barrier properties”—i.e. the film acts as a “barrier” to water vapor transmission. This so-called “barrier film” is used to prepare packages (or liners for cardboard packages) for breakfast cereals, crackers and other dry foodstuffs.

[0006] It has recently been discovered that the barrier properties of hdpe film may be improved by the addition of a nucleating agent.

[0007] We have now discovered that further improvements in barrier properties may be achieved by the use of a blend of two hdpe resins which have substantially a different melt index from each other.

SUMMARY OF THE INVENTION

[0008] The present invention provides:
I) an organic barrier nucleating agent; and
II) a high density polyethylene blend composition comprising:

[0009] II-i) from 5 to 60 weight % of at least one high density polyethylene blend component a) having a high melt index, I₁, and
The first operation involves the manufacture of plastic film from the plastic resin. Most “barrier films” are prepared by “blown film” extrusion, in which the plastic is melted in an extruder, then forced through an annular die. The extrudate from the annular die is subjected to blown air, thus forming a plastic bubble. The use of multiple extruders and concentric dies permits multilayer structures to be coextruded by the blown film process. The “product” from this operation is “barrier film” which is collected on rolls and shipped to the manufacturers of food packaging.

The manufacturer of the food packaging generally converts the rolls of blown film into packaged foods. This typically involves three basic steps:

1) forming the package;
2) filling the package;
3) sealing the food in the finished package.

Although the specific details will vary from manufacturer to manufacturer, it will be readily appreciated that the film needs to have a balance of physical properties in order to be suitable for food packaging. In addition to low MVTR, it is desirable for the film to “seal” well and to have sufficient impact strength and stiffness (or film “modulus”) to allow easy handling of the package. Multilayer coextrusions are often used to achieve this balance of properties, with 3 and 5 layer coextrusions being well known. Sealant layers may be prepared with ethylene—vinyl acetate (EVA) ionomers (such as those sold under the trademark SURYL by E.I. DuPont), very low density polyethylene (polyethylene copolymers having a density of less than 0.910 grams per cubic centimeter) and blends with small amounts of polybutene. It is known to use sealant compositions in both “skin” layers of a coextrusion or in only one of the skin layers.

HDPE Blend Components and Overall Composition

The plastic used in the barrier film of this invention is high density polyethylene (hdpe). Specifically, the hdpe must have a density of at least 0.950 grams per cubic centimeter (“g/cc”) as determined by ASTM D 1505. Preferred hdpe has a density of greater than 0.955 g/cc and the most preferred hdpe is a homopolymer of ethylene.

Blend Components

Blend component a) of the polyethylene composition used in this invention comprises an hdpe with a comparatively high melt index. As used herein, the term “melt index” is meant to refer to the value obtained by ASTM D 1238 when conducted at 190° C., using a 2.16 kg weight. This term is also referenced herein as “I2”, (expressed in grams of polyethylene which flow during the 10 minute testing period, or “grams/10 minutes”). As will be recognized by those skilled in the art, melt index, I2, is in general inversely proportional to molecular weight. Thus, blend component a) of this invention has a comparatively high melt index (or, alternatively stated, a comparatively low molecular weight) in comparison to blend component b).

The absolute value of I2 for blend component a) is preferably greater than 5 grams/10 minutes. However, the “relative value” of I2 for blend component a) is critical—it must be at least 10 times higher than the I2 value for blend component b) [which I2 value for blend component b) is referred to herein as I2]. Thus, for the purpose of illustration: if the I2 value of blend component b) is 1 gram/10 minutes, then the I2 value of blend component a) must be at least 10 grams/10 minutes.

Blend component a) is further characterized by:

1) density—it must have a density of from 0.950 to 0.975 g/cc; and
2) weight % of the overall polyethylene composition—it must be present in an amount of from 5 to 60 weight % of the total hdpe composition (with blend component b) forming the balance of the total polyethylene) with amounts of from 10 to 40 weight %, especially from 20 to 40 weight %, being preferred. It is permissible to use more than one high density polyethylene to form blend component a).

The molecular weight distribution [which is determined by dividing the weight average molecular weight (Mw) by number average molecular weight (Mn)] where Mw and Mn are determined by gel permeation chromatography, according to ASTM D 4471-90 of component a) is preferably from 2 to 20, especially from 2 to 4. While not wishing to be bound by theory, it is believed that a low Mw/Mn value (from 2 to 4) for component a) may improve the nucleation rate and overall barrier performance of blown films prepared according to the process of this invention.

Blend Component b)

As noted above, the ratio of the melt index of component b) divided by the melt index of component a) must be greater than 10/1.

Blend component b) may also contain more than one hdpe resin.

Overall HDPE Composition

The overall high density blend composition used in this invention is formed by blending together blend component a) with blend component b). This overall hdpe composition must have a melt index (ASTM D 1238, measured at 190° C., with a 2.16 kg load) of from 0.5 to 10 grams/10 minutes (preferably from 0.8 to 8 grams/10 minutes).

The blends may be made by any blending process, such as: 1) physical blending of particulate resin; 2) co-feed of different hdpe resins to a common extruder; 3) melt mixing (in any conventional polymer mixing apparatus); 4) solution blending; or, 5) a polymerization process which employs 2 or more reactors.

One preferred hdpe blend composition is prepared by melt blending the following two blend components in an extruder:

1) from 10 to 30 weight % of component a), where component a) is a conventional hdpe resin having a melt index, I2, of from 15-30 grams/10 minutes and a density of from 0.950 to 0.960 g/cc with
from 90 to 70 weight % of component b): where component b) is a conventional hdpe resin having a melt index, \(I_2 \), of from 0.8 to 2 grams/10 minutes and a density of from 0.955 to 0.965 g/cc.

[0048] An example of a commercially available hdpe resin which is suitable for component a) is sold under the trademark SCLAIR™ 79F, which is an hdpe resin that is prepared by the homopolymerization of ethylene with a conventional Ziegler Natta catalyst. It has a typical melt index of 18 grams/10 minutes and a typical density of 0.963 g/cc and a typical molecular weight distribution of about 2.7.

[0049] Examples of commercially available hdpe resins which are suitable for blend component b) include (with typical melt index and density values shown in brackets):

- SCLAIR™ 19G (melt index=1.2 grams/10 minutes, density=0.962 g/cc);
- MARFLEX™ 9659 (available from Chevron Phillips, melt index=1 grams/10 minutes, density=0.962 g/cc); and
- ALATHON™ L 5885 (available from Equistar, melt index=0.9 grams/10 minutes, density=0.958 g/cc).

[0050] A highly preferred hdpe blend composition is prepared by a solution polymerization process using two reactors that operate under different polymerization conditions. This provides a uniform, in situ blend of the hdpe blend components. An example of this process is described in published U.S. patent application 20060047078 (Swaby et al.), the disclosure of which is incorporated herein by reference. The overall hdpe blend composition preferably has a MWD (Mw/Mn) of from 3 to 20.

Nucleating Agents

[0054] The term “nucleating agent”, as used herein, is meant to convey its conventional meaning to those skilled in the art of preparing nucleated polyolefin compositions, namely an additive that changes the crystallization behavior of a polymer as the polymer melt is cooled.

[0055] Nucleating agents are widely used to prepare classified polypropylene and to improve the molding characteristics of polyethylene terphlate (PET).

[0056] A review of nucleating agents is provided in U.S. Pat. Nos. 5,981,636; 6,466,551 and 6,559,971, the disclosures of which are incorporated herein by reference.

[0057] There are two major families of nucleating agents, namely “inorganic” (e.g., small particulates, especially talc or calcium carbonate) and “organic”.

[0058] Examples of conventional organic nucleating agents which are commercially available and in widespread use as polypropylene additives are the dibenzylidene sorbitol esters (such as the products sold under the trademark Millad™ 3988 by Milliken Chemical and Irgaclear™ by Ciba Specialty Chemicals). The present invention does not utilize either of the above described “inorganic” or conventional organic nucleating agents because they do not always improve the barrier performance of films prepared from hdpe resins (as shown in the Examples). The nucleating agents which are used in the present invention are generally referred to as “high performance nucleating agents” in literature relating to polypropylene. These nucleating agents are referred to herein as “organic barrier nucleating agents”—which, (as used herein), is meant to describe an organic nucleating agent which improves (reduces) the moisture vapor transmission rate (MVTR) of a film prepared from hdpe. This may be readily determined by: 1) preparing an hdpe film having a thickness of 1.5-2 mils in a conventional blown film process (as described in the Examples below) in the absence of a nucleator; 2) preparing a second film of the same thickness (with 1000 parts per million by weight of the organic nucleator being well dispersed in the hdpe) under the same conditions used to prepare the first film. If the MVTR of the second film is lower than that of the first (preferably, at least 5-10% lower), then the nucleator is suitable for use in the present invention.

[0059] High performance, organic nucleating agents which have a very high melting point have recently been developed. These nucleating agents are sometimes referred to as “insoluble organic” nucleating agents—to generally indicate that they do not melt disperse in polyethylene during polyolefin extrusion operations. In general, these insoluble organic nucleating agents either do not have a true melting point (i.e. they decompose prior to melting) or have a melting point greater than 300°C, or, alternatively stated, a melting/decomposition temperature of greater than 300°C.

[0060] The organic nucleating agents are preferably well dispersed in the hdpe polyethylene composition of this invention. The amount of nucleating agent used is comparatively small—from 100 to 3000 parts by million per weight (based on the weight of the polyethylene) so it will be appreciated by those skilled in the art that some care must be taken to ensure that the nucleating agent is well dispersed. It is preferred to add the nucleating agent in finely divided form (less than 50 microns, especially less than 10 microns) to the polyethylene to facilitate mixing. This type of “physical blend” (i.e., a mixture of the nucleating agent and the resin in solid form) is generally preferable to the use of a “masterbatch” of the nucleator (where the term “masterbatch” refers to the practice of first melting the additive—the nucleator, in this case—with a small amount of hdpe resin—then melt mixing the “masterbatch” with the remaining bulk of the hdpe resin).

[0061] Examples of high performance organic nucleating agents which may be suitable for use in the present invention include the cyclic polymeric structures disclosed in U.S. Pat. No. 5,981,636 (and salts thereof, such as disodium bicyclo[2.2.1]heptenecarboxylate); the saturated versions of the structures disclosed in U.S. Pat. No. 5,981,636 (as disclosed in U.S. Pat. No. 6,465,551; Zhao et al., to Milliken); the salts of certain cyclic dicarboxylic acids having a hexahydrophthalic acid structure (or “HHIPA” structure) as disclosed in U.S. Pat. No. 6,559,971 (Dotson et al., to Milliken); and phosphate esters, such as those disclosed in U.S. Pat. No. 5,342,868 and those sold under the trade names NA-11 and NA-21 by Asahi Denka Kogyo. Preferred nucleators are cyclic dicarboxylates and the salts thereof, especially the divalent metal or metallic salts, (particularly, calcium salts) of the HHIPA structures disclosed in U.S. Pat. No. 6,559,971. For clarity, the HHIPA structure generally comprises a ring structure with six carbon atoms in the ring and two carboxylic acid groups which are substituents on adjacent atoms of the ring structure. The other four carbon atoms in the ring may be substituted, as disclosed in U.S. Pat. No. 6,559,971. A preferred example is 1,2-cyclohexanedicarboxylic acid, calcium salt (CAS registry number 491589-22-1).

Other Additives

[0062] The hdpe may also contain other conventional additives, especially (1) primary antioxidants (such as hindered phenols, including vitamin E); (2) secondary antioxidants
US 2015/0203671 A1

Film Extrusion Process

[0063] Blown Film Process
[0064] The extrusion-blown film process is a well known process for the preparation of plastic film. The process employs an extruder which heats, melts and conveys the molten plastic and forces it through an annular die. Typical extrusion temperatures are from 330 to 500° F., especially 350 to 460° F.
[0065] The polyethylene film is drawn from the die and formed into a tube shape and eventually passed through a pair of draw or nip rollers. Internal compressed air is then introduced from the mandrel causing the tube to increase in diameter forming a “bubble” of the desired size. Thus, the blown film is stretched in two directions, namely in the axial direction (by the use of forced air which “blows out” the diameter of the bubble) and in the lengthwise direction of the bubble (by the action of a winding element which pulls the bubble through the machinery). External air is also introduced around the bubble circumference to cool the melt as it exits the die. Film width is varied by introducing more or less internal air into the bubble thus increasing or decreasing the bubble size. Film thickness is controlled primarily by increasing or decreasing the speed of the draw roll or nip roll to control the draw-down rate.
[0066] The bubble is then collapsed into two doubled layers of film immediately after passing through the draw or nip rolls. The cooled film can then be processed further by cutting or sealing to produce a variety of consumer products. While not wishing to be bound by theory, it is generally believed by those skilled in the art of manufacturing blown films that the physical properties of the finished films are influenced by both the molecular structure of the polyethylene and by the processing conditions. For example, the processing conditions are thought to influence the degree of molecular orientation (in both the machine direction and the axial or cross direction).
[0067] A balance of “machine direction” (“MD”) and “transverse direction” (“TD”—which is perpendicular to MD) molecular orientation is generally considered most desirable for key properties associated with the invention (for example, Dart Impact strength, Machine Direction and Transverse Direction tear properties).
[0068] Thus, it is recognized that these stretching forces on the “bubble” can affect the physical properties of the finished film. In particular, it is known that the “blow up ratio” (i.e. the ratio of the diameter of the blown bubble to the diameter of the annular die) can have a significant effect upon the dart impact strength and tear strength of the finished film.
[0069] This description relates to the preparation of monolayer films. Multilayer films may be prepared by 1) a “co-extrusion” process that allows more than one stream of molten polymer to be introduced to an annular die resulting in a multi-layered film membrane or 2) a lamination process in which film layers are laminated together. The films of this invention are preferably prepared using the above described blown film process.
[0070] An alternative process is the so-called cast film process, wherein the polyethylene is melted in an extruder, then forced through a linear slit die, thereby “casting” a thin flat film. The extrusion temperature for cast film is typically somewhat hotter than that used in the blown film process (with typically operating temperatures from 450 to 550° F.). In general, cast film is cooled (quenched) more rapidly than blown film.
[0071] Further details are provided in the following examples.

EXAMPLES

Example 1

[0072] Screening tests for the efficiency of a high efficiency organic nucleating agent in different hdpe barrier film compositions were conducted on a blown film line manufactured by Battenfeld Gloucester Engineering Company of Gloucester, Mass. This blown film line has a standard output of more than 100 pounds per hour and is equipped with a 50 horsepower motor. The extender screw has a 2.5 mil diameter and a length/diameter (L/D) ratio of 24/1.
[0073] The blown film bubble is air cooled. Typical blow up ratio (BUR) for barrier films prepared on this line are from 1.5/1 to 4/1. An annular die having a gap of 85 mils was used for these experiments.
[0074] The films of this example were prepared using a BUR aiming point of 2/1 and a film thickness aiming point of 1.5 mils.
[0075] The “high efficiency” nucleating agent used in this example was a salt of a cyclic dicarboxylic acid, namely the calcium salt of 1,2-cyclohexanedicarboxylic acid (CAS Registry number 491580-22-1, referred to in these examples as “nucleating agent 1”).
[0076] Water Vapor Transmission Rate (“WVTR” expressed as grams of water vapor transmitted per 100 square inches of film per day at a specified film thickness (mils), or g/100 in2/day) was measured in accordance with ASTM F1249-90 with a MOCON permeatron developed by Modern Controls Inc. at conditions of 100° F. (37.8° C.) and 100% relative humidity. A control (comparative) experiment was conducted using a single low melt index hdpe resin having a melt index of about 1.2 grams/10 minutes, a density of 0.962 g/cc and a molecular weight distribution, Mw/Mn, of 4.9 (an ethylene homopolymer, sold under the trademark SCLAIR™ 19G (“19G resin”) by NOVA Chemicals Inc. (“NCT”) of Pittsburgh, Pa.).
[0077] Table 1 illustrates that a film prepared from the 19G resin in the absence of the nucleator had an MVTR value of 0.2084 g/100 in2/day (film 1) and that the nucleating agent improved the MVTR to 0.1906 g/100 in2/day (film 2). This illustrates that nucleating agent 1 is an “organic barrier nucleating agent” that may be used to improve the MVTR performance of barrier film.
[0078] Films 3-6 were prepared by blending 25 weight % of the 19G with 15% of resins having a high melt index, in the presence and absence of the nucleating agent 1.
[0079] Comparative films 3 and 4 were prepared using a hdpe homopolymer resin sold under the trademark SCLAIR™ 2907 as a (comparative) component b). This resin has a melt index of only 4.9 grams/10 minutes (and, accordingly, the melt index ratio of the two hdpe resins is only 4.2/1.2, or less than 4/1). The density of 2907 resin is typically 0.960 g/cc. As shown in Table 1, a film prepared with this blend in the absence of a nucleating agent had an MVTR of 0.1851 g/100 in2/day (comparative film 3) and the nucleating agent improved this value to 0.1720 g/100 in2/day—an improvement of only 0.0131 g/100 in2/day.
Inventive film 6 and comparative film 5 were prepared using an hdpe composition prepared by melt blending 85 weight % of the 19G resin with 15 weight % of an hdpe homopolymer resin sold under the trademark SCLAIR™ 79F by NCL as component b). This 79F resin had a melt index of 18 grams/10 minutes, a density of 0.963 g/cc and a molecular weight distribution of 2.7. The overall melt index (I2) of the blend was estimated to be 1.8 grams/10 minutes.

As shown in Table 1, comparative film 5 (prepared from the 85/15 blend of the 19G and 79F hdpe resins, in the absence of nucleating agent 1) had an MVTR value of 0.1955 g/100 in²/day.

Inventive film 6, prepared from the hdpe composition of film 5 plus 1000 ppm of the nucleating agent, had an MVTR value of 0.1525 g/100 in²/day (which represents an improvement of more than 20% over the MVTR value of film 5).

Table 1 also illustrates data which describe the properties of barrier film prepared from an experimental hdpe homopolymer resin. This experimental resin was prepared in a dual reactor solution polymerization process in accordance with the disclosure of published U.S. patent application 20060047078 (Swabey et al). The experimental resin (EXP in Table 1) had a melt index, I2, of 1.2 grams/10 minutes, a density of 0.967 g/cc and a molecular weight distribution, Mw/Mn, of 8.9. The EXP resin had two distinct fractions which varied according to molecular weight. The low molecular weight fraction (or component a)) was about 55 weight % of the total composition and had a melt index, I2, which was estimated to be greater than 5000 grams/10 minutes. The high molecular weight fraction was about 45 weight % of the total composition and had a melt index which was estimated to be less than 0.1 grams/10 minutes.

As noted above, melt index (I2) is generally inversely proportional to molecular weight for polyethylene resins. This was confirmed for homopolymer hdpe resins having a narrow molecular weight distribution (less than 3) by preparing a plot of log (I2) versus log (weight average molecular weight, Mw). In order to prepare this plot, the melt index (I2) and weight average molecular weight (Mw) of more than 15 different homopolymer hdpe resins was measured. These homopolymer hdpe resins had a narrow molecular weight distribution (less than 3) but had different Mw—ranging from about 30,000 to 150,000. (As will be appreciated by those skilled in the art, it is difficult to obtain reproducible I2 values for polyethylene resins having a molecular weight which is outside of this range).

A log/log plot of these I2 and Mw values was used to calculate the following relation between I2 and Mw for such homopolymer hdpe resins:

\[I_2 = 1.774 \times 10^{-13} \times (M_w)^{-0.986} \]

Extrapolation (based on the above relation) was used to estimate the I2 values of component a) and component b) of the EXP resin. That is, the molecular weight of component a) and component b) was measured and the Mw values were used to estimate the I2 values. It will be appreciated by those skilled in the art that it can be difficult to physically blend these hdpe blend components (due to the very different viscosities of these hdpe blend components). Accordingly, solution blending or an in-situ blending (i.e. prepared by a polymerization process) are preferred methods to prepare such hdpe compositions. As shown in Table 1, (comparative) film 7, prepared from this EXP resin had an MVTR of 0.1594 grams/10 minutes. Inventive film 8 was made with an hdpe composition prepared by adding 1000 ppm of the nucleating agent to the EXP resin.

Example 2

Comparative

Barrier films were prepared with the inventive hdpe blend compositions used in experiment 6 of Example 1 (i.e. 85/15 of the aforedescribed 19G and 79F resins) with other nucleating agents.

The films were prepared on a smaller film line manufactured by Macro Engineering and Technology of Mississauga, Ontario, Canada. The line was operated with an annular die having a die gap of 100 mls; a BUR aiming point of 2:1 and a film thickness aiming point of 1:5 mls.

The data in Table 2 illustrate that neither tule nor DBS are suitable for use in this invention.

<table>
<thead>
<tr>
<th>HDPE Composition</th>
<th>Film</th>
<th>Component a) (wt %)</th>
<th>Component b) (wt %)</th>
<th>Nucleating Agent 1 (ppm)</th>
<th>WVTR (g/100 in²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-c</td>
<td>19G (100%)</td>
<td>1000</td>
<td>0.1906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-c</td>
<td>19G (100%)</td>
<td>1000</td>
<td>0.1851</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-c</td>
<td>2907 (15%)</td>
<td>19G (85%)</td>
<td>1000</td>
<td>0.1720</td>
<td></td>
</tr>
<tr>
<td>4-c</td>
<td>2907 (15%)</td>
<td>19G (85%)</td>
<td>1000</td>
<td>0.1620</td>
<td></td>
</tr>
<tr>
<td>5-c</td>
<td>79F (15%)</td>
<td>19G (85%)</td>
<td>1000</td>
<td>0.1555</td>
<td></td>
</tr>
<tr>
<td>6-c</td>
<td>79F (15%)</td>
<td>19G (85%)</td>
<td>1000</td>
<td>0.1525</td>
<td></td>
</tr>
<tr>
<td>7-c</td>
<td>"EXP"</td>
<td>1000</td>
<td>0.1564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-c</td>
<td>"EXP"</td>
<td>1000</td>
<td>0.0749</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- "19G" = SCLAIR™ 19G (I2 = 1.2 grams/10 minutes, density = 0.962 g/cc)
- "2907" = SCLAIR™ 2907 (I2 = 4.9 grams/10 minutes, density = 0.960 g/cc)
- "79F" = SCLAIR™ 79F (I2 = 18 grams/10 minutes, density = 0.963 g/cc)
- EXP = experimental resin (described above) (I2 = 1.2 grams/10 minutes, density = 0.967 g/cc)

TABLE 2

<table>
<thead>
<tr>
<th>Film</th>
<th>Nucleating Agent (ppm)</th>
<th>WVTR (g/100 in²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>None</td>
<td>0.2445</td>
</tr>
<tr>
<td>11</td>
<td>Talc (2500 ppm)</td>
<td>0.2503</td>
</tr>
<tr>
<td>12</td>
<td>DBS (ppm)</td>
<td>0.3836</td>
</tr>
<tr>
<td>13</td>
<td>Organic Nucleating Agent (1000 ppm)</td>
<td>0.1574</td>
</tr>
</tbody>
</table>

Notes:
- Organic nucleating agent 1 was the same as used in inventive films 2, 4, 6 and 8 of example 1.
- The hdpe composition used in all experiments was that of experiment 6 of example 1 (i.e. 85 weight % SCLAIR™ 19G resin and 15 weight % SCLAIR™ 79F resin). The "DBS" nucleating agent is a dibenzylidene sorbitol ester sold under the trademark Lignocal™ by Ciba. The tale was sold under the trademark Compas™ 699 and was reported to have an average particle size of 1.5 microns and an aspect ratio of 5:1.

What is claimed is:

1. A barrier film comprising at least one extruded polyethylene layer, wherein said at least one extruded polyethylene layer comprises:
 i) an organic barrier nucleating agent and
 ii) a high density polyethylene blend composition comprising:
 - 1) From 5 to 60 weight % of at least one high density polyethylene blend component a) having a high melt index, I2;
II-ii) from 95 to 40 weight % of at least one high density polyethylene blend component b) having a low melt index, I₂', wherein:
 w) said organic barrier nucleating agent is added in an amount of from 100 to 3000 parts per million based on the weight of said high density polyethylene blend composition;
 x) each of said blend component a) and blend component b) has a density of from 0.950 to 0.975 g/cc;
 y) the melt index, I₂, of said high density polyethylene blend composition is from 0.5 to 10 grams/10 minutes; and
 z) the I₂ ratio, obtained by dividing the I₂ value of said blend component a) by the I₂' value of said blend component b) is greater than 10/1.

2. The barrier film of claim 1 wherein said high density polyethylene blend composition comprises from 10 to 40 weight % of said component a) and from 90 to 60 weight % of said component b).

3. The barrier film of claim 1 wherein said high density polyethylene blend composition comprises from 20 to 40 weight % of said component a) and from 80 to 60 weight % of said component b).

4. The barrier film of claim 1 wherein said blend component a) is further characterized by having a molecular weight distribution, Mw/Mn, of from 2 to 4.

5. The barrier film of claim 1 wherein said high density polyethylene blend composition has a density from 0.955 to 0.965 g/cc.

6. The barrier film of claim 1 wherein said high density polyethylene blend composition has a melt index, I₂, of from 0.8 to 8 grams/10 minutes.

7. The barrier film of claim 1 wherein said nucleating agent has a melting/decomposition temperature of greater than 300° C.

8. The barrier film of claim 6 wherein said nucleating agent is a salt of a dicarboxylic acid.

9. The barrier film of claim 8 wherein said dicarboxylic acid is a cyclic dicarboxylic acid having a hexahydrophthalic structure.

10. The barrier film of claim 9 wherein said salt is selected from the group consisting of calcium and zinc salts.

11. A process to prepare a barrier film for food packaging, said process comprising the film extrusion of a composition comprising:
 l) an organic barrier nucleating agent; and
 II) a high density polyethylene blend composition comprising:
 II-i) from 5 to 60 weight % of at least one high density polyethylene blend component a) having a high melt index, I₂; and
 II-ii) from 95 to 40 weight % of at least one high density polyethylene blend component b) having a low melt index, I₂'; wherein:
 w) said organic barrier nucleating agent is added in an amount of from 100 to 3000 parts per million based on the weight of said high density polyethylene blend composition;
 x) each of said blend component a) and blend component b) has a density of from 0.950 to 0.975 g/cc;
 y) the melt index, I₂, of said high density polyethylene blend composition is from 0.5 to 10 grams/10 minutes; and
 z) the I₂ ratio, obtained by dividing the I₂ value of said blend component a) by the I₂' value of said blend component b) is greater than 10/1.

12. The process of claim 11 wherein said high density polyethylene blend composition comprises from 10 to 40 weight % of said component a) and from 90 to 60 weight % of said component b).

13. The process of claim 11 wherein said blend component a) is further characterized by having a molecular weight distribution, Mw/Mn, of from 2 to 4.

14. The process of claim 13 wherein said nucleating agent is a salt of a dicarboxylic acid.

15. The process of claim 11 wherein conducted at a blow up ratio of from 1.5/1 to 4/1.

* * * * *